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Abstract
Vacancies in iron are hydrogen traps, important in the understanding of hydrogen embrittlement

of steel. We present a grand canonical approach to computing the trap occupancy as a function

of both temperature and hydrogen concentration from practically zero to super-saturation. Our

method couples a purpose-made machine-learned H-Fe potential, which enables rapid sampling with

near density functional theory accuracy, with a statistical mechanical calculation of the trap occu-

pancy using the technique of nested sampling. In contrast to the conventional assumption (based

on Oriani theory) that at industrially relevant hydrogen concentrations and ambient conditions

vacancy traps are are fully occupied, we find that vacancy traps are less than fully occupied under

these conditions, necessitating a reevaluation of how we think about “mobile hydrogen” in iron and

steel.

I. INTRODUCTION

The propensity of hydrogen to embrittle steels is an important practical problem, mo-

tivating physicists, electro-chemists and corrosion engineers to understand the absorption,

trapping and diffusion of hydrogen, its devastating effect on ductility, and how it can be

controlled. Although a number of mechanisms for embrittlement have been put forward,

their relative importance is still a matter of ongoing research and debate [1–5]. Whatever

the particular mechanism of embrittlement, hydrogen traps, including precipitates, dislo-

cations and vacancies, may play a protective role by sequestering the hydrogen [6]. The

possibility of this has recently been observed by atomic probe microscopy of deuterium in

carbide particles [7]. Static calculations have strongly suggested that a single vacancy in

α-Fe can trap up to 6 H atoms [8–10], although the marginal trapping energy of the 6th is

very small. The maximum number was challenged by Sugimoto and Fukai [11], who con-

cluded from their Monte-Carlo simulations that it should be 5, a conclusion supported by

an earlier DFT calculation by Tateyama and Ohno [12]. The lowering of vacancy formation

energy by hydrogen trapping is the origin of the superabundant vacancy effect discovered by

Fukai and Ōkuma [13]. Trapping by vacancies and the superabundant vacancy effect have

been investigated by many authors since, for a wide range of metals [14–22]. This formation

energy lowering was described by Kirchhheim [15, 16] as a ‘defactant’ effect, by analogy with

Gibbs’ original theory of surfactants. The defactant effect is a step in at least one of the
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proposed embrittlement mechanisms, sometimes referred to as Hydrogen Enhanced Stress

Induced Vacancy Formation (HESIV) [1, 23]. We know that the solubility of hydrogen in

iron is very low [24], but that under operating conditions it only requires less than one ppm

dissolved in the crystalline matrix of a steel to cause embrittlement. In the present paper

we are addressing the question of how many hydrogens would be sequestered in a vacancy

under realistic conditions. The point here is not whether the maximum number at low tem-

perature is 5 or 6, but how the mean number trapped varies with temperature and the bulk

concentration or, equivalently, chemical potential.

A simple “lattice model” was proposed by Oriani [25], which represents the bcc Fe by

discrete tetrahedral interstitial sites and the vacancy by six trap sites, corresponding to the

static equilibrium locations of the H, which in the vacancy are close to sites that in the

perfect crystal are octahedral. The average occupancy of a vacancy can then be expressed

as

〈nv〉 =
6 y e−β∆E

1 + y e−β∆E
, (1)

where y is the fractional lattice concentration, β = 1/(kBT ), and ∆E is the binding energy of

the vacancy trap relative to a lattice site. More sophisticated lattice models, which include

the distinct configurations of multiple hydrogens within a vacancy and the interactions

between them have been developed, a good example for our specific case of bcc Fe is the

work of Tateyama and Ohno [12]. In the case of Ni, the vibrational contribution to the free

energy of the atomic nuclei has been included within a quasiharmonic approximation [21]

but the major limitation of a lattice model remains, namely that the H atoms are confined

to discrete sites. To the best of our knowledge, the only model that also included the full

contribution to the free energy from off-lattice movement of the hydrogen is that of Tanguy

and Mareschal [14], and Tanguy et al. [26], for Al and Ni respectively. For Al, they employed

an Off-Lattice Monte-Carlo (OLMC) approach, with an EAM model of the Al-H interaction

to evaluate the superabundant vacancy effect. For Ni they also made detailed calculations

with DFT for H clusters in vacancies, where H was located on the various high-symmetry

sites, but used OLMC and and an EAM potential to estimate the off-lattice contribution.

