
PHYSICAL REVIEW RESEARCH 2, 023352 (2020)

Identifying time dependence in network growth
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Identifying power-law scaling in real networks—indicative of preferential attachment—has proved controver-
sial. Critics argue that measuring the temporal evolution of a network directly is better than measuring the degree
distribution when looking for preferential attachment. However, many of the established methods do not account
for any potential time dependence in the attachment kernels of growing networks, or methods assume that node
degree is the key observable determining network evolution. In this paper, we argue that these assumptions may
lead to misleading conclusions about the evolution of growing networks. We illustrate this by introducing a
simple adaptation of the Barabási-Albert model, the “k2 model,” where new nodes attach to nodes in the existing
network in proportion to the number of nodes one or two steps from the target node. The k2 model results in time
dependent degree distributions and attachment kernels, despite initially appearing to grow as linear preferential
attachment, and without the need to include explicit time dependence in key network parameters (such as the
average out-degree). We show that similar effects are seen in several real world networks where constant network
growth rules do not describe their evolution. This implies that measurements of specific degree distributions in
real networks are likely to change over time.
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I. INTRODUCTION

The study of complex networks has expanded rapidly over
the past 20 years. Many real systems have been analyzed using
networks with great success, showing many nontrivial proper-
ties [1]. Model networks have been defined to understand the
origin and development of these properties from elementary
principles. For instance, the Watts-Strogatz model generates
networks with short average path lengths but high clustering
coefficients, explaining the small world phenomenon [2].
Similarly, the Barabási-Albert (BA) model, an undirected
version of the Price model [3], demonstrates that scale free
(power-law) degree distributions in real networks can arise
from a combination of growth and preferential attachment [4].
These models have given significant insight into the structure
of real networks. However, real systems almost never reflect
the exact details of a model.

One of the most common features to study in a real network
is the degree distribution [5]. The degree k of a node in a
network is the number of direct connections a node has to
other nodes in the network. The degree distribution P(k) is
the probability distribution of the degree across all the nodes
in the network. The degree distribution is said to be scale free
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(the exact definition is argued over) if it displays power-law
scaling such that P(k) ∝ k−κ , where κ is a positive constant,
often found to be in the range κ ∈ {2, 3} for real networks [6].
Plotting P(k) vs k on a log-log scale, a power-law distribution
appears as a straight line with gradient −κ .

Since the late 1990s, many real networks have been re-
ported as having scale free or nearly scale free degree dis-
tributions. This includes web-page links on the internet [7],
citation networks [8], the co-occurrence of words in language
[9], sexual contact [10], social networks [11], and others.
Identifying these networks as scale free has important conse-
quences: (1) It gives a potential mechanistic understanding of
the origin and development of these networks, notably that the
network evolves according to preferential attachment, and (2)
it suggests these networks have a set of important properties
associated with scale free networks. These properties include
the presence of hub nodes which have a degree much larger
than the network average, very small network diameters [12],
and resistance to errors but vulnerability to targeted attack
[13]. Although the scale free paradigm has become a hallmark
of complex networks research, identifying scale free behavior
in real networks is still very controversial [14].

Significant effort has gone towards developing appropriate
statistical techniques to assess whether networks at a fixed
point in time are scale free, most notably in Refs. [5,15].
Given the difficulty in distinguishing a power-law distribution,
P(k) ∝ k−κ , from similar distributions such as the log-normal,
P(k) ∝ k−1exp[− (lnk−μ)2

2σ 2 ], or stretched exponential, P(k) ∝
kτ−1e−λkτ

, these statistical techniques are clearly important
for understanding the statistical properties of network degree
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distributions. Applying such techniques to a large set of real
world networks, a recent study found that true scale free net-
works are rare, representing only about 4% of all networks [5].
These results are in line with a number of similar criticisms
of the scale free paradigm [16–22]. However, despite broad
support for these criticisms, many others in the networks com-
munity are still strong believers that most complex networks
exhibit preferential attachment [23–26]. Among these individ-
uals, many have taken issue with the methods to process the
data in Ref. [5] and/or the strictness of the scale free definition
[14,25–27]. Arguing that scale free networks are only well
defined in the infinite system size limit, looser definitions
suggest that scale free networks are in fact not rare at all [26].
However, it can be argued that such a loosening will naturally
result in a larger number of positive identifications and that
using weakened criteria for scale freeness defeats the aim
of using a statistically rigorous approach. Clearly, the issue
of which approach is best when analyzing network degree
distributions is yet to be fully resolved.

There is a third camp who argue that “knowledge of
whether or not a distribution is heavy-tailed is far more
important than whether it can be fit using a power-law” [20].
However, great care must be taken with such an approach
in a context dependent manner. For instance, in the case
of epidemic spreading, two networks may both be fat-tailed
with similar degree distributions, yet exhibit very different
epidemic mixing patterns due to differences in network as-
sortativity [28,29].

What all these approaches have in common is that they
analyze the degree distribution of a network at a fixed point
in time. If such an analysis is to give insight into the mecha-
nistic origin and evolution of a network, it would be prudent
to ask whether the degree distribution is representative of
the network in general during its evolution or only for a
brief period of time? Without an answer to this question,
inferring the past and future evolution of a network based
on the current form of its degree distribution may give
misleading results.

A prominent example of a theoretical network model
where the observed degree distribution appears to change over
time is superlinear preferential attachment, where new nodes
attach to existing nodes proportionally to their degree to a
power greater than 1 [30]. In the long time limit, a gelation
phenomenon is observed where almost all nodes connect
to a single hub node forming a starlike network. However,
Krapivsky and Krioukov [31] showed that superlinear attach-
ment has significant pre-asymptotic regimes where the degree
distribution appears to be approximately scale free.

Given the difficulty of directly identifying preferential
attachment from static degree distributions, proponents of the
scale free paradigm have argued that preferential attachment
can be identified directly from dynamical network data (if
available) [25]. Numerous approaches have been introduced
over the years, using a variety of different assumptions
[32–38]. Most commonly, methods assume that the prefer-
ential attachment kernel follows a functional form, �(k) ∝
kγ , and primarily focus on estimating the exponent γ —such
methods will naturally assume that the preferential attachment
kernel of a network is time independent.

As an alternative approach, nonparametric methods have
been proposed that do not assume a functional form. The
first of these methods by Jeong et al. [33] infers the form
of the attachment kernel by constructing a histogram of the
degree of nodes to which new edges attach over a short
observation window. However, there is no clear guide as to
how to choose the start of the observation window and how
long it must be—too short and the result is very noisy, too
long and the result is subject to bias [38]. The method by
Newman [32] avoids this problem by constructing multiple
histograms over different observation windows and computes
the attachment kernel by taking a weighted average over the
different histograms. Although this method avoids the issue of
how to choose your observation window, this approach seems
to underestimate the attachment kernel at large degrees [39],
an issue since corrected by Pham et al. [38].

For networks in which the attachment kernel is time inde-
pendent, the corrected Newman method proposed in Ref. [38]
gives an excellent fit to data. However, it is still not clearly
established whether the assumption of time independence is
valid for real networks, and in some cases (such as citation
networks) it is known to be false [40]. Similarly, the probabil-
ity of attaching to a node may be a function of a variable other
than the degree. However, how to correctly identify which
feature of a node determines its attractiveness is not clear.

