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a b s t r a c t 

Effective management of lithium-ion batteries is a key enabler for a low carbon future, with applications including 

electric vehicles and grid scale energy storage. The lifetime of these devices depends greatly on the materials 

used, the system design and the operating conditions. This complexity has therefore made real-world control of 

battery systems challenging. However, with the recent advances in understanding battery degradation, modelling 

tools and diagnostics, there is an opportunity to fuse this knowledge with emerging machine learning techniques 

towards creating a battery digital twin. In this cyber-physical system, there is a close interaction between a 

physical and digital embodiment of a battery, which enables smarter control and longer lifetime. This perspectives 

paper thus presents the state-of-the-art in battery modelling, in-vehicle diagnostic tools, data driven modelling 

approaches, and how these elements can be combined in a framework for creating a battery digital twin. The 

challenges, emerging techniques and perspective comments provided here, will enable scientists and engineers 

from industry and academia with a framework towards more intelligent and interconnected battery management 

in the future. 
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. Introduction: scale of the challenge, where we are and the 

otential 

Reducing greenhouse gas emissions and the onset of climate change

s a global priority. One essential technology, in our low carbon future,

s the lithium-ion battery (LIB) which enables applications ranging from

lectric vehicles to grid scale energy storage for balancing of renewable

lectricity from wind and solar. However, barriers to wider adoption of

he technology still exist, including: limited energy density, poor life-
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ime and relatively high cost. Maximising battery lifetime is a particular

hallenge due to the strong coupling between LIB longevity and operat-

ng conditions such as: temperature, load-profile and operating state-of-

harge (SOC) range [1] . Furthermore, the sensitivity of these variables

o the battery lifetime, is dependant on the design of the cell and pack,

ith key considerations such as: chemistry, electrode composition, form

actor, pack configuration and thermal management system. This ex-

ansive design space, compounded with highly variable use conditions

nd inherent cell-to-cell variations has meant that effective real-world

ifetime estimation/extension methods remains challenging. Whilst, ap-

roaches to extend battery lifetime do exist through minimising stress

actors in the battery, this leads to inefficient use of the technology and
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Nomenclature 

AI Artificial Intelligence 

ANN Artificial Neutral Network 

BEV Battery Electric Vehicle 

BMS Battery Management System 

CC 

–CV Constant Current-Constant Voltage 

CHAIN Cyber Hierarchy And Interactional Network 

DC Direct Current 

DRT Distribution of Relaxation Times 

DTV Differential Thermal Voltammetry 

DVA Differential Voltage Analysis 

ECM Equivalent Circuit Model 

EIS Electrochemical Impedance Spectroscopy 

GAN Generative adversarial networks 

Gr Graphite 

GITT Galvanostatic Intermittent Titration Test 

HPPC Hybrid Pulse Power Characterisation 

ICA Incremental Capacity Analysis 

IOT Internet of Things 

KF Kalman Filter 

LAM Loss of Active Materials 

LCO Lithium Cobalt Oxide 

LFP Lithium iron phosphate 

LIB Lithium-ion Battery 

LLI Loss of Lithium Inventory 

ML Machine Learning 

NCA Nickel Cobalt Aluminium Oxide 

NMC Nickel Manganese Cobalt Oxide 

OCV Open Circuit Voltage 

RUL Remaining Useful Lifetime 

SEI Solid Electrolyte Interphase 

SOAP State-Of-Available-Power 

SOC State-Of-Charge 

SOH State-Of-Health 

SOX State-Of-X 

SPM Single Particle Model 

SPMe Enhanced Single Particle Model 

SVM Support Vector Machine 

V2G Vehicle-to-Grid 

hus a higher system cost. Therefore, understanding, quantifying and

redicting battery performance in real-world conditions is essential for

uture consumer electronics, electric vehicles and grid energy storage

atteries. 

The simplest approach to operating a battery safely, limits its op-

ration within manufacturers prescribed voltage, temperature and cur-

ent values. However, these are often overly conservative and are often

ub-optimally defined, leading to inefficiencies and premature failure.

 more attractive approach to control, is through model driven meth-

ds which focus on State-of-X (SOX) estimation. Here key states include:

OC, state-of-available power (SOAP) and state-of-health (SOH), which

eads to the estimation of the remaining useful lifetime (RUL). In re-

ent years, these state estimation approaches have been extended to in-

reasingly physical metrics such as individual electrode potentials and

ithium concentration profiles which can be used to optimise functional-

ty such as fast-charging [2] . By then coupling these states with models

hich describe degradation processes, dynamic limits can be imposed

hich account for variable real-world operating conditions. 

Within the academic literature, the most commonly captured degra-

ation processes in LIBs are: growth of the solid-electrolyte interphase

SEI) layer, lithium-plating, particle cracking, pore clogging and active

aterial dissolution [3] . However, one of the challenges with model

riven approaches is that the parameters, are often difficult to measure
 a  
nd subtly vary due to manufacturing inconsistencies [4] . When this is

ompounded by degradation mechanisms, which aren’t captured in the

odel, this can lead to significant variation in predicted RUL. 

In recent years, given the challenges around model parameterisa-

ion and the highly non-linear and coupled nature of battery degra-

ation processes, researchers have renewed their efforts in data-driven

pproaches for state-estimation problems. Commonly used approaches

ave included methods such as linear regression, decision trees and ar-

ificial neural networks (ANN) as forms of machine learning (ML). In

his sense, ML methods are defined as algorithms which are able to take

ata, learn about its behaviour and ultimately improve the performance

f the system automatically. However, a major drawback of these ML

pproaches is the vast amount of experimental training data needed to

roduce an accurate model, and also the reliability of these approaches

eyond the experimental training set. 

Within this context, there has been interest in fusing model-driven

nd data-driven approaches into hybrid models that combines the best

spects of both, as well as leveraging deeper electrochemical diagnos-

ics. Furthermore, there is an emerging opportunity to increase the vol-

me and diversity of data collected from real-world battery systems due

o the rapidly increasing uptake of battery electric vehicles (BEVs) with

igh degrees of connectivity. However, challenges with this include the

ighly dynamic data that will be collected compared to the traditional

ell posed lab experiments used to parameterise these models. Further-

ore, challenges around how to handle the volumes of data and its ef-

ective curation remains a challenge in a similar vein to other big data

roblems. 

Thus, there are huge potential benefits for more intelligent control

f LIBs with exciting developments in model driven control, ML ap-

roaches and big data sets with a wealth of information. However, to-

ate these developments have mostly been analysed and developed in

solation. With the recent advances in ML, data science and internet-of-

hings (IOT), the concept of a digital twin has emerged, whereby a dig-

tal twin is a digital replica of a physical entity with a close connection

etween the two. Given the usage dependant degradation, and highly

on-linear behaviour of LIBs, there is thus an opportunity to create a

attery digital twin framework which fuses data, models and artificial

ntelligence (AI) for next generation energy storage devices. This is dia-

rammatically represented in Fig. 1 . 

