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Abstract
This paper presents a new approach for the modelling of heat transfer in 3D discrete particle systems. Using a combined
finite–discrete element (FDEM) method, the surface of contact is numerically computed when two discrete meshes of two
solids experience a small overlap. Incoming heat flux and heat conduction inside and between solid bodies are linked.
In traditional FEM (finite element method) or DEM (discrete element method) approaches, to model heat transfer across
contacting bodies, the surface of contact is not directly reconstructed. The approach adopted here uses the number of surface
elements from the penetrating boundary meshes to form a polygon of the intersection, resulting in a significant decrease in
the mesh dependency of the method. Moreover, this new method is suitable for any sizes or shapes making up the particle
system, and heat distribution across particles is an inherent feature of the model. This FDEM approach is validated against
two models: a FEM model and a DEM pipe network model. In addition, a multi-particle heat transfer contact problem of
complex-shaped particles is presented.

Keywords Contact heat transfer · Finite element method, FEM · Discrete element method, DEM · Finite–discrete element
method, FDEM · Heat resistance · Explicit method · Implicit method

1 Introduction

Heat transfer in particle systems is encountered in a large
number of applications such as chemical and nuclear engi-
neering and in soil and fluid mechanics. Finite element
methods (FEM) have been used in the modelling of micro-
scopic contact roughness and/or mechanical interactions
[14,24,27,31]. More advanced work included modelling of
the contact roughness structure and deformations together
with contact heat transfer [22]. However, these works aim
to model mechanical and thermal interactions of a specific
contact configuration rather than study of the overall heat dis-
tribution across multiple contacting solid bodies. A similar
finite elements procedure has been presented [4,17], using
boundary nodes of the contacting solids to determine heat
flow through contact zones. However, the latter method is
two-dimensional and has no intent or ability to model multi-
particle systems. The powerful digitalisedmethod from Jia et
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al. in 2002 [16] enabled the use of arbitrary sizes and shapes
in 2Dwith the ability to model large systemswith a low com-
putational effort; however, the pixelisation of particles and
their boundaries presents consistent limitations when study-
ing contact problems.
Discrete element methods (DEM) are specific to the anal-
ysis of multi-bodies, relying on a low computational effort
and enabling simulations with large sets of particles. Hence,
research onmultibody contact heat transfer with discrete ele-
ments has been very active in the past 25 years. A large range
of publications treated as the heat conduction across ran-
domly packed spheres, in 1990 Jagota et al. [15], established
a method to determine the effective thermal conductivity of
a packing of spheres. Following this direction, Argento and
Bouvard [2] pioneered the use of FEM model for the defor-
mation of spheres in contact. Hence, linkage between the
contact area and the heat resistance is important. Cheng et al.
modelled heat transfer in mono-sized spheres in the presence
of a stagnant fluid [7]. Siu and Lee [30] presented in 2004 a
three-dimensional model for randomly packed spheres. Feng
et al. [9,10] developed a pipe network model to simulate
heat transfer in large numbers of circular particles in 2D
that represent infinite or long pipes. Rickelt et al. [25,26]
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developed a radial temperature model that allows to simulate
granular systems of particles of different sizes and materi-
als, enabling the use of DEM in various applications. Gan
et al. [11] extended DEM to simulate contact heat trans-
fer in packed and fluidized beds of ellipsoids. However, the
abovemethods are restricted to the analysis of simple-shaped
particles (spheres, discs, cylinders, ellipsoids, etc.) in past.
Although DEM extends its capabilities to simulate complex
shapes using superquadrics [1], polyhedral DEM for convex
[13,29] and non-convex particle shapes [12], clustered sphere
[8], etc., it still relies on the assumption that the temperature
is uniform within each particle which is not valid in some
configurations as this present paper will highlight. For more
complex contact conditions, it is very difficult to provide an
accurate solution using DEM. Finally, to compute the heat
distribution within each particle, DEM models rely, when
available, on extra analytical solutions [9,10,25,26]. Scherer
et al. [28] concluded the best solution might be to use FDEM
which can be used to describe particle deformation. But to
the best knowledge of the authors, FDEM has not yet been
applied to thermochemical problems within DEM.
This paper presents a new approach for three-dimensional
multibody contact heat transfer using the FDEM approach
[20] where discrete particles are described with FEM mesh
and interactions between them are treated with the DEM
approach. The contact interactions between discrete bodies
are calculated via the penalty function method [21] relying
on the overlap between the contacting discretemeshes. Using
this existing algorithm, the presented method evaluates the
apparent contact surface area from the contact overlap of
discrete meshes. Contact heat flux is calculated from the
boundary temperatures of the solids involved in the con-
tact. Moreover, this method possesses the advantage of being
suited to simulating an accumulation of particles of any sizes
and shapes for which the heat distribution within a particle
may be an important feature. (This in contrast to DEM but
comes at a higher computational cost.)
This paper unfolds as follows: Firstly, the theory of standard
heat conduction and contact heat transfer in the FDEM code
is presented in Sect. 2 and 3 and then validated in Sect. 4;
secondly, the FDEM contact model is compared to a DEM
pipe network contact model [9,10] in Sect. 5. Finally, the
code’s ability to model complex configurations of particles
is demonstrated in Sect. 6.

