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Abstract
A new multi-fidelity modelling-based probabilistic optimisation framework for composite structures is presented in this 
paper. The multi-fidelity formulation developed herein significantly reduces the required computational time, allowing for 
more design variables to be considered early in the design stage. Multi-fidelity models are created by the use of finite ele-
ment models, surrogate models and response correction surfaces. The accuracy and computational efficiency of the proposed 
optimisation methodology are demonstrated in two engineering examples of composite structures: a reliability analysis, 
and a reliability-based design optimisation. In these two benchmark examples, each random design variable is assigned an 
expected level of uncertainty. Monte Carlo Simulation (MCS), the First-Order Reliability Method (FORM) and the Second-
Order Reliability Method (SORM) are used within the multi-fidelity framework to calculate the probability of failure. The 
reliability optimisation is a multi-objective problem that finds the optimal front, which provides both the maximum linear 
buckling load and minimum mass. The results show that multi-fidelity models provide high levels of accuracy while reduc-
ing computation time drastically.
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1  Introduction

The conventional design approach for composite structures 
may cause the structures to be overdesigned because this 
approach involves the use of conservative safety factors to 
prevent structural failure. However, every design parameter 
in engineering has an associated uncertainty. The considera-
tion of this uncertainty is significant during the design pro-
cess of composite structures because it allows engineers to 
design more reliable and economic composite structures [1]. 
The reliability analysis, which considers the uncertainty of 
each design variable, calculates the probability of failure of 
structures. Reliability-based design optimisation (RBDO), a 
probabilistic optimisation method involving reliability analy-
sis, has been applied in the field of engineering because it 
provides the best possible design through considering each 
design uncertainty in random design variables during the 
optimisation process.

Hassanien et al. [2] proposed a new methodology to ana-
lyse dented steel pipes which are used in the aerospace, oil 
and gas industries. The finite element method (FEM) and 
reliability analysis were used to conduct structural analyses 
and consider design uncertainties, respectively. This meth-
odology provided reasonable solutions and also proved to 
have a more economical computational cost. Morse et al. 
[3] performed the reliability analysis of a 2D rectangular 
plate with a hole under uniaxial tension using the boundary 
element method. The reliability indices, which represent the 
probability of success, were compared using different reli-
ability methods, such as Monte Carlo Simulation (MCS), 
the First-Order Reliability Method (FORM) and the Second-
Order Reliability Method (SORM). Sbaraglia [4] optimised 
a composite C-beam by RBDO which accounts for design 
uncertainties. Kriging was used to reduce the computation 
time during the optimisation process. MCS and FORM were 
used to calculate the probability of failure. Lopez et al. [5] 
applied RBDO and deterministic optimisation to a compos-
ite stiffened panel design. In particular, these optimisation 
methods found the stacking sequence of the composite panel 
to maximise the ultimate load in the post-buckling regime. 
The hybrid mean value algorithm to find the most probable 
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failure point (MPP) was used and this algorithm has differ-
ent approaches depending on the type of limit-state func-
tion. Based on the initial configuration from DO, RBDO 
was performed to obtain the orientation of layers that satisfy 
some target reliability. In Lee et al. [6], a cantilever beam 
and a composite fuselage were presented to validate a new 
reliability analysis approach, RBDO by moving probabil-
ity density function. This analysis method was suggested 
to decrease computational cost and provide higher accu-
racy than the advanced first-order second moment. In both 
case studies, the optimisation results between MCS and this 
RBDO approach were compared over the thickness of each 
layer. The computation time of this RBDO approach was 
much shorter than that of general RBDO.

In general, the probabilistic optimisation method con-
sidering design uncertainties is a computationally expen-
sive way to find optimal solutions. To overcome this high 
computational cost, surrogate models or metamodels have 
been investigated and applied to the area of structural opti-
misation. Wang et al. [7] introduced a surrogate model as 
an essential tool to conduct the optimisation. In particular, 
surrogate models have a significant role in Multi-Objective 
Optimisation (MOO) and Multidisciplinary Design Optimi-
sation (MDO) because surrogate models improve the com-
putational performance and it is useful for understanding 
the effects of design variables. The use of surrogate model-
ling has been expanded to large-scale problems and more 
flexible modelling approaches. Hassanien et al. [2] applied 
a surrogate model that is created by the Response Surface 
Method (RSM) to conduct the reliability analysis of dented 
pipes. RSM was used to reduce the computational cost of 
reliability analysis. FORM was performed to calculate the 
reliability index and the probability of failure. The results 
showed a good agreement with the results of MCS. Scarth 
et al. [8] generated a surrogate model using support vector 
machines to conduct RBDO. A support vector machine was 
combined with Gaussian process emulators to consider the 
discontinuities of aero-elastic flutter speed. The surrogate 
model generated by the support vector machine was deter-
mined to be highly accurate. Bacarreza et al. [9] used Radial 
Basis Functions (RBF), a type of artificial neural network 
(ANN), to create a surrogate model of a composite stiffened 
panel. The surrogate model was generated by a combination 
of input and output pairs from a FEM model so that the com-
bination of a simple function can approximate a multivari-
able function. Sampling methods contribute significantly to 
the performance of the final surrogate model. An increase 
in computational cost might be caused by an inappropriate 
sampling process. In Jin et al. [10], the sequential sampling 
method was introduced and adopted to RBF and the Kriging 
method to evaluate the benefit in comparison to the Optimal 
Latin Hypercube Sampling (OLHS) method. It was observed 
that the sequential sampling method had better performance 

than other sampling methods. Eason and Cremaschi [11] 
demonstrated new sampling methods for surrogate model-
ling using ANNs. These sampling methods are based on 
the sequential sampling method and developed to provide 
a more appropriate sampling point. Two proposed adaptive 
sequential sample generation methods generated the new 
sampling points far away from previous points and added 
new points to a more important region. Through numeri-
cal experiments, a smaller sampling size was required and 
the computational efficiency of the surrogate model was 
improved.