This perspectives paper thus covers: the functional requirements of

IBs, factors impacting their performance, modelling and control aspects

f batteries ( Section 2 ), current and emergent on-board sensing and di-

gnostic techniques ( Section 3 ), applications of AI to LIBs ( Section 4 )

nd how these individual elements can be combined together to create

 battery digital twin, potential benefits of this approach and remaining

hallenges ( Section 5 ). The aim of the paper is not to provide an ex-

austive review of papers in this area, rather it is to highlight key works

nd concepts, and curate them towards a roadmap for more intelligent

attery management. 

. Models: current state-of-the-art in battery modelling and 

ontrol 

A LIB consists of an anode, cathode and electronically insulating sep-

rator, which are all porous to allow for the infiltration of an ionically

onductive electrolyte. These are then sandwiched in between metal-

ic current collectors. Whilst there is an increasing diversity of electrode

aterials, most batteries currently use a graphite anode and a transition

etal oxide cathode which is typically nickel manganese cobalt oxide

NMC), nickel cobalt aluminium oxide (NCA), lithium iron phosphate

LFP) or lithium cobalt oxide (LCO). In its fully charged state, lithium

s intercalated into the anode. When the battery is discharged, lithium

t the surface of the anode, deintercalates and becomes a lithium-ion

nd electron. The lithium-ion is then able to diffuse through the elec-

rolyte towards the cathode, however the electron has to flow through

n external circuit where useful electrical work can be extracted. At the
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Fig. 1. Cyber-physical elements of a battery digital twin. 
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athode, the lithium-ion and electron are recombined and intercalated

nto the transition metal oxide cathode. This process is then reversed for

harge. 

For effective management of these batteries; performance, lifetime

nd safety are the 3 core considerations. Intelligent control of a battery

ystem leverages off a battery management system (BMS) which is able

o sense its environment, understand its current/future state and thus be

ble to adapt. This level of AI is essential for next generation energy stor-

ge devices to enable functionality such as fast charging and multiple

se cases such as combined automotive load profiles and vehicle-to-grid

V2G) power management. In order to achieve these functions, different

tates need to be estimated in the battery, with the 3 most basic ones

eing SOC, SOH and SOAP. Furthermore, the impact of environmen-

al operating conditions also needs to be factored in when conducting

tate-estimation as well as different chemistries, form factors and cell

ypes (power vs energy). This section thus outlines the key factors af-

ecting battery performance, approaches to estimate internal states and

hallenges in traditional purely model driven approaches. 

.1. Key functionality and factors affecting performance 

For automotive applications, batteries have to be able to meet

he demanded load profile from a drive cycle. In the case of pure

EVs, the average discharge rate (C-rate) is relatively low, however

eak charge/discharge rates can be much higher due to accelera-

ion/deceleration events. In hybrid vehicles, such as the Toyota Prius

hich combines a LIB with an internal combustion engine, these C-rates

an be considerably higher. The challenge with these high C-rate events

s that they can accelerate the degradation of the battery. This is espe-

ially important as the current trend is towards batteries with a higher

pecific energy (Wh/kg), where one of the solutions is the use of thick

lectrodes. Conventional LIB electrodes have thicknesses typically in the

egion of 50 𝜇m, and by increasing the thickness to 100 𝜇m, cell specific

nergy can be increased by ca. 25% [5] by removing electrochemically

nactive phases such as the current collectors and separators. However,

hick electrodes often suffer from poor lifetime, due to mechanical in-

tabilities. When a LIB is charged/discharged the electrode materials

ndergo volume expansion which can lead to mechanical fracture of

he electrode, and accelerated degradation. At high C-rates, this fracture

ypically occurs more aggressively at the electrode-separator interface
ue to uneven the reaction current density associated with long ionic dif-

usion pathways in the electrolyte [6 , 7] . Therefore, as electrode thick-

esses increase, the criticality of understanding and minimising these

tresses becomes increasingly important. 

Another key consideration is that LIBs are highly sensitive to their

perating temperature, and thermal gradients, which primarily im-

acts the resistance of the cell [8] and the rate of degradation [9] .

he sources of these resistances generally include electronic, ionic and

harge transfer resistance. These typically have characteristic time con-

tants, with the high frequency component characterised by the elec-

ronic and ionic resistance, medium frequency components representa-

ive of charge transfer reactions and low frequency components charac-

eristic of diffusion processes. 

The SEI layer, which is often cited as one of the main degradation

odes, consumes cyclable lithium through the formation of a passivat-

ng film on mainly the anode, but also to a smaller extent, the cathode.

urthermore, this SEI layer generally restricts the movement of lithium-

ons and electrons, thus increasing the resistance of a cell. The rate of

his parasitic side reaction, is highly temperature and SOC dependant

ith the most detrimental impact occurring at high temperatures and

igh SOCs, or low anode potentials. 

However, despite these challenges, LIB lifetimes have made signifi-

ant advances with notable work from Harlow et al. [10] who presented

 comprehensive analysis of a LIB which has a widely reported “mil-

ion mile ” lifetime. This was achieved through a combination of single

rystal cathode particles, which exhibit superior resistance to mechan-

cal fracture, and also operating the cell in an optimum temperature.

hus, motivated by these improvements in battery lifetime, and the low

tilisation of a consumer BEVs, there are increasing opportunities and

enewed interest in V2G applications. This has typically been perceived

s having a negative impact on the battery lifetime due to the additional

ycling, however, if controlled in an appropriate way, can lead to ben-

fits. Uddin et al. [11] for instance, highlighted the potential lifetime

mprovements that V2G could have on a BEV battery pack if the time

pent at high SOCs could be reduced. However, in practice the effective

mplementation would require addition predictions on grid-side load

equirements, consumer constraints of the vehicle and a deeper under-

tanding of optimum operating conditions as the battery degrades. 

Furthermore, as consumer uptake of BEVs continues, automotive

anufacturers are targeting reduced LIB charging times. However,
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igher current charging leads to increased rates of degradation due to

ithium metal plating on the anode and also the formation of dendrites

hich have the potential to short-circuit the anode and cathode [2] .

his problem is exasperated at low temperatures where the mobility

f lithium/lithium-ions is reduced and also with the development of

hicker electrodes. Efforts towards solving this problem have centred

round understanding the behaviour of lithium-plating, which occurs

hen the anode potential falls to below 0 V vs Li/Li + . This is influ-

nced by the solid-state lithium diffusivity, ionic conductivity of the

lectrolyte, exchange current density and electronic conductivity of the

lectrode. Whilst the solid-phase lithium diffusivity is often quoted as

ne of the rate limiting step, lithium-ion depletion in the electrolyte

hould also be noted due to the significantly larger diffusion distances.

his is especially true as the trend towards thicker electrodes continues.

The most common approach to battery charging is the constant

urrent-constant voltage (CC 

–CV) profile. Here an initial constant charg-

ng current is applied up to an upper voltage limit which depends on the

attery chemistry. After this voltage limit has been reached, a constant

oltage hold is applied where the current decrease exponentially to al-

ow sufficient time for the lithium to fully saturate the anode. One of the

hallenges with this approach however, is that it is difficult to measure

he anode potential directly. The insertion of a reference electrode is

ossible, however this is impractical in cells to be industrially used due

o the additional cost and also the challenges around minimising the

nfluence of the reference electrode on the cell performance. Beyond

he conventional CC 

–CV approach various other techniques have been

xplored such as multi-stage constant current-constant voltage, boost

harging, constant power-constant voltage, pulse charging and the vari-

ble current profile [2] , however these still all have the same estimation

hallenges. 

