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VII. SUPPLEMENTAL MATERIAL

A. Wave-optics Forward Model

The discrete linear forward light-field imaging model [24]
can be formulated as

f = Hg (13)

where the vector f represents the light-field captured at the
sensor plane, the vector g is the discretized version of the
volume monitored by the microscope, and H is a measurement
matrix whose coefficients are largely determined by the sys-
tem’s impulse response function, a.k.a. point spread function
(PSF) of the light-field microscope.

The PSF denotes the generated pattern when an ideal point
source passes through an optical system. It characterizes the
features of the system. Different from the PSF of a conven-
tional optical microscope that is usually a airy pattern for 2D
imaging or a double-cone for 3-D imaging with translation-
invariance property [47], the PSF of a light-field microscope
has a more complex pattern which is translation-variant [24]
and carries considerable information about the 3D positions
of a point source in the volume and the physical property of
the medium. Specifically, the pattern behind the MLA changes
depending on the 3D positions of the point source. Thus, the
imaging processing cannot be modeled as a convolution of a
scene with a corresponding PSF, as is commonly done in the
case of conventional image formation models [48]. Instead,
the wavefront recorded at the sensor plane is described using
a more general linear superposition integral [24]

f(x) =

∫
|h(x,p)|2g(p)dp, (14)

where p ∈ R3 is the position in a volume containing isotropic
emitters whose combined intensities are distributed according
to g(p). When imaged, this volume gives rise to continuous 2D
intensity pattern f(x) at the image sensor plane. The optical
impulse response h(x,p) is a function of both the position p
in the volume being imaged as well as the position x ∈ R2

on the sensor plane. Some examples of such light-field PSF is
shown in Fig. 17. PSF provides the basis for our localization
and demixing algorithm.

Following [24], [47], a wave-optics forward model is de-
veloped to compute the PSF and illustrate light-field imaging
process for a point source. Given a point source located at
p = (p1, p2, p3), the Debye theory is utilized to calculate
the light-field at a point close to the point of convergence of
a wave. Specifically, the analytical model for the wavefront
at the native object plane generated by a point source at
p = (p1, p2, p3) can be written as:

Uo(x,p)

∝
∫ α

0

P (θ)Jo

(
v

sin(θ)
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−ju
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)
sin(θ) dθ

(15)

where, the auxiliary variables v, u represent normalized
radial and axial optical coordinates, defined as v =
k
√

(x1 − p1)2 + (x2 − p2)2 sinα and u = 4knp3 sin2(α/2),
respectively, where n denotes the refractive index of the
material, e.g. water or oil in which specimen is immersed. Jo
denotes the zero-th order Bessel function of the first kind; α =

(a) PSF at depth of 5 µm. (b) PSF at depth of 10 µm.

Figure 17. Simulated PSF for an ideal point source at different depths.

sin−1(NA/n) denotes the half-angle of the numerical aperture
NA; k = 2π/λ denotes the angular wavenumber; finally,
P (θ) denotes the apodization function of the microscope,
e.g., P (θ) =

√
cos(θ) for Abbe-sine corrected objectives.

Note that, this equation only holds for low to moderate NA
objectives.

Given Uo(x,p), the lightfield Ui(x,p) at the native image
plane of a 4-f system is formulated as the inverted and
stretched version of Uo(x,p):

Ui(x,p) = Uo(−x/M,p) (16)

where M denotes the magnification of the 4-f system.

Next, we model the wavefront passing through a MLA.
The MLA used in our experiment contains square-truncated
lenslets with squared aperture and a 100% fill factor. Consid-
ering a single lenslet centered on the optical axis with focal
length fML and pitch d, its transmittance φ(x) is defined as

φ(x) = P (x) exp

(
−jk

2fML
‖x‖22

)
(17)

where, P (x) denotes the pupil function, a.k.a amplitude mask,
representing the lenslet aperture, e.g. rect(x/d) for a square
lenslet, and the term with exp denotes the phase mask repre-
senting the refraction of light through the lenslet itself.