Although the use of surrogate models reduces computa-
tion time, composite structures have a number of design 
variables and require a high computational cost to simulate 
even one high-fidelity model. To address this problem, 
the concept of multi-fidelity models has been introduced 
in the area of structural optimisation. Multi-fidelity mod-
els, which are created by the use of High-Fidelity Mod-
els (HFMs) and Low-Fidelity Models (LFMs), provide 
results of similar accuracy to surrogate models only based 
on HFMs while also providing a noticeable reduction in 
computational cost. There have been research papers with 
respect to the use of multi-fidelity models. This concept 
has been improved and applied to structural optimisation. 
Vitali et al. [12] introduced the concept of multi-fidelity 
models through crack propagation in a composite struc-
ture. The concept is to use the ratio and the difference 
between the LFMs and the HFMs, which are called correc-
tion response surfaces. The combination of the correction 
response surfaces and the surrogate models creates the 
multi-fidelity models that provide an accurate solution as 
well as low computational cost. Alexandrov et al. [13] 
demonstrated the first-order approximation and model 
management optimisation to solve a computationally 
expensive optimisation problem. To address high compu-
tational cost caused by the repeated simulations of the 
HFMs, the HFMs and the LFMs are combined using the 
multiplicative correction function. This multiplicative cor-
rection function is constructed by Taylor-series approxi-
mation and it makes the LFMs follow the response of the 
HFMs. This shows dramatic computation time savings 
compared to the HFMs. In Zadeh et al. [14], a surrogate 
model was used to overcome the high computational cost 
and slow convergence rate of collaborative optimisation. 
When the multi-fidelity models are based on the HFMs, 
the calculation time rises dramatically with respect to the 
number of design variables whereas the multi-fidelity 
models based on the LFMs is less accurate. They presented 
the concept of a tuned low-fidelity simulation model where 
the tuned LFMs show similar accuracy to the HFMs. In 
Goldfeld et al. [15], the optimisation of buckling analysis 
for a laminated shell was conducted using multi-fidelity 
models using LFMs. Correction response surfaces which 
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are a ratio between the HFMs and the LFMs, are built by 
various polynomial functions to create the multi-fidelity 
models. Through this approximation, the LFMs were 
changed to a high-order polynomial response surface 
which shows better accuracy and computation time sav-
ings. The multi-fidelity models showed very similar results 
compared to the results of the HFMs. The multi-fidelity 
models have applied to the area of deterministic optimisa-
tion. However, its application in probabilistic optimisation 
of composite design has not been actively performed so 
far.

In addition, the idea of MOO has drawn attention as the 
optimisation problem becomes more complex and the num-
ber of objectives and design variables increases. The final 
optimal solution in MOO is decided by engineers through 
the concept of Pareto optimality. Marler and Arora [16] 
summarised MOO in the engineering industry with respect 
to concept, definition, theorem, articulation of preferences 
and genetic algorithm (GA). As a priori articulation of 
preferences, the weighted global criterion method and the 
weighted sum method were introduced, whereas the normal 
boundary intersection method and the normal constraint 
method were explained as a posteriori articulation of pref-
erences. The Design and Analysis of Computer Experiments 
(DACE) has also been introduced to apply surrogate mod-
elling to MDO. It is stated in a review by Simpson et al. 
[17] that response surfaces, kriging and ANN are used to 
generate surrogate models using a number of input–output 
datasets through DACE. Even though the research of DACE 
to generate surrogate models has increased, the application 
of surrogate models in MDO or structural optimisation has 
not been actively conducted so far. The challenges of DACE 
application in MDO are the computational complexity and 
the validation of the surrogate models. As stated by DeBlois 
et al. [18], the application of MDO is a challenge due to its 
computational cost. To overcome this challenge, the concept 
of multi-fidelity models and the simplification of optimisa-
tion strategies were considered. In particular, the multidisci-
plinary design feasibility and the collaborative optimisation 
were investigated and a hybrid formulation of two methods 
was proposed. The optimisation framework was operated by 
Insight, which provides a software to integrate design and 
simulations [19].

In this paper, a novel multi-fidelity formulation is devel-
oped for reliability analysis and optimisation of composite 
structures considering design uncertainties. This new frame-
work provides not only similar accuracy to the conventional 
high-fidelity modelling, but also offers considerable com-
putational time savings. The proposed multi-fidelity frame-
work is used to conduct the reliability analysis and RBDO 
of a mono-stringer stiffened composite panel for the first 
time. The accuracy and computational cost are evaluated 
and compared to the results of the conventional surrogate 

models using only HFMs. This comparison demonstrates the 
significant benefits of utilising a multi-fidelity framework in 
reliability analysis and optimisation of composite structures.

2 � Multi‑fidelity model

Multi-fidelity models are created by the combination of dif-
ferent fidelity models depending on the characteristics of the 
problem, and the aim of these models is to reduce the high 
computational cost whilst providing accurate solutions. In 
engineering design fields, there are two model types: HFMs 
and LFMs. The HFMs provide acceptable accuracy but these 
models are computationally expensive because they consist 
of all the information that an original model has. The LFMs 
are less expensive and less accurate compared to the HFMs. 
The primary aim of the multi-fidelity models is to provide 
solutions as accurate as those of the HFMs but with a lower 
computational cost. The main idea of multi-fidelity models 
is to create the surrogate models using correction methods 
that make the LFMs replace the HFMs [20]. In this study, 
the multiplicative and additive correction functions were 
used [12]. The estimated response of the HFMs using the 
multiplicative correction function can be expressed by

where ŷHF is the estimated response of the HFMs, �(x) is 
the ratio between the HFMs and the LFMs, x is independent 
design variables, yLF(x) is the response of the LFMs.

