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Abstract 9 

Anaerobic digestion (AD) is a long-established method for treating wastewater sludge and has 10 

been extensively researched, but there remains a lack of generic or practical modelling tools to 11 

guide operators and maximise the energy output. Detailed kinetic models have been developed, 12 

but are too complex as practical tools for industrial level application. A multi-level model of 13 

biogas yield (BY) was therefore developed based on operational data from 72 full-scale sites 14 

in the UK showing a wide range of AD performance. The model focused on the controllable 15 

operational parameters that are currently monitored at full-scale, including: temperature, 16 

hydraulic retention time and dry solids content in the feed sludge. The model effectively 17 

described performance variations in BY of full-scale processes, and provides a practical 18 

management tool to aid decision support to improve AD efficiency and net energy balance.   19 
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1. Introduction  24 

The water industry consumes up to 3% of the total energy used (Howe, 2009), is the fourth 25 

most energy intensive sector (POST, 2007) and contributes approximately 1% of national 26 

greenhouse gas (GHG) emissions in the UK (Water UK, 2009); specifically, wastewater 27 

treatment contributes almost 60% of overall GHGs emitted by the industry (Ainger et al., 2009). 28 

However, the water industry is also a significant producer of renewable energy, for example, 29 

20% of the energy consumed in Thames Water is from renewable sources supplied through 30 

anaerobic digestion (AD) of sewage sludge (Thames Water, 2019). Therefore, improving 31 

energy output is one of the key drivers for full-scale AD process management.  32 

Anaerobic digestion is well established as a process for the stabilisation and treatment of 33 

residual sewage sludge from wastewater treatment. Scientific models of the AD process have 34 

been developed for almost 40 years, motivated by the need for more efficient operation 35 

(Donoso-Bravo et al., 2011). The complexity of the system requires a modelling approach to 36 

balance the various influencing operational parameters, and specific models have been 37 

developed for different purposes (Kythreotou et al., 2014). The simple stoichiometric equation 38 

first proposed by Buswell and Muller (1952) calculates the maximum biogas potential of the 39 

digestible substrates in sludge. The next generation of models focussed on the rate limiting step 40 

of the biochemistry and were based, for example, on the rates of conversion of fatty acids, 41 

methanogenesis or the hydrolysis of suspended solids (Eastman and Ferguson, 1981). These 42 

models were simple and easy to use, but did not adequately capture the overall process 43 

performance (Donoso-Bravo et al., 2011). More complex models incorporate additional 44 

process steps, microbial species and detailed kinetics, including inhibitory mechanisms, based 45 

on improved microbiological understanding. For example, Hill (1982) used the volatile fatty 46 

acid (VFA) concentration as a key parameter and separated the kinetics of acidogenesis and 47 

acetogenesis into individual stages. More recently, the Anaerobic Digestion Model No.1 48 
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(ADM1), developed by Batstone et al. (2002), describes the dynamics of 24 species and 49 

includes 19 bioconversion processes, and aims to provide a generic model of fundamental AD 50 

mechanisms. Whilst valuable in research, a constant-volume and completely-mixed system is 51 

assumed by ADM1 and this is often difficult to achieve at full-scale (Kythreotou et al., 2014). 52 

Moreover, the complexity and large number of input parameters restricts the application of 53 

dynamic models at a practical level for optimisation of full-scale industrial plant. Several 54 

authors have modified ADM1 for full-scale application to individual sites (Otuzalti and 55 

Perendeci, 2018; Ozgun, 2019) by reducing the number of input parameters. Nevertheless, a 56 

considerable amount of additional chemical information is still required, such as chemical 57 

oxygen demand, VFA and alkalinity, which are not routinely measured at full-scale sewage 58 

sludge AD plant.   59 

The parameters that are typically available for process control are usually relatively limited and 60 

include: digestion temperature, hydraulic retention time (HRT), and the dry solids (DS) content 61 

of the digester feed sludge. However, sites with advanced mesophilic anaerobic digestion 62 

(MAD) often record additional sludge chemical properties: volatile solids (VS), VFA, and pH. 63 

The effects of these principal operational parameters on the AD process have been extensively 64 

studied individually in controlled laboratory experiments (Boušková et al., 2005; Alepu et al., 65 

2016; Nielsen et al., 2017). However, it is less clear how digestion conditions affect the 66 

performance of full-scale, industrial AD plants, when interactive effects of multiple process 67 

variables exist. The development of artificial intelligence and deep learning algorithms, linked 68 

to artificial neural networks (ANN) has enabled the simulation of such complex non-linear 69 

systems. Indeed, several authors have developed ANN models of digester performance at full-70 

scale sites (Qdais et al., 2010; Güçlü et al., 2011). For example, Güçlü et al. (2011) accurately 71 

predicted (R2 = 0.71) the daily methane (CH4) production volume using temperature, pH, 72 

sludge feed volume, VS, VFA and alkalinity as input variables, based on full-scale data 73 
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collected over a 245 day period at Ankara Central wastewater treatment plant (WWTP).  ANN 74 

models undoubtedly provide a major advancement in industrial systems control, however, they 75 

represent a ‘black box’ approach to process modelling and do not provide defined parameters 76 

to interpret the relationships between input and output variables (Dumitru and Maria, 2013). 77 

So far, ANN models have been successfully applied, but only to single, full-scale sewage 78 

sludge AD treatment sites and, consequently, reflect local operational performance conditions 79 

and may not be readily transferrable to other sites. 80 

Modelling full-scale AD performance with limited operational parameters presents major 81 

challenges due to the complexity of the full-scale MAD process and relative differences in 82 

operational conditions, sludge composition and data recording between sites. However, it is 83 

possible to overcome these problems by extending conventional regression analysis techniques 84 

through the multi-level modelling of data from multiple sites with a hierarchical or clustered 85 

structure (Harrison et al., 2018).  86 

The aim of this research, therefore, is to develop a statistically based, decision support tool, to 87 

predict and optimise AD performance using operational parameters available at full-scale sites, 88 

that can be applied by plant operators to optimise the biogas yield (BY) and energy balance of 89 

full-scale sewage sludge digestion processes. This was achieved by developing a multi-level 90 

model of BY based on operational data from 72 full-scale conventional and advanced, thermal 91 

hydrolysis process (THP) AD sites in the UK. Three calibration strategies were developed for 92 

the model to account for local site conditions, based on recorded BY and electricity yield (EY) 93 

data and the composition of major sludge organic constituents (protein, fat, carbohydrate and 94 

fibre). Finally, we applied the model to devise optimisation strategies to achieve the maximum 95 

net energy output from full-scale AD.  96 
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2. Material and Methods 97 

2.1. Site and data information  98 

Data were provided by 66 conventional and six THP MAD sludge treatment facilities in the 99 

UK. Operational data were recorded on a daily frequency for periods of 2 to 7 years, between 100 

2009 and 2017. However, the information was collected and reported differently between the 101 

sites and the first stage was to consolidate the numerical information into a consistent format 102 

with equivalent units in a central database. A description of the different types of data recorded 103 

at the sites relating to the AD process is presented in Figure 1. The critical operational 104 

information available at all AD sites included: digestion temperature (oC), HRT (d), and the 105 