It is often argued that accurately calculating the attachment
kernel of a growing network is important because it can help
to predict the future evolution of a network [37]. For instance,
in the case of nonlinear preferential attachment, where the
attachment kernel is given by �(k) ∝ kγ with positive con-
stant γ , it is known that for 0 < γ < 1, the limiting degree
distribution is a stretched exponential, whereas for γ > 1, the
degree distribution displays a gelation phenomenon where a
single dominant hub connects to almost all other nodes in the
network [30]. In between, γ = 1 corresponds to traditional
linear preferential attachment where the degree distribution
displays power-law scaling. Hence, if we can estimate the
value of γ for the attachment kernel of a real network, this
can be used to predict its future evolution.

Predictions regarding the future evolution of networks,
explanations of the historical development of networks, and
investigations into whether preferential attachment underlies
the evolution of networks, based on measured attachment ker-
nels, are widespread in the literature. These include studies on
citation networks [41,42], protein networks [43], the bitcoin
network [44], common words in the English language [45],
social dynamics in online games [46], actor networks [33],
and more.

The majority of these studies make three assumptions:
(1) that the degree of a node is the key feature determining
a node’s attractiveness, (2) that the attachment kernel can
be approximated by �(k) ∝ kγ , and (3) that the measured
attachment kernel is either time independent, or that the
time dependence is largely unimportant. For instance, looking
at four different periods in the evolution of the American
Physical Society (APS) citation network, and using the node
degree (citation count) as the key variable of interest, Sheridan
and Onodera found that the exponent γ ranges from 0.94
to 1.06 [42]. The authors assert that this implies that the
attachment probabilities in the APS citation network are at
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least approximately time independent. However, as noted,
γ < 1 would imply that the APS citation network’s degree
distribution approaches a stretched exponential, whereas γ >

1 would result in a gelation effect. Since both γ < 1 and
γ > 1 were observed from the data, what does this imply for
the future evolution of the network?

The aim of this paper is to illustrate the risks of assuming
time independence in the rules governing the evolution of
growing networks, and the risk of assuming that the node
degree determines node attractiveness. We will do this by
introducing the “k2 model,” a simple variant of the Barabási-
Albert model where new nodes do not attach to existing nodes
proportionally to the number of direct neighbors a node has
but rather proportionally to the number of nodes within a
distance two of the target node. This simple rule is rooted in
the idea that well connected neighbors are preferable to poorly
connected neighbors. The rule puts a particular focus on the
role of nearest neighbor correlations in network growth. Such
mechanisms of mutual benefit may be relevant to collabora-
tion [47], or citation [48] networks. The mechanism may also
have indirect relevance to node copying processes [49–51].
Similar ideas have been explored in [52–55].

Although this simple rule has no explicit time dependence
(i.e., time dependence is not in built by including a time
dependent parameter, e.g., the average out-degree), the cor-
relations that form between neighboring nodes result in an
implicit time dependence in the attachment kernel. Conse-
quently, the resulting network does not demonstrate any of the
simple scaling observed in traditional network models. This
is despite an extended initial transient phase during which
the network appears to grow according to linear preferential
attachment. We support this argument with an analytical
treatment demonstrating that assumptions of simple scaling
in the k2 model are not robust.

The arguments we illustrate with the k2 model are highly
relevant to real networks. By calculating the ratio of network
attachment kernels over different time periods, we show that
over short timescales, assumptions of time independence for
real networks are relatively well justified. However, over
longer time periods, the attachment kernels calculated show
clear time dependence, displaying a diversity of patterns.
While the overall effect may be small in some cases (such
as for the Flickr friendship network or the English Wikipedia
hyperlink network [56]), we argue that, at a minimum, practi-
tioners should test the degree of time dependence in their data
before making predictions about the future or past develop-
ment of a network.

II. METHODS

A. Model definition

The k2 model is defined as a simple, undirected network.
The model is initialized with a small connected network of
m0 nodes. Each time step, a new node is created with m � m0

new edges. The m edges are connected to the new node and
target nodes from the network. Each target node is chosen with
probability proportional to the number of neighbors which
are one or two steps away, k(2)

i , from the target node, i. We
refer to k(2)

i as the second degree of node i, see A for a

FIG. 1. A sketch of a simple tree network with four labeled
nodes. The values in the brackets correspond to the first and second
degree, (k(1)

i , k(2)
i ), of each node. The four labeled nodes have the

same degree, k(1)
i = 3, implying equal importance in the BA model,

but different second degrees, implying unequal importance in the k2
model.

formal definition. The attachment probability is identical to
the BA model with the exception that the BA model attaches
proportionally to the number of nodes one step away, k(1)

i ,
from the target node, i. We refer to k(1)

i as the first degree,
or just the degree, of node i. Computationally, we prevent
multiple edges being formed between two nodes by selecting
m unique target nodes.

For clarity, whenever notation is presented with a subscript
i or j, for instance k(1)

i or k(2)
j , the focus is on the value of that

variable for the particular node i or j. When the subscript is
omitted, for instance k(1) or k(2), the focus is on all nodes with
the same specific value of the variable in question. We use k
and k(1) interchangeably where appropriate.

Figure 1 illustrates the motivation for the k2 model. In the
BA model, a node’s importance is proportional to the number
of nodes connected to it, i.e., the first degree. However, there
is no consideration for whether these connected nodes are
important or not. A node with three isolated neighbors is
considered equally important to a node neighboring three
hubs. This is in conflict with many real world scenarios,
for instance in academic collaboration networks, where it is
known that junior researchers working under top scientists are
those most likely to be successful and reach tenure in their
careers [47]. In the k2 model, this effect is accounted for,
allowing nodes to benefit from connecting to hub nodes and
giving them the opportunity to become hubs themselves.

The principle of weighting neighbor importance reflects
the role of friends-of-friends in social network theory [57,58]
and is the foundation for widely used network centrality mea-
sures built on self-consistent equations, such as Katz centrality
[59,60] or PageRank [60,61]. Mathematically, we define the
attachment kernel � as the function specifying the probability
of attaching to a specific node in the network. In the BA
model, �(BA) ∝ k(1), whereas in the k2 model, �(k2) ∝ k(2).
In the case of the k2 model, we can write the normalized form
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of the attachment kernel as

�
(k2)
i = k(2)

i∑N
j=1 k(2)

j

≈ k(2)
i∑N

j=1

(
k(1)

j

)2 , (1)

where for m = 1, the approximation is an equality. For m > 1
the approximation holds as long as the number of nonunique
second degree neighbors is small, see A. By splitting the
numerator of the attachment kernel into the contribution of the
first degree neighbors to node i, k(1)

i , and the contribution of
the next-nearest neighbors, k(2)

i − k(1)
i , Eq. (1) can be rewritten

as

�
(k2)
i ≈ k(1)

i + ∑k(1)
i

α=1

(
k(1)

iα − 1
)

∑N
j=1

(
k(1)

j

)2 , (2)

which is a function of the first neighbor degree only, where we
have used

k(2)
i =

k(1)
i∑

α=1

k(1)
iα . (3)

Here, α labels the k(1)
i unique first neighbors of node i, and k(1)

iα
is the first degree of node α, connected to node i. In Eq. (2),
the first term indicates the contribution to the attachment
kernel from the direct neighbors of node i, and the second
term indicates the contribution from next-nearest neighbors to
node i.