2 Finite element equations for heat transfer

2.1 Problem Statement—This section presents
modified equations from [23]

Let us consider an isotropic body with non-temperature-
dependent heat transfer properties. A basic equation of heat

transfer has the following form:

−
(

∂qx

∂x
+ ∂qy

∂ y
+ ∂qz

∂z

)
+ Q = ρc

∂T

∂t
(1)

With qx ,qy,qz components of the heat flow through an unit
area, Q is the inner heat generation rate per unit volume; ρ

is the material density; c is the heat capacitance; T is the
temperature field; and t is time. According to Fourier’s law,
the components of the heat flow can be expressed as follows:

qx = −k
∂T

∂x
, qy = −k

∂T

∂ y
, qz = −k

∂T

∂z
, (2)

The thermal conductivity coefficient of the media is noted k,
and the combination of these equations yield the following
basic heat transfer equation:

k

(
∂2T

∂x2
+ ∂2T

∂ y2
+ ∂2T

∂z2

)
+ Q = ρc

∂T

∂t
(3)

We then consider the following boundary conditions:

– The initial temperature T (x, y, z, t = 0) = T0(x, y, z),
– Specified temperature or Dirichlet boundary condition

Ts = T (x, y, z, t) on surface boundary Γs ,
– Specified heat flux orNeumann boundary conditionqh =

−(qxnx + qyny + qznz) on Γh ,
– Contact heat flux qc on contact surface boundary Γc,
– Convection boundary condition qcv = h ΔTsolid−env on
surface boundary Γcv . ΔTsolid−env being the temperature
difference between the solid and the temperature of the
environment in which the solid is placed, h is the heat
convection coefficient.

2.2 Finite element discretisation

The domain V is divided into finite elements connected at
nodes; the boundary of the domain is noted Γ . Interpolation
functions are used for calculation of temperature inside each
finite element composed of ne nodes:

T = N{T }�,N = [N1 N2 · · · Nne ], {T } = {T1 T2 · · · Tne }
(4)

T is the matrix of temperature distribution inside the finite
element, {T } is the vector of temperatures at the nodes, andN
is the interpolation or shape functionmatrix. In this study, we
use four-noded tetrahedral elements, and the corresponding
shape function is:

N1 = ζ1, N2 = ζ2, N3 = ζ3, N4 = ζ4 = 1−ζ1−ζ2−ζ3

(5)
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With ζne the isoparametric coordinates so that ζ1 + ζ2 + ζ3 +
ζ4 = 1. The spatial gradient of the shape function B is:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂T
∂x

∂T
∂ y

∂T
∂z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1
∂x

∂N2
∂x · · ·

∂N1
∂ y

∂N2
∂ y · · ·

∂N1
∂z

∂N2
∂z · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

{T } = B{T } (6)

Similarly to temperature, the source term is declined in nodal
values:

Q = N{Q}�, {Q} = {Q1 Q2 · · · Qne } (7)

Wehave the following equation for a finite element of volume
V :

∫
V

(
k
∂T
∂x

+ k
∂T
∂ y

+ k
∂T
∂z

− Q − ρc
∂T
∂t

)
dV = 0 (8)

Applying the finite element discretisation yields:

∫
V

[
k∇(Bi j Ti ) − Qi Ni − ρc

∂Ti
∂t

Ni

]
dV = 0 (9)

where i = 1, . . . , ne represent each set of equations in the
finite element. Applying the divergence theorem yields:

∫
V
Bi j B ji Ti dV +

∫
Γ

{qi }{ni }� Ni dΓ

= ρc
∫
V

∂Ti
∂t

Ni dV +
∫
V
Qi Ni dV (10)

with

{qi } = [
qxi q y

i qzi
]
, {ni } = [

nxi nyi nzi
]

(11)

where {ni } is an outer normal to the surface of the body. Also,
it is worth noting that

{qi } = −k Bi j Ti (12)

After insertion of boundary conditions into Eq. 10 and using
Eq. 12, the discretised equations are as follows:

ρc
∫
V

∂Ti
∂t

Ni dV − k
∫
V
Bi j B ji Ti dV

= −
∫
V
Qi Ni dV +

∫
Γh

qhi Ni dΓ

−
∫

Γc

qci Ni dΓ −
∫

Γcv

qcvi Ni dΓ

(13)

Finally, we obtain the following condensed expression of the
finite element model:

Mi j Ṫi + Ki j Ti = BQ
i + Bh

i + Bc
i + Bcv

i (14)

Mi j = ρc
∫
V

Ni N j dV (15)

Ki j = k
∫
V

Bi j B ji dV (16)

BQ
i = −

∫
V
Qi (x, y, z, t) Ni dV (17)

Bh
i =

∫
Γh

qhi Ni dΓ (18)

Bc
i =

∫
Γc

qci Ni dΓ (19)

Bcv
i =

∫
Γcv

qcvi Ni dV

= −
∫

Γcv

h ΔTsolid−env Ni dΓ (20)

2.3 Thermal contact

The heat flux across the apparent surface area of two solids
in contact is defined as follows:

qc = ΔTc
Rc

(21)

in which Rc is the contact heat resistance and ΔTc the appar-
ent temperature drop at the contact. This definition introduces
a fictional apparent temperature drop at the interface. In
reality, there is no real discontinuity of the temperature dis-
tribution through the solids’ contacts. There is a continuous
distribution of temperature extending through the contact
interface from both solids. As shown in Fig. 1, defining
the temperature drop as the difference in the temperature
obtained by extrapolating the temperature profiles in the two
regions of the interface enables the use of the contact heat
resistance to simplify the complex heat processes occurring
at the boundary.

2.4 Temporal integration

The differential Eq. 14 needs to be integrated with respect to
time to obtain a transient solution of the heat equation. As
defined in [18], the θ -family time integration methods are of
the most commonly used:

{T }n+1 = {T }n +Δt[(1− θ){Ṫ }n + θ{Ṫ }n+1], 0 ≤ θ ≤ 1

(22)
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Fig. 1 Definition of the contact temperature drop, from [19]

The term {Ṫ }n is obtained from solving Eq. 14. For θ = 0,
we obtain the explicit forward difference scheme:

{T }n+1 = {T }n + Δt {Ṫ }n (23)

For different θ > 0, the above equation will refer to mixed
implicit–explicit methods. For θ = 1, we obtain the fully
implicit backward difference (or backward Euler) method
which is unconditionally stable, i.e. there is no restriction on
the time step size. The theta method offers a large range of
options for solving steady state and transient contact prob-
lems, as the final temperature distribution can be obtained in
one iteration (θ = 1), and different transient states can be
computed with accuracy (θ > 0).

3 A new contact heat transfer method

3.1 Contact surface area

The presented method evaluates the contact area between
two contacting solids based on the penetration of boundary
meshes, see Fig. 2. This surface calculation method is based
on the routines of the Y code developed by A. Munjiza [20].
A contact surface is obtained for both solids, and the over-
all contact surface is the average of these two values. The
method selects a couple of contacting elements, one is called
the contactor element, and the other one is called the target
element. The boundary surface of the target element in con-
tact with the whole contactor element’s volume is calculated,
and then the opposite calculation is performed. Each solid is
meshed with four-noded tetrahedral elements, the algorithm
loops on each face of the target element, and the intersection
surface with the contactor’s volume is drawn on each target’s
face (and vice versa), see Fig. 3a.