DS content of the sludge feed (%). Gas volume was recorded as normal cubic metre (Nm3) and 106 

was combined with sludge volume and DS data to obtain BY (m3/t DS). The majority of sites 107 

also reported the volume of biogas distributed between combined heat and power (CHP), boiler 108 

and flare.  109 

2.2. Sludge composition analysis  110 

Three conventional MAD sites, representing high (Site 1), moderate (Site 31) and low (Site 38) 111 

BY performance (Figure 2), and one THP site (THP site 4), representing average THP 112 

performance, based on BY, were selected for sampling and sewage sludge composition 113 

analysis. Sludge samples were collected on six occasions from each site at intervals of 6-8 114 

weeks from May 2018 to February 2019 for examination of the fibre, carbohydrate, protein, 115 

fat, DS and VS content. Total nitrogen (TN), ammonium-nitrogen (NH4-N) and nitrate-116 

nitrogen (NO3-N) were determined by a standard Dumas method and EPA-600/4-79-020 117 

method 350.1, respectively (USEPA, 1983). Protein was estimated by multiplying the organic 118 

nitrogen fraction (TN minus NH4-N and NO3-N) by 6.25 (Mariotti and Mirand, 2008). The 119 

total fat content was determined by standard procedure, 5520E (APHA, 2005) and the Van 120 
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Soest (1991) method was used to determine the proportion of cellulose, hemicellulose, and 121 

lignin in the fibre fraction. The difference in VS content and the sum of the various organic 122 

fractions (fibre, protein and fat) was assumed to represent the total carbohydrate concentration 123 

(Astals et al., 2013). Sludge samples were collected at the digester feed, and post digestion.  124 

2.3. Statistical analysis and model development 125 

The overall approach to data merger and statistical analysis is shown in Figure 1. The IBM 126 

SPSS Statistics 21 programme was used to complete the statistical analysis calculations. A 127 

descriptive analysis and screening process was applied initially to the conventional and THP 128 

MAD datasets to remove extreme outliers larger than 3 times the interquartile range, using the 129 

boxplot method (Frigge et al., 1989). The agreement with statistical assumptions was tested at 130 

three main levels: (1) significant outliers, high leverage points or highly influential points 131 

(leverage value >0.2 and Cook's Distance values >1); (2) independence of observations, 132 

linearity and multicollinearity; and (3) normality of residuals and homoscedasticity. The 133 

screened variables were converted into a consistent format based on monthly average values; 134 

this approach allowed the maximum data capture and provided a representative performance 135 

for each site by removing short-term fluctuations in the process variables.  136 

An operational AD modelling strategy requires a large number of sites with different levels of 137 

process performance represented, to capture the complete envelope of conditions as 138 

comprehensively as possible, which cannot be achieved by studying single or small numbers 139 

of sites. Indeed, the observed BY of full-scale, conventional AD sites varied considerably 140 

(Figure 2) due to differences in actual performance, in response to the main process control 141 

variables, and also the influence of local site data measurement, as well as other operational 142 

reasons. Consequently, BY data from specific sites are strongly clustered (Figure S1) and it is 143 

not possible to derive a continuous, absolute statistical regression model with this type of 144 

numerical distribution pattern. Therefore, we used a multi-level regression method (Gelman 145 
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and Hill, 2006; Gries, 2015) to identify the statistically significant (P<0.05), controllable 146 

operational parameters that impact BY, and to assess their individual and interactive effects, 147 

independently of other site-specific conditions. The multi-level model incorporated a varying 148 

intercept to identify the optimum slope coefficients for the significant AD process control 149 

parameters, for the combined data from all sites. The intercept value represents a categorical 150 

factor in the multi-level AD model, and is determined for each specific site data cluster by the 151 

model calibration procedure described below.  152 

Backward elimination and forward selection methods (Leech et al., 2015) were used to identify 153 

statistically significant (P≤0.05), continuous predictor variables in multi-level regression 154 

models of BY. The data was examined in the following sequence of increasing model 155 

complexity: (1) linear regression, (2) curvilinear and non-linear regression (quadratic/cubic and 156 

log transformed), and (3) testing the interactive effects of the significant predictors (all 157 

combinations of interaction terms were tested). The predictors were centred before fitting into 158 

the model, to evaluate interaction effects, by subtracting the overall mean value (for the 159 

combined site data) from each variable (Aiken et al., 1991). The general structures of the multi-160 

level models tested are summarised in the Supplementary Material. 161 

Validation of the conventional MAD model was performed using datasets collected from 162 

selected, specific WWTPs that were: (a) used in model development, and (b) obtained 163 

subsequent to, and independent of, model development. Sites 37, 38 and 42 (Figure 2), with 164 

typical average observed BY values of approximately 400 m3/t DS (Table 1; CIWEM, 1996; 165 

Bachmann et al. 2015), were selected as good examples for model calibration and validation 166 

with information already used in model development, and Site 31, 38 and 1 were selected as 167 

representative, independent datasets. Conventional and THP MAD datasets were pooled and a 168 

combined Conventional+THP-MAD model was also developed and tested. 169 
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The default approach to model calibration, to account for site specific conditions for calendar 170 

year periods, estimated the deviation in mean predicted BY values relative to the observed 171 

mean recorded BY for the site, following Equation 2.1 (an example is shown in Figure S2): 172 

Site factor = 173 

Yearly average observed BY − [ ∑ (BY predicted by fixed coefficients )𝑖𝑖]/𝑛𝑛𝑛𝑛
𝑖𝑖=1        (2.1)                                174 

Where n is the number of observed BY values each calendar year. 175 

Biogas predictions were compared and cross-referenced with electricity generation data from 176 

AD biogas used by CHP plant. The mean annual observed EY also provided an alternative 177 

approach to model calibration for the selected sites by substituting the observed BY in Equation 178 

2.1 with an electricity derived BYe. This was calculated based on a conversion factor of 2.14 179 

for electricity generation from biogas (assuming electrical conversion efficiency = 35% and 1 180 

m3 biogas = 2.14 kWh electricity; Banks, 2009). The BY equation was modified using the 181 

biogas-to-electricity conversion factor to predict EY and this alternative form of the model was 182 

also validated for the selected sites used in the conventional MAD BY validation. Finally, the 183 

results from the sludge composition analysis were used to calculate a theoretical BYc value for 184 

the examined sites, based on the destruction of major organic fractions and their associated 185 

CH4 yield values (Figure 1b; see Supplementary Material for further details). This provided an 186 

independent approach to model calibration by substituting BYc for the observed BY in 187 

Equation 2.1 to obtain a sludge-composition derived site factor.  188 

Response surface plots of the relative changes in BY were generated based on Model 4b, using 189 

representative combinations of values for two of the continuous variables within the 5 to 95 190 

percentile operational data range, and setting the third factor (temperature, or DS) to their 191 

overall mean values. Thus, when the explanatory variables are set to their mean values, BY is 192 

equivalent to zero. This enabled a generic representation of the overall BY response to the main 193 

operational factors controlling the AD process. 194 
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3. Results   195 

3.1. Overview of the conventional and THP MAD dataset and AD model 196 

Overall average values of the main operational variables for conventional and THP MAD were 197 

calculated from monthly mean data and are summarised in Table 1, and specific mean data for 198 

individual conventional sites included in model development are shown in Figure 2. The 199 

overall mean BY for conventional treatment sites was approximately 400 m3/t DS, which is 200 

typical for sewage sludge MAD (Bachmann et al. 2015). The overall mean values for 201 

conventional operational variables were: DS of raw feed sludge, 4.5%; VS of raw feed sludge, 202 