Beyond fast-charging, automotive companies are also including func-

ionality that allows vehicles to operate briefly outside of their recom-

ended temperature limits. Tesla for instance, have a “Ludicrous ” mode

hich allows normal operating power limits to be exceeded for a short

eriod of time. This enables above average acceleration by allowing the

ells to operate at a higher temperature, however this cannot be main-

ained and comes at the cost of battery lifetime. 

Therefore, it can be seen that the demands of batteries in terms of

he expected cost, lifetime and performance are increasing year-on-year.

he Faraday Battery Challenge in the United Kingdom, for instance,

ave set targets for 8 key metrics needed of automotive batteries from

urrent values to 2035 values which include: cost (130 $/kWh to 50

/kWh @ cell level, 280 $/kWh to 100 $/kWh @ pack level), energy

ensity (700 Wh/L to 1400 Wh/L, 250 Wh/kg to 500 Wh/kg), power

ensity (3 kW/kg to 12 kW/kg), safety (eliminate thermal runaway at

ack level), 1st life (8 years to 15 years), temperature ( − 20°− 60 °C to

 40° to 80 °C), predictability (fully predictive models for performance

nd ageing) and recyclability (10–50% to 95% @ pack level) [12] . 

.2. Modelling approaches 

To address the issues of performance and lifetime prediction of LIBs,

odels are often used. These typically describe the voltage response to

 current load and the evolution of the capacity/resistance over the cells

ifetime. A diversity of approaches currently exist, some of which only

escribe a single attribute and some which describe both. One of the

ost common forms of battery model is the equivalent circuit model

ECM), whereby the voltage response of a battery is replicated using a

ombination of resistors and capacitors as well as a voltage vs capacity

rofile described by a look-up table. Different levels of complexity in

CMs can be found in the literature with most of these characterised by

he number of resistor-capacitor (RC) pairs, with higher number of RC-

airs generally replicating the battery voltage better. However, these

CM models generally lack physical meaning, making them generally

nsuitable for control applications requiring the estimation of internal

hysical states such as electrode potentials. An exception to this, is that
ome researchers have also been developing physics based ECMs, where

he models are constructed in such a way to describe physical processes

uch as diffusion [13 , 14] . Whilst, this approach is promising, this has

et to be widely adopted in practice. 

A more comprehensive approach to describing the performance of

IBs is through the use of continuum level physics models which were pi-

neered by Doyle, Fuller and Newman [15] . In these physics based mod-

ls, equations which govern the mass and charge transport in both the

lectrode and electrolyte phases are coupled to a Butler-Volmer equa-

ion which describes the local reaction current density. The complexity

f this model comes in various forms with the most common variant

ermed the Pseudo-2D (P2D) model which describes the through thick-

ess localised behaviour of the battery. In recent years, the accessibility

f these models has increased with the publication of open-source ver-

ions of these codes with notable examples including the Python Bat-

ery Mathematical Modelling platform (PyBaMM) [16] and LIONSIMBA

17] . 

Whilst, this P2D modelling framework is very powerful in its abil-

ty to describe the local properties of a cell, it comes with increased

omputational cost and a large number of parameters which need to be

xtracted. This was highlighted by Chen et al. [18] who presented a com-

rehensive parameterisation of a NMC811-Gr/SiOx cell, whereby 35

ifferent parameters, broken down into physical, chemical and electro-

hemical parameters, for the electrode and separator/electrolyte were

xtracted. However, in order to get these values, a range of characterisa-

ion tests were needed, many of which were destructive. Similar efforts

ere presented by Ecker et al. [19] where they also noted variations in

easured electronic conductivity of their electrodes with that of litera-

ure values, the criticality of the solid phase diffusion coefficient and the

mportance of having this vary with the state of lithiation in the elec-

rode. These extensive and destructive sets of tests, therefore, makes

t impractical to parameterise every cell, even though it is known that

light cell-to-cell variations exist. 

However, whilst there are many parameters in these electrochem-

cal models, some of them are more critical than others. Towards un-

erstanding this, Li et al. [20] investigated how identifiable these P2D

odels are by conducting a sensitivity study on a NMC-Gr cell by looking

t 26 physical parameters. These parameters were broadly categorised

nto geometric, transport, kinetic and concentration based parameters,

nd their sensitivity was compared to not only the terminal voltage but

lso the anode potential and surface/bulk SOC of the cathode, which are

ey metrics for a model driven control system. Whilst their results indi-

ate increased identifiability at high C-rates and a general insensitivity

o electrolyte and separator parameters, the authors acknowledged that

hese findings may differ for different chemistries. This highlights the

ack of universal approaches. 

Another challenge also associated with the parameterisation of these

odels is that, whilst general methods for extracting parameters are

idely used in the field, their implementation varies from user to user

hich can impact the end result. This particular issue was highlighted by

ickol et al. [21] who investigated the general assumptions and the dif-

erent data analysis approaches for extracting the solid phase diffusion

oefficient. Here, it is noted that at lower temperatures and higher C-

ates of pulsing, different commonly used methods resulted in diffusion

oefficients that vary by over an order of magnitude even with the same

ata. Furthermore, the authors also noted the high degree of polarisation

n half-cells due to the lithium counter electrode which cause significant

iscrepancies at higher current densities. This therefore highlights the

onflicting challenge that whilst the system becomes more identifiable

t high C-rates, as suggested by Li et al. [20] , half-cell measurements suf-

er from influences in the lithium counter electrode, if not compensated

or with a reference electrode. 

Motivated by this, a number of variants to the P2D model have since

een created such as the single particle model (SPM) which simplifies

he electrode domain into a single particle. However, whilst this reduces

he computational burden by removing the iterative step in calculating
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he reaction current density distribution, this generally limits the accu-

acy of the SPM to < 2C. However, to overcome this problem, authors

ave modified the SPM to include the electrolyte concentration gradi-

nts back into the model towards a formulation termed the enhanced

PM (SPMe) which has superior accuracy compared to the SPM [22 , 23] .

For lifetime estimation, these approaches are divided into physics

ased, data driven and hybrid approaches [24] . Physics based ap-

roaches use a set of differential equations to describe the physical

egradation mode happening in a battery. Whilst this approach has good

ational for its construct, there does not exist a model which currently

aptures all degradation modes in a battery and of the modes that are

aptured, the parameters needed are often difficult to extract leading to

naccuracies over the lifetime of operation. Perhaps one of the most com-

rehensive descriptions of physics based battery degradation models is

hat of Reniers et al. [3] who presents and compares models with degra-

ation mechanisms including: SEI layer growth, loss of active material,

ore blocking, lithium plating, active material dissolution and lithium

lating. However, in this work the authors use a SPM approach mean-

ng localised degradation effects have not been captured which become

ritical at extremes of operation. 