For the case of interest here, the weak binding energy (< 0.1 eV) [27, 28] to the lowest

energy, tetrahedral sites in Fe suggests that in reality H moves smoothly and swiftly in a

continuous landscape of potential, even at room temperature, implying that its total entropy

in the bulk will be significantly greater than the configurational entropy captured by the
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lattice model. For the same reason its entropy when trapped in a vacancy will also be

greater, so the net effect of the lattice approximation on trap occupancy is unclear. How to

calculate the hydrogen occupancy of a trap using a simple yet accurate approach beyond

the lattice model is the challenge that we address here.

Density functional theory [29, 30] is the most popular first-principles method for comput-

ing the energies and energy barriers, due to its good compromise between computational

cost and accuracy. However, for sampling configurational phase space including a vacancy,

it is too computationally demanding. Empirical interatomic potentials are much faster, but

their accuracy and transferability are always questionable. A possible solution to this prob-

lem is to create a moderately large dataset of DFT calculations on configurations strictly

relevant to the problem at hand, and then fit a potential with a very flexible functional

form, which can reliably predict the energetics of the H-Fe system including a vacancy,

but without necessarily being transferable to very different configurations, such as surfaces.

Recently various neural network, Gaussian process regression and similar approaches have

been applied to create such potentials [31–34]. Here we demonstrate the first Gaussian

Approximation Potential (GAP) for the H – α-Fe interaction.

The statistical mechanical solution to the problem of trap occupancy can be formulated

in terms of a grand canonical ensemble and a partition function, the calculation of which

requires sampling the potential energy surface, weighted by a Boltzmann factor. For our

scenarios in which the bulk concentration is very low, we can conveniently express the result

in terms of readily-evaluated canonical partition functions, as we show below.

A number of methods have become widely used to enable the efficient sampling of po-

tential energy surfaces, including metadynamics [35], Wang-Landau sampling [36], parallel

tempering [37, 38] and nested sampling [39, 40]. We have chosen the latter approach, because

it allows the direct calculation of the partition function itself, which is essential to allow ac-

cess to the regime of very low H concentrations. The problem with low H concentrations

arises due to the supercell approximation (a small periodically repeating block of unit cell of

crystal containing a single vacancy). The very low probability of finding a H atom anywhere

within a supercell which allows accurate DFT-quality calculations is very low, leading to

very poor sampling of the relative probability of the H being trapped or not. But we can
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turn the low H concentration to our advantage, by sampling separately the configuration

space of a single H atom within a relatively small supercell of perfect crystal, which enables

us to calculate the chemical potential of an arbitrarily dilute, ideal solution of H in Fe. This

chemical potential is then used as the formal boundary condition for the grand canonical

sampling of H trapped by the vacancy, which is thus insensitive to the definition of the

supercell that contains the vacancy. Since our approach considers both the full phase space

of the bulk and vacancy regions of the system and includes H-H interactions, we obtain far

more realistic results than the lattice model, and can comment on the effects of the approxi-

mations made in the Oriani approach. This new combination of a machine-learned potential

with nested sampling and the grand canonical ensemble should be useful for analysing other

trapping problems.

II. MODELS FOR CALCULATING ENERGIES AND FORCES

We model the system using a 54-atom cubic supercell (3 × 3 × 3 body-centred unit

cells), with periodic boundary conditions. It is well known that in bulk Fe, the four-fold

coordinated tetrahedral sites are the preferred sites for interstitial H-atoms [27, 28], and

we have confirmed this, noting however, that they are very shallow traps, separated by

a barrier of only about 88 meV. Figure 1 shows the potential energy surface of H in the

presence of a Fe vacancy, with six equivalent trap positions, close to the location of the cube

face-centers of the body-centred unit cell (octahedral sites). In all the calculations in this

work, the positions of the Fe atoms are fixed after an initial DFT relaxation of the vacancy,

