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Abstract 8 

The paper presents a novel 3D macroelement approach for efficient and accurate nonlinear analysis of unreinforced masonry 9 

components subjected to in-plane and out-of-plane cyclic loading. A macroscopic description for masonry is employed, 10 

where macroelements, consisting of deformable blocks interacting through cohesive interfaces, are used to represent large 11 

portions of masonry walls, enhancing computational efficiency. Enriched kinematic characteristics are adopted for the 12 

homogeneous blocks, where in-plane shear and out-of-plane bending modes are described by two independent Lagrangian 13 

parameters. Moreover, a detailed material model for the nonlinear interfaces connecting adjacent elements enables an 14 

accurate representation of complex failure modes and cracking patterns in masonry walls. As a result, the proposed FE 15 

strategy can be employed for accurate response predictions of large masonry structures subjected to cyclic loading 16 

conditions. The accuracy of the macroelement approach is validated through comparisons against results of experimental 17 

tests of solid and perforated masonry walls under in-plane and out-of-plane loading. 18 

Keywords: Unreinforced masonry; nonlinear analysis; in-plane and out-of-plane cyclic loading; finite element method; 3D 19 
macroelement; mixed-mode failure. 20 

1 Introduction 21 

Unreinforced masonry (URM) has been used in the construction of buildings, bridges and monuments for centuries. 22 

Historical masonry structures form an important part of the cultural and engineering heritage. Masonry is also employed in 23 

modern structures, mainly for secondary components, such as infill panels in buildings with steel or concrete frames, and 24 

for the load bearing elements of low-rise buildings for its reduced cost and remarkable durability. As a result, at present there 25 

is a significant interest in the assessment of the structural integrity of URM components and structures and their vulnerability 26 

against various hazards, including earthquakes. 27 

An accurate prediction of the response of URM components under general loading conditions can be achieved using detailed 28 

models explicitly accounting for the mesostructure of the material. Such mesoscale descriptions, which can be developed 29 

within the finite element (FE) framework [1, 2, 3] or utilising discontinuum approaches like the discrete element method 30 

(DEM) [4, 5, 6] are also associated with convenient calibration of material properties by simple component tests on units 31 

and mortar joints [7]. This is particularly relevant when assessing the performance of existing structures, where low invasive 32 

in-situ tests can be employed for the identification of material model parameters [8]. On the other hand, mesoscale models, 33 

especially when based on 3D representations of masonry materials with small units, require prohibitive computational cost 34 

and an excessively time-consuming pre-processing stage. Computational efficiency can be enhanced utilising partitioning 35 

strategies and parallel computation resources [9, 10] or multi-scale approaches [11, 12, 13] which improve the potential of 36 

using detailed modelling for the analysis of URM structures, though even such advanced strategies are computationally 37 

demanding when applied to large-scale structural systems. Thus, when employing conventional computational resources 38 

their scope of applicability is restricted to the analysis of small masonry components. As a result, more efficient, hence less 39 

detailed, macroscopic descriptions are necessary, especially for the investigation of the nonlinear response of large masonry 40 

structures subjected to extreme conditions as in the case of earthquake loading. For the modelling of such structures, URM 41 
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is typically represented as a homogeneous material at structural scale, and its macroscopic behaviour is described in a 42 

phenomenological way. In general, the identification of macroscale material parameters is conducted at the structural 43 

component level, as macroscale models allow for masonry bond only implicitly. Thus, the influence of masonry texture is 44 

inherently related to the definition of the macroscale material properties, which can be determined by expensive and invasive 45 

in-situ experiments [14] or from mesoscale simulations using homogenisation techniques [15, 16, 17] and multi-level 46 

calibration procedures [18].    47 

In the main, two approaches can be identified within the masonry macroscale framework. The first one consists in the use 48 

of shell or solid finite elements with 2D or 3D plastic damage constitutive laws describing the macroscopic behaviour of 49 

URM [19, 20, 21]. The main advantages of this strategy are the flexibility in the description of complex geometries and the 50 

relative computational efficiency when compared to micro- or mesoscale modelling approaches. However, there are 51 

limitations related to the representation of damage as a smeared material characteristic within a certain volume, and to the 52 

ability to predict realistic cracking patterns and failure mechanisms in masonry components with complex texture (e.g. multi-53 

leaf walls) subjected to generic loading conditions. 54 

The second approach for macroscale modelling of URM structures is based on the use of sets of basic mechanical 55 

components, such as nonlinear springs or beams, which are properly arranged to form macroelements. In most cases, each 56 

macroelement accounts for material nonlinearity using phenomenological constitutive models to describe the macroscopic 57 

nonlinear response of the modelled structural component under specific deformation modes. Among existing macroelement 58 

strategies, the Equivalent Frame Approach, EFA [22, 23, 24] is widely used for its simplicity and computational efficiency. 59 

It is based on the assumption that the piers and/or the spandrels of masonry buildings can be represented by 1D 60 

macroelements with concentrated plasticity, while rigid offsets are used to connect distinct members. Despite the clear 61 

advantages, including the possibility to practically allow for strength and stiffness degradation under cyclic loading [25], 62 

standard EFAs have certain limitations, including geometrical inconsistency, the very crude representation of the interaction 63 

between structural members, the difficulty in modelling complex geometries and the lack of representation of out-of-plane 64 

failure modes.  65 

2D or 3D macroelements offer an alternative strategy that might tackle certain of those limitations, while maintaining the 66 

computational efficiency essential for nonlinear static and dynamic analysis. A strut-and-tie model was proposed by [26], 67 

which draws an equivalence between the in-plane behaviour of URM panels and a system of articulated struts with elastic-68 

perfectly plastic response in compression and zero tensile resistance. The model, which had been previously used to represent 69 

concrete walls, can reproduce in a distinct, albeit rather abstract way, diagonal shear or flexural failure; however, its 70 

extension to 3D is not straightforward. Other approaches are based on 2D or 3D rigid elements connected through springs 71 

to reproduce the macroscopic behaviour of a unit cell of the URM assembly. These include the Rigid Body Spring Model 72 

proposed by [27] utilising uncoupled axial and shear springs calibrated based on assumed failure mechanisms within a unit 73 

cell of URM, which is considered a heterogeneous periodic material. The model, which has been conceived for dynamic 74 

analysis, shows computational benefits due to its simplicity and the ability to reproduce the in-plane flexural, diagonal shear 75 

and compressive crushing failure modes of masonry. However, the adopted simplified constitutive laws overestimate the 76 

hysteretic energy dissipation in the case of rocking. Moreover, mechanisms that follow other than the assumed failure 77 

patterns might not be well represented. A similar strategy was employed in [28] for investigating the in-plane URM 78 

behaviour and in the modelling approach put forward by [29] for the out-of-plane URM response. In this case, 79 

homogenisation principles are employed to derive holonomic constitutive laws for the springs connecting the rigid elements. 80 

These laws are derived in an independent step, and then used within standard commercial FE software providing efficiency 81 

in the structural analysis. However, they do not yet account for the cyclic response of masonry. Caliò et al. [30] proposed a 82 

discrete plane element that also includes shear deformation modes for the homogeneous block, thus including the possibility 83 
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to represent diagonal shear cracking with a reduced number of elements. This approach was extended to represent the 3D 84 

behaviour [31, 32] incorporating into a single macro-element the in-plane and out-of-plane response.  85 

The present work assumes a description of URM through 3D homogeneous blocks connected through cohesive/frictional 86 

interfaces. It thus enables the realistic modelling of any URM structure with openings, properly accounting for the interaction 87 

between the different structural components. Instead of uncoupled springs, the blocks in the present approach interact based 88 

on a sophisticated 3D material description for zero-thickness cohesive interfaces which directly couples the normal with the 89 

tangential behaviour. In addition, the kinematics of the homogeneous block includes an in-plane shear deformation mode, 90 

as well as an out-of-plane diagonal bending mode. These modes allow the representation of in-plane and out-of-plane failure 91 

modes associated with diagonal cracking of URM components within a single macroelement. As a result, all the principal 92 

failure modes of components of URM buildings can be represented with a reduced number of elements, increasing the 93 

computational efficiency. As opposed to previous macroelement strategies (e.g. [30, 31, 32]), the proposed macroelement 94 

approach had been developed within a FEM framework with flexible connectivity with adjacent elements through its four 95 

boundary edges which represents a distinctive feature. This facilitates its combination with different types of finite elements, 96 

including quadratic beams and shells and the use of the capabilities of standard FEM software packages. 97 

2 Macroelement representation of URM 98 

2.1 Assumptions and macroelement characteristics 99 

The main objective of the developed macro-element is to provide an efficient and accurate representation of the typical in-100 

plane and out-of-plane failure modes including i) diagonal shear cracking (Figure 1a), ii) shear sliding (Figures 1b,f), iii) 101 

flexural cracking (Figures 1c,e), iv) toe crushing (Figure 1d) and v) diagonal cracking under two-way bending (Fig. 1g), 102 

which typically develop in URM components of buildings under earthquake loading.  103 

 104 
Figure 1. Failure modes of URM components: (a)-(d) in-plane and (e)-(g) out-of-plane 105 

To achieve a good balance between accuracy and computational efficiency, the macro-element is designed to represent the 106 

nonlinear behaviour at the scale of an entire masonry component (e.g pier or spandrel) or of a substantial part of it that 107 

generally consists of an assembly of several brick/block units and mortar joints. The onset of each failure mode is controlled 108 

through commonly used macroscopic or phenomenological material parameters, such as the flexural strength and the shear 109 

strength of masonry, which can be estimated by physical experiments or virtual tests by employing detailed micro- or 110 

mesoscale descriptions [18].   111 

The proposed element formulation is based on a 3D continuum rectangular block, which represents in a macroscopic 112 

homogeneous way a rectangular part of a URM component. The block interacts with adjacent elements through cohesive 113 

interfaces along four of its faces, as shown in Figure 2a. As a result, it enables a realistic representation of any plane geometry 114 

with arbitrary openings. The inner block has two specific deformation modes: in-plane shear deformation, as shown in Figure 115 

2b, and out-of-plane diagonal bending deformation, as depicted in Figure 2c, but is otherwise rigid. The two deformation 116 
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modes are governed by a single Lagrangian parameter that is represented by two nonlinear springs, sketched in Figures 2b 117 

and 2c, representing, in a phenomenological way, the main collapse mechanisms of a masonry wall component which cannot 118 

be described by damage in the surrounding interfaces. The shear mode allows the reproduction of diagonal shear cracking 119 

of masonry (Figure 1a) while the out-of-plane deformation enables the simulation of diagonal cracking due to flexure out-120 

of-plane (Figure 1g).  In the macro-element proposed by Pantò el al. [31, 32], the latter out-of-plane mechanism cannot be 121 

reproduced in a single element and a larger number of elements is needed for a suitable simulation of the out-of-plane 122 

response. The incorporation of the out-of-plane deformation mode allows the description of this effect with the use of much 123 

coarser meshes. Obviously, the number of elements necessary for each case is conditional to the geometry of the wall and 124 

the presence of openings. 125 

 
(a)                                                                           (b)                                                     (c) 