Many empirical and semi-empirical approaches exist which are pre-

ursors to the purely data driven approaches currently receiving exten-

ive investigation. Given the electrochemical nature of battery operation

here is clearly a correlation between cell lifetime with temperature and

OC. Here temperature dependency follows an exponential Arrhenius

ype relationship and SOC typically follows a more non-linear relation-

hip. Whilst, these approaches are simple they tend to lose predictive

ower over their lifetime of use and in some cases are overly simpli-

ed. The definition of SOC for instance, can vary depending on the user

nd thus, relating degradation models with more physically relevant

tates is important moving forward. Schimpe et al. [25] for instance

resented a comprehensive lifetime study on a LFP-Gr cell, whereby

he SOC dependant calendar ageing was coupled to an anode poten-

ial curve, Tafel equation and Arrhenius rate law approach. This semi-

mpirical approach has advantages that it captures some of the physics

ccurring in the cell at low-computational cost, however starts to lose

redictive powers under more aggressive modes of operation. 

.3. State-estimation and control 

In order to control the battery effectively, states are often needed as

nputs which cannot be directly measured and therefore must instead

e inferred from other measurements. SOC estimation is the most ba-

ic function and is an indicator of the remaining capacity in a cell. The

implest approach to estimate this value is based on Coulomb counting

rom a datum point (i.e. the fully charged 100% SOC point). Here, the

urrent signal, which is most commonly taken from a shunt resistor or

 Hall Effect sensor, is used to measure the extracted current and com-

ared against the known overall capacity to give an estimate of the SOC.

hilst this approach is simple, there are a number of drawbacks of this

pproach. One of them is that the accessible capacity is often lower than

he theoretical, especially at low temperatures and high C-rates. This is

ue to the slow diffusion of lithium in the solid phase of a LIB leading to

dditional losses. Furthermore, the Coulomb counting approach often

uffers from signal noise issues, whereby the true current passed to the

ell may differ from the measured value from the sensor. 

Furthermore, there are challenges around SOC estimation when the

ystem is being initialised. The simplest approaches to this problem

f non-100% SOC initialisation is to compare the open circuit voltage

OCV) against a look-up table. However, this is very challenging in cer-

ain battery chemistries such as LFP since the OCV-SOC curve is gener-

lly quite flat and also suffers from a voltage hysteresis. Furthermore,

s the cell ages, the accuracy of this approach generally decreases due

o effects such as stoichiometric drift between the anode and cathode. 

The most common approach to address the issue of sensor noise af-

ecting the SOC estimation is the use of Kalman filters (KF). KFs have
een used successfully in many engineering applications involving tra-

ectory and guidance systems. Its usage for battery SOC estimation was

opularised through a series of papers by Plett [26–28] . The SOC is ap-

ended as a time dependant variable to a state vector together with sev-

ral internal voltage drops that occur in a battery. The terminal voltage

s then used as a feedback corrector signal to iteratively update and es-

imate the SOC and its uncertainty. Unlike Coulomb counting, the feed-

ack mechanism corrects for sensor noise and any incorrect initial con-

itions involved in Coulomb counting. The algorithms have since been

odified to handle non-linear battery models and improve the SOC un-

ertainty estimate by using the unscented KF and particle filters. 

The state-of-the-art SOC algorithms are focused on estimating the

oncentrations (or SOC) of the individual electrodes using terminal volt-

ge as the feedback corrector signal. The problem however becomes that

f estimating a concentration function (in space and time) rather than a

nite dimension state vector. Techniques such as the backstepping par-

ial differential equation observer have been developed to successfully

rack surface concentrations of the electrodes [22] . 

During operation of the vehicle it is also important to be able to esti-

ate the SOAP for the battery pack to inform the control system about

he maximum accessible power. For vehicle applications this would im-

act the peak acceleration of the vehicle. However, whilst most SOAP

lgorithms mostly focus on keeping the cell with their voltage windows,

emperature limits and current limits, more degradation aware algo-

ithms are needed. Suthar et al. [29] for instance used a P2D model

ith additional modifications to include stress generation in the elec-

rodes and used this as a control metric for testing and designing new

ast-charging algorithms. Whilst, this is an interesting approach no ex-

erimental validation was provided. 

In order to address the problem of lithium plating during fast

harging, researchers have developed a number of model informed ap-

roaches to minimise the risk of this occurring. Physics based models

hich capture the electrochemical reactions occurring in the cell have

ecently been used to estimate the anode potential indirectly, which

an then be used as a control metric. Mai et al. [30] for instance, used a

2D approach to investigate the limits of standard CC 

–CV charging al-

orithms by estimating the anode potential. They subsequently, use this

pproach towards proposing other alternative charging profiles such as a

oltage-ramping profile and a multiple CC 

–CV profile. However, whilst

romising, this work and others often do not capture all degradation

odes nor fully validate the results. Furthermore, the challenges with

his approach are reliable parameterisation of the model at not just the

tart of life but also as the cell degrades. This is detrimental to accuracy

s it is known that as the cell ages, the plated lithium can cause a number

f effects such as pore blockage, shifting of the electrode stoichiometry

nd loss of cyclable lithium. Furthermore, many lithium plating models

mplemented for control applications have focused on 0D, 1D or P2D

pproaches which do not capture the complexities of large form factor

ells, where thermal gradients in the through-plane and in-plane direc-

ions can have a significant impact at the cell and pack level. This leads

o further uncertainty in the results. 

.4. Challenges 

Whilst significant progress has been made towards understanding

actors which influence battery performance, developing models and

ontrol algorithms, these are underpinned by effective state estimation,

here there are still significant challenges. For instance, whilst physics

ased models can provide insights into the inner operations of a bat-

ery, effective estimation of the numerous parameters inside the bat-

ery and how they evolve over time remains a challenge. This is further

ompounded by the fact that inherent cell-to-cell variations exist due to

ubtle differences during the manufacturing process, which may not be

mmediately apparent, however emerge later in their lifetime with the

nset of non-linear and rapid degradation. Furthermore, these models

re often sensitive to certain parameters such as the solid-state diffu-
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Fig. 2. Different potential on-board data 

types, analysis techniques and output informa- 

tion. 
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ion coefficient, of which researchers have inconsistent procedures for

xtracting their parameters. Thus, ensuring that these subtle inconsis-

encies in cells are captured and developing consistent and easily acces-

ible parameterisation methods is critical for intelligent battery systems

oving forward. 

Solutions to these problems continue to be presented by the aca-

emic and industrial community, however the nature of the problem is

lso evolving. Advances in electrode synthesis methods towards single

rystal NMC cathodes for instances have unlocked significant lifetime

enefits in some applications, leading to the much reported “million-

ile ” battery [10] . Such claims have thus led to renewed interest in

2G integration which has the potential to increase the functionality

f the battery but creates a more complex load profile. This level of

ntelligent control becomes increasingly important as the specific ca-

acity of cell increases due to increasing electrode thicknesses and also

arger form factor cells, which minimise the inactive parasitic mass in a

ell. 