and so there is no need to model the Fe subsystem, only its interaction with H. We now

give a brief overview of the Gaussian Approximation Potential methodology that we use. A

more extensive discussion is found in papers reporting recent applications [32, 41–46] and a

review [47]. The key idea is to posit interatomic functional forms that are highly flexible due

to a large number of parameters (universal, in the limit), but avoid overfitting because the

least squares problem that we solve to obtain the parameters is highly regularised, resulting

in smooth potential functions. This still leaves a lot of freedom for designing potentials,

in particular in the choice of representation of the atomic geometry. We find that the

customary decomposition of the total energy into two-body, three-body, etc. terms is very

helpful. The two-body functions are parameterized by the interatomic distance, whereas
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FIG. 1. Representation of 53-atom (3×3×3) supercell with a vacancy at the centre. The potential

energy for a single H-atom in the cell is represented by the heat maps on the cross sections. The

six trap sites correspond to the dark-blue regions.

the three-body terms are described by a symmetrized combination of the three distances.

For the basis functions, we choose Gaussians, because they achieve our dual goals of being

universal approximators and are intuitive to parametrise. This formalism was successfully

used recently for the low body-order terms of potentials for amorphous carbon [46] and

boron [45]. Whereas in those cases, a many-body term was also needed, we found that in

the present case, just two- and three-body terms are sufficient. We found it sufficient to

include explicit three-body terms for the interaction of an H atom with two Fe neighbours,

and there are no explicit three-body terms for the interaction of two H atoms and a Fe atom

or three H atoms.

The interaction between pairs of H-atoms, which reduces the magnitude of the trap energy

as the vacancy fills, is described by a Yukawa potential with a screening length of 1.5 Å−1.

The interaction energy between a H atom and a collection of Fe atoms is given by

EH−Fe(rH) =
∑
i∈{Fe}

V2(|rH − ri|) +
∑

j<k∈{Fe}

V3(rH , rj, rk). (2)

Within the GAP framework, the two body potential V2 is written as a linear combination

of kernel basis functions,

V2(r) =
∑
m

x2,mK2(r, rm), (3)

where the coefficients x2,m are to be fitted, and we choose a Gaussian kernel K2(r, rm) =

exp(−|r − rm|2/2θ2
2) with width parameter θ2 = 1.5 Å. The potential is smoothly taken to
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zero at r = 6 Å.

The three body term, V3, describes the interaction of a H atom (i) with two Fe neighbours

(j and k), and is constructed similarly to the two-body potential, except that its arguments

are explicitly made symmetric with respect to swapping Fe atoms. The new symmetrized

coordinates are

q1 = rij + rik (4)

q2 = (rij − rik)2 (5)

q3 = rjk, (6)

collected into a vector q = (q1, q2, q3), and so the symmetrized three-body term Ṽ3 is given

by

V3(ri, rj, rk) ≡ Ṽ (q) =
∑
m

x3,mK3(q,qm), (7)

where again the coefficients x3,m are to be fitted, K3 is a three dimensional Gaussian with

three independent length scale parameters, which were set to be 1/2 of the extent of the

training data in each dimension. The cutoff in this case was 5 Å. The training data for the H-

Fe interaction potential comprises snapshots from molecular dynamics trajectories of 54 and

128 Fe atoms with either 0, 1, or 2 Fe atoms removed, and a single H atom added. Plane wave

DFT calculations were performed for each configuration with and without the H atom, and

the interaction energy defined as the difference between the two total energies. All parameter

settings of the DFT calculations were identical to those reported for pure Fe calculations

by Dragoni et al. [48]. Altogether, about 400 configurations were used in the fit, comprising

about 28k atoms. The fit is obtained as the analytic solution to a linear least-squares

problem, where the target data is the H-Fe interaction energy and corresponding gradient.

The GAP framework uses Tikhonov regularisation, we set the magnitude to 10−5 eV and

10−4 eV/Å for the energy and forces, respectively. The mean absolute errors of the fit on

an independent test set were 20 meV for energies and 10 meV/Å for force components.