The estimated response of the HFMs using the additive 
correction function can be written by

where �(x) is the difference between the HFMs and the 
LFMs.

If even the LFMs are computationally expensive, yLF(x) 
can be also replaced by a form of surrogate model to reduce 
computational time further.

The multi-fidelity models depend on the quality of sur-
rogate models that are created by sampling points using the 
Design of Experiments (DOE). The sampling points estimate 
the variability of performance led by design parameters hav-
ing uncertainties [4, 11]. In OLHS considered in this work, 
the design space is divided by the uniform interval of prob-
ability and the sampling points in each interval are com-
bined randomly. Then, an optimisation process creates a new 
design matrix that evenly distributes the sampling points. 
In general, reliability analysis and optimisation considering 
design uncertainties require a large number of simulations 
that cause the computational cost to be very high. The sur-
rogate model, which has an explicit form between design vari-
ables and responses, has been suggested to reduce this high 

(1)ŷHF(x) = 𝛽(x) ⋅ yLF(x),

(2)ŷHF(x) = 𝛿(x) + yLF(x),
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computational cost. In this work, RBF which is a function type 
of ANN was used to produce the surrogate model [7, 17]. In 
particular, RBF network consists of the radial basis function as 
the activation function [21]. The basic concept of RBF is that 
functions which depend on the distance from a centre vector 
are radially symmetric [22]. Mathematically, the basic RBF 
model is expressed as

where N is the number of neurons in the hidden layer. h(x) 
and wn are hypothesis and the weight of neuron i , respec-
tively. x − xn is the radial distance between the input and 
centre point of neuron i , the norm is typically calculated by 
the Euclidean distance.

This ANN creates multi-fidelity surrogate models using 
each training dataset such as HFMs, LFMs and response 
correction functions. Each test dataset is also used to assess 
the multi-fidelity surrogate models to see whether the output 
data of these models show an acceptable level of confidence. 
These following multi-fidelity surrogate models are used for 
structural reliability analysis and optimisation process in this 
study

where ŷMF is the response of the generated multi-fidelity sur-
rogate models, �ANN(x) and �ANN(x) are the surrogate models 
of the response correction function, x is independent design 
variables, yANN

LF
(x) is the surrogate model of the LFMs.

3 � Multi‑fidelity structural reliability analysis

A reliability analysis evaluates whether a limit-state func-
tion exceeds the required constraints and calculates the prob-
ability of failure. The limit-state means a structure is not 
able to conduct its purpose in a relevant design criteria. If 
the probability of failure is larger than the specific value, 
the structure is not considered reliable [23]. In general, the 
limit-state function shows the safety margin between resist-
ance and structure loading. The limit-state function using 
the multi-fidelity modelling can be written as

where gMF(X) is the limit-state function using the multi-
fidelity models, Pf  is the probability of failure, X is a vector 
of all design variables under consideration, RMF and SMF 

(3)h(x) =

N∑

n=1

wn exp
(
−�||x − xn||2

)
,

(4)ŷMF(x) = 𝛽ANN(x) ⋅ yANN
LF

(x)

(5)ŷMF(x) = 𝛿ANN(x) + yANN
LF

(x),

(6)gMF(X) = RMF(X) − SMF(X)

(7)Pf ,MF = P
[
gMF(X) < 0

]
,

are the resistance and the loading of structure, respectively, 
which come from the multi-fidelity models.

If the value of gMF(X) is less than zero, the structure is in 
the failure region. Conversely, if the value of gMF(X) equals 
zero or is larger than zero, the structure is in the failure sur-
face or the safe region, respectively. Three numerical methods 
including MCS, FORM and SORM that calculate the prob-
ability of failure are considered using the multi-fidelity models 
in this work.

3.1 � Monte Carlo simulation

MCS is a simple random sampling method that is based on 
randomly created sampling points for design variables [24]. 
MCS consists of the generation of random variables and the 
statistical analysis of the outcomes. The basic process of MCS 
is extended to the reliability analysis. When N simulations are 
carried out, the probability of failure using the multi-fidelity 
models is calculated by

where Nf ,MF and Ntotal,MF are the number of failed simula-
tions and the total number of simulations conducted using 
the multi-fidelity models.

In this work, MCS using Sobol sampling was applied to 
conduct the reliability analysis. Sobol sampling, which is a sort 
of quasi-random sequence, provides more uniformly distrib-
uted sampling points than the simple random sampling. This 
sampling method aims to reduce the variance of statistical pre-
dictions for MCS. In particular, Sobol sampling provides more 
robust results than Latin Hypercube Sampling (LHS) [25].

3.2 � First‑order reliability method

The reliability analysis is used to calculate reliability indices 
that present the shortest distance from the origin point to the 
failure surface in the standard normal distribution. Hasofer and 
Lind improved the mean value first-order second-moment by 
suggesting the Hasofer and Lind (HL) transformation [23]. 
Through this transformation, the mean value point of the origi-
nal space ( X-space) is moved to the origin of normal space ( U
-space). The improvement of this HL iteration method is to 
change the expansion point from the mean value point to MPP. 
The first-order Taylor series expansion of gMF(U) at MPP U∗ 
using the multi-fidelity models is defined as

The shortest distance from the origin to the failure surface 
is defined as

(8)Pf,MCS,MF =
Nf ,MF

Ntotal,MF

,

(9)g̃MF(U) = gMF(U
∗) +

n∑

i=1

gMF(U
∗)

𝜕xi

(
ui − u∗

i

)
.
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This HL iteration is repeated until the estimate of reli-
ability index �MF using the multi-fidelity models converges 
to a certain tolerance criteria. When the limit-state function 
is normally distributed, the probability of failure using the 
multi-fidelity models is defined as

where �(⋅) is the standard normal cumulative distribution 
function.