Accordingly the lens mask of a MLA Φ(x) can be described
as a convolution of 2D Dirac impulses, a.k.a. 2D Dirac comb
function comb(x/d), with φ(x):

Φ(x) = φ(x)� comb(x/d) . (18)

Finally, the light-field h(x,p) at the sensor plane is obtained
by multiplying Ui(x,p) by the lens mask Φ(x) and then
propagating the result from the MLA to the sensor plane using
the paraxial approximation:

h(x,p) = F−1{F{Ui(x,p)Φ(x)}G(x̂)} (19)

where, G(x̂) = exp(− i
4πλfML‖x̂‖22)) denotes the transfer

function for propagating Ui from the MLA plane to the
sensor plane using a Fresnel diffraction integral when the
Fresnel number of lenslets is between 1 and 10. x̂ are spatial
frequencies with coordinates in the Fourier domain along the
x1 and x2 directions in the sensor plane.
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B. Experimental Setup and Results

Experimental Setup.
The designed LFM system (shown in Fig. 7) is modified

from a fluorescence microscopy by inserting a MLA (pitch 125
µm, f/10, RPC Photonics) at the imaging plane of an objective
lens (25×, NA = 1.0, Olympus) and tube lens (180nm,
Thorlabs) with a CMOS sensor (ORCA Flash 4, Hamamatsu)
placed at its back focal plane. By the principles of light-field
imaging, each lenslet records the angular distribution of light
rays, therefore such design allows to capture both position and
direction of propagation of light rays with a single-shot in a
2D intensity image.

Specifically, since the resolving power of a multi-lens op-
tical system is governed by the smallest Numerical Aperture
(NA) among its lenses, we need to select the MLA with
an appropriate F-number to ensure that its NA matches with
the (imaging side) NA of the objective and thus it does not
limit resolution of the microscope. For example, given a water
immersion objective with magnification 25× and NA = 1.0,
its imaging side NA is 0.04 and thus the F-number of the
MLA should be smaller than 12.52. We select a MLA with
F-number f/10 to ensures that the micro images behind the
lenslets tile the image plane without overlapping or leaving
spaces in between them [23], [24].

As noted before, capturing 4D information of light rays
using a 2D sensor leads to a tradeoff between spatial resolution
(i.e. the number Nk×Nl of lenslets in the MLA) and angular
resolution (i.e. the number Ni × Nj of pixels behind each
lenslet) which is controlled by a few parameters. In particular,
the total resolution Ni×Nj×Nk×Nl of the LFM is limited by
the number of resolvable sample spots in the specimen [23].
Here, we adopt a commonly used metric Sparrow limit [49]
to measure the upper limit of the resolution. Sparrow limit
is defined as the smallest spacing between two points on the
specimen such that the intensity along a line connecting their
centers in the image barely shows a measurable dip. It is
expressed as a distance on the intermediate image plane:

Robj =
0.47λ

NA
M (20)

where λ is the wavelength of light. Since the MLA does not
change the number of resolvable spots, the angular and spatial
resolution upper limit can be derived according to the relation:

dNi ×Nje =
W ×H
Robj

(21)

where W ×H are the size of a lenslet and dNi×Nje are the
number of resolvable spots behind each lenslet, representing
the upper limit of the angular resolution.

Taking our system for example, under red light (650 nm), a
25×/1.0NA objective has Sparrow limit Robj = 7.64µm. The
MLA used in our LFM is composed of lenslets with square
aperture and the size of each lenslet W × H is equal to the
lenslet pitch d = 125µm. Accordingly, the upper limit of the
angular resolution is dNi×Nje = d/Robj×d/Robj ≈ 16.36×

2Numerical aperture can be converted to F-number (f/stop) using the
approximate formula F-number = 1/(2NA).

16.36. Our LFM system has a 4-f relay system with the focal
length fobj of the objective as 7.2 mm and the focal length ftl
of tube-lens as 180 mm, leading to a magnification factor M =
25×. Accordingly, the pixel size at the sample plane is d/M =
125µm/25 = 5µm, which is the upper limit of the spatial
resolution on the specimen. Furthermore, since the focal length
fML of the MLA is 1250 µm, the sampling angular range
for each lenslet is θ = 2 arctan(d/(2fML)) ≈ d/fML =
125µm/1250µm = 0.1 = 5.73◦, while the angular resolution
in degree is δθ = θ/Ni = 0.1/19.2 = 0.2986◦. So it can be
noted that microlens-based light-field imaging performs dense
sampling in the angular space.