76.1%; HRT, 21.2 days and temperature, approximately 36.0 oC. Volatile solids data is not 203 

collected routinely by all WWTP, and was therefore not included in the AD model development, 204 

but is presented in Table 1 as a parameter used widely in the literature to interpret AD 205 

performance. As would be expected (Barber, 2016), the overall mean BY, DS feed, VS feed, 206 

HRT and digestion temperature for THP MAD sites were all greater compared to the 207 

conventional process and were approximately equivalent to: 440 m3/t DS, 7.9%, 78.9%, 22.4 208 

days and 38.0 oC, respectively, albeit for a much smaller subset of 6 sites compared to the 209 

conventional process, which included 66 sites. Nevertheless, the site characteristics were 210 

consistent with the expected operational criteria and performance range of THP MAD (Barber, 211 

2016).   212 

The effects of temperature, HRT and DS feed on BY of conventional MAD were all highly 213 

statistically significant (P<0.001) and together with the categorical site factor, explained >50% 214 

of the total variation in BY data, which is extremely important to site operators (Table 2).    215 

The natural logarithm model (Model 3) of the continuous predictors explained the largest 216 

overall proportion of total variation in BY (11.9%) and was selected for further analysis, as all 217 

the operational predictors in the model also had interpretable coefficients. This included the 218 
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statistical analysis of interaction effects, which showed a significant (P=0.029) interaction 219 

between HRT and DS feed that was formulated into Model 4a (Table 2). The influence of the 220 

interaction between HRT and DS on the overall, relative response of the BY is shown in Figure 221 

S3 of the Supplementary Material.  222 

3.2. Model validation  223 

3.2.1. Conventional MAD sites  224 

Model 4a was validated against specific, selected WWTP datasets. The results showed the 225 

patterns in digester performance were effectively captured, and demonstrated the important 226 

influence of the principal, controllable operating conditions (namely, digestion temperature, 227 

HRT and DS feed) on BY (Figure 3a), especially for Site 37 and 42. Note that the R2 values 228 

presented in Figure 3a only provide a guide to the model description of operational data, since 229 

the site-specific, predicted BY (BYp) values depend on the calibration frequency. Nevertheless, 230 

an R2 value of 0.65 was obtained for Site 42, suggesting relatively good data agreement and 231 

recording at this site. A smaller R2, such as that obtained for Site 38, indicates that other factors, 232 

not represented in the model, and/or poor data recording, have a stronger influence on the 233 

apparent BY than the main operational, controllable process variables, which could be a trigger 234 

for further site performance investigation. 235 

Additional data were collected for conventional sites 1, 31 and 38, between 2016 – 2019, as 236 

part of the sludge composition study, and were also used for model validation as independent 237 

datasets, collected subsequent to the main data pool used to produce the model (Figure 3b). 238 

The results showed that the BYp values generally followed the overall patterns in measured 239 

operational monthly average data for Site 38 (P<0.001, R2= 0.59) and 31 (P<0.001, R2= 0.57). 240 

However, the BY data supplied by Site 1 was significantly above the range considered 241 

representative of conventional AD: 300 – 440 m3/t DS (CIWEM, 1996; Bachmann et al., 2015). 242 

The default approach to internal site calibration using local BY data will thus track the site 243 
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information, irrespective of whether this is representative of the actual process BY, as shown 244 

for Site 1 (P=0.003, R2= 0.32) (Figure 3b).   245 

3.3. Combined Conventional +THP-MAD model 246 

To test whether THP MAD could be explained by the same operational parameters as 247 

conventional MAD, Model 4a was applied to the THP dataset to predict BY. The results 248 

showed the conventional MAD Model 4a gave a good overall description of BY at THP MAD 249 

sites with the default calibration method (P<0.001, R2=0.72). The results demonstrated that the 250 

response of these processes to the major operational variables is  fundamentally similar, 251 

although THP typically performs at a higher range. Therefore, THP and conventional data were 252 

pooled to generate a combined Conventional-THP model (Model 4b) following the procedure 253 

described in Section 3.1. Model 4a and 4b have equivalent significant predicting parameters 254 

and similar regression coefficients (Table 2; the general form of the equation is given in the 255 

Supplementary Material). Model 4b provided an effective description of the observed BY for 256 

THP (THP sites 1 – 6) and conventional (sites 37, 38 and 42) processes;  P values were <0.001 257 

in both cases, and R2 was equivalent to 0.73 and 0.59, respectively (Figure S4). Consequently, 258 

Model 4b has practical application in monitoring the full-scale performance of both 259 

conventional and THP MAD.   260 

3.4. Electricity yield  261 

Electricity was generated by CHP plant from AD biogas at all sites and, accounting for other 262 

uses (for example, combustion in a boiler and flaring), is related to the amount of biogas 263 

produced. As would be expected, a strong linear relationship (R2 = 0.90, P<0.001) was found 264 

between the electricity and biogas yields for the period 2016 to 2019 for selected sites 265 

(Conventional: 1, 31 and 38, and THP site 4; data not shown). However, Site 1 showed a very 266 

different gas-electricity profile compared to the other sites and both gas and electricity yields 267 

were significantly above the expected AD operational range (the mean BY of the data collected 268 
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between May 2018 – Feb 2019 was >1000 m3/t DS, whereas previously it was approximately 269 

640 m3/t DS, see Figure 2). Poor quality of gas data recording is a possible reason for the 270 

misalignment of gas and electricity data. However, a strong relationship between the biogas 271 

and electricity yields for Site 1 (R2 = 0.90, P<0.001; data not shown) suggested reliable gas 272 

measurement in this case. Therefore, the large biogas (and electricity) yields observed here 273 

were attributed to factors other than gas measurement and we suspect that unreliable 274 

(underestimated) sludge feed volume recording was the most likely explanation. Site 1 was 275 

therefore removed from the correlation of biogas and electricity yield, nevertheless, the 276 

relationship remained highly statistically significant (R2=0.60, P<0.001; data not shown).  277 

The electricity modified site factor generated a similar BY compared to observed and default 278 

predicted values for the sites selected for detailed validation assessment (Figure 4). The 279 

detailed operational data used in the validation and site factor calculations are summarised in 280 

Table S1. Small differences between the observed BY and BYe may be attributed to the quality 281 

of recording biogas use by CHP, and the efficiency of electricity conversion at specific sites. 282 

Thus, biogas-electricity generation conversion factors provide an effective alternative to the 283 

default biogas approach to site specific calibration of the model.  284 

An adjusted form of the BY Model 4a was used to predict electricity yield (EYp) (Model 4c in 285 

the Supplementary Material), by applying the standard biogas-to-electricity conversion factor 286 

(2.14; Banks, 2009), and validated for the selected sites (Figure S5) considered in Figure 3. An 287 

improved R2 was observed for most of the selected sites compared to BYp, and this suggested 288 

that electricity recording may be more reliable than biogas measurement at sites where the 289 

proportion of biogas used by CHP is known, and the electricity conversion efficiency is similar 290 

to the standard value. For example, a small increase in R2, from 0.65 to 0.77, was observed for 291 

Site 42, where 94% of biogas was used by CHP and the average biogas-to-electricity 292 

conversion ratio was 1.8.   293 
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3.5. Sludge composition  294 