Figure 2. (a) URM macroelement; (b) In-plane shear deformation mode of inner block; (c) Out-of-plane diagonal bending mode of 126 
inner block 127 

 128 
Figure 3. Areas of influence of the interfaces between the inner block and the external edges 129 

Zero-thickness interfaces are defined along the four macroelement boundaries, as illustrated in Figure 2a. It is assumed that 130 

all normal elastic in-plane deformation within the masonry block is concentrated along these interfaces, based on the 131 

influence areas related to the corresponding volumes as shown in Figure 3. In a similar way, shear sliding (Figure 1b) and 132 

tensile damage within the block (Figure 1c) are represented by tensile or shear damage concentrated along the corresponding 133 

interfaces. Additionally, the effect of toe crushing (Figure 1d) can be accounted for by defining an ultimate compressive 134 

strength along the interfaces. Hence, on the whole, the 3D macroelement can reproduce all the collapse mechanisms of a 135 

URM panel shown in Figure 1. 136 

 137 
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2.2 Connectivity 138 

The element connectivity is defined through the eight nodes of the external edges. The order of connectivity is shown in 139 

Figure 2a. The pairs of nodes at the corners (2-3,4-5,6-7,8-1) have the same coordinates, but are sketched some distance 140 

apart for clarity. Two possibilities have been considered, which correspond to different modelling requirements for different 141 

types of structures: 142 

• In the first case, the corners between the element edges are defined by two distinct nodes. This configuration is chosen 143 

when modelling URM structures and URM blocks which are connected to each other. In this case, the external edges 144 

represent a fictional boundary between two parts of the URM structure and they do not transfer moments, allowing for 145 

a linear variation of the normal relative displacement and sliding along the horizontal and vertical edges of the macro-146 

element. Figure 4a shows an example of this type of connectivity. 147 

• In the second case, a corner consists of a single node. In this setting, the two adjacent edges share the displacements 148 

and rotations at this node. This configuration is chosen when the URM block is surrounded by a steel or concrete frame 149 

along two adjacent block boundaries, as illustrated in Figure 4b. The connectivity of the block to the frame elements 150 

requires a transfer of forces and moments between the edges connected to the frame. The adoption of Hermitian 151 

polynomials allows a satisfactory representation of the separation at the physical interface between the frame 152 

components and masonry infill. 153 

 154 
Figure 4. Types of nodal connectivity: (a) Adjacent URM blocks, (b) URM surrounded by frame 155 

3 Macroelement formulation 156 

In the following, the formulation of the macroelement is presented within a FEM framework. At first, the kinematics of the 157 

element in terms of basic and additional DOFs is detailed. Subsequently, the stress and strain measures of the cohesive 158 

boundaries are derived outlining the adopted constitutive relations. The behaviour of the nonlinear springs, governing the 159 

deformation modes of the inner block, and their calibration, based on specific macroscopic failure modes of a URM block, 160 

is then discussed. The derivation of the resistance force vector and the stiffness matrix of the element, on the basis of the 161 

stress and strain measures, is presented. Finally, the mass matrix defining the dynamic characteristics of the macroelement 162 

is derived. 163 

3.1 Kinematics 164 

As detailed in Section 2.2, each macroelement is defined through 𝑛 distinct nodes (2 ≤ 𝑛 ≤ 8). The element is implemented 165 

in a 3D FEM framework, where each node is characterised by 3 translational and 3 rotational degrees of freedom (DOFs). 166 

In the local element coordinate system XYZ shown in Figure 2a, the translational DOFs are noted as 𝑢𝑋, 𝑢𝑌, 𝑢𝑍 and the 167 

rotational ones as 𝜃𝑋, 𝜃𝑌, 𝜃𝑍. The vector of size 6𝑛 containing all the nodal DOFs of the macroelement in the element 168 

reference system XYZ can be expressed as: 169 



6 

 

𝑼𝒔 = [𝑢𝑋,1    𝑢𝑌,1    𝑢𝑍,1    𝜃𝑋,1    𝜃𝑌,1    𝜃𝑍,1  …  𝑢𝑋,𝑛    𝑢𝑌,𝑛    𝑢𝑍,𝑛    𝜃𝑋,𝑛    𝜃𝑌,𝑛    𝜃𝑍,𝑛]
𝑇
 (1) 

 170 
(b)                                                                     (c) 171 

Figure 5. Schematic representation of the DOFs of the macroelement: (a-b) Basic DOFs of external edges in the local element 172 
coordinate system, (c) Inner block additional DOFs 173 

When an external edge connects two macroelements, the interacting faces of the two adjacent blocks are plane, since the 174 

interpolation of the displacements within the inner block is linear. Therefore, a linear two-noded external edge is used to 175 

provide connectivity between adjacent macroelements. In this case, the rotational DOFs associated with bending of the edge 176 

in- and out-of-plane are not required. On the contrary, the twisting rotations are necessary to represent relative displacements 177 

at the interface under out-of-plane bending. Hence, edges connecting adjacent macroelements are defined by 4-DOF nodes, 178 

as shown in the example of Fig. 5a and are referred to as reduced-DOF edges. On the other hand, an external edge, connected 179 

to a beam element (e.g. representing a portion of a frame component interacting with the masonry infill), is described by 6-180 

DOF nodes, so that it can represent a deformation mode compatible with the elastic deformation of the beam element under 181 

bending. These edges are referred to as full-DOF edges. An example is given in of Fig.5b. 182 

In addition to the nodal DOFs, each macroelement has eight additional DOFs, illustrated in Fig.5c, which govern the 183 

deformation modes of the inner block. The additional DOFs 𝑑1 to 𝑑4 define the in-plane displacement of each rigid face of 184 

the block, while 𝑑5 to 𝑑8 define the out-of-plane displacement at each corner of the block.  A linear interpolation of these 185 

displacements is assumed within the block domain. The vector of the additional DOFs of the macroelement is noted as: 186 

𝑼𝒂 = [𝑑1    𝑑2    𝑑3    𝑑4    𝑑5    𝑑6    𝑑7    𝑑8] (2) 

while the vector containing all the basic and additional DOFs of the element is given by: 187 

𝑼 = [𝑼𝒔    𝑼𝒂]
𝑇 (3) 

3.2 Cohesive boundaries 188 

The interfaces along the four macroelement boundaries are characterised by a cohesive-frictional behaviour governed by a 189 

3D plasticity-damage constitutive law. This law defines the relationship between the relative displacements 𝜺𝒊  and the 190 

interface tractions 𝝈𝒊 at each Gauss Point within the 2D domain of the zero-thickness interface, as illustrated in Fig. 6a. Both 191 

the relative displacements and the interface tractions are expressed in the local reference system 𝑥𝑦𝑧 of boundary (𝑖), shown 192 

in Fig. 6 where y represents the direction normal to the zero-thickness interface mid-surface and x and z represent the 193 

tangential directions: 194 

𝜺𝒊 = [𝜀𝑥,𝑖     𝜀𝑦,𝑖     𝜀𝑧,𝑖]
𝑇
 (4) 

𝝈𝒊 = [𝜎𝑥,𝑖     𝜎𝑦,𝑖    𝜎𝑧,𝑖]
𝑇
 (5) 
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At first, the strain measure 𝜺𝒊 will be defined. Let 𝒖𝒊𝒏𝒕,𝒊 be the displacement field along the face of the block constituting the 195 

internal side of the zero-thickness interface (𝑖), 𝑖 = 1: 4, as shown in Figure 6b. The field 𝒖𝒊𝒏𝒕,𝒊 depends on the additional 196 

DOFs of the element sketched in Figure 6b. Also, let 𝒖𝒆𝒙𝒕,𝒊 be the displacement field along the 2D surface defined by the 197 

two-noded edge (𝑖), as shown in Figure 6b. The field 𝒖𝒆𝒙𝒕,𝒊 can be interpolated by the nodal DOFs of the edge. Hence, the 198 

relative displacement between the two sides of the zero-thickness cohesive interface can be written as: 199 

𝜺𝒊 = 𝒖𝒊𝒏𝒕,𝒊 − 𝒖𝒆𝒙𝒕,𝒊 = 𝑵𝒂,𝒊𝑼𝒂 − 𝑵𝒔,𝒊𝑼𝒔 (6) 

where 𝑵𝒂,𝒊 and 𝑵𝒔,𝒊 are the matrices which determine the interpolation of the displacement fields 𝒖𝒊𝒏𝒕,𝒊 and 𝒖𝒆𝒙𝒕,𝒊 by the 200 

additional DOFs 𝑼𝒂 and the basic nodal DOFs 𝑼𝒔 of the macroelement, respectively. Details on the derivation of these 201 

matrices for reduced-DOF and full-DOF edges are provided in Appendices A and B. 202 

 203 

Figure 6. (a) Local reference system and monitoring points along macroelement cohesive boundary; (b) Displacement fields on 204 

the two sides of the cohesive interface 205 

Having defined the relative displacements from the macroelement DOFs, a 3D cohesive-frictional constitutive law is 206 

employed to derive the interface tractions 𝝈𝒊 at each Gauss Point along the interface. The law employed here is based on the 207 

plasticity-damage formulation developed by Minga et al. [33]. It reproduces the main characteristics of the cyclic behaviour 208 

of cohesive-frictional interfaces: softening behaviour in tension and shear, stiffness degradation depending on the level of 209 

damage, recovering of normal stiffness in compression and residual (plastic) strains at zero stresses when the interface is 210 

damaged. Additionally, the effect of masonry crushing in compression is taken into account, through negative plastic normal 211 

strain at the interfaces of the crushed area.  212 

The elastic yield domain is described by three surfaces in the stress domain, as shown in Fig. 7. Surface 𝐹2 controls the shear 213 

sliding failure mode and it is based on the cohesion 𝑐 and the friction angle 𝑡𝑎𝑛𝜑 of the modelled URM block within the 214 

plane of the interface (which is parallel or perpendicular to the bed joints). Surface 𝐹1 sets a tensile cap representing the 215 

flexural failure mode, which is defined by the tensile strength 𝑓𝑡 of masonry in the direction normal to the interface. Finally, 216 

surface 𝐹3 constitutes a compressive cap which defines the onset of masonry crushing when the normal stress exceeds the 217 

compressive strength of masonry 𝑓𝑐 . When the yield domain is exceeded, plastic deformation and damage develop, 218 

producing a softening behaviour in the 𝜎𝑖 − 𝜀𝑖 response in the normal and tangential directions. When the damage under 219 

tension or shear is fully developed, the normal tensile stress drops to zero, while the tangential stresses follow a Mohr-220 