Once the resolution upper limit is known, we can select
an appropriate sensor to satisfy the requirements. In our
system, the size of a single pixel in our selected CMOS
sensor (ORCA Flash 4, Hamamatsu) is 6.5 µm, leading to
Ni × Nj = d/6.5 × d/6.5 = 19.2 × 19.2 pixels behind
each lenslet. This is higher than the upper limit, therefore
the sensor satisfies the requirement and will not hamper the
resolving power of the system. In addition, the CMOS sensor
has 2048×2048 pixels, leading to a field of view (FOV) with
13.31mm × 13.31mm at the imaging side and equivalently
532.48µm× 532.48µm at the sample plane. Accordingly, the
spatial size of a sub-aperture image is Nk ×Nl = 106× 106
pixels.

Experimental Results.
We conducted additional experiments for the scattering case

involving multiple cells obtained from a genetically encoded
mouse and located at different depths away from the focal
plane, as shown in Fig. 18. Subfigure (a) and (b) show that
each raw 2D light-field image is converted into the standard 4D
format and then the pixels are re-arranged into a sub-aperture
image array. Subfigure (d) shows that the view changing
phenomenon can be observed in a sequence of sub-aperture
images. The constructed and reconstructed EPIs are shown
in subfigure (e). The rightmost subfigure reflects the relation
between the EPIs and the corresponding sub-aperture image at
the center view. Subfigure (f) and (g) compare the 3D localiza-
tion performance of Phase-Space [28], [30] and our approach.
The average RMSE using Phase-Space [28], [30] is 4.63 µm,
4.89 µm, 4.15 µm, for x, y and z positions, respectively. In
contrast, the average RMSE using our approach is 2.23 µm,
2.11 µm, 1.69 µm for x, y and z positions, respectively. This
set of experiments also verifies that our approach outperforms
the state-of-art method Phase-Space [28], [30] with better 3D
localization performance.

We also evaluated 3D localization performance after ran-
domly changing the horizontal and vertical positions. As
shown in Fig. 19 where the blue round points represent the
reference and the red triangle points represent the detection
results. For non-scattering case. The average RMSE of 3D
localization is 2.06 µm, 2.12 µm and 2.39 µm for x, y and z
positions, respectively. For scattering case. The average RMSE
of 3D localization is 1.73 µm, 2.00 µm, 1.71 µm for x, y and
z positions, respectively.
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(a) Raw LFM data for multiple neuronal cells at different depths.

(b) Sub-aperture image arrays for depth 0, 12, 24, 36 µm, respectively. (c) Foreground and Background at depth 36 µm

(d) The central column of the sub-aperture image array at depth 36 µm. View changes from down to up. Above: with background. Below: background is removed.

(e) Constructed EPIs in the i− k space EPIs in the i− k space reconstructed using our approach Refined sub-aperture image with EPIs

(f) 3D localization results using Phase-Space [28], [30]. From left to right: illustration in 3D axes and individual x, y, z axis.

(g) 3D localization results using our approach. From left to right: illustration in 3D axes and individual x, y, z axis.

Figure 18. Scattering case for multiple cells. (a) Raw LFM images of multiple neuronal cells (from a genetically encoded mouse) at different depths away
from the focal plane. (b) Sub-aperture image arrays for different depths. (c) The separated foreground and background of a sub-aperture image array via
SVD. (d) From a column of the sub-aperture image array, it is noticed that the positions of the bright area are shifting, which means the view direction is
changing vertically. (e) Left and middle: constructed and reconstructed EPIs. Right: Relation between EPIs and the sub-aperture image at the center view. (f)
3D localization performance in terms of RMSE using Phase-Space [28], [30]. The average RMSE is 4.63 µm, 4.89 µm, 4.15 µm, for x, y and z positions,
respectively. (g) 3D localization performance in terms of RMSE using our approach. The average RMSE is 2.23 µm, 2.11 µm, 1.69 µm for x, y and z
positions, respectively. Best seen by zooming on a computer screen.
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C. Additional Discussion

In this section, we provide additional discussion related to
our approach.

1) Differences from phase-space based methods [28]–[30]:
Epi-polar plane image is a way to reveal the structure of light-
field in an appropriate space. EPI turns out to be similar to
other concepts, such as phase space, spatial-angle space, etc.
which have been used in some work [28]–[30] to leverage
spatial and angular information simultaneously. However, we
also need to point out that EPI or phase-space are, in fact, just
two types of representations that can be used to manipulate
multi-view images and that there are alternative ways to use
these representations. We highlight that it is the proposed
paradigm of combing specialized EPI dictionary with convo-
lutional sparse coding that makes our localization approach
distinctive.