The effects of temperature, HRT and DS feed on full-scale AD performance are represented 295 

by fixed coefficients in the multi-level regression model (Section 3.3). However, sites with 296 

similar operating conditions may have different BY performance, and this may be partly 297 

attributed to the variation in feed sludge composition (Weiland, 2010; Li et al., 2018). The 298 

effect of sludge composition on the AD process was therefore investigated by measuring the 299 

major organic fractions (protein, fat, carbohydrate and fibre contents) in feed and digested 300 

sludge from the four selected MAD sites representing different levels of operational 301 

performance (Conventional: high, Site 1; moderate, Site 31; and low, Site 38; THP Site 4).  302 

No significant relation (P>0.05) was detected between BY and sludge feed composition. 303 

However, a compositional BYc value was derived for each sampling event based on the 304 

substrates destroyed during AD, and the theoretical CH4 yield and content in the biogas (See 305 

Figure 1 and S6). A positive and highly statistically significant correlation (P = 0.007) was 306 

found between BYc and the observed BY for the sites with reasonable biogas recording (Figure 307 

S7). Therefore, observed BY could be confidently described by the BYc based on 308 

measurements of energy substrates in sludge pre and post digestion and the fractions destroyed. 309 

This provided a further approach to model calibration that was independent of the standard 310 

operational data recording of biogas and electricity. The results (Figure 4) showed that sludge 311 

composition generally underestimated the BY to some an extent compared to observed, 312 

predicted and electricity derived values. This could be explained because minor energy 313 

substrates may not be determined in the chemical analysis and/or that published gas yield 314 

values for one or more substrates may be slightly underestimated. However, the difference in 315 

BYc compared to operationally observed or predicted values was particularly distinct for Site 316 

1 (BY = 1362 m3/t DS, BYe = 1466 m3/t DS and BYc = 381 m3/t DS). The BYc value for the 317 

site was representative of typical AD performance and confirmed our suspicion of local 318 
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problems with recording total sludge volumes fed to the digesters at the site. Therefore, where 319 

there are issues with the local measurement of absolute gas flow or feed volumes, for instance, 320 

quantifying the sludge composition is valuable to: (a) cross-reference the site data and, (b) 321 

independently calibrate the model.  322 

3.6. Impacts of digestion conditions on process performance 323 

The relative changes in BY described by Model 4b in response to DS feed and HRT, are shown 324 

in Figure 5a (omitting the site factor) for the average temperature recorded at conventional 325 

MAD sites, equivalent to 35.9 oC (Table 1). Biogas yield declined with increasing DS, but the 326 

magnitude of the response diminished with increasing HRT. The effect of HRT also depended 327 

on the DS concentration and BY increased to a greater extent with longer HRT as DS increased. 328 

For example, increasing HRT from 15 to 20 days raised the relative BY at 2.5% and 4.0 % DS 329 

by 28.1 m3/t DS and 36.4 m3/t DS, respectively. However, the magnitude of the response in 330 

BY to extending the HRT further from 20 to 25 days diminished at equivalent DS contents in 331 

the feed sludge to 21.8 to 28.3 m3/t DS, respectively, due to the logarithmic relationship 332 

between HRT and BY. Thus, the model indicated the overall increases in BY possible with 10 333 

days more HRT were equivalent to approximately 50 and 65 m3/t DS for these DS contents in 334 

feed sludge, respectively. The relative changes in BY for THP MAD sites followed similar 335 

patterns to conventional treatment, but in this case, the operational conditions represented 336 

larger DS values and a wider range of HRT (see Table S2 in the Supplementary Material). 337 

The effect of temperature and HRT on the relative changes in BY at the overall mean 338 

conventional DS in feed sludge of 4.5% DS (Table 1) is shown in Figure 5b. Biogas yield 339 

increased following a diminishing response to rising temperature. For example, an incremental 340 

rise of 3 oC from baseline temperatures of 33 oC and 36 oC increased BY by 23.1  and 21.2 m3/t 341 

DS, respectively. THP MAD processes operated at higher temperature and DS feed, compared 342 

to conventional sites (Table 1). However, multi-level Model 4b showed that the effect of 343 
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temperature on BY was independent of DS, therefore, equivalent relative increases in BY with 344 

temperature may be expected, irrespective of the differences in DS feed to these processes. 345 

Thus, a 3 oC lift in temperature increased BY by 23.1 m3/t DS relative to 33 oC, at both 4.5 and 346 

7.9% DS feed (the average DS values in feed sludge to conventional and THP digesters, 347 

respectively).  348 

3.7. Net energy generation 349 

Digester performance is controlled by the combined and interactive effects of the process 350 

parameters (Figure 5). Therefore, selecting a combination of appropriate and corresponding 351 

HRT, DS feed and digestion temperature conditions is necessary to maximise the BY, but this 352 

does not necessarily equate to the optimum performance of full-scale AD in terms of the overall 353 

maximum biogas volume and the net energy balance. The net energy calculations are 354 

summarised in the Supplementary Material. For example, according to Equation S1, if it is 355 

assumed that a 2000 m3 digester is operated with a 20 day HRT, and daily feed volume of 100 356 

m3/day at 5% DS, and produces an optimum BY of 400 m3/t DS and total biogas volume 357 

equivalent to 2000 m3 biogas/d, the results show that increasing the daily feed volume by 33.3% 358 

reduces the HRT from 20 to 15 days and BY from 400 to 358 m3/t DS, respectively. However, 359 

the total sludge feed is increased from 5.0 to 6.7 t DS/d. Therefore, although HRT and BY were 360 

reduced, the daily biogas flow increased by 19.4 %  to 2387 m3. 361 

Table 3 shows the energy required to heat 1 t of wet sludge to increase the digestion temperature 362 

by 2 oC, and the net energy generated from biogas produced from 1 t of sludge at DS 363 

concentrations in the feed equivalent to: 2.7%, 3.0%, 4.5% and 7.9%, respectively, according 364 

to Equation S2. A sludge DS of 2.7% was selected to illustrate the effects of a lower range 365 

value on the process energy balance, as this represented the lower 5% percentile of monthly 366 

average operational DS data for conventional MAD sites. Under these circumstances, 367 

increasing the digestion temperature to >39 oC produced a negative net energy balance (the 368 
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heating efficiency of the system was not considered). This is explained by the greater energy 369 

demand necessary to heat larger volumes of water and the reduced calorific output per wet t of 370 

sludge treated at low DS concentrations compared to larger DS contents. Therefore, it is 371 

recommended that the temperature of conventional MAD operated with low feed DS (<2.7%) 372 

is controlled in the low to medium mesophilic range (<39 oC) to achieve a positive energy 373 

balance. The multi-level model showed that a 2oC lift in temperature can generate an additional 374 

1.3 and 4.1 kWh of energy per t of wet sludge at the average DS concentrations of 4.5 and 7.9% 375 

found in sludge feed to conventional and THP MAD processes, respectively. Thus, the results 376 

demonstrate the potential advantage of increasing the digestion temperature of conventional 377 