. Data: on-board sensing and diagnostics 

A critical element of an intelligent battery system is what data

an be collected about the system and what information can be in-

erred from its analysis. Furthermore, as ML approaches become in-

reasingly applied, the quality and diversity of data vectors becomes

 critical enabler. Whilst there are a wide range of spectroscopic

echniques which are available to characterise and understand the

ynamic behaviour of battery materials, the vast majority of these

re limited to lab based studies. This is because they require spe-

ial cells, use expensive equipment and/or require the disassembly of

he cell. Thus, for real world implementation, low-cost and portable

ensing techniques are needed. Currently, in the majority of applica-

ions, voltage, current and temperature are data types which are col-

ected. Whilst this might seem limited, with the right excitation, and

ost-processing, a wealth of electrochemical insights can be inferred.

oving forward, the synthesis of this data with other data types such

s stress and strain could be powerful additions for state estimation.

his section therefore presents the current state and potential perspec-

ives of what insights can be inferred from current and emerging on-
oard sensing techniques. Diagrammatically, these are highlighted in

ig. 2 . 

.1. Current approaches 

Faults in cells/packs can occur during use due to a number of factors

ncluding mechanical, electrical and thermal abuse [31] . The ability to

e able to detect this would therefore allow users to either adjust oper-

ting limits or notify users to service their vehicle before catastrophic

ailure occurs. One of the simplest approaches to detect a battery mod-

le fault is the current interrupt technique. Here the voltages of parallel

ell strings are monitored, and a current pulse is applied. By comparing

he voltage before and during the pulse, a differential resistance can be

alculated. By using this approach, faulty interconnection resistances in

 12P7S pack could be identified in the work by Offer et al. [32] . If these

roblems are not detected significant load heterogeneities can build in

attery packs causing accelerated degradation [33 , 34] . However, one

f the challenges with this approach in estimating the differential resis-

ance is the pulse duration to be taken. Here, the resistance of a cell is

requency dependant, with a larger polarisation resistance experienced

ith longer pulses. This parameter sensitivity was highlighted by Nickol

t al. [21] when conducting galvanostatic intermittent titration tests

GITT) for the extraction of diffusion coefficients, where varying val-

es were found for different applied currents. Thus, unless measurement

onditions are standardised, inconsistencies in the measured resistance

ill emerge. 

Another commonly used variant of these pulsed approaches is the hy-

rid pulse power characterisation (HPPC) test whereby the resistance as

 function of SOC is determined by pulsing the battery with both charge

nd discharge currents at varying C-rates. This approach is commonly

sed to parameterise ECM models, where a regression is then used to fit

ach pulse to the RC elements in the ECM. These RC elements are then

tored as static look-up tables for state-estimation. Whilst, this is a sim-

le and easy approach, the true resistance and capacitance evolves as the

ell ages, reducing the accuracy of the ECM prediction if not adaptively

pdated. 

Thus, many efforts are now focusing on understanding physical

egradation modes. Here slow rate discharge/charge data can be used

o infer information about the anode and cathode in a cell. The origins
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f this technique are based on the premise that the cell voltage of a

attery consists of the difference between the anode and cathode. For

ach of these electrodes, they undergo various electrochemically driven

hase transitions as they are lithiated/delithiated. In general, where a

hase transition occurs there is a plateau in the voltage-capacity curve

hich is often inferred from the differential voltage data. If half-cell

urves for the electrodes can be established, cathode and anode specific

egradation modes can typically be decoupled. Here the most common

odes are loss of lithium inventory (LLI), loss of active material in the

node during delithiation/lithiation (LAM an(de) , LAM an(li) ) and loss of

ctive material in the cathode during delithiation/lithiation (LAM ca(de) ,

AM ca(li) ). 

This differential voltage analysis (DVA) or incremental capacity anal-

sis (ICA) is now a commonly used electrochemical diagnostic tool. No-

able work includes that of Dubarry et al. [35] who analysed the degra-

ation modes in a LFP-Gr cell under different modes of degradation and

arying electrode loadings. Here they highlight how the different modes

f degradation (LLI and LAM) can be inferred from the cells ICA pro-

les. The authors highlight in this work that, in most cells, there is an

xcess of anode capacity relative to cathode capacity to accommodate

he growth of the SEI and subsequent loss of lithium. However, as the

ell ages, if the anode degrades at a more rapid rate than the cathode,

ith the anode fully lithiating before the cathode delithiating, this can

esult in increased probability of lithium-plating. Thus, being able to

rack loss of active material in the anode and cathode is an important

ontrol metric in terms of informing charging algorithms. 

In addition to this, further insights into physical degradation modes

ccurring in a cell can be inferred from ICA data. Conventionally, the

eaks in the ICA spectra are tracked with this then correlating to a bulk

LI and LAM. However, as cell form factors increase in size, understand-

ng heterogeneous degradation is also important. Sieg et al. [36] for in-

tance, cycled 2 large form factor pouch cells and harvested their elec-

rodes to make 25 coin cells in a 5 × 5 matrix to understand the localised

egradation. One cell was operated in a pulsed mode, whereas another

as operated with a load cycle indicative of what a BEV would expe-

ience. Their results showed much higher localised degradation in the

entre of the pouch cell with the pulse loading compared to the BEV cy-

le. Furthermore, the characteristic width of the ICA peaks in the more

eterogeneously degraded cell increased more than the homogeneous

ase. Through analysis of the spatial mapping of performance with their

5 coin cell measurements, they showed that this was because of the

istribution in localised performance. 

Beyond the traditional ICA and DVA techniques, the time varying

emperature profile of the cell under a constant current load also con-

ains information about the battery state. With this in mind, Wu et al.

37] demonstrated how taking the ratio of the time varying voltage and

emperature differentials could be used to track battery SOH. This tech-

ique was termed Differential Thermal Voltammetry (DTV) and works

rimarily due to the phase transitions occurring in the battery electrodes

ausing an entropic heat generation which can be detected. Typically

oltage plateaus represent a phase transition, with a parallel in the tem-

erature signal. In a full cell configuration however, the variation in the

ell voltage is typically dominated by the cathode voltage which thus

equire ICA measurements at relatively low C-rates, resulting in lengthy

easurements. By contrast, the entropic heat contribution from the an-

de and cathode are the same order of magnitude, allowing another

eans of discerning the anode and cathode processes. Merla et al. [38] .

ater demonstrated how features in the DTV spectra such as the peak

osition, width and height could be correlated with the SOH of the cell.

Whilst these differential techniques are useful, for real-world imple-

entation their data processing must also be considered along with the

ogging rate and resolution limits of on-board sensing technologies. De-

ending on the resolution of the BMS used to acquire the voltage curves

his can have an impact on the quality of the ICA spectra. Towards

his end, Feng et al. [39] investigated the impact of multiple smooth-

ng methods which led to under/over fitting of raw voltage and tem-
erature data, resulting in ICA curves with additional and non-physical

eaks. In order to solve the problem of inconsistent, and in some cases,

ncorrect fitting, they proposed a method of processing ICA, DVA and

TV data termed the Level Evaluation ANalysis (LEAN) method. Here

he voltage/temperature data is binned into windows to produce his-

ogram plots to avoid potential under/overfitting. This work therefore

ighlights an often neglected step towards using electrochemical diag-

ostic data towards data driven problems; consistent and robust pre-

rocessing of the raw data. 