First and foremost, different from the phase-space based
method [28], [30], we capitalized on the shift-invariance
property of EPI via convolutional sparse coding, which consid-
erably reduces the dictionary size, computational complexity,
and improves the upper limit of localization resolution at
depth. Specifically, the shift of a point source in a transverse
dimension, e.g. along x or y coordinate, corresponds to the
shift of the epipolar line along the same coordinate in the
EPI. This shift-invariance property enables us to only consider
the depth range when synthesizing dictionary elements, as
transverse shift can be revealed by a convolution operation. It
also accounts for why convolution is an effective operation to
search for specific patterns and to perform pattern recognition.
In contrast, without exploiting the shift-invariance property, the
number of elements in a dictionary can increase dramatically
along with increasing transverse dimensions. We note that
[28], [30] did not exploit such shift-invariance property in their
forward model. Instead, they considered the spatial distribution
of sources and created a forward model for each point source
in the 3D space to describe the light-field. Therefore, the
dictionary size can be huge, and the computational complexity
can be prohibitively high.

For example, covering a 3D space of 1000×1000×1000µm3

with a resolution of 10µm will require to compute 106 forward
models, i.e. 106 atoms in a dictionary, without exploiting
the shift-invariance property. Therefore, the dictionary size is
huge, and the computational complexity is prohibitively high.
In contrast, if the shift-invariance property is used, only the
depth dimension, that is 100 different depths in the example,
need to be considered and only 100 atoms are required in a
dictionary. So for this example a 4D phase-space dictionary
may require 10000 times more memory than our dictionary.

Second, our dictionary elements are not point spread func-
tions (PSF) as in [28], [30]. Each dictionary atom in our
approach represents light-field from a ball-shaped volumetric
source with a reasonable radius at a specific depth. There-
fore, our dictionary elements are not point spread functions
(PSF) for ideal point sources without radius. This is another
significant difference from the model exploited in [28], [30].
Apparently, it is more practical and realistic to model ball-
shaped volumetric sources instead of ideal point sources when

the targets are neuron cells or fluorescent beads. A notable
benefit of using a more realistic dictionary model is that
it contributes to enhanced sparsity because fewer atoms are
required for faithful representation. This, in turn, leads to
better robustness and localization performance. As shown in
Fig. 20, given the same ball-shaped sources and under the
same sparsity regularization, convolutional sparse coding with
respect to our dictionary gives sparser and more structured
coefficients, as well as lower root mean squared error (RMSE)
than using a dictionary consisting of PSFs.

Third, in addition to wave-optical effects, our light-field
model also considers the effects of main lens and the microlens
array of the microscopy system along the whole light-field
propagation path, which ensures our model is more similar
to the real observations than the model in [28], [30]. As
mentioned before in Section V (Experiments), the main lens
together with the relevant 4F system ensures that the electro-
magnetic field is approximately band-limited in space. That
also results in non-uniform light distribution in the imaging
plane so that the light density is the largest in the central
region and becomes smaller for areas far away from the center.
This accounts for why epipolar lines in our EPIs tend to be
thicker in the central region and thinner at the two ends,
as shown in Fig. 21 (b) (or Fig. 6 in the manuscript), in
particular for out-of-focus sources, e.g. at a depth of 20 um.
This phenomenon also matches real light-field observations,
as shown in Figure 10 (d) and Figure 11 (e). In addition,
the blurring and downsampling effects from the microlens
array and associated pixels behind each lenslet are also
incorporated into our model. In contrast, Phase-Space [28],
[30] incorporates the wave-optical and geometric effects into
their model using a phase-space Wigner function (and its
Fourier spectrogram) so that the light propagation in space
can be easily represented by a simple shearing operation in
phase-space. [30] measures the Fourier spectrogram of Wigner
function by scanning an aperture to capture the local power
spectrum for each position, while collecting real-space images
at the same time. However, the effects of the main lens and the
microlens array were ignored. The fact that these effects were
not fully incorporated may account for why their phase-space
dictionary elements are straight lines with uniform shearing
everywhere, as shown in Fig. 21 (a). It can be noticed that the
simulated phase-space elements do not resemble real phase-
space observations, in particular at deeper positions where
the real observations exhibit an ’S’-shape due to distortion
and aberrations from the lenses. These mismatches between
the phase-space dictionary and real light-field observations
may cause localization errors. In contrast, our EPI dictionary
elements better resemble real observations. Such accuracy
contributes to our better 3D localization performance, as it
produces better convolutional sparse coding performance and
algorithm robustness.