MAD processes operated at typical DS feed concentrations, and also supported current 378 

operational strategies of adopting high mesophilic digestion temperatures at full-scale THP 379 

sites (Table 1), to gain the overall maximum quantitative energy benefit. Careful consideration 380 

is also necessary to balance the other main process conditions of sludge DS content and HRT 381 

when selecting the operating temperature for conventional MAD treatment.  382 

4. Discussion  383 

4.1. Multi-level modelling of full-scale AD processes 384 

Modelling the performance of full-scale AD processes with a limited number of operational 385 

parameters is challenging due to the complexity of the system and the differences in data 386 

recording quality between sites. However, digestion temperature, DS of feed sludge and HRT 387 

are the main parameters available to operators to control and optimise sludge AD. Therefore, 388 

it would be a considerable advantage if a quantitative, modelling based decision support tool 389 

were available to adjust these conditions on an informed basis to guide and improve process 390 

operation. Here, we used up to 7 years of operational data recorded at 72 full-scale MAD sites 391 

to construct a widely applicable, operationally based, multi-level MAD biogas model to 392 

describe the changes in BY that are influenced by the major controllable AD parameters. The 393 
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BY was in the range of 150 to 700 m3/t DS (Figure 2) and provided a comprehensive range of 394 

performance conditions to develop the multi-level, statistical model. Although, part of this 395 

variation may be attributed to poor measurements at some of the full-scale sites, the mean BY 396 

for conventional MAD was approximately 400 m3/t DS, and was entirely consistent with 397 

typical values reported for sewage sludge MAD (Bachmann et al. 2015). Furthermore, the BY 398 

was highly statistically significantly correlated to EY (P < 0.001, R2 = 0.78), and cross-399 

validation provided confidence in the overall reliability of biogas recording.  400 

Multi-level modelling is an appropriate method of analysis when raw data has a clustered 401 

structure; here, for example, data clustering was caused by inter-site differences that were not 402 

captured by the recorded operational parameters. Thus, the effects of operational parameters 403 

on the relative changes in BY were determined by accounting for the variance attributed to 404 

unknown differences between sites. 405 

4.2. Factors affecting digestion performance  406 

To a large extent, AD research has focussed on maximising biogas or CH4 yield at laboratory 407 

scale by evaluating individual operational parameters (Nixon, 2016). For example, Dokulilová 408 

et al. (2018) showed BY increased with temperature in lab-scale digestion of sewage sludge at 409 

20 days HRT, and suggested the maximum BY occurred in the upper mesophilic range (42 oC). 410 

In another example, Alepu et al. (2016) reported the CH4 yield in lab-scale MAD of sludge 411 

increased with HRT and recommended 30 days HRT as the optimum. However, digester 412 

performance is determined by the combined and interactive effects of multiple process 413 

parameters and the multi-level model of full-scale MAD showed statistically significant 414 

positive effects of temperature and HRT, a negative effect of DS, with a positive, statistically 415 

significant interaction between HRT and DS.  416 

The optimum performance of full-scale MAD processes requires the adoption of a suitable 417 

HRT depending upon the feed DS concentration (Figure 5a). This is necessary to ensure 418 
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adequate contact time with the biodegradable substrates for metabolism as DS increases, and 419 

to prevent bacterial washout to maintain a sufficient population in the digester for the efficient 420 

conversion of complex organic matter to CH4 and CO2 (Parkin and Owen, 1986). 421 

Pretreatments for sludge are designed to increase the capacity of conventional MAD systems, 422 

and also provide other possible benefits, such as better sludge digestibility and pathogen 423 

reduction. Higher solids inputs and quicker reaction rates are reported (Wilson et al., 2008; 424 

Xue et al., 2015) for thermally hydrolysed sludge in the MAD process, compared to 425 

conventional digestion, and this is attributed to changes in sludge rheology and soluble organic 426 

contents after THP (Barber, 2016; Gurieff et al., 2011; Xue et al. 2015). This behaviour was 427 

captured by Model 4b, by the statistically significant (P<0.001) main, positive effect of HRT 428 

on BY at full-scale conventional MAD sites, and the statistically significant (P=0.038) 429 

interaction between DS and HRT. Therefore, the magnitude of the response in BY to changes 430 

in the HRT was greater for THP MAD processes, due to the larger DS concentrations in THP 431 

feed sludge (4.2 – 10.5%), compared to conventional MAD, which operates with a lower range 432 

of DS feed contents (2.7 – 6.3%), over an equivalent range of HRT. Consequently, THP MAD 433 

may achieve a similar BY compared to conventional MAD,  but with shorter HRT.  434 

In general, the changes in BY observed at operational sites were effectively captured by the 435 

modelled parameters (Section 3.2). However, the extent of the variation explained may vary 436 

between different sites and time periods (Figure 3). This is because the model uses the three 437 

key, operationally monitored, parameters available at and used by all WWTP to control the AD 438 

process, as predictors of the total variation in BY, which, inevitably, also includes variability 439 

potentially attributable to other factors not directly considered in the model. These factors, 440 

amongst others, could include, for example, the sludge composition and primary:secondary 441 

sludge ratio, which determine the theoretical CH4 yield and biodegradability of the feed sludge. 442 

Different substrates have varying CH4 potentials, as shown in Figure 1b, and, under optimum 443 
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digestion conditions, the typical, specific CH4 yield for surplus activated sludge  is 190 - 240 444 

Nm3/t VS, which is much smaller compared to primary sludge at 315 - 400 Nm3/t VS, under 445 

equivalent conditions (Bachmann et al. 2015). This is because activated sludge is of biological 446 

origin and the microbial cells are embedded within the floc structure and extracellular 447 

polymeric substances, which provide a relatively resistant environment to lysis under AD 448 

conditions (Mottet et al., 2010). Digester mixing is also an important factor defining AD 449 

performance, but is difficult to measure and quantify at full-scale, and models of the AD 450 

process generally assume a perfectly mixed system (Kythreotou et al., 2014). The effect of 451 

mixing is linked strongly to the DS in the feed sludge and poorer mixing efficiency at high 452 

solids concentrations has been confirmed using tracer tests (Kamarád et al., 2013). Therefore, 453 

our approach was to combine and capture all such ‘known-unknown’ variables within the 454 

categorical site factor of the multi-level MAD model. 455 

Sludge composition is one such source of potential inter-site variability and routine analysis of 456 

the AD energy substrates is a feasible and practicable option to understand the impact on BY. 457 

Other major sources of variation are still to be identified and explored as a considerable amount 458 

of uncertainty in predicting AD performance and BY remains. For example, the microbial 459 

community involved in AD is dynamic and complex, however, it is well known that a stable 460 

population with the correct balance of the major groups responsible for the various stages of 461 

organic matter conversion by AD is essential (Narihiro et al., 2015). This requires knowledge 462 

of the AD ecosystem to develop a fundamental understanding of how microbial community 463 

dynamics, interactions and functionality influence digester efficiency and stability 464 

(Vanwonterghem et al., 2014). There have been several attempts to define the core AD 465 

microbiome, to identify the critical population responsible for the AD process, for example, 466 

Mei et al. (2017) examined 90 full-scale digesters from 5 countries and concluded that AD 467 

microbiomes were influenced by the operating conditions (for example, pretreatment, 468 
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temperature range, and salinity) and could be classified into eight clusters on this basis. 469 

Therefore, greater fundamental insight to the AD process may be possible from a combination 470 

of engineering and meta-omics analysis.  471 

4.3. Model validation  472 

The R2 of the validation results (Figure 3) depended on two factors: (1) the extent to which the 473 

coefficients of the principal operational parameter explained the BY, and (2) the frequency of 474 

model calibration to adjust the site factor (intercept) to determine the absolute BY value. The 475 

model was calibrated yearly in the model validation (Section 3.2), and therefore assumed that 476 

the influence of unmeasured factors was consistent for each annual period.  The results showed 477 

that the model could capture and track the changing patterns in BY in time series data, and, for 478 

sites with good data quality recording, an R2 value of 60% or better was achieved (Figure 3). 479 