Coulomb friction law, i.e. their residual value depends on the compressive stress. On the other hand, when the compressive 221 

cap is exceeded, the negative plastic deformation and the damage under compression reproduce in a phenomenological way 222 

the crushing of masonry within the area of influence of the specific Gauss point. It is stressed that one of the most important 223 
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characteristics captured with the use of the adopted damage-plasticity constitutive law is the direct coupling between the 224 

normal and tangential directions. This means that the opening of a crack (i.e. the development of damage within the interface) 225 

affects both the normal and the tangential directions, as physically expected. Furthermore, it ensures that the response under 226 

shear is directly dependent on the level of normal stresses. 227 

 228 
Figure 7. Multi-surface yield domain of interface constitutive law [33] 229 

 230 
Figure 8. Illustrative examples of the cyclic constitutive law employed at the cohesive interfaces [33]: (a) normal direction; (b) 231 

tangential direction 232 

Figure 8 shows examples of the cyclic behaviour obtained with the interface constitutive law in the normal and tangential 233 

directions. Since the elastic deformation of the URM block is concentrated in the interfaces, as outlined in Section 2.1, the 234 

elastic stiffness parameters 𝐾𝑛 and 𝐾𝑠 represent the elastic axial and shear stiffness of the masonry per unit length of the area 235 

of influence of the specific interface. Let 𝐸𝑋 and 𝐸𝑌 be the Young’s modulus of masonry in the direction of the local element 236 

axes 𝑋 and 𝑌 respectively, and 𝐺 be the elastic shear modulus of masonry. Then: 237 

𝐾𝑛,1 = 𝐾𝑛,3 =
2𝐸𝑌

𝐻
 , 𝑲𝒏,𝟐 = 𝑲𝒏,𝟒 =

𝟐𝑬𝑿

𝑳
 (7) 

𝐾𝑠,1 = 𝐾𝑠,3 =
2𝐺

𝐻
 , 𝑲𝒔,𝟐 = 𝑲𝒔,𝟒 =

𝟐𝑮

𝑳
 (8) 

 238 

where the numbers in the subscripts define the edge of the macroelement. The remaining parameters of the model have been 239 

outlined in the definition of the yield domain. 240 

3.3 In-plane shear spring 241 

The in-plane shear deformation is defined by a single parameter, conveniently controlled by an individual nonlinear spring. 242 

This parameter can be related to the additional in-plane DOFs of the element. In particular, the in-plane rigid body motion 243 
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and the deformation of the in-plane shear spring are governed by 𝑑1, 𝑑2, 𝑑3 and 𝑑4 (Figure 5b). Considering 𝛼 as the angle 244 

between the diagonal spring and the top edge of the macroelement, as shown in Fig. 9, then: 245 

𝑢𝑑 = 𝑵𝒅 𝑼𝒂 (9) 

where: 246 

𝑵𝒅 = [𝑐𝑜𝑠𝛼   − 𝑠𝑖𝑛𝛼  𝑐𝑜𝑠𝛼  − 𝑠𝑖𝑛𝛼    0    0    0    0] (10) 

  247 
                                                         (a)                                                                                              (b) 248 

Figure 9. Calibration of in-plane shear spring: (a) homogeneous masonry plate under pure shear; (b) macroelement inner block 249 

 250 
The force 𝐹𝑑 developed in the spring is based on a constitutive law, which reproduces, in a phenomenological way, the 251 

global response of a masonry block that fails due to diagonal cracking under in-plane shear. The piecewise-linear law 252 

illustrated in Figure 10 is employed, as it approximately captures the main characteristics of the specific cracking pattern, 253 

discussed for example in [34].  254 

 255 

Figure 10. Constitutive law employed for the macroelement springs 256 

 257 

The model parameters for the diagonal shear spring, noted as 𝐹𝑦
𝑑 , 𝐹𝑟

𝑑 ,  𝐾𝑒
𝑑 , 𝐾𝑝

𝑑 , can be estimated as functions of the 258 

macroscopic masonry properties by considering the equivalence of the macroelement inner block to a homogeneous masonry 259 

plate under pure shear Fig. 9a. More specifically, the elastic stiffness 𝐾𝑒
𝑑  and the post-peak stiffness 𝐾𝑝

𝑑  can be calculated 260 

form the masonry elastic and post-peak shear moduli 𝐺𝑒 and 𝐺𝑝, which can be obtained from physical experiments, using 261 

the relationships: 262 

𝐾𝑒
𝑑 = 𝐺𝑒

𝐿𝑊

𝐻𝑐𝑜𝑠2𝑎
   , 𝐾𝑝

𝑑 = 𝐺𝑝

𝐿𝑊

𝐻𝑐𝑜𝑠2𝑎
 

                                                                                                    (11) 

 

   

d2=d4=0 
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where L, H and W represent the length, height and thickness of homogeneous masonry plate. 263 

The shear strength of the diagonal spring 𝐹𝑦
𝑑 can be determined employing existing strength prediction models which allow 264 

for unit interlocking and the cohesive and frictional nature of the masonry response in shear. In this work, 𝐹𝑦
𝑑  is calculated 265 

based on the macroscopic masonry shear strength provided by the Mann and Muller model [35] using the relationships: 266 

𝐹𝑦
𝑑 = 𝜏𝑌,0 + 𝜇𝑑𝜎𝑛

𝐿𝑊

𝐻𝑐𝑜𝑠𝑎
 

 
(12) 

𝜇𝑑 =
𝜇′

1 + 2𝜇′ 𝛥𝐻

𝛥𝐿

 
(13) 

𝜏𝑌,0 =
𝑐′

1 + 2𝜇′ 𝛥𝐻

𝛥𝐿

 
(14) 

where 𝜏𝛶,0 is the shear strength at zero confinement,  𝜇𝑑 a parameter which defines the influence of the confinement to the 267 

shear strength, 𝑐′ and 𝜇′ are the cohesion and friction angle of the masonry joints, while 𝛥𝐻 and 𝛥𝐿 are the length and height 268 

of the brick unit respectively. Finally, 𝜎𝑛 is the mean normal stress applied to the URM block, which is obtained by the 269 

normal tractions at the interfaces along the boundaries at the previous converged step of the analysis.  270 

Obviously, the ability of the diagonal spring to represent actual diagonal cracking depends on the accuracy of the adopted 271 

phenomenological macroscopic strength model. Recent research [36] pointed out that the Mann and Muller model generally 272 

provides realistic shear strength predictions for running bond brick/block-masonry, but it generally overestimates the 273 

influence of unit interlocking potentially leading to incaccurate results when used to analyse masonry components with 274 

complex bond. An alternative approach to determine the elastic and strength material parameters of the diagonal spring 275 

representing in-plane shear failure could be based on computational strategies linking the macroscale to the mesoscale [16, 276 

18] where masonry texture is explicitly represented.   277 

 278 

3.4 Out-of-plane diagonal bending spring 279 

The diagonal bending behaviour of the internal block, contributing to simulate the out-of-plane response of a masonry wall, 280 

is governed by the additional DOFs 𝑑5, 𝑑6, 𝑑7 and 𝑑8. The out-of-plane diagonal bending response along a specific diagonal, 281 

Fig. 2c, can be related to a single nonlinear spring denoted as bending spring. The deformation of the out-of-plane bending 282 

spring coincides with the lateral distance between the central points of the two diagonals of the inner block mid-surface. 283 

Initially, its length is zero. In a deformed configuration, the out-of-plane bending deformation of the spring is obtained as a 284 

function of the additional DOFs 𝑑5, 𝑑6, 𝑑7 and 𝑑8: 285 

𝑢𝑜𝑢𝑡 = 𝑵𝒐𝒖𝒕 𝑼𝒂 (15) 

where: 286 

𝑵𝒐𝒖𝒕 =
1

2
[0    0    0    0   − 1    1   − 1    1] (16) 

corresponding to a bending along the diagonal 2-6.  287 

The force 𝐹𝑜𝑢𝑡 developed in the spring is obtained based on the same constitutive law employed for the diagonal spring, as 288 

outlined in Section 3.3. The constitutive behaviour of this spring is conceived to reproduce phenomenologically the out-of-289 

plane failure mode due to diagonal bending. In this case, there are no established simple direct mechanical models providing 290 

a macroscale description for the failure mode with diagonal cracking under out-of-plane two-way bending which can be 291 

used to determine the material parameters for the out-of-plane diagonal spring. Furthermore, a model calibration based on 292 

the results from physical tests, as the tests on solid walls in [40], would be impractical due to the complexity and the relatively 293 
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high cost associated with this type of physical experiments on masonry components. Hence, a calibration of the stiffness and 294 

strength parameters (𝐹𝑦
𝑜𝑢𝑡, 𝐹𝑟

𝑜𝑢𝑡, 𝐾𝑒
𝑜𝑢𝑡, 𝐾𝑝

𝑜𝑢𝑡) based on the results of detailed mesoscale models is proposed here. The use of 295 

more general multiscale strategies employing homogenisation principles [17] or inverse analysis [18] is expected to lead to 296 

more accurate calibration and will be considered in future research. It is worth noting that the complexity of the calibration 297 

procedure does not hinder the efficiency of the proposed modelling strategy with macroelements as it conducted off-line, 298 

considering virtual numerical experiments simulated by mesoscale models which explicitly allow for masonry bond and 299 

require simpler material calibration based on component tests on units and mortar joints. 300 

 301 

Figure 11. Calibration of out-of-plane spring: (a) boundary conditions of numerical test; (b) curve fitting and parameter 302 

identification. 303 

Thus, according to the calibration approach used in this research, numerical tests on URM blocks under out-of-plane diagonal 304 

bending modelled using the detailed 3D mesoscale approach developed by Macorini and Izzuddin [3] and enhanced in [33]  305 

are employed. A mesoscale model of a URM block with the geometric characteristics of the macroelement and a realistic 306 

representation of the bonding pattern of the examined structure is developed, as shown in the example of Figure 11a. The 307 

mesoscale block is subjected to an out-of-plane deformation mode corresponding to the out-of-plane spring activation, under 308 

different levels of normal compressive stress. An illustrative example of the nonlinear response obtained by the numerical 309 

test is shown in Figure 11b. Each experimental curve is used to calibrate a piecewise linear envelope with the form of the 310 

constitutive model of Figure 10. The parameters obtained by the curve fitting are the slope of the pre-peak (elastic) branch 311 

𝑡𝑎𝑛𝜃𝑒, the slope of the post-peak branch 𝑡𝑎𝑛𝜃𝑝, the yield pressure per unit surface 𝑝𝑦, the residual pressure per unit surface 312 

𝑝𝑟. The first two parameters are used for the calibration of 𝐾𝑒
𝑜𝑢𝑡 and 𝐾𝑝

𝑜𝑢𝑡 which are taken as the average of the values 313 

obtained for different levels of compressive stress: 314 

𝐾𝑒
𝑜𝑢𝑡 =

1

𝑛
∑ 4𝐿𝐻𝑡𝑎𝑛𝜃𝑒,𝑘

𝑛

𝑘=1

 (17) 

𝐾𝑝
𝑜𝑢𝑡 =

1

𝑛
∑ 4𝐿𝐻𝑡𝑎𝑛𝜃𝑝,𝑘

𝑛

𝑘=1

 (18) 

Based on the definition of the out-of-plane spring deformation and reaction force, the out-of-plane pressure 𝑝 relates to the 315 

spring reaction force 𝐹𝑜𝑢𝑡 in the following way: 316 

𝐹𝑜𝑢𝑡 = 2𝐿𝐻𝑝 (19) 



12 

 