.2. Emerging techniques 

Besides the aforementioned techniques, there are also a range of

ther approaches which show significant promise but have yet to be

ully deployed into on-board vehicle applications. For instance, electro-

hemical impedance spectroscopy (EIS) is an extensively used technique

n lab based studies of battery condition monitoring [40] , however has

eldom been used in vehicle applications due to the high cost of the

otentiostat required to make the measurements. However, work by

owey et al. [41] showed that EIS measurements on a vehicle could be

ade through cell excitation driven by the motor controller. Here they

emonstrated the applicability of this approach by fitting the EIS spec-

ras of a LFP-Gr and NMC-Gr cells, however they note the challenges

ith purely correlating the variations of EIS parameters with SOC for

FP cells. In NMC cells there was a stronger correlation with parameters

ssociated with the charge transfer resistance and SEI layer resistance,

owever they again noted challenges around these measurement being

ade with no direct current (DC) basis. These points therefore high-

ight that whilst these approaches are attractive for diagnostics, there

re challenges with their generalisation across different cell chemistries

nd cell types. 

Nevertheless, the use of EIS as a diagnostic tool continues to attract

nterest for a range of state-estimation problems. For instance, Richard-

on et al. [42] used EIS to estimate the internal temperature of a 26650

FP-Gr cell, which due to the limited sensitivity of the EIS to SOC made

or an ideal candidate chemistry to decouple the SOC-temperature ef-

ects. Here their approach of combining impedance measurements at a

ingle frequency (215 Hz) and surface temperature measurements al-

owed for the estimation of internal core temperatures to with a 3%

rror under their testing conditions. 

Common approaches to use EIS data often involve a stage of fitting

his to an equivalent circuit, which requires the user defining this cir-

uit with knowledge of the system. Osaka et al. [40] for instance pre-

ented and compared a number of different equivalent circuits used for

escribing battery EIS and showed how anode and cathode processes

ould be decoupled; helping to increase the identifiability of a system.

n approaches where a single lock-on frequency is analysed, this gets

round the problem of needing a fitting circuit, however, loses poten-

ial information at different frequencies. An approach which is more

ommonly used in the solid oxide fuel cell field, but is becoming increas-

ngly topical in batteries, is the distribution of relaxation times (DRT)

43] . The advantage of this approach is that processes can be identified

ithout an assumed equivalent circuit, which removes potential subjec-

ivity. However, in order to process the DRT spectra, extremely stable

IS measurements are needed with long relaxation times. 

The value of temperature measurements were previously highlighted

nd these normally use thermocouples or thermistors for their data col-

ection. However, the challenge is that a battery pack often contains

housands of cells, and if the temperature of every one were to be mea-

ured this would result in thousands of individual sensors. In order to

implify this, researchers have investigated the use of fibre Bragg grat-

ngs, which are optical fibres which reflect particular wavelengths of

ight but refract others. The advantage of this approach is that with the

ight preparation, a single optic fibre can measure multiple tempera-

ures and even strains. Furthermore, these Bragg gratings can also be

ntegrated into a cell to infer internal cell temperature [44] . The chal-
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enge however, is that the enabling equipment for this measurement is

urrently quite expensive. 

Furthermore, most of these sensors are typically positioned on the

urface of cells and thus do not directly measure the internal state of

he battery. To this end, researchers have been investigating develop-

ent of ‘smart’ cells which have in-built sensors. Fleming et al. [45] for

nstance demonstrated how thin thermocouples could be embedded into

he centre of a cylindrical cell to measure the internal cell temperature.

he challenge with this approach however is the cost and complexity of

ntegrating this into cells as well as the chemical stability of the sensor

hich still needs to be improved upon. 

The combination of various sensing techniques towards an intelli-

ent cell was also demonstrated by Amietszajew et al. [46] who used

 combination of an in-situ fibre Bragg grating and a lithium refer-

nce electrode to investigate limits of fast-charging. Here they showed

hat charging rates > 6x greater than manufacturer recommended values

ould be used without the potential of lithium-plating. This thus high-

ights, that a battery operation strategy driven purely by manufacturers

rescribed limits is highly inefficient and the potential benefits of a more

ntelligent cell. 

Beyond these purely current, voltage and temperature data vec-

ors, other promising techniques include the measurement of me-

hanical states. One such approach presented by Hsieh et al.

47] used acoustic time-of-flight measurements to infer changes in

he density of electrodes during lithiation/delithiation. Bommier et al.

48] later extended this approach to demonstrate how this ap-

roach could be used to detect lithium plating. Other approaches

o measurement of mechanical properties of cells includes pres-

ure and volume change sensing. By measuring this, mechanical

hanges caused by the lithiation/delithiation of the electrode [49] ,

ave the potential to detect lithium-plating and other degradation

odes. 

.3. Challenges and opportunities in data and sensing 

Manufacturers prescribed limits on cell operation are often overly

onservative leading to inefficiencies in operation. Clearly EVs and bat-

ery systems of the future will be generating vast amounts of data, which

f used intelligently can extend the operating window of a battery with-

ut significant increases in degradation. The most common types of time

omain data including voltage, temperature and current, will continue

o be important. However, there are emerging opportunities to take cer-

ain lab based sensing and diagnostic techniques, and implement these

n vehicles to fuse different data vectors together to create deeper elec-

rochemical insights and increase the identifiability of these systems.

or example, EIS and DRT have been shown to be powerful techniques

o decoupling anode and cathode resistances, which is a challenge for

PPC approaches for resistance extraction. The fusion of these resis-

ance extraction techniques with approaches such as ICA for under-

tanding LLI and LAM could be a powerful combination for data driven

odels. 

However, there is a risk that without proper curation of the data

n terms of standardised collection methods, naming conventions and

uitable data structures to store this with the appropriate meta-data,

hat subsequent data driven approaches will not be as effective. One

otable effort towards this is the battery evaluation and early predic-

ion (BEEP) software package by Herring et al. [50] . Here, the BEEP

oftware provides a framework for inputting and analysing battery test-

ng data in a consistent way, which includes not just the raw data but

lso the meta-data relating to the cell testing, thus enabling easy ap-

lication into ML codes. Furthermore, the alignment of different stan-

ards and their broader use also needs to be considered. A good re-

ource for this is BatteryStandards.info [51] which contains approxi-

ately 400 searchable battery related standards including character-

sation tests, ageing tests and safety/abuse tests for cell, module and

ystem level tests in application areas ranging from transport to station-
ry. Having these considerations at the forefront of thinking as emerg-

ng on-board diagnostic mature will be critical for effective data-driven

olutions. 

. Artificial intelligence: machine learning and data driven 

pproaches 

Clearly there are many challenges around the lengthy time needed

o parameterise physics based models which, when compounded with

he inherent variability of cells, results in reduced prediction accuracy

f purely physics based approaches in real world applications. ML al-

ows computers to learn from data and improve its performance without

he need for additional manual programming, which make them ideal

o adapt to the inherent variability in batteries. Whilst data driven ap-

roaches, which use techniques such as ANN, have been in existence for

ome time, it was not until recently with the advent of increased process-

ng power and the abundance of data which has inspired a resurgence

f interest in these data driven approaches in the battery field. Various

orks in applying techniques such as ANNs, support vector machines

SVM), Gaussian/Bayesian regression, random forest and KF based ap-

roaches have been reported for predicting states such as SOC, SOH and

UL which are well summarised by Ng et al. [52] and Li et al. [53] . 