The most reliable prediction of BY will be obtained for sites with characteristically stable 480 

operating conditions and where the site factor is consistent and captures the effects of other 481 

relevant management factors (for example, sludge composition, mixing efficiency, primary 482 

sludge ratio) that are not explained by the continuous variables in the model. 483 

4.4. Model calibration 484 

Three model calibration methods were applied using the local BY, electricity generation and 485 

sludge composition to calculate the specific site factor to represent the effects of unmeasured 486 

parameters on digestion performance. The default, internal calibration method using local, site 487 

BY data is generally recommended for routine model calibration, however, it relies on the 488 

availability of reliable gas flow measurements. Two additional calibration methods, using EY 489 

or sludge composition analysis, are also proposed, and can be useful when local data issues 490 

exist with the absolute measurement of gas flow or sludge feed volume, for instance.  491 

Electricity yield is an effective method to cross-check historical and contemporary biogas data, 492 

and for model calibration, as electricity recording is reliable and routinely available at most 493 
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AD sites operating CHP.  In addition, EY can provide an alternative to modelling BY as an 494 

indicator of AD performance where there is effective site recording of CHP biogas 495 

consumption. For example, in some cases, we found that the multi-level model of EY (which 496 

was based on the BY model, adjusted by a factor for electricity generation)  had an improved 497 

R2 value, compared to the corresponding BY prediction for the same site (Figure 3 and S5).  498 

Measuring the destruction of the major groups of organic substrate in sludge by AD requires 499 

additional sample collection and analysis and is not routinely conducted at WWTP. The results 500 

presented here indicate the value of this approach to characterise the potential performance of 501 

sludge AD systems; it can provide an independent approach to industry recorded operational 502 

data for model calibration and can be used as a cross-reference, for instance, when there are 503 

multiple data recording issues at a particular site. For example, the BYe was consistent with 504 

the observed and predicted BY results for Site 1, but both values were larger than would appear 505 

reasonable for conventional MAD of sewage sludge (Bachmann et al. 2015) based on the DS 506 

loading rates to the digesters calculated by the DS concentrations and feed volume reported by 507 

the operator for this site. However, a BYc based on sludge composition analysis and the DS 508 

concentration at Site 1 was consistent with the typical performance of conventional MAD of 509 

sewage sludge. Therefore, unreliable recording of sludge feed volume to the AD process was 510 

the suspected cause of the unrepresentative biogas and electricity yield values obtained in this 511 

case.  512 

4.5. Optimisation strategies 513 

The multi-level BY model is based on currently monitored operational parameters and can 514 

provide decision support to increase the efficiency of sewage sludge AD. The model can be 515 

used to determine the appropriate temperature, HRT and DS control metrics to optimise the 516 

BY within the operating boundaries of full-scale sludge AD processes. However, only 517 

focussing on increasing the BY as the main objective of process control does not necessarily 518 
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maximise the overall process energy balance. For example, reducing the HRT to potentially a 519 

sub-optimal BY can increase the total amount of sludge treated and the overall amount of 520 

biogas produced, thus improving the overall energy balance of the process, compared to 521 

digestion at higher BY (Table 3). Raising the digestion temperature also increases BY, but 522 

requires additional energy input. A positive energy benefit is possible by increasing the 523 

operating temperature in the high mesophilic range >39 oC, provided that a minimum DS of 524 

3.0% is supplied in the feed sludge, and a greater energy surplus is obtained with increasing 525 

feed DS content.  526 

5. Conclusions  527 

A multi-level regression modelling technique was applied to large, sewage sludge AD, process 528 

monitoring data sets to quantify the significance of operational parameters controlling BY. The 529 

model effectively predicted the digester BY performance using basic operational parameters 530 

(temperature, HRT and DS in feed sludge) that are routinely recorded and used for process 531 

control at full-scale sewage sludge AD plant. The model shows that focussing on increasing 532 

the BY of MAD alone does not necessarily lead to an improvement in overall process 533 

performance in terms of energy balance. The importance of the integrated adjustment of DS 534 

feed, HRT and temperature is emphasised to optimise the overall energy balance of the AD 535 

process.  536 

E-supplementary material of this work can be found in the online version of the paper. 537 
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Table 1 Summary of overall mean values of principal parameters used for conventional 685 

and THP MAD process control 686 

Parameter 
Anaerobic digestion type 

Conventional THP 

DS feed (%) 
Mean 4.5 7.9 

SD 1.1 2.1 

VS feed (%) 
Mean 76.1 78.9 

SD 4.0 6.3 

HRT (days) 
Mean 21.2 22.4 

SD 6.9 10.0 

Temperature (oC) 
Mean 35.9 38.2 

SD 2.2 3.7 

BY (m3/t DS) 
Mean 398.7 438.6 

SD 176.3 148.0 

BY- biogas yield; DS - dry solids; VS - volatile solids; HRT - hydraulic retention time; SD - standard deviation.  687 

Note that VS is not collected at all sites and therefore was not included in model development.  688 
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Table 2 Multi-level biogas models of full-scale anaerobic digestion of sewage sludge 696 

Model R2 Significant predictors (P value) 
Predictor  

coefficient  

Total 

variation 

explained by 

predictors 

1. Linear 0.51 

HRT_c (P < 0.001) 

Temperature_c (P < 0.001) 

DS input_c (P < 0.001) 

Site factor (P < 0.001) 

5.54 

6.80 

-47.6 

 

10.7% 

2. Quadratic 0.53 

HRT_c (P < 0.001) 

Temperature_c (P < 0.001) 

DS input_c (P < 0.001) 

(HRT_c)2 (P < 0.001) 

(DS input_c)2 (P < 0.001) 

Site factor (P < 0.001) 

7.17 

6.62 

-53.2 

-0.20 

7.46 

11.8% 

3. Natural Log 0.53 

Ln(HRT)_c (P < 0.001) 

Ln(Temperature)_c (P < 0.001) 

Ln(DS input)_c (P < 0.001) 

Site factor (P < 0.001) 

137.1 

232.5 

-221.6 

 

11.9% 

4a.  Interaction 0.53 

Ln(HRT)_c (P < 0.001) 

Ln(Temperature)_c (P < 0.001) 

Ln(DS input)_c (P < 0.001) 

Ln(HRT)c* Ln(DS input)_c (0.029) 

Site factor (P < 0.001) 

136.2 

231.0 

-224.8 

75.5 

 

12.1% 

4b. 