Based on Equation (20), the values of 𝑝𝑦  and 𝑝𝑟  obtained by the numerical tests can be transformed into spring force 317 

measures. Thus, two series of data points (𝜎𝑛, 𝐹𝑦
𝑜𝑢𝑡 ) and (𝜎𝑛, 𝐹𝑟

𝑜𝑢𝑡 ) are obtained. Those data points are used for the 318 

identification though linear regression of two functions which provide the parameters 𝐹𝑦
𝑜𝑢𝑡, 𝐹𝑟

𝑜𝑢𝑡 of the spring constitutive 319 

law for different levels of applied normal stress: 320 

𝐹𝑦
𝑜𝑢𝑡(𝜎𝑛) = 𝐹𝑦,0

𝑜𝑢𝑡 + 𝜇𝑜𝑢𝑡,𝑦 𝜎𝑛 (20) 

𝐹𝑟
𝑜𝑢𝑡(𝜎𝑛) = 𝐹𝑟,0

𝑜𝑢𝑡 + 𝜇𝑜𝑢𝑡,𝑟 𝜎𝑛 (21) 

Similar to the case of the shear spring, the normal stress in Equations (20) and (21) are obtained by the normal tractions at 321 

the interfaces along the boundaries at the previous converged step of the analysis. 322 

3.5 Resistance forces and tangent stiffness of macroelement 323 

In this section, the derivation of the macroelement resistance forces and tangent stiffness matrix in the FEM framework is 324 

outlined. The tangent stiffness of the constitutive relation between the relative displacements and the interface tractions along 325 

the boundaries is given by the relation: 326 

𝑲𝒊 =
𝒅𝝈𝒊

𝒅𝜺𝒊

  (22) 

where: 327 

𝒅𝜺𝒊 = 𝑵𝒂,𝒊𝒅𝑼𝒂 − 𝑵𝒔,𝒊𝒅𝑼𝒔  (23) 

and the interface traction 𝒅𝝈𝒊 increment is obtained by the cohesive frictional constitutive law described in Section 3.2. 328 

Similarly, the tangent stiffness of the constitutive relation between the deformation and reaction force of the diagonal shear 329 

spring and the out-of-plane spring is given respectively by: 330 

𝐾𝑑 =
𝑑𝐹𝑑

𝑑𝑢𝑑

 (24) 

𝐾𝑜𝑢𝑡 =
𝑑𝐹𝑜𝑢𝑡

𝑑𝑢𝑜𝑢𝑡

 
(25) 

where: 331 

𝑑𝑢𝑑 = 𝑵𝒅 𝒅𝑼𝒂 (26) 

𝑑𝑢𝑜𝑢𝑡 = 𝑵𝒐𝒖𝒕 𝒅𝑼𝒂 (27) 

and the reaction forces 𝐹𝑑 and 𝐹𝑜𝑢𝑡 are obtained by the constitutive law described in Sections 3.3 and 3.4. 332 

Let 𝑊𝑖𝑛𝑡 be the virtual work of the internal forces of the macroelement and 𝑊𝑒𝑥𝑡  the virtual work of the external forces 333 

applied to the macroelement. The two quantities are obtained by: 334 

𝑊𝑖𝑛𝑡 = ∑ ∫ 𝒅𝜺𝒊
𝑇 𝝈𝒊 𝑑𝑆𝑖

𝑆𝑖

+ 𝑑𝑢𝑑 𝐹𝑑

4

𝑖=1

+ 𝑑𝑢𝑜𝑢𝑡  𝐹𝑜𝑢𝑡 (28) 

𝑊𝑒𝑥𝑡 = 𝑑𝑈𝑇  𝐹𝑒𝑥𝑡  (29) 

where 𝑆𝑖, (𝑖 = 1: 4) is the surface of interface 𝑖 between the block and the external edge 𝑖. Taking into account Equations  335 

(23), (26) and (27), the internal work can be written as: 336 

𝑊𝑖𝑛𝑡 = 𝒅𝑼𝑻 ∑ ∫ 𝑵𝒔,𝒊
𝑇  𝝈𝒊 𝑑𝑆𝑖

𝑆𝑖

+ 𝒅𝑼𝑇  𝑵𝒅
𝑇  𝐹𝑑

4

𝑖=1

+ 𝒅𝑼𝑇  𝑵𝒐𝒖𝒕
𝑇  𝐹𝑜𝑢𝑡 (30) 
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Imposing that the virtual work of the internal forces is equal to the virtual work of the external forces ∀𝒅𝑼, we obtain the 337 

following equation: 338 

𝒅𝑼𝑻 (∑ ∫ 𝑵𝒔,𝒊
𝑇  𝝈𝒊 𝑑𝑆𝑖

𝑆𝑖

+ 𝑵𝒅
𝑇 𝐹𝑑

4

𝑖=1

+ 𝑵𝒐𝒖𝒕
𝑇  𝐹𝑜𝑢𝑡) = 𝒅𝑼𝑻𝑭𝒆𝒙𝒕 (31) 

The resistance force vector is therefore obtained as: 339 

𝑭(𝒆) = 𝑭𝒆𝒙𝒕 = ∑ ∫ 𝑵𝒔,𝒊
𝑇  𝝈𝒊 𝑑𝑆𝑖

𝑆𝑖

+ 𝑵𝒅
𝑇  𝐹𝑑

4

𝑖=1

+ 𝑵𝒐𝒖𝒕
𝑇  𝐹𝑜𝑢𝑡 (32) 

By differentiating the internal force vector with respect to the vector of the element degrees of freedom, the tangent stiffness 340 

matrix is obtained: 341 

𝑲(𝒆) =
𝒅𝑭(𝒆)

𝒅𝑼
= ∑ ∫ 𝑵𝒔,𝒊

𝑇  𝑲𝒊
𝑇𝑵𝒔,𝒊 𝑑𝑆𝑖

𝑆𝑖

+ 𝑵𝒅
𝑇 𝐹𝑑𝑵𝒅

4

𝑖=1

+ 𝑵𝒐𝒖𝒕
𝑇  𝐹𝑜𝑢𝑡𝑵𝒐𝒖𝒕 (33) 

The first integral term in Eq. (33) is calculated using Gauss quadrature: 342 

∑ ∫ 𝑵𝒔,𝒊
𝑇  𝑲𝒊

𝑇𝑵𝒔,𝒊 𝑑𝑥𝑑𝑧

𝑆𝑖

= ∑𝑵𝒔,𝒊
𝑇  𝑲𝒊

𝑇𝑵𝒔,𝒊 𝐽𝑖  𝑑𝜉𝛿𝜂

4

𝑖=1

4

𝑖=1

=∑ ∑ 𝑵𝒔,𝒊
𝑇 (𝜉𝐺𝑃 , 𝜂𝐺𝑃)𝑲𝒊

𝑇(𝜉𝐺𝑃 , 𝜂𝐺𝑃) 𝑵𝒔,𝒊(𝜉𝐺𝑃 , 𝜂𝐺𝑃) 𝑤𝐺𝑃  𝐽𝑖

𝑛𝐺𝑃

𝐺𝑃=1

4

𝑖=1

 

(34) 

 343 

where 𝐽𝑖 is the Jacobian for the transformation between the local reference system of edge (𝑖) and the natural reference 344 

system of the interface (𝑖). 345 

3.6 Mass distribution 346 

In the case of dynamic analysis, the mass associated with each element has to be considered for the calculation of the inertia 347 

force and potentially the mass proportional damping force. For simplicity, the mass of the element is associated with the 348 

translational nodal degrees of freedom of the external edges. Let 𝜌 be the density of masonry. Then the total mass of the 349 

element is given by the equation: 350 

𝑚𝑒 = 𝜌𝐿𝐻𝑊  (35) 

Since the mass is distributed along the element edges, let 𝜌𝑠 denote the mass per unit length of the external edges: 351 

𝜌𝑠 =
𝑚𝑒

2𝐿 + 2𝐻
 (36) 

The mass matrix of the element is given by the following expression: 352 

𝑴 = 𝜌𝑠  ∑ ∫ 𝑁𝑠,𝑖
𝑇  𝑁𝑠,𝑖  𝑑𝛺𝑠

𝛺𝑠,𝑖

4

𝑖=1

 

(37) 
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4 Numerical examples 353 

In this section, the modelling approach with masonry macroelements is used for the analysis of URM structures under in-354 

plane and out-of-plane loading. Each case examines the ability of the macroelement to reproduce the behaviour of masonry 355 

structural components and systems under different boundary and loading conditions. To assess the capacity of the macro-356 

models to predict the response of masonry structures with accuracy, the numerical predictions are compared against 357 

experimental results found in the literature. All the analyses have been performed using ADAPTIC [37]. 358 

4.1 Modal analysis of URM components  359 

The representation of the linear dynamic characteristics of a URM component by a macroelement description is examined 360 

herein. For this, the results of the eigenvalue analysis of a mesoscale model of a URM wall are compared to the corresponding 361 

results obtained by two different macroelement representations of the same wall. The mesoscale model – based on the work 362 

in [10] – is considered as the reference model that provides an accurate representation of the panel characteristics. The 363 

comparison aims to investigate the accuracy in the linear domain both in terms of stiffness and mass property representation. 364 

A single-wythe running bond URM wall, with length and height of 10001350 mm2 and thickness of 110 mm, is modelled. 365 

The wall is fully restrained at the bottom side. For the mesoscale description, the material characteristics reported in Table 1 366 

are adopted. Two macroelement models have been developed: model 1 with a 33 mesh and model 2 with a 44 mesh. The 367 

macroscopic material characteristics for the macroelement models, equivalent to the mesoscale material properties, are 368 

reported in Table 2. Those values have been derived based on elastic analyses of the mesoscale model under the respective 369 

deformation modes. 370 

Table 1: Elastic material parameters for mesoscale model 371 

Mortar joints  Bricks 

Normal stiffness Kn [N/mm3] 48 Young’s modulus Eb [N/mm2] 800 

Tangential stiffness Kt [N/mm3] 21   

 372 

Table 2: Elastic macroelement material parameters 373 

Young’s modulus 

EY  [N/mm2] 

Young’s modulus 

EX  [N/mm2] 

Shear modulus 

Ge [N/mm2] 

Out-of-plane elastic stiffness  

Eout [N/mm] 

2700 4000 478 2690 

 374 

Eigenvalue analysis is performed in the mesoscale and macroelement models of the wall. The modal shapes corresponding 375 

to the first four modes obtained with the mesoscale model are shown in Figure 12a, while Figure 12b shows the respective 376 

modal shapes of the macroelement model 1. It is noted that the modal shapes of macroelement model 2 are practically 377 

coincident, so they are not plotted for conciseness. The modal periods of each model corresponding to the first seven modes 378 

are shown in Figure 13. The sum of the mass participation factor of the first seven modes is 63-85% along all three axes. It 379 

can be observed that the modal shapes obtained by the mesoscale and macroscale representations are equivalent, which 380 

indicates that the initial stiffness and the mass matrix defined in the macroelement provide a very accurate approximation of 381 

the stiffness and the mass distribution in the component. Furthermore, the modal periods of the macroelement models are 382 

close to the reference periods obtained by the mesoscale representation. The discrepancy for model 1 is ranging between 383 