3.3 � Second‑order reliability method

Generally, FORM provides acceptable results when the 
limit-state surface has only one shortest point and it is almost 
linear near the design point. If the failure surface shows high 
nonlinearity, the reliability index calculated by FORM may 
represent inaccurate outcomes. To overcome this problem, 
SORM uses the second order approximation to replace the 
failure surface of the original function. The second-order 
approximation of limit-state function gMF(U) = 0 is derived 
by the second-order Taylor series expansion at MPP using 
the multi-fidelity models:

where ∇2gMF(U
∗) is the Hessian matrix, which is the sym-

metric matrix of the second derivative of the limit-state 
function.

The Hessian matrix creates additional computational 
cost during the reliability analysis, however, it ensures that 
SORM provides more accurate reliability index in a nonlin-
ear limit-state function:

The �MF is the calculated reliability index from FORM 
using the multi-fidelity models and the ki indicates the 
curvature of response surface at MPP. In particular, if the 
finite difference method (FDM) for evaluating the gradient 
of the limit-state function is considered [26], the computa-
tional cost of FDM might affect the efficiency of reliability 
analysis. In this work, the Breitung formulation was used to 
calculate the probability of failure using the multi-fidelity 
models [23].

(10)�MF =
gMF(U

∗) −
∑n

i=1

gMF(U
∗)

�xi
�xiu

∗
i

�
∑n

i=1

�
gMF(U

∗)

�xi
�xi

�2

.

(11)Pf ,FORM,MF = 1 − �
(
�MF

)
= �

(
−�MF

)
,

(12)
g̃MF(U) = gMF(U

∗) + ∇gMF(U
∗)

T
(U − U∗)

+
1

2
(U − U∗)

T∇2gMF(U
∗)(U − U∗),

(13)Pf ,SORM,MF = �
(
−�MF

) n−1∏

j=1

(
1 + kj�MF

)−1∕2
.

4 � Methodology description

The conventional form of RBDO can be defined as

where, F is the objective function, gj is the deterministic 
constraint, Gi is the i probabilistic constraint, d and x are 
design variables and random variables, respectively. P[] is 
the probability operator and Pf  is the probability of failure.

A novel multi-fidelity modelling-based RBDO frame-
work which is developed in this work is shown in Fig. 1. 
The conventional RBDO methodology uses computationally 
intensive models or high-fidelity based surrogate models [4, 
5, 8, 27]. In this framework, multi-fidelity models are con-
structed using both HFM and LFM before RBDO process is 
carried out. The type of fidelity that defines the HFM and the 
LFM is an element size of the FEM model. DOE provides 
appropriate design sampling points to build the training and 
test datasets in given design space. ANN creates three surro-
gate models of LFMs and two response correction functions. 
These models should be evaluated by a proper error analysis 
to see if they provide an acceptable level of accuracy in this 
framework. Finally, the multi-fidelity models are created by 

(14)
minimise F(d)

subject to gj(d) ≤ 0 (j = 1,… , n)

P
[
Gi(d, x) ≤ 0

]
≤ Pf ,i (j = 1,… ,m),

Fig. 1   Multi-fidelity modelling-based reliability-based design optimi-
sation framework
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the combination of these surrogate models. Two types of 
multi-fidelity models are considered: direct type and indirect 
type [3]. The direct type calls the first buckling load directly 
from the low-fidelity FEM models when the multi-fidelity 
modelling is carried out. The indirect type uses the first 
buckling load from the surrogate models based on LFMs. 
The details of these multi-fidelity types are introduced in the 
next section. Once the multi-fidelity models are constructed, 
RBDO is conducted to find the optimal design variables that 
meet the required constraints and objectives. Results of this 
optimisation framework are evaluated in terms of accuracy 
and computation time savings compared to the results from 
the conventional RBDO process, which is made up of sur-
rogate models using a number of HFMs. This methodology 
is demonstrated by two numerical examples in the following 
section.

5 � Numerical examples

Two numerical examples were conducted with respect to the 
reliability analysis and RBDO for a mono-stringer stiffened 
composite panel. MCS, FORM and SORM using the multi-
fidelity models were used to conduct reliability analyses for 
both numerical examples. The multi-fidelity models were 
also generated to carry out reliability analysis and optimi-
sation. In these two numerical examples, it is demonstrated 
that multi-fidelity models for the probabilistic design of 
composite structures provide an acceptable level of accuracy 
and computation time savings.

5.1 � Numerical model description

The composite panel considered in this work is shown in 
Fig. 2 [27]. The geometry of this composite panel is par-
ametrised by X1, X2, X3 and X4 which are stringer foot 
length, stringer height, horizontal distance between top 
and foot, and stringer top length, respectively. The mate-
rial properties and dimension of this composite panel are 
described in Table 1. This panel is clamped at both the 
right-hand and left-hand ends, but the left-hand end is free 
to move in the loading direction (z-direction). The interac-
tion between the stiffener and the skin is not considered, so 
they are constrained by the tie condition. The composite 
panel was analysed in the linear buckling regime in order to 
obtain the maximum first buckling load [1]. In the example 
of the reliability analysis, linear buckling under eccentric 
load was considered, while linear buckling under centric 
load was considered in RBDO. In order to create the multi-
fidelity models, a HFM and a LFM are defined. The level of 
discretisation of FEM models was considered as a type of 
fidelity in this work. The FEM models consist of a 8-node 
quadrilateral continuum shell (SC8R) and these models are 

built using Abaqus/CAE (2019) [28]. The mesh convergence 
study was performed to define both the HFM and the LFM 
having different accuracy and computation time. As can be 
seen in Fig. 3, the mesh size was determined that the HFM 
and the LFM are 4.0 mm and 30.0 mm, respectively. The 
accuracy difference between the two models was 10% and 
the computation time using the LFM was 80% less than the 
HFM.