Interaction 
0.52 

Ln(HRT)_c (P < 0.001) 

Ln(Temperature)_c (P < 0.001) 

Ln(DS input)_c (P < 0.001) 

Ln(HRT)c* Ln(DS input)_c (0.037) 

Site factor (P < 0.001) 

133.7 

265.3 

-216.4 

61.7 

 

8.5% 

HRT_c: hydraulic retention time centred with mean; Temperature_c: digestion temperature centred with mean; 697 

DS input_c: digester feed dry solids concentration centred with mean; Site factor: is a categorical variable for site. 698 

Models: 1, 2, 3, and 4a are conventional MAD and 4b is combined conventional + THP MAD. 699 

 700 
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 702 
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Table 3 Energy balance of conventional and THP MAD with increasing digestion 703 

temperature under different dry solids (DS) feed concentration regimes 704 

Temperature increase (oC) 31 to 33 33 to 35 35 to 37 37 to 39  39 to 41  

Energy required to heat 1 t wet 

sludge(kWh) 
2.3 2.3 2.3 2.3 2.3 

Net energy out from 1 t wet 

sludge in kWh (2.7% DS) 
0.4 0.3 0.1 0.0 -0.1 

Net energy out from 1 t wet 

sludge in kWh (3.0% DS) 
0.7 0.6 0.4 0.3 0.1 

Net energy out from 1 t wet 

sludge in kWh (4.5% DS) 
2.3 2.0 1.8 1.5 1.3 

Net energy out from 1 t wet 

sludge in kWh (7.9% DS) 
5.7 5.2 4.8 4.4 4.1 

Note that bold and underlined values reflect conditions that may overlap in operational practice for conventional 705 

and THP MAD; The italic values reflect extreme cases that fall outside the 90% operational data range (i.e. <5 706 

and >95 percentile). 2.7% DS is the lower 5% percentile range value of monthly average operational data for 707 

conventional MAD sites; 3.0% is the break point sludge feed DS for a positive net energy balance for MAD; 4.5% 708 

and 7.9% DS are the mean values of monthly average operational data for conventional and THP MAD sites, 709 

respectively. 710 

 711 

 712 

 713 

 714 

 715 

 716 
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Figure Captions 717 

Figure 1 The overall approach to data collection, model development, validation, 718 

calibration and optimisation. Operational parameter data available at all sites and used 719 

in conventional MAD model development are marked in blue. Theoretical CH4 yield and 720 

CH4 contents of biogas produced from different specific organic substrates were from 721 

Weiland (2010) and Li et al. (2018); Electricity conversion factor by combined heat and 722 

power (CHP) was from Banks (2009). (solid line: conventional MAD model development 723 

pathway; dashed line: conventional + THP-MAD model development pathway). DS – dry 724 

solids; HRT – hydraulic retention time; VS – volatile solids; VFA – volatile fatty acids; 725 

BY – biogas yield; BYc – composition derived biogas yield; BYe – electricity derived 726 

biogas yield 727 

Figure 2 Mean biogas yield (BY) , temperature, hydraulic retention time (HRT) and dry 728 

solids (DS) feed for individual conventional MAD sites, the period of data collection for 729 

each Company is also shown 730 

Figure 3 Conventional MAD model validation showing the observed and predicted 731 

monthly average biogas yield (Model 4a) for: (a) Site 37, 38 and 42 for the data involved 732 

in model generation and (b) Site 31, 38 and 1 for independent datasets 733 

Figure 4 Observed and predicted (Model 4b) average biogas yield (BY) for conventional 734 

Site 1, 31, 38 and THP site 4, based on default (local biogas data), electricity generation 735 

and sludge composition calibration methods and data collected between May 2018 to 736 

February 2019 (error bar: standard deviation);  model input data are given in Table S1  737 

Figure 5 Relative changes in biogas yield in relation to: (a) hydraulic retention time 738 

(HRT) and dry solids (DS) feed at the overall mean conventional digestion temperature 739 

of 35.9 oC, and (b) HRT and temperature at the overall mean DS feed concentration for 740 
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conventional digestion of 4.5 %. (Temperature, HRT and DS data ranges limited to the 5 741 

and 95 percentiles of monthly average operational values) 742 

  743 
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 769 

Figure S1 Clustered data structure of biogas yield relative to dry solids (DS) feed content 770 

in feed sludge for full-scale AD sites (Site 12 and 14 are conventional MAD and THP Site 771 

3 and 6 include thermal hydrolysis pretreatment), showing examples of data modelling 772 

by standard linear regression with fixed intercept  (        ) and multi-level regression with 773 

varying intercepts  774 

 775 

Description of the general model structures:  776 

Random intercept, multi-level models were constructed by examining the operational 777 

parameters dry solids (DS) feed, temperature and hydraulic retention time (HRT)) in the 778 

following sequence: (1) linear regression, (2) curvilinear and non-linear regression 779 

(quadratic/cubic and log transformed), and (3) testing the interactive effects of the significant 780 

predictors. The predictors were centred before fitting into the model, by subtracting the mean 781 

value from each variable. The equations had the following general forms: 782 

Linear: 783 

Multi-level model 
with varying 
intercepts 
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𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽1HRTcentred ij + 𝛽𝛽2Temperaturecentred ij+ 𝛽𝛽3DS inputcentred ij +  𝑒𝑒𝑖𝑖𝑖𝑖 784 

Quadratic and cubic: 785 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + (𝛾𝛾1HRTcentred ij + 𝛾𝛾2HRTcentred ij 
2 [+ 𝛾𝛾3HRTcentred ij 

3 ])786 

+ (𝛾𝛾4Temperaturecentred ij787 

+ 𝛾𝛾5Temperaturecentred ij 
2 [+ 𝛾𝛾6Temperaturecentred ij 

3 ])788 

+ (𝛾𝛾7DS inputcentred ij + 𝛾𝛾8DS inputcentred ij 
2 [+ 𝛾𝛾9DS inputcentred ij 

3 ]) + 𝑒𝑒𝑖𝑖𝑖𝑖 789 

Log transformed: 790 

𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛿𝛿1Ln(HRT)centred ij791 

+  𝛿𝛿2Ln(Temperature)centred ij + 𝛿𝛿3Ln(DS input)centred ij +  𝑒𝑒𝑖𝑖𝑖𝑖 792 

Where 𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖 is the biogas yield (BY) for observation i in Site j, 𝛼𝛼𝑖𝑖 is the Level-2 random effect 793 

(site specific factor), 𝛽𝛽𝑛𝑛 are the coefficients of operational parameters for the linear equation, 794 

𝛾𝛾𝑛𝑛  are the coefficients for the quadratic/cubic operational parameters (cubic terms are 795 

represented in square brackets), 𝛿𝛿𝑛𝑛  are the coefficients for log transformed operational 796 

parameters and 𝑒𝑒𝑖𝑖𝑖𝑖 is the Level-1 random effect. For the quadratic and cubic models, the cubic 797 

terms are shown in square brackets. Backward elimination and forward selection methods were 798 

applied to identify statistically significant predictors from the total number of independent 799 

predictors available. Following this stage, the log-transformed model (Model 3, see Table 2) 800 

gave marginally the largest overall R2 value and was of a simpler form than the quadratic 801 

relation (Model 2, Table 2) and was selected for testing interaction terms (using Ln transformed 802 

data): DS input*temperature, DS input*HRT, temperature*HRT and DS 803 

input*temperature*HRT; the interaction term: HRT*DS input  was statistically significant 804 

(P<0.05) and included in the final Model 4a. 805 

 806 
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 807 

Figure S2 Example of the model calibration showing the observed and predicted (Model 808 

4a) biogas yield for Site 42: (a) with predictor variables centred by subtracting the mean 809 

value from each variable and (b) with the specific intercept (site factor) determined from 810 

the local biogas data for year 2013 811 

 812 
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 813 

Figure S3 Effect of hydraulic retention time (HRT) on the relative change in biogas 814 

yield at different dry solids (DS) feed concentrations for conventional MAD model 815 

(Model 4a) 816 

 817 

 818 

 819 

 820 

 821 
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 822 

 823 

Figure S4 Observed biogas yield relative to values predicted by Model 4b: (a) all THP 824 