2.1% and 21.2%, with the exception of mode 6, where the difference reaches 35%. The accuracy of model 2 is even higher, 384 



15 

 

with the discrepancy ranging from 0.4% in the first modal period to 11.9% in the period of the fourth mode corresponding 385 

to the in-plane deformation. 386 

 

(a) 

 

(b) 

Figure 12. Modal shapes for the four first modes obtained with (a) the mesoscale model and (b) the macroelement model 1 387 

 388 

Figure 13. Modal periods of the URM wall obtained with the mesoscale and the macroscale representations 389 

 390 

4.2 In-plane response of masonry piers 391 

The second numerical example presented herein concerns the in-plane response up to collapse of masonry piers, which 392 

constitute critical components of perforated walls in URM buildings subjected to substantial in-plane shear forces and 393 

bending moments when these structures resist earthquake loading. For this, the experiments performed by Anthoine et al. 394 

[38] are simulated. Two URM wall specimens, the short wall with aspect ratio of 1.35 and the tall wall with aspect ratio of 395 

2.0, were tested under in-plane shear loading. The tested wall specimens were connected to a rigid base through a mortar 396 
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bed joint. A stiff beam, which was forced to remain horizontal, transferred uniform compressive stress of 0.6 MPa to each 397 

wall. Horizontal displacement cycles of increasing magnitude were imposed to the top beam.  Each specimen developed a 398 

distinct failure mechanism, associated with dissimilar characteristics of the cyclic response curve. The short wall specimen 399 

developed diagonal shear cracking and failure, while the tall wall specimen developed horizontal cracking due to flexural 400 

bending and rocking cyclic behaviour, without strength degradation. The ability of the proposed macroelement modelling 401 

approach to predict the main monotonic and cyclic response characteristics of the two piers and their distinct failure modes 402 

is investigated in the following. 403 

 404 

Table 3. Material parameters for macroelement cohesive interfaces used in masonry pier models 405 

 

Young’s 

modulus 

E [N/mm2] 

Tensile 

strength 

ft  [N/mm2] 

Cohesion 

c [N/mm2] 

Friction angle 

tanφ 

Fracture energy   

Gf  [N/mm] 

     Mode I Mode II 

Horizontal 2500 0.1 0.23 0.58 0.05 0.10 

Vertical  1500 0.68 1.56 0.8 0.05 0.10 

 406 

Table 4. Material parameters for macroelement diagonal shear spring used in masonry pier models 407 

Elastic shear 

modulus  

Ge [N/mm2] 

Post-peak shear 

modulus  

Gp [N/mm2] 

Shear strength at 

zero confinement  

 Y,0 [N/mm2] 

Coefficient of 

friction  

μd 

580 -200 0.17 0.43 

 408 

The two specimens are modelled with the proposed approach with reduced-DOF edges (allowing connectivity between URM 409 

blocks), using two alternative meshes with 22 (mesh 1) and 33 (mesh 2) macroelements. In all the models, the element 410 

edges along the bottom are fully restrained, simulating a rigid boundary. The bottom interfaces corresponding to the 411 

restrained edges represent the frictional surface between the wall specimens and the rigid base. The edges along the top of 412 

the walls are forced to remain horizontal by coupling the translations of their nodes along the Y direction. Horizontal 413 

displacement cycles along the X direction are applied to the same nodes. Since all loads are applied in-plane and the top 414 

edges have common X and Y displacements, they remain rigid and horizontal, thus simulating the slab support. The 415 

interfaces corresponding to the top edges represent the frictional surface between the wall and the steel beam. The 416 

compressive stress n=0.6 MPa is applied through nodal forces at the top edges. The material properties used in the analysis 417 

are given in Table 3 and Table 4. The Young’s modulus of masonry adopted for the horizontal interfaces in the vertical 418 

direction EY is consistent with the results from the physical tests on the materials used for the construction of the specimens 419 

as reported in [34]. The Young’s modulus in the horizontal direction for the vertical interfaces is taken as EX=0.6EY. The 420 

remaining parameters for the horizontal interfaces are the material properties of the wall bed joints, taken from previous 421 

works that presented mesoscale simulations of the same experiments [33]. On the other hand, the vertical interfaces of the 422 

macroelement refer to a boundary comprised of both head joints and through-brick potential crack paths. Therefore, their 423 

parameters are estimated as the average values of the properties of head joints and brick cracking surfaces, also taken from 424 

mesoscale numerical representations. Along all boundaries, the value of the compressive strength of masonry is fc = 6.2MPa 425 

[34] and the dilation angle is assumed as zero. Regarding the shear spring, the macroscopic shear parameters are based on 426 

the values suggested by Magenes and Fontana [24]. 427 
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(a) 

 
(b) 

Figure 14. Numerical-experimental comparison of the force-displacement response for short wall under in-plane monotonic and 428 

cyclic loading: (a) mesh 1; (b) mesh 2 429 

In Figure 14, the experimental curve for the short wall specimen, showing the variation of the shear force against the 430 

horizontal top displacement, is compared against the numerical results obtained with the two macroelement models under 431 

monotonic and cyclic loadings. The numerical curve for mesh 2 is in very close agreement with the experimental results. 432 

The maximum shear capacity of the wall and the corresponding drift are accurately captured. Furthermore, the rate of 433 

strength and stiffness degradation are reproduced in a very accurate way and, consequently, the amount of hysteretic energy 434 

dissipation at each cycle is close to the experimental observations. On the other hand, the use of the coarser mesh 1 leads to 435 

an overestimation of the force and hysteretic energy dissipation capacities and the strength degradation that is more abrupt 436 

than the one predicted with mesh 2. The relatively large discrepancy between the results obtained using different mesh 437 

characteristics can be explained by closely observing the deformed shapes at maximum displacements in Figure 15a and the 438 

damage in the diagonal shear springs in Figure 15b, and comparing them with the experimental cracking pattern in Figure 439 

15c. In the experiment, the wall developed diagonal cracks close to the corners, that meet in a vertical cracking zone at the 440 

centre of the specimen (Figure 15c). In the 4-element model (mesh 1), the sensitive central zone is not represented 441 

independently from the corner zones. As a result, all elements deform almost uniformly until the yield point of the shear 442 

springs, which results in the overestimation of the capacity. Furthermore, after the yield point, the two elements of the top 443 
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row develop abrupt softening - as can be derived by the advanced damage state at the end of the analysis shown in Figure 444 

15b - producing the practically linear post-peak behaviour. On the contrary, in the 9-element model (mesh 2) the 3 445 

macroelements at mid-length represent the central zone of the wall,where shear cracking initiates and develops, as can be 446 

observed in the deformed shape in Figure 15a. In addition, the four corner macroelements correspond to the zones of diagonal 447 

cracking. Indeed, Figure 15b shows significant shear damage in the diagonal shear springs of three central and two bottom 448 

corner macroelements, but shear damage in the two top corner macroelements is underpredicted. Overall, this level of mesh 449 

refinement achieves an adequate representation of the analysed URM component that ensures accurate prediction of the 450 

cyclic response (Figure 14b). It is noted that a 44-element model has also been tested and the resulting cyclic response is 451 

practically coincident with the one obtained using the 9-element model, as expected for any mesh with a larger number of 452 

macroelements than 3×3 [39].  453 

 454 

          +Ux               -Ux          +Ux            -Ux 

    

                                              mesh 1                                                                                    mesh 2 455 
(a) 456 

 

mesh 1 

 

             mesh 2 

 

                                                       (b)                                                                                    (c)                                                       457 

Figure 15. Short wall under cyclic loading: (a) deformed shape at edges of largest cycle for meshes 1 and 2; (b) strength 458 

degradation of diagonal shear springs at the end of the analysis for meshes 1 and 2; (c) experimental cracking pattern [37] 459 

Fig. 16 shows the numerical-experimental comparisons of the global response of the tall wall. Also in this case, two models 460 

with 2×2 (mesh 1) and 3×3 (mesh 2) macroelements are employed in the numerical simulations. Both models provide a good 461 

representation of the pure rocking behaviour, which characterises the physical response of the tall wall specimen. The 462 

envelope of the cyclic behaviour is effectively captured, meaning that the capacity of the wall in the case of flexural failure 463 

is accurately predicted also by the model with the coarser mesh. Furthermore, as it can be observed from the deformed shapes 464 

plotted in Fig. 17a, flexural cracking appears at the top and bottom interfaces, while the diagonal springs in this case remain 465 

elastic. This provides a good representation of the experimental cracking pattern (Fig. 17b) which confirms the ability of the 466 

macro-element description with a correct calibration of the material parameters to reproduce the influence of the wall 467 

geometry and the actual failure mode for different wall aspect ratios. However, the cyclic response prediction does not 468 

capture the increase in the amount of energy dissipation as the drift increases which is observed in the experimental tests. 469 

This could be partly due to the assumption of elastic unloading-reloading in the employed constitutive model [33], which is 470 
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a simplification of the real unloading-reloading path that might involve a certain level of hysteresis. Additionally, it can be 471 

partially explained by the "perfect" symmetrical rocking behaviour produced in the numerical simulations, which cannot 472 

appear in an experimental test of a real brick wall, where various effects, such as non-uniform properties of the joints and 473 

lack of perfect symmetry, might play a significant role. 474 

 

(a) 

 
(b) 

Figure 16: Numerical-experimental comparison of the force-displacement response for tall wall under in-plane monotonic and 475 

cyclic loading: (a) mesh 1; (b) mesh 2 476 

    +Ux         -Ux          +Ux           -Ux  

    
 

                              mesh 1                                                       mesh 2                                                      (b) 477 
(a)                                                                                              478 

Figure 17. Tall wall under cyclic loading: (a) deformed shape at edges of largest cycle for meshes 1 and 2; (b) experimental 479 

cracking pattern [38] 480 

 481 

 482 
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4.3 Two-way bending of URM walls 483 

The developed macroscale description has been used also to investigate two-way bending of URM components. This mode 484 

appears when out-of-plane loads are applied to a wall that is connected along the vertical edges to return walls. It is a common 485 

configuration in old URM buildings, where the out-of-plane actions often cause severe damage. To investigate the ability of 486 

the macroelement representation to accurately predict this type of response, the experimental tests performed by Griffith et 487 

al. [40] are simulated. In particular, the solid wall specimens 1 and 2 and the specimens with window openings 3 and 5 of 488 

the experimental program are modelled herein. The analysed specimens consist of a main wall of 40002500 mm2 and 480 489 

mm long return walls on both sides. Specimens 3 and 5 contain an opening in the main wall, as shown in Figure 18. The 490 

walls were built with running bond pattern, overlapping at the intersections between perpendicular panels. The main wall 491 

was simply supported along the top and the bottom edge in the direction of the loading and restraints were imposed along 492 

the vertical edges of the return walls to achieve a full moment connection. Uniform pressure was applied at the two faces of 493 

the main wall resulting in cyclic out-of-plane response. In specimens 1 and 3, a uniform compressive stress of 0.1 MPa was 494 

applied at the top to examine the influence of confinement. 495 

 496 

Figure 18. Geometry and boundary conditions of the experimental specimen with window opening under two-way bending 497 