Conceptually, we can think of the k2 model as involving
two separate networks. In the observed network, each node
represents an agent, and an edge between two nodes repre-
sents a direct, first degree relationship between the two nodes.
However, new nodes do not connect to a target node according
to the node’s direct connections but rather according to the
number of nodes within distance two of the target. These
nodes are within the sphere of influence of the target node.
Hence, we define the influence network, in which an edge
between any two nodes signifies that the nodes are within
each other’s sphere of influence, i.e., two connected nodes are
neighbors, or next-nearest neighbors in the observed network,
see Fig. 2.

The influence network has similarities to the node copying
mechanism studied in Refs.[49,50], based on earlier models
in Ref. [51], with relevance to social network formation
[57,62], citation networks [48,63], evolution [64], and protein
interaction networks [65,66]. Although the k2 model is not
designed to model such systems explicitly, it may be useful
for understanding the role of neighbor-neighbor correlations
in the growth of such networks.

In the influence network, new nodes connect to a target
node proportionally to the node’s degree, k(2). The new node
then copies a fraction of the nodes attached to the initial target
node and forms additional edges to these copied neighbors.
The copied neighbors correspond to those which are directly
connected to the target node in the observed network. In the
node copying model, new nodes select a target node at random
and then copy a fraction of the target node’s neighbors. As
opposed to the k2 model, the copied neighbors are selected at
random with probability p. In this respect, the node copying
model where the original target node is chosen preferentially

FIG. 2. An illustration of how the k2 model can be thought of
as generating two distinct networks. (a) The observed network is
the network of nodes which have a direct connection to each other.
In this network, the degree does not account for the importance of
next-nearest neighbors. (b) The influence network where two nodes
are connected if they are nearest or next-nearest neighbors in the
observed network.

could represent a mean-field version of the k2 model, where
we neglect correlations between neighboring nodes.

B. Measuring the time dependence of preferential attachment

To understand how the attachment kernel of a network
changes over time, it is helpful to consider relative attachment
probabilities as opposed to absolute attachment probabilities.
In general we can write an arbitrary attachment kernel, which
is a function of the node degree only, as

�(k; t ) = f (k)∑N (t )
j=1 f (k j (t ))

(4)

with an arbitrary preference function f . The summation is
over all nodes in the network at time t . The function f is time
independent, however, as the network grows and more nodes
are added, N (t ) in the denominator changes, and hence, the
denominator is time dependent. Note, f (ki(t )) for a specific
node i is time dependent, since the degree of a specific node
evolves over time. We define the relative attachment kernel as

φt (k, k′) = �(k; t )

�(k′; t )
= f (k)

f (k′)
. (5)

As opposed to �(k; t ), the relative attachment kernel has no
dependence on the network as a whole, but rather, is a function
of the degree k and k′ only. As a result, we can express the time
independence of the attachment kernel as

dφt (k, k′)
dt

= 0. (6)

For convenience, in the following we will consider φt (k, 1),
i.e., the attachment probability of connecting to a node with
degree k relative to a node with degree k′ = 1. By definition,
φt (k, k) = 1.

Consider the relative attachment kernel calculated at time
t , written as φt (k, 1), and at time s, φs(k, 1). If Eq. (6) holds,
then φt (k, 1) = φs(k, 1). For a real network, it is likely that
there will be small deviations from this ideal case. Hence,
we can plot the ratio φt (k, 1)/φs(k, 1) against degree k to
gauge the extent of the time dependence across a specific time
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interval. This ratio is only well defined for networks which
contain nodes with degree k at both times t and s.

The BA model is a simple case where Eq. (6) should hold,
with φt (k, 1) = k for all t . Likewise, for nonlinear preferential
attachment, φt (k, 1) ∝ kγ with positive constant γ . In the
case of the k2 model, Eq. (6) does not hold, due to the
second term in Eq. (2). The preference function in the k2
model is not a function of the degree of a node, but the
second degree, k(2). Clearly the second degree is related to
the first degree, and, when analyzing the k2 model, one could
mistakenly believe that the node degree, k(1) is the quantity
determining network growth. However, although this appears
approximately true at first, over time, the relation between the
average first and second degree changes, 〈k(2)(t )〉 �∝ 〈k(1)(t )〉.1
In other words, although the attachment kernel is not explicitly
time dependent (e.g., we have not included an explicit aging
mechanism), the local network structure, which determines a
node’s second degree, is time dependent.

This point cannot be overstated; while the k2 model clearly
breaks the assumptions outlined above, it does so in a way
that, without prior knowledge of the model rules, is wholly
nonobvious. As we will outline, if sufficient care is not taken,
these assumptions risk misleading or incorrect predictions
about a networks past or future evolution.

III. RESULTS

A. Simulation results

In the following, we will focus on analyzing the attachment
kernel and the degree distribution of the k2 model, using the
BA model as a comparison. Each simulation is initialized with
a complete graph of m0 = m + 1 nodes.

Figure 3 shows the degree distribution and the true relative
attachment kernel for the k2 model with m = 1. Both subfig-
ures are averaged over 100 simulations. Early in the network
development, there are only small differences between the
behavior of the k2 and BA models. However, as the network
grows, significant differences emerge. The duration of the
initial BA-like transient phase is longer and follows the BA
model even more closely for m > 1, see Appendix B.

Over short timescales, the network growth appears largely
indistinguishable from linear preferential attachment. How-
ever, over longer timescales, the attachment kernel shows
clear deviations from this simple scaling, with a plateau region
at moderate degree preceding a superlinear tail. The anoma-
lous scaling observed is most clearly seen for nodes with
moderate degree in the range k ≈ 10 to k ≈ 300. This region
suggests that there may be multiple timescales of interest at
play in the evolution of the k2 model.

As noted, the BA model incorporates a rich-get-richer
mechanism but does not account for any mechanisms of mu-
tual benefit between nodes; new nodes added to the network
receive no benefit from attaching to a hub node as opposed to
any other less important node. Conversely, in the k2 model,

1The average second degree across all nodes in the network appears
to scale as 〈k(2)(t )〉 ∝ t4/3, see Sec. III B, whereas the average first
degree scales linearly in time, 〈k(1)(t )〉 ∝ t .

FIG. 3. The (a) degree distribution and (b) relative attachment
kernel for the k2 model with m = 1. The dashed lines show the
expected scaling for the BA model. Early in the growth of the k2
model, the evolution of the network is largely indistinguishable from
the BA model. As the network grows, both the degree distribution
and relative attachment kernel deviate significantly from the simple
BA model scaling.

when a node i, added to the network at time ti, attaches to a
hub node, the new node’s initial attractiveness is given by

�i(ki; ti ) ∝ k(2)
i (ti ) = 1 + k(1)

hub(ti ) ≈ k(1)
hub(ti ), (7)

which is completely determined by the first degree of the
targeted hub. This has the counterintuitive effect that the tail of
the attachment kernel appears to show superlinear preferential
attachment, implying gelation, but that the change in the
number of new edges in the influence network is dominated
by new nodes with degree k(1) = 1. As a consequence, the
k2 model appears to show a gelationlike phenomenon to
communities rather than hubs, resulting in the plateaus shown
in Fig. 3.