For comparison, the mean absolute errors of the EAM model of Ref. [49] for the H-Fe

interaction on the same set of configurations are 250 meV for energies and 730 meV/Å for

force components. The resulting potentials for the two and three body interactions energies

are shown in Fig. 2. We used the quip software package [50] to obtain the fit and its

python API to subsequently calculate the potential and its gradients. More details and
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numerical values of the parameters for these potentials can be downloaded [51]. Employing

FIG. 2. The two and three body interaction energies used in this work. The Yukawa potential

for the H-H interaction energy is shown in (a), (b) shows the 2-body GAP H-Fe potential, and (c)

shows the 3-body GAP Fe-H-Fe potential upon varying the angle.

the interatomic potential enables us to compute the energy of a configuration at nearly DFT

accuracy in around 100 ms on a single CPU core using our naive implementation of the 2-

and 3-body functions. The same calculation would take around 15 minutes on 24 cores of

the current UK national supercomputer. This already represents an enormous saving in

terms of both time and cost, and was critical in enabling us to perform nested sampling

calculations. The above potential functions could easily be tabulated and used within a

software package such as LAMMPS thereby obtaining significant further increases in speed.

III. SAMPLING

Our chosen method for the statistical mechanics sampling is nested sampling, originally

developed by Skilling to estimate the Bayesian evidence for model comparison purposes [39,

40]. The approach was adapted by Pártay et al. to compute directly and efficiently the

partition function in atomistic problems, and it enables us to compute any thermodynamic

property as a function of temperature from a single run [52]. Briefly, a set of configurations

xn of decreasing energy En = E(xn) is generated with the property that the ratio of phase

space volumes enclosed by successive energy level sets En is approximately constant, α =

K/(K + 1), where K is the number of samples, held constant. We start by chosing K

configurations randomly, and in iteration n, the highest energy sample is assigned as xn,

and is replaced by a new sample that is randomly chosen from among the others, cloned, and

then decorrelated by a bounded random walk in which we reject any move that would result
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in an energy greater than En. At the end, the canonical partition function is estimated (up

to a multiplicative constant) as,

QC(T ) '
∑
n

(αn − αn+1)e−βE(xn). (8)

To test convergence with respect to the number of walkers, K, we ran four independent

copies of each simulation. We found that 192 walkers were sufficient.

All our nested sampling calculations were carried out with the pymatnest package[53].

IV. EVALUATING THE GRAND CANONICAL PARTITION FUNCTION

Despite the efficiency gains introduced by the methods above, direct calculation of ther-

modynamic properties in the canonical ensemble at the low concentrations (< 100 ppm) of

H that are damaging in real systems would be impractical due to the large size of the sim-

ulation cell required ( > 104 atoms). We can nevertheless compute the expected number of

H-atoms in the vacancy at any concentration by conceptually separating the vacancy region

from the bulk region, and treating the former with variable number of H atoms within a

grand canonical ensemble. The phrase “in the vacancy” implies that we can define a bound-

ary to the vacant lattice site. The position of this boundary is in principle arbitrary, but

for practical purposes, as long as the bulk concentration is sufficiently low, the number of H

atoms deemed to be inside the vacancy will not be significantly changed by the choice of this

boundary within reasonable limits. This can easily be verified in the case considered in this

paper, for which the borders of a 3× 3× 3 supercell are a suitable boundary. It contains 54

atomic sites. Suppose the bulk concentration of H were 10−4 per atom, which is the largest

value we consider. Assuming a Poisson distribution it is easy to show that less than 0.5%

of such bulk supercells would be occupied by any hydrogen, and less than 0.3% of those

that are would be occupied by more than one atom of hydrogen. This leads us to consider

the H content of a bulk supercell compared to one of the same size containing a vacancy,

with which the hydrogen is in equilibrium. If the bulk concentration is only significantly

perturbed at the atoms neighbouring the vacant site, then the mean hydrogen content of the

supercell 〈nv〉 would be equal to the excess hydrogen in the vacancy to within 0.005 atoms,

which is more than adequate for our purposes. Longer ranged strain-fields will introduce a

small error in our estimates, which would be of minor importance in practice. Thus it is
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unnecessary besides physically meaningless to define a bounding surface any closer to the

vacant site than the borders of the supercell. This is further justified in the Appendix.