The solid wall specimens are modelled with a mesh of 84 macroelements, with the main wall represented by 64 498 

macroelements of equal size and each lateral wall represented by 14 equal sized elements. For specimens 3 and 5, a mesh 499 

of macroelements is employed for the main wall to accommodate the opening, while the lateral walls are represented by 16 500 

macroelements. All elements have reduced-DOF edges. The external edges along the bottom surface of the model are fully 501 

restrained. The top edges of the main wall are restrained only in the out-of-plane direction, creating pinned supports. The 502 

vertical edges of the return walls are restrained in the direction of the X and Z axis and are not allowed to rotate around the 503 

vertical Y axis. Nodal forces are applied to the top edges representing the compressive stress, where necessary. The uniform 504 

lateral pressure along the surface of the main wall is applied through nodal forces with values that correspond to the area of 505 

influence of each node.  506 

Table 5. Material parameters for macroelement cohesive interfaces used in models for walls under two-way bending 507 

 Young’s 

modulus  

E [N/mm2] 

Tensile 

strength  

ft [N/mm2] 

Cohesion 

c [N/mm2] 

Friction angle 

tanφ 

Fracture energy 

Gf [N/mm] 

 

Horizontal 

 

3540 

 

0.163 

 

0.75 

 

0.24 

Mode I 

0.05 

Mode II 

0.10 

Vertical 2124 1.08 2.43 0.56 0.05 0.10 
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The material parameters for the horizontal and vertical interfaces are reported in Table 5 and are derived by the properties 508 

of the interfaces in the mesoscale description [33] as discussed in Section 3.2. The parameters of the out-of-plane springs 509 

are calibrated based on the procedure summarised in Section 3.4. Details on the calibration are provided in [39].  510 

At first, monotonic surface loading was applied to the four models to investigate the influence of the opening and the level 511 

of compressive stress in the wall initial capacity and ductility. The numerical monotonic response of the solid wall models 512 

is presented in Figure 19, where the out-of-plane displacement at the monitoring point is plotted against the applied pressure 513 

for different levels of compressive stress. The numerical curves are compared to the envelope of the experimental response 514 

[40]. It can be observed that the macroelement models provide an accurate prediction of the out-of-plane capacity of the 515 

walls, also accounting for the influence of compressive stresses. Additionally, the post-peak softening rate and the strength 516 

at the maximum displacement attained are approximately captured. The increased rate of strength degradation in the case of 517 

n=0.1MPa, could be more accurately reproduced if the influence of the compressive stresses to the post-peak slope of the 518 

out-of-plane spring was taken into account. The latter characteristic will be re-examined in future work. 519 

 520 

Figure 19. Numerical monotonic response of solid wall specimens under out-of-plane loading compared to envelope of 521 

experimental response for different levels of compressive stress 522 

 523 

Figure 20. Numerical monotonic response of window wall specimens under out-of-plane loading compared to envelope of 524 

experimental response for different levels of compressive stress 525 

A similar numerical-experimental comparison is presented in Figure 20 for the models with the window opening. It can be 526 

observed that, also in this case, the load and drift capacity is captured accurately, and the model properly accounts for the 527 
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influence of the compressive strength to the resistance. Furthermore, the rate of softening and the strength at the level of the 528 

ultimate displacement agree with the experimental observations. The comparison of the two types of specimens shows that 529 

the presence of the opening does not have a significant influence in the peak strength of the walls, but it increases the rate 530 

of strength degradation and reduces the initial ductility observed in the solid wall specimen, features accurately captured by 531 

the macroelement models. 532 

Subsequently, the wall models have been subjected to cyclic loading, to investigate the ability of the macroelement model 533 

to reproduce the main features of the cyclic nonlinear behaviour. The resulting numerical curves for the solid wall specimens 534 

with σn=0.0 MPa and σn=0.1 MPa are shown in Figure 21, where they are compared against the experimental responses. 535 

 536 

(a) 537 

 538 

(b) 539 

Figure 21. Numerical-experimental comparison for the solid walls out-of-plane loading: (a) σn=0.0 MPa, (b) σn=0.1 MPa 540 

In both cases, the envelope of the cyclic response in the positive quadrant is in very close agreement with the experimental 541 

envelope; the load and out-of-plane drift capacity of the wall, as well as the rate of strength degradation are reproduced 542 

accurately. In the experimental curves reported by Griffith et al. [40], the strength upon load reversal appears significantly 543 

reduced, which is attributed to the pre-cracking of the wall up to +30 mm. This response characteristic is reproduced only to 544 

a small extent in the numerical analyses, which can be attributed to the characteristics of the constitutive law of Figure 10 545 

employed for the out-of-plane springs. According to this material description, strength degradation develops separately in 546 
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the positive and negative quadrants, thus the softening behaviour in one direction does not influence the response in the other 547 

direction. This assumption will be re-examined in future work. 548 

Regarding the cracking pattern, indicative results for the solid wall with compressive stress σn=0.1 MPa are presented in 549 

Figure 22. Figure 22a displays the strength degradation in the out-of-plane springs, according to a colour-map which 550 

indicates the level of out-of-plane diagonal cracking. It can be observed that the damage of the out-of-plane springs of the 551 

main wall governs the response of the structure. The degraded springs are mainly the ones close to the corners, which 552 

correspond to the area where diagonal cracks first appeared during the experiments (Figure 22c). Figure 22b shows the 553 

deformed shape of the model at maximum positive displacement. The interfaces which develop significant damage are noted 554 

in the figure. The flexural damage along the horizontal interface at the top-centre of the wall corresponds to the horizontal 555 

crack along the bed joint in the centre of the experimental specimen (Figure 22c). Furthermore, sliding appears along the 556 

intersection of the main and the lateral walls, which is in good agreement with the experimental observations.  557 

 558 
                 lateral                                                      lateral                         lateral                                                         lateral      559 
                      wall                     main wall                    wall                            wall                     main wall                        wall 560 

 561 
                                                inside face                                       (c)                                      outside face                                         562 

Figure 22. Solid wallσn=0.1MPa: (a) strength degradation of out-of-plane springs; (b) deformed shape at maximum 563 

displacement; (c) experimental cracking pattern [40] 564 

Finally, Figure 23 shows the deformed shape and the strength degradation of the out-of-plane springs of the macroelements 565 

representing the response of the window wall specimen with n=0.0 MPa under cyclic loading. Contrary to the solid wall 566 

specimens, where the diagonal out-of-plane damage was concentrated at the corners, in this case it is spread to all the 567 

macroelements of the main wall. This agrees with the outcome of the experimental test, which resulted in diffuse out-of-568 

plane cracking along the main wall (Fig. 23c). Furthermore, the deformed shape of the model reveals a vertical crack at the 569 

top-centre of the masonry panel, which agrees with the experimental observations in the corresponding specimen (Fig. 23c). 570 

In addition, a horizontal crack has developed at the middle-right area which is also observed in the experimental cracking 571 

pattern in Fig. 23c. 572 

 573 
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(a)  

(b) 

                                                       lateral                                                                         lateral                   574 
                                                              wall                                main wall                             wall                            575 

 576 
outside face 577 

(c) 578 

Figure 23. Window wall with σn=0.0 MPa: (a) strength degradation of out-of-plane springs; (b) deformed shape at maximum 579 

displacement; (c) experimental cracking pattern [40] 580 

4.4 In-plane response of two-storey façade 581 

This section investigates the ability of the macroelement model to accurately reproduce the behaviour of a large URM 582 

system, such as the two-storey perforated wall tested under in-plane cyclic loading by Magenes et al. [41]. The masonry wall 583 

was part of a full-scale brick-masonry building specimen built using a two-wythe English bond pattern and the same 584 

materials used in the experiments simulated in Section 4.2. Dead weights were placed at the two floor levels giving rise to a 585 

pre-compression of approximately 0.5 MPa to the bed joints at bottom of the walls. The structure was subjected to 586 

displacement control cyclic loading, with equal horizontal forces applied at each floor level in the direction shown in Fig. 587 

24a. The analysed wall (Wall D in [41]) correspond to one of the two longitudinal faces of the building, which was not 588 

connected to the adjacent lateral walls. Hence the influence of the remaining structure on the in-plane response of this façade 589 

can be considered negligible and Wall D is modelled in isolation. 590 

A macroelement model has been developed for Wall D using the mesh shown in Figure 24a. In the model, the nodes 591 

belonging to the macroelement edges along the bottom boundary are fully restrained, representing the rigid base. Equal 592 

forces are applied at floor levels and the displacement is controlled through a middle master node, using the configuration 593 

shown in Fig. 24b. The material properties of the models are the same as the properties defined for the macroelements in 594 

Section 4.2 which are reported in Tables 3 and 4. 595 

The numerical response of the macroelement model in terms of in-plane displacement at the second floor with respect to the 596 

base shear force of Wall D is presented in Figure 25. The numerical curve is compared to the experimental response provided 597 

in [41], and a very close agreement can be observed between the two response curves. The load capacity is predicted within 598 

10% accuracy, while the corresponding drift is also closely identified. Furthermore, the strength and stiffness degradation 599 
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of the structure within the series of loading cycles is very well reproduced, allowing a realistic prediction of residual drifts 600 

and hysteretic energy dissipation. 601 

 602 

Figure 24. (a) Macroelement model of Wall D; (b) configuration for displacement control analysis with equal forces at floor 603 

levels 604 

 605 

Figure 25. Two-storey URM façade: experimental-numerical comparison 606 

In Fig. 26a, the deformed shape of the macroelement model at the point of the largest lateral drift is plotted, while Fig. 26b 607 

depicts the strength degradation of the in-plane shear springs at the end of the cyclic analysis. The failure pattern derived by 608 

these figures is in good agreement with the experimental observations (Fig. 26c). More specifically, the significant horizontal 609 

flexural cracks at the bases of the three piers and at the level of the second floor windows is effectively represented by the 610 

nonlinear interfaces at the edges of the macroelements (Fig. 26a), and shear failure in the two first floor spandrels and in the 611 

ground floor central pier is captured by in-plane diagonal springs (Fig. 26b). However, it should be noted that there are some 612 

discrepancies between the predicted and the observed damage patterns, mainly in the ground floor central pier where the 613 

adopted mesh of macroelements leads to underestimating the extent of shear damage. In any case, it should be stressed that 614 

the proposed modelling strategy with macroelements, due to its phenomenological nature, is not aimed at providing an 615 

accurate representation of the actual cracks in the brick-work, but at predicting the main response characteristics including 616 

strength and stiffness degradation under cyclic loading as shown in Fig. 25.   617 
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          (a) 

 

                          (b)  

 

(c) 

 
Figure 26. (a) Deformed shape of macroelement model at peak in-plane displacement; (b) strength degradation of diagonal 618 

shear springs at the end of the cyclic analysis; (c) experimental cracking pattern [41] 619 