The true relative attachment kernel in Fig. 3 is typically not
accessible for a real network. To illustrate the risks this may
pose, let us assume the k2 model is a real network and fit the
relative attachment kernel, on the assumption that φt (k, 1) ∝
kγ for a positive exponent γ . From Fig. 3(b) we may deduce
that for t = 103, the k2 model has an approximately linear
(or possibly slightly sublinear) attachment kernel, whereas at
t = 106, the attachment kernel is highly nonlinear but clearly
grows faster with k than the simple prediction from linear
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FIG. 4. An illustration that the relative attachment kernel in the k2 model is time dependent. (a) The relative attachment kernel, φt (k, 1),
for the k2 model with m = 1 as calculated using the corrected Newman method. (b) The ratio of the calculated relative attachment kernels.
(c) The cumulative sum and (d) corresponding ratio of the relative attachment kernels shown in (a). The dashed lines indicate the prediction
for the BA model in (a) and (c), and the ratio expected for any time independent relative attachment kernel, which is a function of node degree
only, in (b) and (d).

preferential attachment. If we were to use these results to
infer the future scaling of the network, the data at t = 103

would suggest that the network might approach a stretched
exponential degree distribution, whereas from the data for t =
106, we might paradoxically infer the network is approaching
a gelation state. In the case of the k2 model this approach
is misleading, but for other networks this approach may be
a good first approximation. However, what is clear is that
simply calculating the attachment kernel of a network at one
point in time is not sufficient to determine the form of the
attachment kernel in the past or future. Likewise, since the
degree distribution is determined by the underlying dynamical
process growing the network, we cannot accurately know how
the degree distribution will evolve in time.

In the case of a real network, we can only estimate the
relative attachment kernel by observing the degree of nodes
to which new nodes added to the network attach. To simulate
this real-network scenario, we apply the corrected Newman
method to a single simulation of the k2 model as shown in
Fig. 4. Figure 4(a) shows the calculated relative attachment
kernel for the k2 model at times t = 105 and t = 106. As
in Fig. 3(b), nodes with moderate degree, k ≈ 30, show an
excess in the relative attachment kernel. In Fig. 4(b), devia-
tions in the relative attachment kernel are shown explicitly by

taking the ratio to the relative attachment kernels at t = 105

and t = 106. For very small degree nodes, the ratio is ap-
proximately one indicating that the attachment kernel is time
independent at these degrees. Above k = 10, the ratio clearly
deviates from one, indicating that the relative attachment
kernel is time dependent. For visual clarity, Figs. 4(c) and 4(d)
show the equivalent as (a) and (b) but for the cumulative sum
of the relative attachment kernel, defined as

φ̃(k, 1) =
∑
k̃�k

φ(k̃, 1). (8)

It is important to note that the estimated attachment kernel
using Newman’s method is not fully consistent with the
true attachment kernel; the magnitude of the excess in the
attachment probabilities is much smaller using Newman’s
method than the true excess shown in Fig. 3(b). This is
because Newman’s method constructs the attachment kernel
by collating multiple histograms from different times in the
network evolution. The consequence is that the estimated
form of the attachment kernel at t = 106 is more consistent
with the true attachment kernel earlier in the evolution of
the k2 model, rather than the current value of the attachment
kernel.
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FIG. 5. An illustration that the relative attachment kernel in the BA model is time independent. (a) The relative attachment kernel, φt (k, 1),
for the BA model with m = 1 as calculated using the corrected Newman method. (b) The ratio of the calculated relative attachment kernels.
(c) The cumulative sum and (d) corresponding ratio of the relative attachment kernels shown in (a). The dashed lines indicate the prediction
for the BA model in (a) and (c), and the ratio expected for any time independent relative attachment kernel, which is a function of node degree
only, in (b) and (d). Finite-size effects result in small deviations from the expected scaling at large k > 100, where the data is noisy.

To verify that the deviations in the relative attachment
kernel are due to the evolution of the k2 model and not
numerical errors, we repeat the analysis shown in Fig. 4
for the BA model where the relative attachment kernel is
expected to be time independent. Figure 5(a) shows that the
relative attachment kernels are effectively indistinguishable at
different times in the network evolution. This is confirmed by
Fig. 5(b) where the ratio of the relative attachment kernels is
approximately one for all nodes with degree k < 100. Noise
in the tail obscures the ratio for k > 100.

Overall, Fig. 5 indicates that using the corrected Newman
method is effective, to an extent, at estimating the relative
attachment kernel of a network and testing whether it exhibits
time dependence. This suggests that the deviations in the
relative attachment kernel observed in Fig. 4 are due to the
structural properties of the k2 model and not due to limitations
in the method used to estimate the relative attachment kernel.
Hence, we can deduce that the relative attachment kernel for
the k2 model is time dependent.

B. Mathematical results

Given the complexity of the k2 model, exact analytical re-
sults are hard to derive. However, using simple arguments, we

can demonstrate the inconsistencies that arise from assuming
the k2 model follows a simple form of nonlinear preferential
attachment.

From the definition of the k2 model, we can make a con-
tinuum approximation and write the evolution of the degree,
k(1)

i (t ), of a given node i as

dk(1)
i (t)

dt
= m�

(k2)
i (t ), (9a)

�
(k2)
i (t ) ≡ k(2)

i (t )∑N
j=1 k(2)

j (t )
≈ k(2)

i (t )∑N
j=1(k(1)

j (t ))2
, (9b)

where node i is added to the network at time ti(� t ). The
second degree, k(2)

i (t ), is defined according to Eq. (3), the
summation is over all nodes in the network, and the approx-
imation is an equality if m = 1, see A. We can write the
evolution of the second degree as

dk(2)
i (t)

dt
≈ m

(
k(1)

i (t )
)2 + ξi(t )∑N

j=1

(
k(1)

j (t )
)2 , (10)
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where

ξi(t ) ≡
k(1)

i1
(t )−1∑

β=1

k(1)
i1(β )(t ) + · · · +

k(1)
iα (t )−1∑
β=1

k(1)
iα(β )

(t ), (11)

see A for a derivation. Here iα(β ) represents the node β

connected to node iα . Equation (11) represents the effect of
non-neighboring nodes on node i. Since the first degree of a
node can only grow over time, ξi(t ) is a positive semidefinite
monotone increasing function with respect to time t , that is,

ξi(t ) � 0, (12a)

d

dt
ξi(t ) � 0. (12b)

Our aim in the following is to write ξi(t ) as a function of
the first degree, k(1), only. To do so we rearrange Eq. (10) to
make ξi(t ) the subject and substitute in Eq. (9a) and Eq. (9b),

ξi(t ) = 1

m

⎛
⎝ N∑

j=1

(
k(1)

j (t )
)2

⎞
⎠

× d

dt

⎡
⎣ 1

m

⎛
⎝ N∑

j=1

(
k(1)

j (t )
)2

⎞
⎠dk(1)

i (t)

dt

⎤
⎦ − (

k(1)
i (t )

)2
, (13)

which is a function of the first degree only. Here we note that
the summations in Eq. (13) correspond to the denominator in
Eq. (9b). This is the sum over k(2)

i (t ) for each node in the
network, and hence, corresponds to twice the total number of
edges in the influence network, which we label as

E (2)(t ) = 1

2

N (t )∑
j=1

k(2)
j (t ) ≈ 1

2

N (t )∑
j=1

(k(1)
j (t ))2. (14)

Figure 3 shows the degree distribution and the relative
attachment kernel for the k2 model obtained from simulations.
As a thought experiment, let us suppose that these simulations
are not for a theoretical network model but that the data repre-
sents a real world network. For the network at small times in
its evolution, the degree distribution and the attachment kernel
are closely approximated by the BA model.