5.2 � Multi‑fidelity modelling‑based reliability 
analysis

The multi-fidelity reliability analysis using MCS, FORM 
and SORM was performed on the mono-stringer stiffened 
composite panel. The composite panel was loaded by an 
eccentric compressive axial load. Five random variables, 
four parameters defining the geometry and one load eccen-
tricity, were considered. The limit-state function, which is 

Fig. 2   Mono-stringer stiffened composite panel

Table 1   Material properties and dimensions

Parameters Value

Longitudinal modulus of elasticity E11 139.0 GPa
Transversal modulus of elasticity E22 = E33 8.1 GPa
Poisson’s ratio ν 0.33
Out-of-plane shear modulus G12 = G13 3.1 GPa
In-plane shear modulus G23 4.8 GPa
Skin and stringer thickness t 2.208 mm
Skin and stringer layup [45/− 45/0/0/90/0]s

Panel length L 600.0 mm
Panel width W 250.0 mm
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made up of five random variables and one constraint, can 
be written as

where Pcr,c is the minimum buckling load as a constraint, 
Pcr,e,MF is the first buckling load from the use of multi-fidel-
ity model.

The structure fails when gMF(X) < 0 . Each random vari-
able has a probability distribution having mean and standard 
deviation as seen in Table 2.

5.2.1 � Multi‑fidelity modelling

In this example, ANN is used to generate surrogate models 
based on the HFMs and the LFMs. To produce the multi-
fidelity models, the correction response surfaces of �(x) and 
�(x) were used that are the ratio and difference, respectively, 
between the HFMs and the LFMs. The design points to cre-
ate the surrogate models using ANN are obtained using 
OLHS. The sampling range was determined by the value 
of each random variable’s cumulative distribution function 
from 0.5 to 99.5%. The reason is that the sampling points are 
highly concentrated in the high probability region of each 
random variable and less concentrated in the low probability 
region. Once the sampling process is completed, the HFMs 
and the LFMs calculate the corresponding output values 
with respect to the input values. Then the training datasets 
to create the surrogate models are obtained. Using OLHS, 
the training dataset having 11 design points was sampled 
because it is the minimum number of sampling points for 

(15)gMF(X) = Pcr,c − Pcr,e,MF

(
X1,X2,X3,X4, �

)
,

ANN to generate two surrogate models of the HFMs and the 
LFMs, respectively. In order to evaluate the quality of the 
surrogate models, the test datasets of 30 design points were 
also sampled from each variable’s cumulative distribution 
function from the same sampling range. ANN created four 
surrogate models, which are the HFM, the LFM, the ratio 
and the difference between the HFMs and the LFMs. These 
models were validated by the separation method using the 
test dataset. The multi-fidelity models were created using 
these surrogate models and the low-fidelity FEM model as 
shown in Table 3.

The direct multi-fidelity models, MF1 and MF2 in Table 3, 
require expensive computation time to conduct the reliability 
analysis because they call the first buckling load from the low-
fidelity FEM models. It should be noted that the computation 
time of the low-fidelity FEM models is not insignificant. To 
provide more computation time savings, the surrogate mod-
els of MF1 and MF2 were also generated using the training 
dataset having forty points and the test dataset having twenty 
points from the same range of cumulative distribution func-
tion. The indirect multi-fidelity models, MF3 and MF4, were 
created without calling the low-fidelity FEM models.

5.2.2 � Results and discussion

In this section, the multi-fidelity models were applied to 
the reliability analysis of the composite panel with respect 
to the linear buckling under eccentric load. The reliability 
analysis was carried out using MCS, FORM and SORM. 
A minimum buckling load constraint of 20 kN was applied 
and it is drawn in the figures as a dashed line. If the buck-
ling load of each simulation is lower than this constraint, 
the composite panel is supposed to fail. Surrogate models 
using different number of the HFMs were also generated to 

Fig. 3   The HFM with 4 mm 
mesh size (left) and the LFM 
with 30 mm mesh size (right)

Table 2   Probability distribution of random variables

Parameter Probability 
distribution

Mean (mm) Standard 
deviation

Stringer foot (X1) Normal 43 0.215
Stringer height (X2) Normal 30 0.15
Distance between stringer 

top and stringer foot (X3)
Normal 15 0.075

Stringer top (X4) Normal 25 0.125
Eccentricity (ε) Normal 0 9.09

Table 3   Multi-fidelity models

Model Output approximation

MF1 YMF1(X) = �ANN(X) ⋅ YFEM

LF
(X)

MF2 YMF2(X) = �ANN(X) + Y
FEM

LF
(X)

MF3 YMF3(X) = �ANN(X) ⋅ YANN

LF
(X)

MF4 YMF4(X) = �ANN(X) + Y
ANN

LF
(X)
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see how accurate the multi-fidelity models are and to find 
the equivalent number of the HFMs that shows the similar 
level of accuracy to the multi-fidelity models.