4.5 In-plane-response of concrete frame with masonry infill 620 

The final application considered herein concerns the modelling of infill frames with the use of the macroelement for the 621 

representation of the URM parts of the system. This example allows the investigation of the alternative features of the 622 

macroelement kinematics, specifically developed to allow for the interaction with frames. More precisely, macroelements 623 

containing full-DOF edges are employed. Furthermore, the macroelements in contact with the corners of the frames include 624 

edges which share nodes, as explained in Section 2.2. The enhanced kinematics of the homogeneous block, including an 625 

out-of-plane diagonal bending mode, allows a better representation of the in-plane and out-of-plane failure modes compared 626 

to previous discrete element formulations as proposed in [31, 32].  627 

An experimental test of single-storey reinforced concrete (RC) infill frames under in-plane loading [42], performed in the 628 

Construction Engineering Research Laboratory at Champaign (Illinois), is simulated and the results obtained numerically 629 

are compared against the experimental observations. The single-bay bare frame and brick-infill frame specimens are 630 

considered here. The geometric characteristics of the frame and the infill are shown in Fig. 27a. Details on the reinforcement 631 

can be found in [42]. The specimens were loaded in-plane at the storey level through the actuator sketched in Fig. 27a. The 632 

horizontal force was plotted against the top horizontal displacement in each case to assess the influence of the infill panel to 633 

the resistance of the frame.  634 
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 635 

Figure 27. (a) Single-bay infill frame tested experimentally under in-plane loading [41]; (b) FE model with macroelements for 636 

masonry infill 637 

In the numerical models developed in ADAPTIC [37], the frame is represented by means of two-noded cubic elasto-plastic 638 

beam elements with 6-DOFs per node. Each frame member is modelled with six beam elements, as shown in Fig. 27b to 639 

accurately represent the nonlinear response of the frame. A symmetric reinforced concrete section is utilised for the beam 640 

elements. The material behaviour of concrete is modelled using a constitutive law with a parabolic envelope in compression 641 

and a cap in tension with zero post-yield tensile stress, while the material behaviour of steel reinforcement is considered 642 

elastic-perfectly plastic. The material parameters for the frame, are presented in Table 6 and they are based on the material 643 

properties reported in [42]. 644 

 645 

Table 6. Material properties of concrete and steel reinforcement 646 

Concrete 

fc [MPa] 

 

ft [MPa] 

 

εc,0  

 

w [KN/m3] 

Steel 

Es [GPa] 

 

σy [MPa] 

38.5 1.5 0.2% 25.0 200.0 377.0 

 647 

The wall panel of the brick-infill frame specimen is modelled employing macroelements. To achieve mesh compatibility 648 

with the frame - hence accurate representation of the interaction between macroelements and beam elements - a mesh of 6×6 649 

macroelements is employed, as shown in Figure 27b. The edges of the macroelements that coincide with beam elements of 650 

the frame are defined as full-DOF edges. This allows the external edges to have the same deformed shape as the frame 651 

elements, which ensures accurate representation of the interaction between the frame and the block through the cohesive 652 

interfaces. The macroelements with one or two full-DOF edges are marked in Figure 27b. The remaining edges defining the 653 

boundaries between macroelements are reduced-DOF. All the macroelements are defined by 8 distinct nodes, except for the 654 

two elements at the corners of the infill panel, which include two consecutive full-DOF edges sharing the corner node of the 655 

frame. The material properties adopted for the shear spring and the cohesive interfaces at the boundaries of the 656 

macroelements are reported in Tables 7 AND 8. The properties corresponding to the macroscopic in-plane behaviour of the 657 

URM infill panel were already calibrated by  Pantò et al. [42], who modelled the same experimental test with the 3D discrete 658 

macroelement proposed in [32]. Similar parameters are adopted in the macroelement model herein. 659 

 660 

 661 
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Table 7. Material parameters for macroelement cohesive interfaces 662 

 Young’s 

modulus  

E [N/mm2] 

Tensile 

strength 

ft  [N/mm2] 

Cohesion 

c [N/mm2] 

Friction angle 

tanφ 

Fracture energy 

Gf  [N/mm] 

 

Horizontal 

 

2500 

 

0.15 

 

0.30 

 

0.40 

Mode I 

0.05 

Mode II 

0.10 

Vertical 2000 0.60 0.70 0.50 0.05 0.10 

 663 

Table 8. Material parameters for macroelement diagonal shear spring 664 

Elastic shear 

modulus 

Ge [N/mm2] 

Post-peak shear 

modulus 

Gp [N/mm2] 

Shear strength at 

zero confinement 

Y,0 [N/mm2] 

Coefficient of 

friction 

μd 

1000 -10 0.30 0.15 

 665 

 666 

Figure 28. Numerical response of bare frame and infill frame model compared to the experimental response 667 

At first, the bare frame specimen has been analysed under horizontal in-plane loading applied at the storey level, to verify 668 

the accurate representation of its nonlinear behaviour. The force – displacement curve is shown in Fig. 28 against the 669 

experimental curve [42]. A very close agreement between the numerical and the experimental curve is observed, which 670 

validates the modelling strategy chosen for the bare frame. Subsequently, the detailed infill frame model with a 6 × 6 671 

macroelement mesh is analysed. The global behaviour of the coupled model in terms of horizontal force and top horizontal 672 

displacement is also shown in Fig. 28, where it is compared against the corresponding experimental curve. It can be observed 673 

that the influence of the infill panel in the initial stiffness, as well as the load capacity of the frame, is accurately reproduced. 674 

In the post-peak region, the tested specimen exhibits a behaviour characterised by abrupt drops in the strength followed by 675 

gradual partial recovery. Instead, the numerical curve shows a smooth softening post-peak behaviour that results in 676 

moderately lower residual strength compared to the experimental curve. This is possibly due to the approximation of the 677 

post-peak behaviour of the URM block under diagonal shear cracking by a linear curve (in the constitutive law of the 678 

diagonal shear springs). The linear curve is chosen to provide an approximation of the global strength degradation, but, 679 

obviously, it cannot reproduce the effects of local crack opening and re-closure, which produce the abrupt drops in the 680 

strength of a URM specimen under shear. 681 



29 

 

The deformed shape of the infill frame model at the end of the nonlinear analysis is shown in Fig. 29a, while Fig. 29b 682 

presents the strength degradation of the diagonal shear springs at the same point. The development of a diagonal shear 683 

cracking mode, starting from the second and fourth row of macroelements and propagating to the larger region, can be 684 

observed in the two figures. This agrees with the experimental cracking pattern of the infill panel at this level of horizontal 685 

drift (Fig. 29c), as described by Al-Chaar et al. [42]. In addition, a horizontal crack extending along the largest part of the 686 

panel’s length is observed in Fig. 29a between the fifth and sixth row of macroelements, while cracks of smaller length are 687 

spread over the infill wall’s area. These cracks in the interfaces between the macroelement blocks reproduce the large 688 

horizontal and smaller vertical cracks observed experimentally (Figure 29c). On the whole, it is observed that the developed 689 

macroelement strategy can accurately represent URM components interacting with frame elements, when the external edges 690 

of the former share the DOFs and follow the deformed shape of the latter. This shows the effectiveness of the full-DOF 691 

variation of the macroelement edges, which ensures the accurate representation of the relative displacements along the 692 

interface between the frame and the URM infill. 693 

 694 

(a)                                                                                        (b) 695 

 696 
                                                                                                     (c) 697 

Figure 29. Infill frame model at the end of the numerical analysis: (a) deformed shape; (b) strength degradation of diagonal 698 

shear springs; (c) experimental cracking pattern [42] 699 

5 Concluding remarks 700 

In this paper, a novel 3D macroelement for efficient and accurate nonlinear analysis of masonry structures is proposed. It is 701 

formulated within the FEM framework, adopting similar assumptions to previous discrete element representations of URM, 702 

with significant enhancements on the kinematic and material descriptions. Importantly, the proposed macroelement can 703 

represent the main in-plane and out-of-plane collapse mechanisms of URM panels. The flexural cracking, shear sliding and 704 

toe crushing failure modes are described allowing for their interaction through damage concentrated along the macroelement 705 

boundaries. The in-plane shear and out-of-plane diagonal cracking modes are represented in a phenomenological way by 706 

nonlinear springs associated with the respective deformation modes of the inner block. The constitutive behaviour of the 707 

springs is coupled with the mean normal stress in the boundary interfaces, which provides the level of confinement. The 708 

macroelement has a flexible connectivity along its four boundary edges and can therefore be used in combination with other 709 
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finite elements with rotational freedoms including shell and beam elements. This is an important characteristic, as the 710 

proposed masonry macro-element description can be used not only to analyse masonry components in isolation, but also 711 

entire historical URM buildings, where the masonry elements interact with the floor systems, and modern infill frame 712 

structures, where the response up to collapse is governed by the complex interaction between masonry infill and surrounding 713 

frames. Numerical examples including comparisons against physical experiments have shown that: 714 

• the enhanced kinematics in combination with the detailed cohesive-frictional constitutive law along the boundaries allow 715 

a reasonable representation of the in-plane and out-of-plane nonlinear behaviour of URM components; 716 

• reliable predictions of failure modes can be achieved using a reduced number of elements for modelling solid walls, 717 

components (e.g. piers and spandrels) of large perforated walls and infill panels of framed structures; 718 

• the proposed modelling strategy with macroelements enables an accurate prediction of the main response characteristics 719 

of masonry components including strength and stiffness degradation and hysteretic energy dissipation. 720 

As a result, the proposed macroelement strategy offers a good balance between accuracy and efficiency for the 3D modelling 721 

of URM structures under monotonic and cyclic loading conditions. Further research will focus on extending the 722 

macroelement description to allow for geometric nonlinearity, which may affect the out-of-plane response under extreme 723 

loading conditions. Additionally, a consistent multiscale calibration strategy will be developed, where the macromodel 724 

material parameters are determined as a function of the actual masonry bond, the mechanical properties of the masonry 725 

constituents and the mesh characteristics of macroelement representation for typical masonry wall components. 726 
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Appendix A: Interpolation of external edge displacement field 

Let 𝑥𝑦𝑧 be the local reference system of an external edge of the macroelement, as shown in Figure 6. The vector containing 

the basic DOFs of the two nodes defining a specific edge (𝑖), 𝑖 = 1: 4, expressed in the local system of the edge is noted as 

𝒖𝒔,𝒊. For a reduced-DOF edge: 

𝒖𝒔,𝒊 = [𝑢𝑥,0   𝑢𝑦,0   𝑢𝑧,0   𝜃𝑥,0   𝜃𝑦,0   𝜃𝑧,0   𝑢𝑥,𝐿   𝑢𝑦,𝐿   𝑢𝑧,𝐿   𝜃𝑥,𝐿   𝜃𝑦,𝐿   𝜃𝑧,𝐿]
𝑇
 (38) 

while for a full-DOF edge: 

𝒖𝒔,𝒊 = [𝑢𝑥,0   𝑢𝑦,0   𝑢𝑧,0   𝜃𝑥,0   𝑢𝑥,𝐿    𝑢𝑦,𝐿   𝑢𝑧,𝐿   𝜃𝑥,𝐿]
𝑇
 (39) 

The DOFs with the subscript ∗,0 refer to the node at 𝑥 = 0, while the ones with the subscript ∗,𝐿 refer to the node at 𝑥 = 𝐿. 