To derive the required formula for computation, we adopt from the start a notation which

defines discrete states in energy or space, labeled with subscript i, summations over which

can be equated to integrals weighted by a density of states. The expectation value for the

number of H-atoms nv in the vacancy in the grand canonical ensemble can be written,

〈nv〉 =
1

QGC

∑
nv

∑
i

nvgi e
−βEi,nv+βnvµ, (9)

where the grand canonical partition function is defined by

QGC =
∑
nv

∑
i

gi e
−βEi,nv+βnvµ. (10)

Ei,nv and gi are the energies and degeneracies of states we denote as inside the vacancy

respectively, µ(T, y) is the chemical potential of hydrogen, to be calculated in the bulk

reservoir, in which y denotes the bulk concentration, in units to be discussed below. We

emphasize that ‘inside the vacancy’ means inside a rather small supercell containing the

vacancy, the exact size of which is arbitrary. β is 1/(kBT ), where kB and T are the Boltzmann

constant and temperature. Eq (9) can be evaluated over the regimes of interest by writing

it in terms of the canonical partition function

Qvac
C (T, nv) =

∑
i

gie
−βEi,nv , (11)

which we can substitute into (9) to give

〈nv〉 =
1

QGC

∑
nv

nvQ
vac
C (T, nv) e

βnvµ

in which

QGC =
∑
nv

Qvac
C (T, nv) e

βnvµ. (12)

This manipulation conveniently splits our task into two distinct parts. Firstly we need to

calculate µ(T, y) for any low concentration y of bulk H, and secondly we need calculations

of Qvac
C (T, nv) for integer values of nv from 0 to 6 (more than 6 will not be relevant). We

can then combine the two kinds of calculation into formula (12). The calculation of Qvac
C is

the task of our nested sampling, so it remains to derive an expression for µ.
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Assuming zero pressure, we shall evaluate the Helmholtz free energy of a dilute concen-

tration y hydrogen atoms per Fe atom. Let us divide a perfect bulk crystal into N identical

space-filling cells, each containing Na atoms of Fe. Normally we have in mind here the super-

cells with periodic boundary conditions, as used in DFT calculations, in which 1 ≤ Na ≤ 54.

We can apply the following approach both to a lattice model, in which only tetrahedral sites

are occupied, or the continuous phase space which is used in this paper. The thermodynamic

limit of N →∞ will be taken.

We suppose the bulk hydrogen to be distributed over these cells such that there is at

most one H atom per cell, which is an excellent approximation for our purposes as indicated

above. The number of Fe atoms is NaN and the number of H atoms is n = yNaN , which is

equal to the number of supercells occupied by a hydrogen atom. The total partition function

ZC for the perfectly crystalline bulk system (remember we are neglecting here the movement

of the Fe lattice) can therefore be factorised into the partition function of n singly-occupied

cells and the partition function for the choice of these n cells from the total N :

ZC = Qbulk
C (T, 1/Na)

n · N !

(N − n)!n!
. (13)

The chemical potential will be obtained from this expression via the standard thermody-

namic formula:

µ = −kBT
∂

∂n
lnZC . (14)

We make the usual Stirling’s approximation for the factorials in Eqn (13), namely

ln

(
N !

(N − n)!n!

)
→ NS(n/N) (15)

where

S(x) = −x ln(x)− (1− x) ln(1− x), (16)

which is accurate in our thermodynamic limit. Inserting this into (14), the derivative is

straightforward and we obtain

µ = kBT ln
n/N

1− n/N
− kBT lnQbulk

C (T, 1/Na). (17)

Replacing n/N by yNa, this can be written in terms of the concentration per host atom in

the form

µ = kBT ln(yNa)− kBT lnQbulk
C (T, 1/Na), (18)