The accuracy of the multi-fidelity models is evalu-
ated by the comparison of mean and standard deviation 
at the mean value point. As can be seen from Tables 4, 5 
and 6, the results of reliability analysis using the multi-
fidelity models are very close to the result of a HF100. 
The HF100, which is a surrogate model using 100 design 
points of the HFMs, showed the most accurate value. In 
addition, a HF11 is also a surrogate model that uses the 
minimum number of the HFMs for ANN. As the number 
of the HFMs to generate the surrogate model decreases, 
the surrogate models do not produce accurate solutions 
compared to the HF100. These mean and standard devia-
tion values are calculated by the outcomes of design points 
of MCS using Sobol sampling whereas FORM and SORM 
calculate these two values using output and gradient at 
the mean value point. In Table 4 and Fig. 4, the mean and 
standard deviation of the HF100 are 27.88 kN and 7.13, 
respectively. These values are used as the most accurate 
value to evaluate the accuracy of the multi-fidelity mod-
els. The difference of mean between the HF100 and the 
HF11 is 6.1% while the differences with respect to the 
direct multi-fidelity models, MF1 and MF2, are smaller at 
2.5%. However, the indirect multi-fidelity models, MF3 

and MF4, show similar differences to the HF11, which 
are 5.5% and 6.0%, respectively. The standard deviation of 
the HF100 using MCS is 7.13. The standard deviation of 
MF1 and MF2 at the mean value point are 6.72 and 6.05, 
respectively, whereas the MF3 and MF4 show the values 
of 6.40 and 6.51, respectively. In Figs. 5 and 6, it should 
be noted that the MF1 and MF2 show similar levels of 
accuracy to the HF100, although the standard deviation 
of MF2 is smaller. Tables 5 and 6 clearly show that the 
mean and standard deviation are identical between FORM 
and SORM since they use the same output and gradient at 

Table 4   Reliability analysis 
results using MCS

HF11 HF20 HF30 HF40 HF50 HF100 HF11 + LF11

MF1 MF2 MF3 MF4

Mean 29.57 29.20 29.56 27.99 27.97 27.88 28.58 28.58 29.41 29.55
Standard deviation 6.59 6.85 6.14 6.17 6.47 7.13 6.72 6.05 6.40 6.51
Reliability index 1.60 1.44 2.17 1.81 1.59 1.35 1.41 1.75 1.60 1.60
Error (%) 6.1 4.7 6.0 0.4 0.3 – 2.5 2.5 5.5 6.0

Table 5   Reliability analysis 
results using FORM

HF11 HF20 HF30 HF40 HF50 HF100 HF11 + LF11

MF1 MF2 MF3 MF4

Mean 29.54 29.04 29.44 26.47 26.36 26.48 27.31 27.46 29.30 29.52
Standard deviation 6.73 6.89 4.96 4.87 6.12 7.18 6.64 4.76 6.57 6.74
Reliability index 1.51 1.55 2.61 2.23 1.74 1.32 1.44 2.06 1.52 1.50
Error (%) 11.56 9.66 11.72 0.03 0.46 – 3.13 3.70 10.64 11.47

Table 6   Reliability analysis 
results using SORM

HF11 HF20 HF30 HF40 HF50 HF100 HF11 + LF11

MF1 MF2 MF3 MF4

Mean 29.54 29.04 29.44 26.47 26.36 26.48 27.31 27.46 29.30 29.52
Standard deviation 6.73 6.89 4.96 4.87 6.12 7.18 6.64 4.76 6.57 6.74
Reliability index 1.55 1.56 2.61 2.23 1.74 1.35 1.48 2.06 1.56 1.54
Error (%) 11.56 9.66 11.72 0.03 0.46 – 3.13 3.70 10.64 11.47

Fig. 4   Reliability analysis results using MCS
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the mean value point. The means of FORM and SORM at 
the mean value point are slightly smaller than the mean of 
MCS but the standard deviation is nearly the same with 
MCS. It is interesting to note that the difference error of 
the mean of the HF11 using FORM and SORM is over 
11% compared to the mean of the HF100. When the num-
ber of the HFMs used to generate the surrogate model is 
more than 40, the differences with regard to the HF100 are 
less than 1%. The MF1 and MF2 provided better accuracy 
than the MF3 and MF4. In particular, the standard devia-
tion of MF1 was more accurate than the HF50. It can be 
seen from Tables 4, 5 and 6 that the reliability indexes 
from SORM are closer to the MCS results than the FORM 
results. It suggests that SORM can provide a more accu-
rate solution in the domain of failure than FORM because 
SORM takes into account the curvature of the limit-state 
function using second-order derivatives. It is found that 
the reliability index of MF1 is much more accurate to the 
HF100 compared to even the HF50. Although the MF2 
provided the accurate mean, its reliability index is not cor-
rect because the standard deviation is smaller than other 
multi-fidelity models. The MF3 and MF4 show similar 
levels of reliability indexes to the HF11 and HF20.

In order to evaluate computational time savings, the 
computation time of each model was normalised by the 
computation time of the HF100 using MCS. The average 
FEM simulation time periods for the HFMs and the LFMs 
were 47 s and 10 s, respectively. The average computa-
tion time for one surrogate model was 0.0057 s and this 
computation time was calculated over 1,000,000 runs. 
The computation time of each reliability analysis using 
different models was calculated by the multiplication of 
the simulation number and the average computation time. 
The computation time savings are compared in Fig. 7. The 
MF1 and MF2 were constructed by both 11 design points 
of the HFMs and 51 design points of the LFMs while the 
MF3 and the MF4 were constructed by both 11 design 
points of the HFMs and 11 design points of the LFMs. 
It is interesting to note that there were notable computa-
tion time savings in the use of multi-fidelity models. In 
particular, the computation time of both the MF1 and the 
MF2, that presented highly accurate solutions, are about 
45% of the HF100 using MCS. The computational cost 
of these two models is also lower than the HF40 hav-
ing the equivalent accuracy. It is seen that FORM and 
SORM do not show the large difference in computation 
time compared to MCS because this problem converges 
to a small number of MCS. If the problem is more com-
plex or the reliability analysis is conducted using the only 
high-fidelity FEM models, the computation time savings 
through the use of multi-fidelity models will increase a lot 
more. This comparison clearly highlights that the multi-
fidelity model provides not only accurate solutions that 
are similar to the HFMs having a number of design points 
but also computation time that is a lot more economic 
than the HFMs.