A notable application of a data driven used for the RUL estimation in

atteries is shown by Severson et al. [54] who demonstrated how a sim-

le linear regression model, when combined with differential voltage

ata for LFP-Gr cells cycled under fast charging profiles could be used

o estimate the RUL with an accuracy of 9.1% using the first 100 cycles.

ther authors such as Li et al. [55] also showed how there is a linear cor-

elation between specific peak locations of the ICA spectra and the SOH

f a cell. By tracking only specific peaks, partial charge curves could

e used to estimate SOH; closing the gap between labs based and real

orld application. However, care should be exercised when using lin-

ar models for RUL estimation since under extreme use conditions, the

attery capacity fade can accelerate. To address this problem, Fermin-

ueto et al. [56] showed how the identification of knee-points, where

he degradation rate increases, could be achieved by using a combina-

ion of a Bacon-Watts model and a SVM. 

Whilst these approaches using voltage and capacity data for RUL es-

imation are extremely promising there is potential to synthesize these

imple regression approaches, with deeper electrochemical insights,

odels which capture more modes of degradation and more diverse data

ypes. Hu et al. [57] for instance, demonstrated a data driven approach

or RUL estimation based on the use of 5 metrics associated with battery

harging. These included: initial charge voltage, constant current charge

apacity, constant voltage charge capacity, final charge voltage and final

harge current, which were combined together using a k-nearest neigh-

ours algorithm supplemented with a particle swarm optimisation to

etermine the feature weights. The use of k-means nearest neighbours

n particular highlights the future potential of synthesizing different di-

gnostic data types together for more accurate RUL estimation as sug-

ested in Fig. 2 . 

Furthermore, these RUL estimation methods are especially power-

ul when then combined with closed-loop optimisation algorithm. Attia

t al. [58] for instance used a linear model trained via elastic net re-

ression to predict the final lifetime of LFP-Gr batteries from the first

00 cycles under different fast charging algorithms. The main advance

ere was the combination of this ML driven RUL estimation with a

ayesian optimisation algorithm and closed-loop optimisation, which

ignificantly reduced the number of experiments needed over a param-

ter space. This allowed for 244 different charging protocols to be in-

estigated in 16 days compared to 500 days without early lifetime pre-

ictions, showing the potential for ML in accelerating the development

f smarter battery functionality. 

Beyond the use of differential voltage measurements as an indicator

or RUL, other authors have suggested the use of EIS spectra as a SOH

ndicator. Zhang et al. [59] for instance showed that by taking the entire
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IS spectrum and combining this with Gaussian process regression and

n automatic relevance determination algorithm, that accurate RUL es-

imations can be achieved. Here the 2 specific frequencies of 17 Hz and

 Hz were identified, however whilst it was suggested that this is an

ndicator of changing interfacial properties, it is not clear the physical

ignificance of why these frequencies would be a strong indicator for

egradation. However, whilst the potential of EIS measurements in data

riven RUL estimations is apparent, the quality of the EIS data is also a

ritical consideration in real world problems. Towards this end, Liu et al.

60] reformulated some of the core EIS criteria under a Bayesian frame-

ork and subsequently create metrics to assess how well the data fits to

he constraints of its derivation, namely linearity, time-invariance and

ausality. Though doing this, more reliable EIS and thus DRT measure-

ents can be enabled, opening the possibility for real world implemen-

ation, where signal noise and sub-optimum measurement conditions

ight be present. 

.1. Challenges and opportunities 

Whilst interest in data driven approaches for battery applications

as increased significantly in recent years, the generation of the param-

terisation data still remains one of the main challenges, since this is

engthy and expensive. The solution to this problem could well come

rom the wealth of data which will emerge from IOT enabled BEVs,

owever care needs to be exercised with assessing it’s quality. Alter-

atively, other emerging ML techniques such as generative adversarial

etworks (GANs) could provide a route for generating synthetic data

ypes to augment real data. The potential of this approach was demon-

trated by Gayon-Lombardo et al. [61] who trained a GAN with battery

nd fuel cell microstructural data in order to create a generator capable

f creating new microstructures with statistically identical properties.

urthermore, this data gap could also be filled through the application

f surrogate models. For instance, Wang et al. [62] showed how a high

delity multi-physics model of a fuel cell could be used to train a ANN

nd SVM to mimic the model performance but with significantly reduced

omputational cost, opening the possibility for more accurate optimisa-

ion. 

Moving forward, combining new data types, with approaches such

s k-mean nearest neighbours, into the existing framework of ML based

pproaches for RUL estimation is promising with potential examples be-

ng the fusion of ICA and EIS data. However, further opportunities exist

n combining these with new sensor types such as pressure and acous-

ic measurements as well as processing existing data in different ways,

or example DRT analysis. Beyond RUL estimation, ML techniques have

lso been finding use for other purposes. Closed-loop optimisation, for

nstance, when combined with RUL estimations from these emerging

echniques could also pave the way for the accelerated development of

ew fast-charging algorithms, control approaches and thermal manage-

ent systems. ML approaches could also be used to improve the quality

f data types such as EIS, unlocking additional data processing function-

lities such as DRT. 

. Battery digital twins: the fusion of models, data and artificial 

ntelligence 

In many applications where an abundance of data is now becom-

ng available due to low-cost sensing and the increased deployment of

OT enabled devices, they have sought to create cyber-physical systems.

ere remote sensing of a physical device over its lifetime of use is com-

ined with cloud-based models which monitor and optimise their use

ithin a network of systems to create a virtual representation of the

hysical system. This was previously represented in Fig. 1 , with some

f the mirrored functionality highlighted. This approach has thus been

ermed a digital twin, but has also been referred to as a computational

ega-model, device shadow, mirrored system, avatar or synchronized
irtual prototype [63] , which has seen application in aerospace, prod-

ct design and increasingly in new fields [64 , 65] . The potential of this

pproach lays in the fact that there is a close interaction between the

hysical object, it’s digital equivalent and the aggregation of data from

gents operating in a diversity of conditions. Individually, these agents

ight not collect enough data to provide statistical significance for a

ata driven RUL model, however, when aggregated together this can

mprove the underpinning ML models which can then be fused with

lose-loop optimisers to update the vehicle control constantly. 

BEVs already have BMSs which log sensor data and do a degree of on-

oard processing. Within the digital twin framework, researchers have

lso been exploring using reduced order models and a degree of offline

rocessing to best utilise the powerful P2D framework [66] . In the ma-

ority of cases, however, BMS data is stored locally, though researchers

re starting to proposed cloud enabled systems to both minimise local

omputational needs but aggregate large data-sets for improving the

erformance of ML based algorithms [67] . 