11



where we have assumed again yNa � 1 in order to make the replacement 1 − Nay → 1

in the first term. Consider now the calculation of the second term using a supercell and

periodic boundary conditions with nested sampling or any other sampling technique. As

long as Na is big enough to avoid spurious interactions between the single H atom and its

periodic images, it is clear that

Qbulk
C (T, 1/Na) = NaQ

bulk
C (T, 1). (19)

This linear scaling ensures that Na cancels out of expression (18), which we can finally write

as

µ = kBT ln(y)− kBT lnQbulk
C (T, 1), (20)

from which

exp(βµ) = y/Qbulk
C (T, 1). (21)

The grand canonical partition function for hydrogen in the vacancy can now be expressed

as

QGC =
∑
nv

Qvac
C (T, nv)

(
y/Qbulk

C (T, 1)
)nv (22)

and the mean number of trapped atoms is

〈nv〉 =
1

QGC

∑
nv

nvQ
vac
C (T, nv)

(
y/Qbulk

C (T, 1)
)nv

. (23)

Both canonical partition functions are computed by nested sampling, which we apply to the

full energy landscape and, for comparison purposes only, to the lattice model, both with

and without H-H interactions. Taking the reference state for hydrogen to be when it is at

rest in a bulk tetrahedral site, Eq. (12) still applies to the discrete lattice models, with the

simplification that Qbulk
C (T, 1) reduces to 6. For the 6 vacancy trapping sites, in our lattice

model calculations we take the 9 non-degenerate energies for the states of 1 ≤ nv ≤ 6 from

our static DFT calculations. The effect of the H-H interactions is to split the degeneracy

of all the states with 2 ≤ nv ≤ 5. While the single vacancy with a few H atoms comprise

a relatively simple system in terms of composition, size and geometry, the same approach

could be applied to any system in which a solute has a low concentration in the bulk, so
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that the defective and perfectly crystalline regions can be considered separately using the

nested sampling method and linked via the explicit calculation of the partition functions

and the chemical potential.

V. RESULTS

The average number of H atoms in a vacancy is shown in Fig. 3(a) as a function of tem-

perature for a range of hydrogen concentrations, calculated using nested sampling, the grand

canonical approach, and the GAP model for the potential energy surface. For comparison

we show the same for the lattice model in Fig. 3(b). The expected occupancy of the vacancy

using Oriani’s theory, which does not include H-H interactions, is shown in Fig. 3(c). From

these results we can estimate the temperature at which the vacancy goes from being fully to

half occupied (6H to 3H). Our model (Fig. 3(a)) indicates this happens at 340 K for a bulk H

concentration of 0.01 ppm, or 500 K for the very high concentration of 10 ppm. The reduced

phase space of the lattice model (Fig. 3(b)) spuriously enhances the trapping, so that the

corresponding temperatures are 380 and 630 K. By ignoring H-H repulsion we further in-

creases the apparent occupancy of the vacancy, bringing the temperature of half-occupancy

up to 450 and 750 K for 0.01 ppm and 10 ppm respectively (Fig. 3(c)). As noted before, we

kept the positions of Fe atoms fixed in the DFT optimal configuration. Although certainly

possible within the same methodological framework, allowing movement of Fe atoms is not

expected to change our conclusions significantly, since their vibrations are nearly harmonic

at room temperature and their contribution to configurational entropy is much smaller than

that of the mobile H atoms.

VI. CONCLUSIONS

Using a purpose-made hydrogen-iron interaction potential defined by Gaussian process

regression fitted to DFT calculations, we applied nested sampling to obtain the mean number

of H-atoms trapped in a vacancy in an α-Fe crystal, as a function of bulk hydrogen con-

centrations from 10−4 down to 10−11. To deal with such low bulk hydrogen concentrations

we introduce a grand-canonical formulation, which requires a separate calculation of the
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FIG. 3. Expected number of H-atoms in the vacancy as a function of temperature for a range of bulk

H concentrations, calculated using (a) the main model presented in this work, (b) the same nested

sampling approach applied to the discrete lattice system, in which the energies are only required

for H atoms on the bulk tetrahedral sites and the six sites in the vacancy, and (c) the Oriani

model, using the same single H on-site energies as (b), but switching off the H-H interactions. The

concentrations are in units of atom fraction. The three solid lines represent concentrations most

relevant to industrially observed H embrittlement of steels.

chemical potential of H as a function of its bulk concentration. We obtained this chemical

potential from nested sampling calculations on a single H atom in the perfect crystal. Our

grand canonical approach to dilute solutions does not suffer from the difficulty of simulation

methods for which the required supercell volume scales inversely with the concentration of

solute.