Fig. 5   Reliability analysis results using FORM

Fig. 6   Reliability analysis results using SORM

Fig. 7   Computation time with respect to different multi-fidelity mod-
els
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5.3 � Multi‑fidelity modelling based reliability design 
optimisation

In this section, multi-objective probabilistic optimisation is 
carried out. It is demonstrated that the multi-fidelity models 
provide accurate solutions and high computation time sav-
ings compared to the surrogate model of the HFMs. Multi-
fidelity RBDO is conducted to validate the concept of multi-
fidelity models in a probabilistic optimisation process which 
considers a number of simulation and design uncertainties. 
The four geometric design variables of the same compos-
ite panel have their own uncertainty as shown in Table 2. 
NSGA-II which is a multi-objective evolutionary optimisa-
tion method is used.

5.3.1 � Problem definition

In general, RBDO includes reliability analysis in its optimi-
sation process and involves considering the uncertainties of 
four geometrical parameters of the composite panel. RBDO 
process ensures that the optimal design meets the require-
ment of a specific probabilistic constraint defined by a pre-
scribed reliability index � . In this example, random design 
variables are characterised by a normal distribution, a prob-
ability failure Pf ,MF is related to the prescribed reliability 
index �MF as Pf ,MF = �

(
−�MF

)
 . As mentioned before, there 

are three methods to calculate the reliability of structure 
such as MCS, FORM and SORM. In particular, MCS was 
conducted by the Sobol sampling method because the simple 
random sampling requires a number of simulations during 
the optimisation process. In Table 7, the number of MCS 
using the Sobol sampling is less than 20% of the simple 
random sampling, although the mean and standard deviation 
of the result are nearly identical to each other. To ensure the 
accuracy of FORM and SORM, the step size of FDM was set 
as 0.001 and the convergence tolerance was determined by 
0.0001. The constraints of this optimisation process are the 
maximum mass and the target probability of failure that are 
1.0 kg and 0.00135, respectively. The objectives are to max-
imise the first buckling load and to minimise the structural 

mass. Parameter studies using NSGA-II were carried out 
to set the population size and generation number and they 
were determined by 12 and 60, respectively. The details of 
the multi-fidelity models are described in the next section.

5.3.2 � Multi‑fidelity modelling

The minimum number of design points for ANN to gen-
erate the surrogate models was 10 because there are four 
geometric design variables. The multi-fidelity models were 
generated using 10 design points of the HFMs and 10 design 
points of the LFMs. The surrogate models using 100 design 
points of the HFMs were also generated to evaluate the qual-
ity of the multi-fidelity models. OLHS is employed to build 
the training and test datasets. In particular, total 300 design 
points, 100 for the training dataset and 200 for the test data-
set, were sampled to generate the surrogate models made by 
the HFMs. A total of 30 design points, 10 for the training 
dataset and 20 for the test dataset, were also sampled to 
generate two surrogate models of the HFMs and the LFMs, 
respectively. These training and test datasets also were used 
to generate the two correction factors, �(x) and �(x) , for the 
LFMs to provide a similar response to the HFMs. The design 
points for the training dataset were determined by the range 
from − 20 to + 20% with respect to the mean of each design 
variable. The design points for the test dataset were selected 
by the wider range from − 25 to + 25% in order to evalu-
ate the quality of the surrogate model. Through the training 
dataset from the sampling range, two direct multi-fidelity 
models and two indirect multi-fidelity models are generated 
as can be seen in Table 3.

Table  8 highlights that the two direct multi-fidelity 
models, MF1 and MF2, showed better quality than the two 
indirect multi-fidelity models, MF3 and MF4. A HF100 
which are made up of 100 design points of HFMs presented 
nearly the same response with the high-fidelity FEM mod-
els whereas a HF10 which consists of 10 design points of 
the HFMs showed large differences compared to the four 
multi-fidelity models. All models provided the correct mass 
because the response surface regarding the variation of mass 
is not challenging for the multi-fidelity models to capture 

Table 7   Sobol sampling vs Simple random sampling

MCS sobol sampling MCS 
random 
sampling

Simulation number 150 600
Probability of success 1.0000 0.9967
Mean 53.76 53.77
Standard deviation 0.28 0.28
Minimum 53.12 52.93
Maximum 54.45 54.58

Table 8   Multi-fidelity models validation

Model Fitness error of surrogate model

Buckling load Mass

MF1 0.0101 0.0009
MF2 0.0107 0.0009
MF3 0.0155 0.0034
MF4 0.0155 0.0034
HF10 0.0159 0.0029
HF100 0.0034 0.0006
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its whole design space. It is interesting to note that the MF1 
and the MF2 provided better results of buckling load and 
mass than the HF10 even though the computation time of 
these two models was slightly more expensive, because 
the extra LFMs were required to improve the quality of the 
multi-fidelity models. The use of this extra computation 
time caused by the LFMs is justified since the multi-fidelity 
models provide more accurate results than the HF10. If the 
number of the HFMs increases until the accuracy is similar 
to the multi-fidelity models, the computation time caused by 
this increase should be much higher than that of the multi-
fidelity models. It is seen that the errors of the indirect multi-
fidelity models were higher than the direct multi-fidelity 
models because these indirect multi-fidelity models use the 
surrogate models based on the design points from the LFMs. 
These four multi-fidelity models were validated to conduct 
the RBDO process as an alternative model to the HFMs.

5.3.3 � Results and discussion

In Figs. 8 and 9, the optimisation results of the multi-fidel-
ity models using FORM are compared to the results of the 
HFMs. The results using MCS and SORM are not presented 
in this paper because they are nearly the same as the FORM 
results. As can be seen in these figures, the Pareto Fronts 
show the optimal design results that are satisfied with the 
desired objectives and constraints. It should be noted that the 
slope of the Pareto Front line is changed when the structural 
mass is at around 0.94 kg. It means that the first buckling 
load increases gradually until the mass reaches 0.94 kg. 
However, when the mass is more than 0.94 kg, the buckling 
load does not raise as much as the increase in the structure 
mass. It is determined that the design geometries around 
the mass of 0.94 kg are the reasonable design values in the 
given design space.