For preferential attachment (linear or nonlinear), it is
known that, on average, the degree of a given node i evolves
in time as a power function given by

k(1)
i (t ) = m

(
t

ti

)δ

, t � ti, (15)

where ti is the time at which node i was added to the network,
and δ = 1/2 for linear preferential attachment [60]. In the
case of sub- (super)linear preferential attachment, δ < 1/2
(δ > 1/2). Let us assume Eq. (15) holds and test whether this
simple scaling is consistent with the mathematical form of the
k2 model. First, we substitute Eq. (14) into Eq. (13),

ξi(t ) = 4

m2
E (2)(t )

d

dt

[
E (2)(t )

dk(1)
i (t )

dt

]
− (

k(1)
i (t )

)2
. (16)

In the case of the k2 model where one node is added to the
network at each time step, we initialize our network such that

t j = j and note that the number of nodes in the network at
time t is given by N (t ) = m0 + t ≈ t for large t .

Using this initialization, we now calculate the value
of E (2)(t ) by approximating the sum as an integral and
substituting in Eq. (15),

E (2)(t ) ≈ 1

2

t∑
j=1

(
k(1)

j (t )
)2

≈ m2

2

∫ t

1
dt ′

(
t

t ′

)2δ

≈ m2t2δ

2(1 − 2δ)
[(t ′)1−2δ]t

1. (17)

There are three cases for the different possible values of
δ: Case (i) 2δ < 1. Corresponding to sublinear preferential
attachment, this scenario is likely to be irrelevant for the k2
model since the influence network cannot grow slower than
the original network in the BA model. In this case we expect
to find linear growth in the number of edges in the influence
network

E (2)(t ) ≈ m2

2(1 − 2δ)
t . (18)

Here E (2)(t ) is dominated by the youngest nodes (created at
the largest times ti) as the older nodes grow too slowly.

Case (ii) 2δ = 1. Corresponding to linear preferential at-
tachment, this is the case for the BA model,

E (2)(t ) ≈ m2

2
t ln(t ). (19)

Case (iii) 2δ > 1. Corresponding to superlinear preferen-
tial attachment where there is some enhancement over linear
preferential attachment. For the k2 model, this scenario is
plausible since we know that for any given node k(2)

i (t ) �
k(1)

i (t ). In this case we find

E (2)(t ) ≈ m2

2(2δ − 1)
(t2δ − t ), (20)

where the growth in the number of edges in the influence
network is dominated by the oldest nodes in the network.

Let us assume case (iii) is valid for the k2 model. Substi-
tuting Eq. (20) into Eq. (16) we find,

ξi(t ) = m3 δ

(2δ − 1)2

(
1

ti

)δ

× [(3δ − 1)t5δ−2 − (4δ − 1)t3δ−1 + δt δ] − m2

(
t

ti

)2δ

= a1t5δ−2 + a2t δ − a3t3δ−1 − a4t2δ, (21)

where in the final line we have grouped all the constants for
each term into a single positive prefactor, a1 to a4.

Recall that the k2 model requires that ξi(t ) is a positive,
semidefined monotonically increasing function and note that
Eq. (21) is only valid for δ > 1/2. As t → ∞, the first term
of Eq. (21) will dominate the second if 5δ − 2 � δ, δ � 1/2.
Likewise, the third term will dominate the fourth if 3δ − 1 �
2δ, δ � 1. Hence, as t → ∞, the first term is the dominant
positive term and the fourth term is the dominant negative
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FIG. 6. The number of edges in the k2 influence network. Data
is averaged over 100 simulations. Error bars are negligible. For large
t , the number of edges scales approximately with t4/3, as indicated
by the dashed line.

term. To ensure ξi(t ) � 0 for all t > ti, this requires the first
term to grow faster than the fourth term giving 5δ − 2 � 2δ,
corresponding to δ � 2/3.

Returning to Eq. (10) and substituting in Eq. (15) and
Eq. (20), we can also write

dk(2)
i (t)

dt
= m(2δ − 1)

m2(t/ti )2δ + ξi(t )

m2(t2δ − t )
. (22)

We have established that to satisfy Eq. (12a), the leading
term of ξi(t ) must scale as t5δ−2, and δ � 2/3. However, as a
consequence of the rules of the k2 model, at time t > ti, node
i can gain no more than m new edges in the influence network
in any given time step (i.e., k(2)

i (t + 1) − k(2)
i (t ) � m). Hence,

strictly for t > ti, we require

dk(2)
i (t)

dt
� m, (23)

which is only satisfied if the denominator of Eq. (22) grows
at least as fast as the numerator of Eq. (22). This requires
t2δ � t5δ−2 as t → ∞. Hence, 2δ � 5δ − 2, giving δ � 2/3.
Combining the conditions in Eq. (12a) and Eq. (23), we find
that a power function of the form given in Eq. (15) can only
satisfy the requirements of the k2 model if δ = 2/3.

To test the validity of our argument, we simulate the growth
in the number of edges for the k2 influence network. This is
shown in Fig. 6 for m = 1 and 3. The figure shows that, at
large t , the number of edges in the influence network scales
as approximately t4/3 corresponding to δ = 2/3, in agreement
with our prediction.

However, further analysis appears to contradict this con-
clusion. Firstly, we can simulate the k2 model and track the
degree of specific nodes over time, see Fig. 7. The data has
been averaged over 104 simulations with the shaded regions
indicating the standard deviation; only with a very large
sample size can the average evolution of node i be observed.
In most simulations, a node hardly grows at all, whereas in a
few simulations, nodes grow very quickly.

For a transient period after being added to the network,
the average degree evolution of a node appears to scale

FIG. 7. The evolution of the degree of individual nodes added at
time ti for the k2 model with m = 1. The shaded region around the
solid lines indicates the standard deviation across 10 000 simulations.
The dashed lines indicate the scaling expected for the BA model, see
Eq. (15).

as t1/2 which is the expected scaling for linear preferential
attachment. This appears to contradict the δ = 2/3 scaling
identified previously, although we note that the integral in
Eq. (17) is dominated by the oldest nodes in the network for
δ > 1/2, which do appear to grow faster than t1/2 towards the
end of the simulation.

For newer nodes, after a transient period, the degree evo-
lution appears to deviate from t1/2 scaling, but the scaling
appears to transition to δ < 1/2 rather than δ > 1/2. The time
over which this transition takes place increases with the time
nodes are added to the network.

This suggests that the true functional form for the degree
evolution in the k2 model involves two competing terms, the
first scaling as t2/3 which is suppressed by ti, and a second
term which scales as t1/2 which is suppressed by t . We
hypothesize, but at this stage cannot prove, that this implies
two scaling regimes: For fixed ti and t → ∞, the scaling of
the degree evolution is dominated by a t2/3 term to ensure
that E (t ) ∝ t4/3 as t → ∞. For ti → ∞ and t = ti + ε where
ε � ti, the degree evolution of node i is dominated by a t1/2

term. Competing regimes of this type are not seen in standard
nonlinear preferential attachment.