Beyond just vehicle level data logging, researchers are also proposing

 whole-system approach of tracking key data from material synthesis

ll the way into vehicle applications. Yang et al. [68] for instance pro-

osed the cyber hierarchy and interactional network (CHAIN) frame-

ork which suggests uploading key physical and electrochemical pa-

ameters of a cell during manufacturing to a cloud-based server to per-

orm closed-loop optimisation for full lifetime management of battery

ystems. The structure of the CHAIN framework decomposes a complex

ystem into hierarchical interdependent layers with various functions.

his includes: 

• Multi-scale mapping: Seamlessly integrating digital models along the

different lifecycle and length-scale points to free researchers from

time-consuming experiments and achieve: increased resource effi-

ciency, shorter development times and enhanced flexibility. 
• Cyber-physical linking: Here, sensing data is wirelessly and seam-

lessly uploaded to servers, where they can be easily accessed to cre-

ate a series of desired models which can be quickly trained, provid-

ing guidance for manufacturing, product design and optimisation.

The real-time nature of this data-logging enables a rapid upgrading

of existing assets as well as rapid insight dissemination into future

products. 
• Multi-stage prognostics and health management: An end-to-end ap-

proach capturing states from materials, cell formation, automotive

use, 2nd life applications and ultimately closed-loop cycle back to

raw materials can be realized by applying a variety of estimation

methods from cloud based servers. Data from each stage of the cycle

can be uploaded and shared in the cloud servers for data analysis

to provide cross stage insights. For example, the impact on 1st life

on 2nd life performance as well as into the future of assessing the

quality of different recycled battery materials. 
• “End-Edge-Cloud ” multi-layer collaborative layout: The future smart

system will also be multi-scale in nature, with processing occurring

in on-board end applications, edge computing nodes and cloud com-

puting servers. Optimising data flows across this network and ensur-

ing proper data security will be emerging challenges as these types

of framework are implemented. 

As a multi-disciplinary physical system, battery digital twins play a

ransformative role in multi-scale design and intelligent management

ystem of battery systems. The proposed complex physical battery digi-

al system can be continuously updated using knowledge generated from

ata of both known and unknown physics. Furthermore, some key com-

uting and networking technologies for Cloud computing, such as virtu-

lisation and service-orientated architectures, will bring the promise of

etter digital twins and their impact on the energy area closer to reality.

Whilst the potential benefits of the improved traceability leading to-

ards more accurate performance modelling was highlighted, a number

f challenges were also noted. In addition to Yang et al. [68] , Rasheed

t al. [63] provided a perspective on some of the challenges for digi-
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Fig. 3. Evolution of approaches for battery modelling and the potential eco-system for battery digital twin data aggregation. 
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al twins. Collectively these include: the need for multi-physics models,

he need for nano/micro scale characterisation, low latency future com-

unication networks, the importance of effective data pre-processing

eading to computationally efficient algorithms and ultimately increased

ata security towards mass uptake of these approaches. 

Thus, over the years, battery control and lifetime estimation has

volved from a largely empirical approach, towards more model driven

echniques. With the advent of increased computational processing

ower, data driven and ML approaches have seen a resurgence, how-

ver challenges in true applicability in real world applications remain.

his progression is highlighted in Fig. 3 and alludes to a proposed com-

ined hybrid model/data approach that leverages real-time data collec-

ion from IOT enabled system towards a battery digital twin. 

. Conclusions 

Batteries will clearly be an essential technology in our low-carbon

uture, with key applications such as electric vehicles and grid scale

nergy storage. Maximising the lifetime and effective use of these de-

ices remains a major challenge. However, with the recent advances

n understanding battery performance/lifetime, the diversity of diag-

ostic techniques and the advent of ML approaches, there is clearly an

pportunity for more intelligent control of battery systems. These con-

rol systems have evolved from largely empirical relationships towards

oday’s physics based modelling approaches. However, whilst physics

ased models have many advantages, such as estimation of anode po-

entials for fast charging algorithms, challenges with their real-world

mplementation are becoming apparent. This includes the large number

f parameters in the model, many of which require disassembly of the

ell, and the inherent cell-to-cell variation which gets amplified as the

attery degrades. 

Diagnostic techniques have undoubtedly helped improve our current

nderstanding of how batteries perform, with many scientific works

everaging off a combination of spectroscopic, physical and electro-

hemical methods. However, for real-world and in-operando implemen-

ation of diagnostic techniques, the focus is shifting towards low-cost

n-board methods which currently leverage voltage, current and tem-
erature measurements. These can be analysed in a number of ways

o gain electrochemical insights into the system. Beyond these metrics,

merging data types such as stress and strain also have the potential to

ncrease the functionality of on-board diagnostics. This is in addition

o lowering the cost of techniques such as EIS and thus DRT analysis.

et, these developments need to be done with due consideration of well-

esigned data logging and curation to allow for the effective fusion of

ifferent data types. 

Therefore, with this wealth of data and uncertainty in predicting

eal-world performance of batteries, ML based approaches have received

enewed attention. Many of these approaches have shown significant

romise in terms of correlating key features in the charge/discharge

rofile of batteries with their capacity loss under well controlled lab

onditions. However, data generation remains a challenge in the more

ainstream adoption of these approaches. This has therefore motivated

he development of hybrid and surrogate models, which leverage off

he predictive powers of multi-physics and multi-scale models which

re traditionally very computationally expensive. The fusion of these

odels with ANNs therefore offers a route to faster model predictions

hich retain high order physics, thus enabling closed-loop optimisation

f key functionality such as fast charging algorithms. As this diversity

f diagnostics continues to mature, the fusion of these data types, with

pproaches such as k-mean nearest neighbours and SVMs, will likely

ncrease accuracy and open up new application areas. 

These 3 core elements of models, data and ML tools, therefore, pro-

ide the foundations of battery digital twins, where there is a close in-

eraction between the physical entity and its digital equivalent. Here,

he aggregation of multiple data sets, real-time monitoring of key states

nd the fusion of this with hybrid models therefore unlocks the potential

or longer life battery systems. However, with this new emerging field

omes multi-disciplinary challenges around the curation of the data,

ow its shared and the security of these systems. 

These increasingly digital and connected tools at the disposal of bat-

ery scientist and engineers are therefore a powerful enabler for the fu-

ure of battery systems opening new ways of operating. Whilst this per-

pectives paper presents some of the current thinking about elements of

his integrated digital landscape, much is still to be done, and the role of
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he battery community coming together will be essential. This is helped

y the various online efforts to build community, where platforms such

s online webinars, Twitter and Slack to share ideas and solve problems

re key enablers [69] . 

In summary, battery digital twins have a huge role to play in the

uture development of battery technologies in a diversity of applications,

et there are still significant challenges, and thus opportunities, to be

olved. Some of these are itemised below: 

• Wider use of standardised and transparent testing/data processing

procedures across academia and industry for parameterisation and

diagnostics. 
• Standardised and transferrable approaches for data storage and

database management. 
• Multi-scale physics models capturing nano-scale effects on macro-

scopic metrics towards the development of surrogate models to aid

with high fidelity digital data generation for training of ML models.
• The development of hybrid models, fusing physics and data driven

models towards real world implementation and increased accuracy.
• Combination of deeper electrochemical insights and new sensing ap-

proaches with data/hybrid model based approaches for lifetime es-

timation. 
• Efficient ML algorithms, data pre-processing and selective storage of

data for effective curation. 
• Low latency cyber-physical systems, enabling real-time adaptive

control. 
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