Fourth, the purpose of our dictionary is different from [28].
The dictionary in [28] consists of a set of footprints, each
corresponding to a light-field image with only one cell in it,
referred to as a light-field signature. The sparse coding with
respect to the dictionary gives coefficients which correspond
to the magnitude of the functional data, i.e. calcium transients.
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(a) 3D position detection (b) Horizontal position detection (c) Vertical position detection (d) Depth position detection

(e) 3D position detection (f) Horizontal position detection (g) Vertical position detection (h) Depth position detection

Figure 19. 3D localization results after randomly changing the horizontal and vertical positions. The blue round points represent the reference and the red
triangle points represent the detection results. (a)-(d): for non-scattering case. The average RMSE of 3D localization is 2.06 µm, 2.12 µm and 2.39 µm for
x, y and z positions, respectively. (e)-(h): for scattering case. The average RMSE of 3D localization is 1.73 µm, 2.00 µm, 1.71 µm for x, y and z positions,
respectively.

(a) Dictionary for ideal point sources (b) Dictionary for ball-shaped sources

(c) RMSE of sparse representation

Figure 20. Impact of dictionary modelling. (1) CSC results using a PSF
dictionary which models ideal point sources. Blue represents CSC coefficients.
Red represents selected coefficients via clustering. (2) CSC results using our
more realistic dictionary which models ball-shaped sources. Our dictionary
model gives sparser, cleaner and more structured coefficients. (3) CSC with
respect to our dictionary model leads to more accurate sparse representation
with smaller RMSE (red curve) than using the PSF dictionary (blue curve).

Note that the footprint dictionary in [28] is constructed from
real data. If the tissue sample is changed, a new dictionary
needs to be constructed. In contrast, the dictionary in our
paper is composed of a set of EPIs, each corresponding to
a specific depth. The convolutional sparse coding with respect
to the dictionary gives coefficients which correspond to the 3D
positions. Specifically, the identified EPI atoms directly give
the depths. The construction of our dictionary does not require
real data. It does not need to be changed thereafter when
applied to other tissue samples of the same type. Moreover,
comparing with [28], [30], we do not need to incorporate light
scattering in the dictionary, since we introduce a purification
operation based on matrix factorization to mitigate the blurring

(a) Synthesized light-field in phase-space using the method [28], [30].

(b) Synthesized light-field in image space and EPI space using our approach.

Figure 21. Comparing light-fields synthesized using the method [28], [30]
and our method.

due to scattering.
2) Optical Aberration: Optical aberration has been con-

sidered in the design of the microscopy system, in the
mathematical modelling, and in experiment implementation.
During the design of LFM system, we have tried to correct
optical aberrations in order to create an optimal system. In
particular, we used achromatic lenses which are designed for
a range of wavelengths to limit the effects of chromatic and
spherical aberration. In addition, we also tried to minimise
monochromatic aberrations by aligning the microscope with
the wavelength emitted from the fluorophore. Such calibrations
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(a) light-field arriving at the front of the microlens array. Left: absolute value; Middle:
real component; Right: imaginary component.

(b) light-field just passing though the microlens array. Left: absolute value; Middle:
real component; Right: imaginary component.

(c) light-field arriving at the sensor plane. Left: absolute value; Middle: real
component; Right: imaginary component.

Figure 22. Simulating light-field along the whole path of propagation for a
point source located at depth of 10 µm. (a) shows the light-field that has passed
through the main lens and 4f-system, arrives at the front of the microlens
array. (b) shows the light-field just passing through the microlens array. (c)
shows the light-field arriving at the sensor plane. The white grid represents
the profile of the microlens array.

made acquired light-field image clear and sharp.
Furthermore, during modelling, instead of exploiting ray

optics, we leveraged wave-optics [24] to simulate light-field
along the whole path of propagation. This also takes aberra-
tions caused by the wave nature of light into consideration
and helps to ensure the faithfulness of our model to the real
observations. We note in Fig. 22 the airy disk diffraction
patterns caused by circular aperture of main lens and they
contain typical aberrations of a diffraction-limited systems
such as defocus aberrations.

Finally, in the localization experiment, we adopt matrix-
factorization based post-processing operation, convolutional
sparse coding and clustering techniques to enhance the ro-
bustness of our approach to aberrations, scattering and other
latent interference.