Table 9 and Fig. 10 show the comparison of chosen 
geometries when the mass of the composite panel is 0.94 kg 
that the linear buckling load is the economically maximum 
value. The result of the HF100 is the most accurate value 
because this model consists of a number of the HFMs that 
provide the correct first buckling load. It is worth noting 
that the geometry values from the multi-fidelity models are 
nearly the same as HF100 results. The mean and standard 
deviation of the multi-fidelity models are also similar to 
those of the HFMs in the same mass. Figure 10 shows the 
probabilistic distribution of each multi-fidelity model. In 
Fig. 11, the chosen optimal geometric design from RBDO is 
highlighted to see that the final geometric design is changed 
to be more reliable than the initial design in terms of the 
probability of failure. The direct multi-fidelity models, MF1 
and MF2, have almost the same mean and standard devia-
tion. The probabilistic distributions of indirect multi-fidelity 
models, MF3 and MF4, have a slightly different mean of first 
buckling loads, although they have nearly the same stand-
ard deviation. Therefore, the accuracy of all multi-fidelity 
models was validated.

Computational time savings as well as accuracy are the 
main goals of this study. It is important to show how large a 
computational time saving can be achieved through the use 
of the multi-fidelity models. In order to be able to compare 
the computation time of each model reasonably, the simula-
tion number of each model during this optimisation process 
is compared. The average computation time of a HFM and a 
LFM using Abaqus/CAE [28] was calculated over 100 runs. 
This computation time was 47 s and 10 s, respectively. The 
computation time of a single surrogate model was measured 
by the total simulation time divided by the total simulation 
number that was used in the whole optimisation process. The 
total simulation time and the number of simulations using all 
surrogate models were 7036 s and 1,229,085, respectively. 
Then, the computation time of a single surrogate model was 
0.0057 s. The computation time of each optimisation was 

Fig. 8   Comparison to RBDO results using FORM (HFMs vs direct 
MFMs)

Fig. 9   Comparison to RBDO results using FORM (HFMs vs indirect 
MFMs)
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measured by the sum of the total simulation number that 
consists of the number of surrogate models and FEM models 
for the optimisation process and the multi-fidelity modelling, 
respectively. As can be seen in Fig. 12, all computation times 
are normalised by the computation time of the HF100 using 
MCS which is the most computationally expensive. This 
figure clearly shows that the multi-fidelity models require 
a lot less computation time than the HFMs. MCS is much 
more expensive compared with FORM and SORM. FORM 
is little cheaper than SORM because SORM requires more 

simulation for a second-order Taylor expansion at the failure 
domain. The direct multi-fidelity models, MF1 and MF2, 
are slightly more expensive than the indirect multi-fidelity 
models, MF3 and MF4, because the direct models call the 
low-fidelity FEM models when they generate the surrogate 
models. In particular, all multi-fidelity models show a simi-
lar level of the computation time to the LF100, which con-
sists of 100 low-fidelity FEM models. It should be noted that 
the computation time of the multi-fidelity models is reduced 
by at least 70% compared to the HF100. If the optimisation 
is conducted using the high-fidelity FEM models without the 
surrogate models, the multi-fidelity models will reduce the 
computation time by a lot more than 70%.

6 � Conclusion

In this work, a multi-fidelity formulation for reliabil-
ity analysis and optimisation of composite structures is 
presented for the first time. The accuracy and computa-
tional efficiency of this new framework are demonstrated 
by its application to reliability analysis and RBDO of a 
mono-stringer stiffened composite panel involving design 
uncertainties. The multi-fidelity models were generated 
by ANN that uses evenly distributed design points in the 
desired design space. The multi-fidelity reliability analyses 

Table 9   Initial and chosen 
geometry of composite panel

Model X1 X2 X3 X4 Mean STD Mass
[mm] [mm] [mm] [mm] [kN] [−] [kg]

Initial 43.0 30.0 15.0 25.0 53.76 – 0.90
HF100 51.6 24.3 18.0 30.0 73.86 0.40 0.94
MF1 51.6 24.5 18.0 30.0 72.87 0.36 0.94
MF2 51.5 24.4 18.0 30.0 72.83 0.36 0.94
MF3 51.6 24.5 18.0 30.0 73.45 0.39 0.94
MF4 51.6 24.6 18.0 30.0 72.67 0.36 0.94

Fig. 10   Reliability-based design optimisation results

Fig. 11   Mono-stringer stiffened 
panel geometry optimised for 
maximum linear buckling load 
based on 0.94 kg: a initial 
model [mm] and b RBDO 
model using MF1 [mm]
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considering design uncertainties were conducted using 
MCS, FORM and SORM that calculate the reliability of 
the structure under the given limit-state function. Two 
numerical examples demonstrated the performance of the 
multi-fidelity models: reliability analysis and RBDO. In 
the example of multi-fidelity reliability analysis, the direct 
multi-fidelity models provided a highly accurate solution, 
which is equivalent to the use of 40 high-fidelity FEM 
models. These multi-fidelity models provided computation 
time savings of over 50% compared to the conventional 
computationally expensive method using only HFMs. The 
concept of multi-fidelity modelling was also applied to 
the probabilistic multi-objective optimisation problem. 
The direct and indirect multi-fidelity models provided 
very close optimisation solutions to the results of the con-
ventional method. The computation time using MCS was 
decreased by at least 70%, and time savings were a lot 
larger when FORM and SORM were used in the optimi-
sation process. These results suggest that the new multi-
fidelity framework can be applied to reliability analysis 
and optimisation having design uncertainties. This frame-
work provides an acceptable level of accuracy and large 
computation time savings compared to the conventional 
method using only HFMs.
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