At sufficiently low temperature, the saturated vacancy trap for all bulk concentrations

contains 6 H. Our calculations indicate that this maximum level of trapping would not be

achieved at around room temperature for bulk concentrations below 0.1 atom ppm. It is

widely accepted that the propensity for steels to embrittle is correlated with the amount

of “mobile hydrogen” rather than the total including those in deep traps such as carbides,

grain boundaries etc. and thus understanding the nature and dynamics of mobile hydrogen

is in turn critical for understanding hydrogen embrittlement. The designation of “mobile

hydrogen” is conventionally taken to be equivalent to H atoms in bulk interstitial lattice

sites, and sometimes referred to as “lattice hydrogen”. Our results however suggest that the

H atoms trapped at vacancies contribute to the pool of mobile hydrogen in the system. Thus

theories of hydrogen dynamics in iron and steel, including analyses of thermal desorption
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spectroscopy (the main analytical tool in the field) such as Kissinger theory[54] likely have

to be revised. There will be further direct implications to theories of H-embrittlement that

involve the interaction with vacancies explicitly, such as “hydrogen enhanced strain induced

vacancy formation”[1].

For the present work we assumed classical nuclei, which would be a poor approximation for

hydrogen in metals much below room temperature. The approach could readily be extended

to include nuclear quantum effects for H using the Feynman path-integral formalism which

replaces the H-atoms with ring-polymer chains. See for example Gillan et al. [55] for a very

clear exposition. We similarly ignored movement of Fe atoms, and diffusion leading to

clustering of the Fe monovacancies. The latter would lead to a variety of other trapping

configurations, from divacancies upwards, which we have not discussed here. The same

treatment could be applied to all these aspects of the problem, using the GAP model for

Fe-Fe of Dragoni et al. [48]. Our combination of machine-learned interatomic potentials and

nested sampling, together with our grand canonical approach to trap occupancy, should

be useful for many similar questions involving segregation and trapping of impurities at

interfaces or dislocations.
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this paper.
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APPENDIX: TEST OF THE 1 H/SUPERCELL APPROXIMATION

In order to appreciate better our approximation of no more than 1 H atom per perfect

supercell we can demonstrate it with the lattice model, assuming an ideal solution of H on

a lattice of tetrahedral sites, of which there are six per Fe atom. In particular, we examine

the error made by our approximation as a fraction of the exact entropy in the ideal solution.

We make use of the function S(x), defined in Eq (15), which is the familiar dilute solution

expression for the entropy per site when the fractional site-occupancy is x. We also work

with the number of atoms per supercell, Na, and the number of sites per atom, Ns, which

in this example are to be 54 and 6 respectively, and the number of H atoms per host atom

is y � 1, as above. The ‘exact’ dilute solution entropy per atom is then

Sexact = NsS(y/Ns) (24)
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FIG. 4. Estimate of the fractional error in the approximated configurational entropy of bulk hydro-

gen with our 1H-per-supercell model. This error estimate is based on the lattice approximation, in

which H can only occupy tetrahedral sites.

In the lattice model, our approximate partition function Eq (13) becomes

Z lattice
C = (NsNa)

n · N !

(N − n)!n!
. (25)

From which the entropy per atom is

Sapprox =
1

NNa

lnZ lattice
C

=
n

NNa

ln(NsNa) +
1

Na

S(n/N)

= y ln(NsNa) +
1

Na

S(yNa). (26)

We have made use of the identity yNa = n/N to eliminate the extensive quantities N and

n. The error is evaluated as Sapprox− Sexact. It is easy to see by Taylor expanding in y, that

the terms to leading order as y → 0, namely y ln y, cancel, and the fractional error is very

small until y exceeds 10−4. This is shown graphically in Fig. 4.
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