However, we also need to point out that an optical system
may involve various aberrations, such as coma, astigmatism,
field curvature, etc. To fully incorporate their effects, it re-
quires to model these aberrations explicitly, for example, by
adding an appropriate Zernike polynomial to the wavefront in
k-space. Such sophisticated modelling would make the model
over complicated and this may impact the efficiency of our
approach. Given that our current model has already provided
satisfactory performance, we prefer to leave such research to
our future work.

3) Scattering: Even though the amount of scattering can
be estimated and incorporated into the forward model during
the dictionary construction, it still hamper the localization
performance. This fact has also been noted in other works [28],
[30]. It is noticed that the scattering from the tissue sample
is nearly homogeneous across the entire image region and
exhibits similar pattern at various neutral structures. Therefore,
it acts as an impediment to localization of neurons, rather
than facilitating the task. That accounts for why we resort
to alternative ways to mitigate the impact of scattering.

In particular, it is observed that tissue scattering follows a
specific distribution, similar to perlin noise, which provides
different patterns from the neurons. By capitalizing on the
redundant information contained in a set of multi-view images,
such specific patterns can be effectively separated using matrix
factorization techniques. The validity of this method has also
been verified in our experiments. It shows that the scattering
can be effectively distinguished and then subtracted from the
target objectives in the foreground. Accordingly, neurons are
revealed more clearly in the purified multi-view images. Even
though it may not be possible to eliminate the scattering
completely, the impact of the remaining scattering is marginal
due to algorithm’s robustness induced by sparsity.

Even though the proposed purification method empirically
works well, it also has a risk of failure, for example, excluding
a deep source if it is completely covered by the scattering.
Since all the structures have been submerged, performing
localization in such a circumstance is highly challenging for
other methods as well. The proposed purification operation can
be successfully applied to a depth range of [−40, 40]µm ac-
cording to our experiments with brain samples of a genetically
encoded mouse.

4) Sample Density: For the non-scattering case, the sample
density at the x-y transverse plane is subject to transverse
resolution. In particular, the resolution limit at the sample
plane is derived using the lenslet pitch and magnification
factor, i.e. d/M = 125µm/25 = 5µm, where d is the lenslet
pitch and M = 25× is the magnification factor. Therefore,
the transverse resolution is 5 µm, which suggests that two
adjacent ideal point sources whose distance is less than 5 µm
can not be distinguished, as their epipolar lines admit the same
intercept with angular axis i and j. Furthermore, considering
the diameter, i.e. 10 µm, of ball-shaped volumetric sources,
the resolvable separation distance in x-y plane reduces to 15
µm. The sample density in the depth axis is subject to the
radius of ball-shaped sources and the granularity of the EPI
dictionary. If the granularity of the EPI dictionary is poor, for
example, two adjacent EPI atoms representing 50 µm depth
separation, two sources with the depth separation smaller than
that value cannot be successfully distinguished. Given an EPI
dictionary with sufficiently fine granularity, our experiment
demonstrates that the minimum depth separation that still
allows successful localization of two adjacent overlapping
ball-shaped sources is equal to the source diameter, that is, 10
µm in our case. A depth separation smaller than this results
in degraded epipolar lines with large overlap, and this makes
it challenging to separate two sources, as shown in Fig. 23.
For scattering cases, the resolution may become worse due to
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(a) Light-field of two overlapping ball-shaped sources. From left to right: depth
separation is 30 µm, 20 µm and 10 µm.

(b) Constructed EPIs in i− k space from above light-field. (EPIs in j − l space is
identical to these due to overlapping.)

(c) Blue denotes convolutional sparse coding coefficients derived from above EPIs.
Red denotes the detected centroids using clustering techniques.

(c) Localization results using above constructed EPI.

(c) Localization error with respect to different depth separations.

Figure 23. Impact of sample density, in particular, depth separation between
two overlapping ball-shaped sources. Two overlapping sources with depth
separation less than 10 µm may not be successfully distinguished as their
epipolar lines are almost identical. Best seen by zooming on a computer
screen.

the blurring introduced by light scattering. However, owing
to the proposed purification operation, the blurring can be
mitigated considerably. We empirically found that the impact
of scattering is marginal. Therefore, we conjecture that the
sample density does not deviate too much from the non-
scattering case.