The vector 𝒖𝒔,𝒊  can be extracted by the element nodal DOF vector 𝑼𝒔 . The transformation is performed through a 

transformation matrix 𝑻𝒔,𝒊 which is constant in the case of small displacements examined here: 

𝒖𝒔,𝒊 = 𝑻𝒔,𝒊 𝑼𝒔 (40) 

The cohesive interface defined along the boundary is a 2D zero-thickness interface, as illustrated in Figure 6. An 

isoparametric space (𝜉, 𝜂) with 𝜉 ∈ [−1  1] and 𝜂 ∈ [−1  1] is defined for the interface mid-surface, as shown in Figure 30. 

The natural coordinates (𝜉, 𝜂) will be used in the definition of the variable fields in the following. 

Let 𝒖𝒆𝒅,𝒊(𝜉) be the displacement and rotation field along the external edge (𝑖), 𝑖 = 1: 4, interpolated by the DOFs in 𝒖𝒔,𝒊 

using standard beam shape functions, linear for a reduced-DOF edge and quadratic for a full-DOF edge.  

For a reduced-DOF edge: 

𝒖𝒆𝒅,𝒊(𝜉) =  [𝑢𝑥
𝑒𝑑,𝑖(𝜉)   𝑢𝑦

𝑒𝑑,𝑖(𝜉)   𝑢𝑧
𝑒𝑑,𝑖(𝜉)   𝜃𝑥

𝑒𝑑,𝑖(𝜉)]
𝑇
 

(41) 

while for a full-DOF edge: 

𝒖𝒆𝒅,𝒊(𝜉) =  [𝑢𝑥
𝑒𝑑,𝑖(𝜉)   𝑢𝑦

𝑒𝑑,𝑖(𝜉)   𝑢𝑧
𝑒𝑑,𝑖(𝜉)   𝜃𝑥

𝑒𝑑,𝑖(𝜉)    𝜃𝑦
𝑒𝑑,𝑖(𝜉)    𝜃𝑧

𝑒𝑑,𝑖(𝜉)]
𝑇
 

(42) 

The external side of the cohesive interface is a 2D extension of the two-noded edge, as shown in Figure 6. The displacement 

field along the 2D external side of the interface is noted as 𝒖𝒆𝒙𝒕,𝒊(𝜉, 𝜂) = [𝑢𝑥
𝑒𝑥𝑡,𝑖(𝜉, 𝜂)   𝑢𝑦

𝑒𝑥𝑡,𝑖(𝜉, 𝜂)   𝑢𝑧
𝑒𝑥𝑡,𝑖(𝜉, 𝜂)], 𝑖 = 1: 4, 

and can be estimated by the following equations: 

𝑢𝑥
𝑒𝑥𝑡,𝑖(𝜉, 𝜂) = 𝑢𝑥

𝑒𝑑,𝑖(𝜉) +
𝑊𝜂

2
𝜃𝑦

𝑒𝑑,𝑖(𝜉) (43) 

𝑢𝑦
𝑒𝑥𝑡,𝑖(𝜉, 𝜂) = 𝑢𝑦

𝑒𝑑,𝑖(𝜉) +
𝑊𝜂

2
𝜃𝑥

𝑒𝑑,𝑖(𝜉) (44) 

𝑢𝑧
𝑒𝑥𝑡,𝑖(𝜉, 𝜂) = 𝑢𝑧

𝑒𝑑,𝑖(𝜉) (45) 

In case of a reduced-DOF edge, 𝜃𝑦
𝑒𝑑,𝑖

 is constant along the edge and can be obtained by:  

𝜃𝑦
𝑒𝑑,𝑖 =

𝑢𝑧,0 − 𝑢𝑧,𝐿

𝐿𝑖

 (46) 

The displacement field 𝒖𝒆𝒙𝒕,𝒊 is expressed in the local reference system 𝑥𝑦𝑧 of edge (𝑖). 

 
Figure 30. Isoparametric space corresponding to the mid-surface of a zero-thickness interface 
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Equations (43)-(45) can be written in matrix form as follows: 

𝒖𝒆𝒙𝒕,𝒊(𝜉, 𝜂) = 𝑵𝒔(𝜉, 𝜂) 𝒖𝒔,𝒊 = 𝑵𝒔(𝜉, 𝜂) 𝑻𝒔,𝒊 𝑼𝒔,𝒊 (47) 

where 𝑵𝒔(𝜉, 𝜂) is the matrix containing the shape functions for the interpolation of the displacements along the external 

surface of interface (𝑖), by the DOFs in 𝒖𝒔,𝒊. For a reduced-DOF edge, matrix 𝑵𝒔(𝜉) is written as follows: 

𝑵𝒔(𝜉, 𝜂) =

[
 
 
 
 𝑁𝑢𝑥,0

0
𝑊𝜂

2𝐿𝑖

0 𝑁𝑢𝑥,𝐿
0 −

𝑊𝜂

2𝐿𝑖

0

0 𝑁𝑢𝑦,0
0 0 0 𝑁𝑢𝑦,𝐿

0 0

0 0 𝑁𝑢𝑧,0
0 0 0 𝑁𝑢𝑧,𝐿

0]
 
 
 
 

 (48) 

where: 

𝑁𝑢𝑥,0
= 𝑁𝑢𝑦,0

= 𝑁𝑢𝑧,0
=

1

2
(1 − 𝜉) (49) 

𝑁𝑢𝑥,𝐿
= 𝑁𝑢𝑦,𝐿

= 𝑁𝑢𝑧,𝐿
=

1

2
(1 + 𝜉) (50) 

For a full-DOF edge, matrix 𝑵𝒔(𝜉, 𝜂) has the form: 

𝑵𝒔 =

[
 
 
 
 
 𝑁𝑢𝑥,0

0
𝑊𝜂

2𝐿𝑖

𝑁𝑢𝑧,0
′ 0

𝑊𝜂

2
𝑁𝜃𝑦,0

′ 0 …

0 𝑁𝑢𝑦,0
0 −

𝑊𝜂

2
𝑁𝜃𝑥,0

0 𝑁𝜃𝑧,0
…

0 0 𝑁𝑢𝑧,0
0 𝑁𝜃𝑦,0

0 …

 

 

               

… 𝑁𝑢𝑥,𝐿
0

𝑊𝜂

2𝐿𝑖

𝑁𝑢𝑧,𝐿
′ 0

𝑊𝜂

2
𝑁𝜃𝑦,𝐿

′ 0

… 0 𝑁𝑢𝑦,𝐿
0 −

𝑊𝜂

2
𝑁𝜃𝑥,𝐿

0 𝑁𝜃𝑧,𝐿

… 0 0 𝑁𝑢𝑧,𝐿
0 𝑁𝜃𝑦,𝐿

0 ]
 
 
 
 
 

 

(51) 

where: 

𝑁𝑢𝑥,𝑙
= 𝑁𝜃𝑥,𝑙

=
1

2
(1 − 𝜉) (52) 

𝑁𝑢𝑦,𝑙
= 𝑁𝑢𝑧,𝑙

=
1

4
(1 − 𝜉)2(2 + 𝜉) (53) 

𝑁𝜃𝑦,𝑙
= 𝑁𝜃𝑧,𝑙

=
𝐿

8
(1 − 𝜉)2(1 + 𝜉) (54) 

𝑁𝑢𝑥,𝑟
= 𝑁𝜃𝑥,𝑟

=
1

2
(1 + 𝜉) (55) 

𝑁𝑢𝑦,𝑟
= 𝑁𝑢𝑧,𝑟

=
1

4
(1 + 𝜉)2(2 − 𝜉) (56) 

𝑁𝜃𝑦,𝑟
= 𝑁𝜃𝑧,𝑟

=
𝐿

8
(1 + 𝜉)2(𝜉 − 1) (57) 

From Equation (47), the following expression can be derived for matrix 𝑵𝒔,𝒊 used in Equation (6): 

𝑵𝒔,𝒊 = 𝑵𝒔 𝑻𝒔,𝒊 

 
(58) 
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Appendix B: Interpolation of block face displacement field 

Let 𝒖𝒊𝒏𝒕,𝒊(𝜉, 𝜂) = [𝑢𝑥
𝑖𝑛𝑡,𝑖(𝜉, 𝜂)    𝑢𝑦

𝑖𝑛𝑡,𝑖(𝜉, 𝜂)    𝑢𝑧
𝑖𝑛𝑡,𝑖(𝜉, 𝜂)]

𝑇
 be the displacement field along the face of the block that 

constitutes the internal side of the cohesive interface (𝑖), 𝑖 = 1: 4. The field 𝒖𝒊𝒏𝒕,𝒊 is expressed in the local reference system 

of edge (𝑖) and is interpolated by the seven additional DOFs depicted in Figure 31. The additional DOFs in the latter figure 

are expressed in the local reference system 𝑥𝑦𝑧 and will be referred to as local additional DOFs of interface (𝑖). Let 𝒖𝒂,𝒊 =
[𝑎1, … , 𝑎7]

𝑇 be the vector containing the local additional DOFS of interface (𝑖). The vector 𝒖𝒂,𝒊 can be obtained from vector 

𝑼𝒂 of the element additional DOFs through a transformation matrix 𝑻𝒂,𝒊 consisting of 0, 1 and -1 elements: 

𝒖𝒂,𝒊 = 𝑻𝒂,𝒊 𝑼𝒂 (59) 

 

Figure 31. Local additional DOFs of interface (i) 

The displacement field along the internal side of the interface is noted as: 

𝒖𝒊𝒏𝒕,𝒊(𝜉, 𝜂) = [𝑢𝑥
𝑖𝑛𝑡,𝑖(𝜉, 𝜂)     𝑢𝑦

𝑖𝑛𝑡,𝑖(𝜉, 𝜂)      𝑢𝑧
𝑖𝑛𝑡,𝑖(𝜉, 𝜂)],    𝑖 = 1,4 (60) 

and can be estimated by the following equation: 

𝒖𝒊𝒏𝒕,𝒊(𝜉, 𝜂) = 𝑵𝒂(𝜉, 𝜂) 𝒖𝒂,𝒊 = 𝑵𝒂(𝜉, 𝜂) 𝑻𝒂,𝒊 𝑼𝒂 (61) 

where: 

𝑵𝒂 =

[
 
 
 
 
 
 1

𝑊𝜂

2𝐿𝑖

0 −
𝑊𝜂

2𝐿𝑖

…

0 0
1

2
(1 − 𝜉) +

𝑊𝜂

4𝐻𝑖

(1 − 𝜉) 0 …

0
1

2
(1 − 𝜉) 0

1

2
(1 + 𝜉) …

 

 

               

… 0 0 0

…
1

2
(1 + 𝜉) +

𝑊𝜂

4𝐻𝑖

(1 + 𝜉) −
𝑊𝜂

2𝐻𝑖

(1 + 𝜉) −
𝑊𝜂

2𝐻𝑖

(1 − 𝜉)

…
1

2
(1 + 𝜉) 0 0 ]

 
 
 
 

 

(62) 

Taking into account Equation (47), the matrix 𝑵𝒂,𝒊 used in Equation (6) can be written as: 

𝑵𝒂,𝒊 = 𝑵𝒂 𝑻𝒂,𝒊 (63) 

 

 