It is interesting to consider the origin of the t1/2 scaling.
Our results are inconclusive, however, if we let ti → ∞ and
set t = ti + ε with ε � ti, a Taylor expansion of Eq. (21) gives

ξi(ti) = b1t4δ−2
i − b3t2δ−1

i + O(ε), (24)

with positive constants b1 and b3, revealing that δ � 1/2,
rather than δ � 2/3, is sufficient for ensuring that ξi(t = ti ) �
0 as ti → ∞.

The mathematical argument presented here does not prove
the limiting behavior of the k2 model. However, the result
does indicate that the inclusion of simple nearest neighbor
correlations in network growth can effect the scaling of key
observables. Despite initially appearing to grow as linear
preferential attachment, this simple scaling breaks down as the
network grows. In the case of real networks this may happen
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FIG. 8. The ratio of the cumulative relative attachment kernels for six real world networks; (a) Facebook friendships [67], (b) Youtube
followers [56], the APS citation network [68], (d) hep-ph arXiv collaborations [69], (e) the Flickr network [56], and (f) hyperlinks on English
Wikipedia [56]. For all networks the ratio is shown for early, t/s = 0.1, and late, t/s = 0.9, in the evolution of the recorded network relative
to the endpoint s; time is measured in the net number of edges added to the network.

at an early stage in the evolution of a network. However, as
illustrated by the k2 model, the transient time during which
the model appears to grow according to linear preferential
attachment may be significant—it is not uncommon to analyze
real networks with 104–105 nodes, yet in the case of the k2
model, particularly for m > 1, see Appendix B, the network
is still in this transient period. In cases like the k2 model with
complex growth rules, oversimplified assumptions derived
from nonlinear preferential attachment do not reflect reality.

C. Application to real world networks

Figure 8 shows the ratio of the cumulative relative attach-
ment kernels for six real world growing networks: (a) a re-
gional friendship network on Facebook [67], (b) the Youtube
follower network [56], (c) the APS citation network [68], (d)
the hep-ph arXiv collaboration network [37], (e) the Flickr
follower network [56], and (f) the hyperlink network for En-
glish Wikipedia [56]. For all networks, the cumulative relative
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attachment kernel is calculated at two time points early and
late in the network’s evolution relative to the endpoint of
the dataset. In some cases the full evolution of the network
is not known and is accounted for with a large initial graph
at t = 0.

Two details are clear in Fig. 8. Firstly, on short timescales
the relative attachment kernels are approximately time inde-
pendent, with only small deviations observed. However, over
longer time periods, the ratio of the relative attachment kernels
is not constant indicating time dependence.

There is significant diversity in the changes observed to
the ratio of the relative attachment kernels. In Figs. 8(a), 8(e)
and 8(f), the ratio is (to a good approximation) monotonically
increasing. This implies that if we were to approximate the
attachment kernel of these networks using nonlinear prefer-
ential attachment, �(k) ∝ kγ , the exponent γ will appear to
have reduced over time (the network growth is becoming more
sublinear). Conversely, in Fig. 8(b) we see the opposite effect
where the ratio is approximately monotonically decreasing,
implying an increase in the exponent γ (the network growth
is becoming more superlinear). In the cases of Fig. 8(a), 8(b)
and 8(e), the form of nonlinear attachment (i.e., sublinear,
γ < 1, or superlinear, γ > 1) does not change. However, in
the case of the Wikipedia hyperlink network in Fig. 8(f), the
relative attachment kernel early in the network’s evolution
appeared superlinear, whereas by its endpoint, the attachment
kernel was measured to be sublinear. Here we reiterate our
previous criticism: If the attachment kernel of a network is
meant to predict its future evolution, how do we reconcile
that measurements across some time windows result in one
prediction, while other time windows result in a different,
wholly incompatible prediction.

The story in Figs. 8(c) and 8(d) is more complex. In both
cases, the ratios of the relative attachment kernels initially
appear to decrease below 1, before increasing at moderate
degree and exceeding a ratio of 1 at large degree. This
behavior is qualitatively very similar to the dynamics observed
in Fig. 4 for the k2 model. In these cases, approximating the
change in the attachment kernel as a change in the nonlinear
preferential attachment kernel γ is not easy since the data for
small degrees may imply an increase in γ whereas the data
for large degrees may imply a decrease in the exponent γ .
In such cases, simple assumptions of nonlinear preferential
attachment are not sufficient to draw reliable conclusions
about the future evolution or past origin of a network.

A number of mechanisms may be responsible for the ap-
pearance of time dependence in the relative attachment kernel.
Generally, the simplest explanations for time dependence in
network growth relate to changes in network parameters over
time. In most network growth models (including in the k2
model) these are assumed to be time independent for simplic-
ity. An example of such a parameter includes the outdegree of
each new node added to a network, m.

In the BA model, the limiting degree distribution is given
by

p∞(k) = 2m(m + 1)

k(k + 1)(k + 2)
, (25)

where we note that this solution is valid for sufficiently large
graphs given any initial network at time t0. As a result, if we

let m → m(t ), it is plausible that we will observe transient
behavior during which the form of the degree distribution may
change over time. The same argument holds for measurements
of the network attachment kernel. Such time dependence in m
is not hypothetical and has been shown to be true by Leskovec
et al. [40] for a number of different growing networks in-
cluding citation networks, patent networks, and affiliation net-
works. Some network models consider growth in the average
out-degree of nodes over time, see for instance Ref. [70].
However, despite showing complex time dependent scaling
in the time evolution of individual nodes (the analytical form
for the degree distribution is not solvable), the authors argue
that the limiting degree evolution implies power-law scaling
in the degree distribution for large graphs. This may be true,
but as the k2 model illustrates, in some cases the transient
phase of a network may be so long such that, for all practical
purposes, the limiting degree distribution is not necessarily
observed during the lifetime of a real world network. Slow
convergence to a limiting degree distribution has been noted
previously for node copying models in Ref. [65].

Another simple parameter which may effect the time
dependence of either the degree distribution or attachment
kernel of a network is the exponent for nonlinear preferential
attachment. Consider letting γ → γ (t ) for �(k) ∝ kγ . It is
already known that γ effects the limiting degree distribution
of nonlinear preferential attachment [30], and that for γ >

1, the degree distribution appears scale free for a transient
period [31]. Hence, any variation in γ is likely to add to
the complexity of the time dependence observed in network
growth observables, see [71] for a detailed discussion.

So far, we have provided only two examples of parameters
whose time dependence may alter the transient behavior of a
network’s degree distribution or attachment kernel. However,
we would argue that any solvable network model where a con-
stant parameter appears in the analytical form for the degree
distribution is likely to exhibit time dependent transients if
that constant becomes time dependent.

In cases like the k2 model, where no individual parameter
has been set to be time dependent, the reasons for complex
scaling in the observables of network growth are less easily
explained and may not be easy to elucidate from data. In
the k2 model, the origin lies in the implicit time dependence
of the local network structure which results in superlinear
scaling in the influence network, associated with gelation to
important communities. However, any network growth model
where the attachment kernel is determined by an observable
which implicitly changes over time as the structure of the
network changes is likely to exhibit similar time depen-
dence. For instance, network growth based on attaching to
nodes according to their betweenness is likely to exhibit a
time dependent network attachment kernel, as investigated by
Ref. [54].

We note to the reader that it was our original intention to
perform the analysis in Fig. 8 with statistical rigor. However,
this task has proven difficult given that (1) our data breaks
many of the assumptions underlying common statistical tests,
and (2) it is not yet fully understood how techniques for
estimating attachment kernels, like Newman’s method, are
effected/biased by time dependence—by construction, these
techniques assume the attachment kernel is time independent.
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We highlight the need to tackle these problems with better
statistical network analysis in future work.