MAD sites and (b) selected conventional MAD sites  825 

 826 

 827 

 828 
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Table S1 Average sludge dry solids (DS) feed, hydraulic retention time (HRT), 829 

temperature, observed, electricity and sludge composition derived biogas yield (BY, BYe 830 

and BYc, respectively), and the estimated site factors used to predict biogas yield using 831 

Model 4b and shown in Figure 4 based on default biogas, electricity generation and sludge 832 

composition calibration methods (Equation 2.1) 833 

Site 
DS 
feed 
(%) 

HRT 
(days) 

Temperature 
(oC) 

 
Observed BY 

(m3/t DS) 
 

BYe 
(m3/t DS) 

BYc 
(m3/t DS) 

Default site 
factor 

Electricity 
modified 
site factor 

Sludge 
composition 
site factor 

Site 1 3.7 27.9 36.9 1361.7 1461.2 381.3 1273.4 1378.5 293.0 

Site 31 4.1 24.5 37.0 448.4 474.6 412.3 395.3 421.5 359.2 

Site 38 6.2 29.0 41.1 379.0 356.4 299.0 355.6 333.0 275.6 

THP site 4 9.7 19.4 42.6 491.1 512.5 372.0 619.1 640.5 500.0 

Site factors are calculated by substituting the default observed average, electricity or sludge composition derived BY into 834 

Equation 2.1 as follows: 835 

Default site factor = Average observed BY− [ ∑ (BY predicted by fixed coefficients)𝑖𝑖]/1010
𝑖𝑖=1     836 

Electricity modified site factor = Average electricity derived  BYe− [ �(BY predicted by fixed coefficients)𝑖𝑖]/10
10

𝑖𝑖=1

 837 

Sludge composition site factor = Average composition BYc − [ ∑ (BY predicted by fixed coefficients)𝑖𝑖]/1010
𝑖𝑖=1      838 
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 839 

Figure S5 Conventional MAD model validation showing the observed and predicted 840 

monthly average electricity yield (Model 4c) for: (a) Site 37, 38 and 42 for the data 841 

involved in model generation and (b) Site 31, 38 and 1 for independent datasets  842 

(Model 4c: Electricity yield (kwh/t DS) = 2.14*[230.9*(Ln(Temperature) - 3.6) + 843 

136.2*(Ln(HRT) - 3.0)-224.8*(Ln(DS) - 1.5) + 75.5*((Ln(HRT) – 3.0) *(Ln(DS) - 1.5))] + site 844 

factor (calibrated using local electricity yield data)) 845 

 846 

 847 

 848 

 849 
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Sludge composition: 850 

The proportions of each substrate in the feed sludge and the destroyed fractions during AD on 851 

a volatile solids (VS) basis were calculated and are summarised in Figure S6. A sludge 852 

composition BYc was derived for each sampling site based on the substrates destroyed during 853 

AD, and the theoretical CH4 yield and content in the biogas (Figure 1). A positive and highly 854 

statistically significant correlation (P = 0.005) was found between BYc and the observed BY 855 

for the sites with reasonable biogas recording (Figure S7). Therefore, observed BY could be 856 

described by BYc with a reasonable degree of confidence based on the composition of energy 857 

substrates measured in sludge. 858 

 859 

Figure S6 Composition of organic and ash fractions in sludge feed (% dry solids basis) 860 

and corresponding destroyed fractions (% volatile solids basis) by anaerobic digestion for 861 

conventional Site 1, 31, 38 and THP site 4 (outer circle: sludge feed; inner circle: fraction 862 

destroyed by digestion); VSR, volatile solids reduction; DS, dry solids; VS, volatile solids 863 
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 864 

 865 

Figure S7 Relationship between observed biogas yield (BY) and sludge composition BYc 866 

for selected conventional and THP sites  867 

 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

Table S2 Relative changes in biogas yield (BY) for different combinations of hydraulic 878 

retention time (HRT) and dry solids (DS) feed concentrations, reflecting conventional and 879 
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THP MAD operating ranges (conventional range: bold values; THP range: underlined 880 

values) 881 

             DS feed 

HRT changes 

2.5% 4.0% 5.0% 6.5% 8.0% 10.0% 

Relative changes in BY (m3/t DS) 

10 to15 days 39.6 51.4 57.0 63.5 68.7 74.3 

15 to 20 days 28.1 36.4 40.4 45.1 48.8 52.7 

20 to 25 days 21.8 28.3 31.3 35.0 37.8 40.9 

25 to 30 days 17.8 23.1 25.6 28.6 30.9 33.4 

30 to 35 days NA 19.5 21.7 24.1 26.1 28.2 

35 to 40 days NA 16.9 18.8 20.9 22.6 24.5 

Note that bold and underlined values reflect conditions that may overlap in operational practice for 882 

conventional and THP MAD; NA, not applicable 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

Net energy calculation 891 
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Biogas yield is a widely used performance indicator to evaluate the anaerobic digestion (AD) 892 

process and research on AD optimisation has tended to focus on manipulating individual 893 

operational parameters to maximise BY or CH4 yield (Alepu et al. 2016; Dokulilová et al. 894 

2018). However, a major quantitative benefit of the full-scale AD model is to understand the 895 

simultaneous effects of all the main process control factors on the overall net energy output. 896 

For example, a key strategic focus of AD operation is optimising the balance between the rate 897 

of sludge treatment and the energy output, primarily by manipulating the feed DS and/or HRT. 898 

Thus, extending HRT may increase the BY, but reduces the total sludge throughput at 899 

equivalent DS feed. The effect of HRT on the net biogas output can be calculated using 900 

Equation S1: 901 

Net daily biogas gas (m3 day⁄ ) = Biogas volume1 − Biogas volume2 902 

=   
DS

100
 × �

Digester volume
HRT1

 × BY −
Digester volume

HRT2
 × (BY + 𝑥𝑥)� 903 

=  DS
100

 × Digester volume × �BY×HRT2−HRT1×(BY+𝑥𝑥)
HRT1 ×HRT2

�                                                         (Equation 904 

S1) 905 

Where:  906 

Biogas volume1 (m3/day) = the volume of biogas produced when HRT is equal to HRT1 907 

Biogas volume1 (m3/day) = the volume of biogas produced when HRT is equal to HRT2 908 

BY (m3/t DS) = the biogas yield when HRT is equal to HRT1 909 

x (m3/t DS) = the relative change of biogas yield when HRT is changed from HRT1 to HRT2 910 

Increasing the digestion temperature may be considered as an option to raise the BY 911 

(Dokulilová et al., 2018), but requires additional energy input; thus, increasing the temperature 912 
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of 1 t of wet sludge by 1oC requires 4.18 kJ/kg = 1.16 kWh energy (assuming sludge has the 913 

same specific heat capacity as water), and the energy in 1 m3 biogas (60% CH4 content) is 914 

equivalent to 22 MJ = 6.1 kWh (Banks, 2009). Therefore, the net energy required to increase 915 

the digestion temperature of 1 t of wet sludge may be calculated using Equation S2: 916 

Net energy (kWh) = Additional energy generated – Additional energy required for heating = 917 

6.1* DS*z- 1.16 * (Temperature1 -Temperature2)                                                              (Equation 918 

S2) 919 

Where: 920 

z (m3/t DS) = the relative change of BY when the temperature is adjusted from Temperature1 921 

to Temperature2 922 
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