5) Localization Range: Theoretically, the resolvable depth
range depends on the depth of field which is the ability
to distinguish features at different depths by refocusing the
microscope. It is closely related to angular resolution. We
adopt the method proposed in [23] to derive the angular
resolution and depth of field. As mentioned in the introduction,
microlens-based light-field microscopy has a trade-off between
spatial and angular resolution. In a light-field microscopy, the
total resolution Ni ×Nj ×Nk ×Nl is limited by the number

Figure 24. Localization performance with respect to depth range. Depth
range is from 0 µm to 120 µm.

of resolvable sample spots in the specimen. A commonly used
measure of this resolution is the Sparrow limit [49], which is
defined as Robj = 0.47λ

NA M where λ is the wavelength of the
light, NA is the Numerical Aperture, and M is the magnifica-
tion factor. Our LFM system leads to a sparrow limit Robj =
0.47λ
NA M = 0.47∗0.65∗25/1.0 = 7.64µm at the imaging side.

Given the lenslet pitch d = 125µm, the angular resolution is
Ni = Nj = d×/Robj = 125/7.64 = 16.36. The depth of field
is DOF =

(2+N2
i )λn

2NA2 = (2+16.362)∗0.65∗1
2∗1.02 = 87.64µm , where

n denotes the refractive index of the material. This implies
that if two point sources are separated by a distance grater
than DOF along the depth axis, they cannot be simultaneously
localized. In practice, the resolvable depth range also depends
on the intensity contrast between the image of cells in the
foreground and the blurring in the background resulting from
the tissue scattering. Such contrast leads to a proportional
intensity contrast between epipolar lines and background in
an EPI. Deeper sources tend to produce weaker intensity
contrast, and this makes it more challenging to distinguish
the epipolar lines from blurred background. According to our
simulation, for the case of a single source without scattering,
the proposed localization algorithm performs well at depths
up to 120 µm, as shown in Fig. 24. Since our approach is
based on convolution, the estimation of the x-y coordinates is
not affected by depth and transverse dimensions.

6) Impact of Radius Mismatch: To investigate the impact of
radius of ball-shaped sources on localization performance, we
vary the radius of ball-shaped volumetric sources while fixing
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(a) Averaged lateral (x and y) and depth localization performance with respect to
radius. The ground truth radius of source varies from 1 µm to 13 µm while the

predefined radius used for synthesizing the dictionary is 5 µm. That is, the mismatch
ranges from -4 µm to 8 µm.

(b) Constructed EPIs from light-field of sources with radius of 1, 5, 9 µm, respectively.

(c) Blue denotes convolutional sparse coding coefficients derived from above EPIs.
Red denotes the detected centroids using clustering techniques.

Figure 25. Impact of radius mismatch on localizing a single ball-shaped
source. In general, if the ground truth radius r is smaller than the predefined
radius r∗ used for synthesizing the dictionary, i.e r < r∗, the impact is
minor. When the ground truth is larger than the predefined one, i.e. r > r∗,
along with the increase of the mismatch, the localization performance tends
to degrade and introduce larger deviation. On the other hand, our approach
demonstrates satisfactory robustness at a reasonable mismatch range r−r∗ ∈
(−5, 5) µm. Best seen by zooming on a computer screen.

the predefined radius used for synthesizing the dictionary.
Fig. 25 shows the impact of radius mismatch on localizing

a single ball-shaped source. The ground truth radius r varies
from 1 µm to 13 µm with a step of 2 µm and the predefined
radius r∗ used to synthesize the EPI dictionary is kept at 5
µm. Therefore, the mismatch between the estimated radius and
the ground truth ranges from -4 µm to 8 µm. In general, if
the ground truth radius r is smaller than the predefined radius
r∗, the impact is minor. When the ground truth is larger than
the predefined one, i.e. r > r∗, along with the increase of
the mismatch r − r∗, the localization performance degrades.
However, our approach demonstrates satisfactory robustness at
a reasonable mismatch range r−r∗ ∈ (−5, 5) µm. This is due
to the fact that within a certain mismatch range, the coefficients
found by convolutional sparse coding are still sparse and
structured, as shown in Fig. 25 (c). Therefore, the sparsity prior
and clustering technique exploited in our algorithm enable us
to find a good approximation from the dictionary. Once the
mismatch is over a limit, the coefficients are not sparse enough
any more and this leads to more significant deviation.

To summarize, the impact of radius mismatch is not signifi-
cant within a certain range due to the algorithm robustness in-
duced by the sparsity prior and clustering technique exploited
in the proposed approach.