IV. DISCUSSION & CONCLUSION

The study of complex networks has come to dominate
complexity science in the 21st century and is likely to
become more prominent in a hyperconnected world. Not only
have complex networks become influential in physics and
mathematics, but their trans-disciplinary appeal has led to
their use across almost all areas of science and academia,
from archaeology [72] to neuroscience [73], economics [74]
to epidemics [75], and many more.

A key feature of network science is the study of how
networks emerge and evolve over time, and numerous models
and techniques have been developed to explore this problem
[4,25,30,32,33,38,48,60,63,70,76–80]. In almost all cases,
these models and techniques have their limitations and are
only applicable to the real world under a number of key con-
straints. Despite this, the spread of network science has been
so extensive that many of these approaches are being used
without a robust understanding of their underlying assump-
tions. In this paper we have discussed two such assumptions:
(1) that the rules underlying network growth do not depend on
time, and (2) that the degree of nodes in a network is the key
observable determining network evolution.

The number of research papers discussing network growth
and attempting to infer their underlying mechanisms is vast,
often guided by simple network models to inform their anal-
ysis. However, the models most frequently discussed in pop-
ular network science textbooks, for instance [25,60], almost
always assume that underlying growth rules are fixed in
time. As a result, it is not particularly surprising that most
papers inferring network growth mechanisms also make these
assumptions. In many contexts such assumptions are sensible
and essential, allowing for analytically tractable calculations
which may otherwise be impossible. However, in some real
world scenarios such approaches may not be suitable. A
selection of papers which do consider the implication of these
assumptions include Refs. [52,71,81] in the context of pref-
erential attachment models, Refs. [55,82] in organizational
networks, Ref. [54] in social networks, and others [49,50,53].

In this paper, we have tried to highlight how very simple
network growth rules can break both the time independence
of the network degree distribution and the time independence
of the node-node attachment probability. We have done
this by introducing the k2 model, a simple variant of the
Barabási-Albert model where the attractiveness of a node
is correlated to the attractiveness of a node’s neighbors.
Even though such a network growth rule does not contain an
explicit time dependence, the formation of clusters means that
a node’s attractiveness is implicitly time dependent through
its dependence on its local environment. This mechanism
is relevant for real-world networks involving mutual benefit
where a node gains an advantage from being connected to an
influential neighbor, such as in collaboration networks [47],
or citation networks [48], or indirectly in systems with
neighbor-neighbor interactions and copying processes
[22,49,50,57,62–66].

The k2 model shows that for small networks, the degree
distribution appears approximately power-law, and the attach-

ment kernel is approximately linear, both of which are con-
sistent with preferential attachment. However, after a lengthy
transient period, both the degree distribution and attachment
kernel show significant deviations from the simple scaling
predicted for preferential attachment. These deviations grow
over time showing strong time dependence. We support these
findings with an approximate analytical treatment showing
that assumptions of simple scaling forms in the evolution of
individual nodes in the k2 model results in inconsistencies in
the mathematics, suggesting that numerous scaling regimes
are interacting and changing over time.

The k2 model is an idealized network growth model—it
does not reflect real-world networks, even if the underlying
mechanism has explanatory value. However, changes in the
degree distribution and the attachment kernel can also be seen
in real data of varying origins. In six networks for which
dynamic network data is available (three social networks,
one hyperlink network, one collaboration network, and one
citation network), we have found that these networks are
approximately time independent on short timescales but show
significant time dependency, and diversity in that dependency,
over longer timescales. In some cases, this time dependency
may have simple origins such as node aging, changes in
the average out-degree over time, or changes in the expo-
nent for preferential attachment. However, in other cases,
time dependence may arise implicitly resulting in complex
scaling.

In the context of the wider debate on “scale free” networks,
it is worth considering the following. If the generative mech-
anisms underlying network growth are not constant in time,
is it plausible that the functional form for network degree
distributions will be constant in time? In many cases the
change over time may be very small. However, if we apply
a strict definition of “scale freeness,” small changes in the
attachment kernel may be sufficient to induce changes in
the most-likely functional form for the degree distribution as
predicted using the current state of the art measures [5]. If this
is in fact the case, this may explain why only 4% of real world
networks have been identified as scale free [5].

To conclude, as long as network science techniques are
being applied to the real world by experts and nonexperts
alike, it is essential that we understand the limitations of sim-
ple models and consider their underlying assumptions. Here,
we have shown how very simple, sociologically meaningful
changes to network growth models can profoundly effect both
the time dependence of network growth and the assumption
that node degree determines network evolution.

While the k2 model serves an illustrative purpose, the
ideas drawn from its evolution apply to real networks, which
show diverse time dependence over extended durations. While
this appears to be a disappointing conclusion, we note that
over short time periods network growth does appear to be
approximately time independent. In many cases the origin of
the time dependence may have a simple explanation, which,
if accounted for in prediction models, may avoid excessive
errors in forecasting the evolution of networks and the dy-
namics taking place on those networks. However, knowing the
impact of these assumptions is only possible if simple steps
are taken to check their validity. It is our hope that this paper
will encourage more people to do so.

023352-12



IDENTIFYING TIME DEPENDENCE IN NETWORK GROWTH PHYSICAL REVIEW RESEARCH 2, 023352 (2020)

An implementation of the k2 model and the BA model is
available for python3 [83].
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APPENDIX A: ADDITIONAL MATHEMATICAL DETAILS

1. Generalization of the k2 model

It is possible to generalize the form of attachment shown
in Eq. (2) by including a coefficient to the second term that
adjusts the total weighting of next-nearest neighbors. This can
be written as

�
(k2)
i = k(1)

i + ε
∑k(1)

i
α=1(k(1)

iα − δ)∑N
j=1

(
k(1)

j + ε
∑k(1)

j

α=1(k(1)
jα − δ)

) , (A1)

where we require ε � 0. If ε = 0, the k2 model reduces to
the BA model, �

(k2)
i → �

(BA)
i . Alternatively, if ε = 1, δ = 1,

Eq. (A1) reduces to the k2 model, Eq. (2). In this paper,
to illustrate concerns about time invariance in the scaling
of attachment kernels and degree distributions, we will only
focus on the ε = 1, δ = 1 case shown in Eq. (2). Note that
the general case presented in Eq. (A1) is very closely related
to the 2 levels model proposed by Dangalchev [52]. However,
the 2 levels model double counts the first degree neighbors
of node i, ε = 1, δ = 0, and in the analysis of the model,
Dangalchev only looked at very small networks in which
issues concerning the time invariance of the attachment kernel
and degree distributions cannot be seen.

2. Formal definition of the k2 model

We can define k(�)
i as the number of unique nodes which

are � or fewer steps from the target node i, excluding node
i itself. Let Ni�(t ) be the set of nodes which are distance �

from node i in the network at time t , that is G(t ) which is after
all nodes and edges have been added and this has m0 + t ≈ t
nodes. The distance between nodes i and j is defined as the
minimum number of edges which need to be crossed in order
to form a continuous path from node i to node j. Then we
define

q(�)
i (t ) = |Ni�(t )|, (A2a)

k(�)
i (t ) =

�∑
j=1

q( j)
i (t ), (A2b)

where k(1)
i (t ) = q(1)

i (t ). In this paper we do not consider at-
tachment kernel’s proportional to k(�)

i (t ) for � > 2. However,
it is interesting to note that if the attachment kernel were

FIG. 9. The ratio of the sum over the second degree of each node
in the network to the sum over the first degree squared for each node
in the network, see Eq. (A7). The ratio equals one for m = 1 and
converges to one for m > 1.

proportional to k(�)
i (t ) and � � D(t ), where D(t ) is the net-

work diameter, this attachment kernel is equivalent to random
attachment until the growing network has diameter D(t ) > �.

3. Derivation of Eq. (1)

When m = 1, k(2)
j (t ) can be written as

k(2)
j (t ) =

k(1)
j (t )∑
α=1

k(1)
jα

(t ). (A3)

Thus, the denominator of Eq. (1) can be rewritten as

N∑
j=1

k(2)
j (t ) =

N∑
j=1

k(1)
j (t )∑
α=1

k(1)
jα

(t )

=
N∑

l=1

nl (t )k(1)
l (t ) (A4)

where

nl (t ) = k(1)
l (t ). (A5)

Therefore, we obtain

N∑
j=1

k(2)
j (t ) =

N∑
l=1

(
k(1)

l (t )
)2

. (A6)

For m > 1, we can test the validity of Eq. (A6). Figure 9
plots the ratio of the two sums, for m = 1, 3, defined as

S2(t )

S1(t )
=

∑N
j=1 k(2)

j (t )∑N
l=1(k(1)

l (t ))2
, (A7)

against time. The figure has been averaged over 100 simu-
lations of the k2 model. Figure 9 indicates that for m = 1,
S2(t )/S1(t ) = 1 for all t , as expected. For m > 1, there is a no-
ticeable difference between S2(t ) and S1(t ) at very small times
in the network’s evolution. This is to be expected since when
the network is small, the probability of acquiring nonunique
second degree neighbors is small but not negligible. As the
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FIG. 10. The (a) degree distribution and (b) relative attachment
kernel for the k2 model over time with m = 3. The dashed lines show
the expected scaling for the BA model. Early in the growth of the k2
model, the evolution of the network is largely indistinguishable from
the BA model. As the k2 model grows, both the degree distribution
and relative attachment kernel deviate significantly from the simple
scaling predicted by the BA model.

network evolves, the ratio S2(t )/S1(t ) quickly converges to
1, with S2(t )/S1(t ) > 0.9 by t = 103. This indicates that
Eq. (A7) is a good approximation even for m > 1.

4. Derivation of Eq. (10)

Let us consider a set of nodes i, the neighbors iα connected
to node i, and the nodes iα(β ) connected to node iα . Here,
α = 1, · · · , k(1)

i (t ), and β = 1, · · · , k(1)
α (t ) − 1. Then, the k2

model with m = 1 is applied to nodes iα as follows:

d

dt
k(1)

iα
(t ) = k(2)

iα
(t )∑N

j=1 k(2)
j (t )

for ∀α. (A8)

Next, by using Eq. (3), the numerator of the right side of
Eq. (A8) can be rewritten as

k(2)
iα

(t ) = k(1)
i (t ) +

k(1)
α (t )−1∑
β=1

k(1)
iα(β )

(t ). (A9)

Therefore, we obtain the dynamical equations of node iα as
follows:

d

dt
k(1)

iα
(t ) =

k(1)
i (t ) + ∑k(1)

α (t )−1
β=1 k(1)

iα(β )
(t )∑N

j=1

(
k(1)

j (t )
)2 . (A10)

Summing k(1)
iα

(t ) from α = 1 to α = k(1)
i (t ) for each side, we

obtain

d

dt

⎛
⎝k(1)

i (t )∑
α=1

k(1)
iα

(t )

⎞
⎠ =

∑k(1)
i (t )

α=1

(
k(1)

i (t ) + ∑k(1)
α (t )−1

β=1 k(1)
iα (β )(t )

)
∑N

j=1

(
k(1)

j (t )
)2 .

(A11)

Recall that, k(2)
i (t ) = ∑k(1)

i
α=1 k(1)

iα
(t ). Thus, Eq. (A11) can be

modified as follows:

d

dt
k(2)

i (t ) =
∑k(1)

i (t )
α=1 k(1)

i (t ) + ∑k(1)
i (t )

α=1

∑k(1)
α (t )−1

β=1 k(1)
iα (β )(t )∑N

j=1

(
k(1)

j (t )
)2

= k(1)
i (t )k(1)

i (t ) + ∑k(1)
i (t )

α=1

∑k(1)
α (t )−1

β=1 k(1)
iα (β )(t )∑N

j=1

(
k(1)

j (t )
)2

=
(
k(1)

i (t )
)2 + ∑k(1)

i (t )
α=1

∑k(1)
α (t )−1

β=1 k(1)
iα (β )(t )∑N

j=1

(
k(1)

j (t )
)2 .

(A12)

This is equivalent to Eq. (10).

APPENDIX B: ADDITIONAL SIMULATION RESULTS

1. Degree distribution and relative attachment kernel for m = 3

In addition to the results presented in the main paper
for the k2 model with m = 1, Fig. 10 shows the degree
distribution and relative attachment kernel for the k2 model
with m = 3. The results are fully consistent with those shown

FIG. 11. The evolution of the degree of individual nodes added
at time ti for the k2 model with m = 3, averaged over 10 000
simulations. The shaded region around the solid lines indicates the
standard deviation across the simulations. The dashed lines indicate
the power function scaling that would be expected from the BA
model, see Eq. (15).
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for m = 1 previously. Initially, the degree distribution appears
qualitatively similar to the power-law scaling expected from
linear preferential attachment. This is associated with an
approximately linear relative attachment kernel. However, as
the network evolves, clear deviations from the simple scaling
form predicted by the BA model appear in both the degree
distribution and the relative attachment kernel. Note, the time
for these deviations to become significant increases as m is
increased. The magnitude of the deviations shown for m = 1
exceed those for m = 3.

2. Degree evolution for m = 3

Figure 11 shows the evolution of individual nodes added
at time ti in the k2 model for m = 3. The figure is con-
sistent with the previous result shown for m = 1. Note
in particular that the magnitude of the standard devia-
tion is significantly smaller than for m = 1. This sug-
gests that the results for m = 3 better reflect the true un-
derlying degree scaling in the k2 model than the result

for m = 1. It is especially clear how closely nodes added
at large ti follow the t1/2 scaling predicted by the BA
model during the initial phase after the node is added to
the network.

Two additional details are worth highlighting: (1) After
the initial transient phase during which nodes scale approx-
imately with t1/2, the scaling deviates from δ = 1/2 scaling
to δ < 1/2, but the magnitude of the change is much smaller
than for m = 1. This result is of particular interest since
extended transient times and smaller deviations from δ = 1/2
scaling may explain why the transient period for the degree
distribution and relative attachment kernel shown in Fig. 10
are longer, and follow the BA model more closely, than the
equivalent for m = 1. (2) For ti = 10, it appears that shortly
after entering the δ < 1/2 phase, the exponent increases again
and appears to approach δ > 1/2, although the effect is very
small. Longer simulations are required to clearly elucidate the
scaling behavior of individual nodes, but these simulations are
computationally challenging in the current framework.
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