Fig. 2 Contact overlap between two solids’ boundaries

Two surface areas are obtained, one describing the contact
area on the target, the other on the contactor, which we call,
respectively, Star and Scon, the contact area is set to be the
average of these two. Note that only the faces of the target
element located on the boundary of the solid can be selected
for surface calculation. Figure 4 shows boundary elements
from a first solid A contacting a boundary element from
a second solid B. For purposes of explanation of the sur-
face calculation, consider the blue element to be the target
element and red elements to be selected successively as con-
tactor elements; also note that the relative penetration size has
been intentionally exaggerated on the figures. Then, consider
that the target element from solid B possesses only one face
located on the boundary of solid B; this face is highlighted in
Fig. 3b. The algorithm will intersect this face with all three
contactor element volumes from solid A in order to recon-
struct the surface area of contact; therefore, three Starcontact
areas are obtained, see Fig. 3c. At last, the opposite calcula-
tion is performed, and surfaces Scon are obtained.

3.2 Computation of heat fluxes

Heat fluxes are calculated between each couples of contacting
tetrahedral elements from two contacting solids meshes. The
total contact heat flux temperature contribution of Eq. 14 is
for a finite element:

Bc
i =

nc∑
k=1

Bc,k
i = 1

3Rk
c
ΔT k

c Skc (24)

where nc the number of contacts for which node i is involved
in. The contribution is equally distributed between the three
surface nodes of each contacting tetrahedron; hence, we have
a 1
3 factor. S

k
c is the contact surface of the k contact, being the

average between the contactor’s and the target’s overlapping
boundary surfaces:
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Fig. 3 Element contact

Skc = 1

2
(Sktar + Skcon) (25)

Figure 5 shows the contact heat transfer for two isolated con-
tacting tetrahedral elements. The nodal heat flux contribution
for the contacting surfaces (T12, T13, T14) and (T21, T22, T24)
is the following for nodes T12, T13 and T14:

Bc
1=

1

6Rc

(
T12+T13+T14

3
− T21 + T22 + T24

3

)
(Star+Scon)

(26)

And for nodes T21, T22 and T24:

Bc
2 = −Bc

1 (27)

We can summarise themethodwith the following expression:

Bc
i =

nc∑
k=1

1

18Rk
c

4∑
l=1

(T k
con,l − T k

tar,l) (Sktar + Skcon) (28)

Fig. 4 Element-to-element surface calculation for two contacting solids

where T k
con,l and T k

tar,l the nodal temperatures of the target
and the contactor elements involved in the k contact.

3.3 Contact interactionmatrix

Pursuing the objective of solving large complex contact heat
transfer problems in a minimum time, the PETSc tool-kit
for scientific computation is solving the general heat transfer
differential Eq. 14 which was implemented in our program.
In order towrite Eq. 28 in amatrix form,we define the contact
interaction term Bc

i as follows:

Bc
i = Chi j Ti (29)

where Ch is the contact heat transfer interaction [ne; ne]
sparsematrix containing node interactions between elements
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Fig. 5 Nodal temperatures of two overlapping tetrahedral elements

of separate bodies,ne, the total number of nodes of the studied
contact problem. We can decompose the contact interac-
tion matrix into a sum of nc sub-sparse interaction [ne; ne]
matrixes:

Chi j =
nc∑
k=1

1

18Rk
c
Cki j (Sktar + Skcon)

Cki j = +1 i f i = j

Cki j = −1 i f i �= j

(30)

where i, j ∈ [1, 2, . . . , ne] nodal indexes of the target and
contactor elements of the considered contact couples.

3.4 Calculation procedure

The presented thermal contact model is integrated into the
FDEM framework and follows the following procedure:

1. Contact detection
2. Contact interaction

(a) Surface calculation
(b) Computation of heat fluxes
(c) Construction of the contact interaction matrix

3. Solving of the thermal equation
4. Solving for deformation and motion

3.5 Algorithm limitations

This algorithm excels in capturing the surface area of con-
tact as the intersection polygon is drawn across the elements
faces; however, in the event ofmodelling solidswith complex
shapes and curves, the surface area calculation can only be
as good as the mesh approximation of the solid’s boundary.
In addition, the surface of contact is linked to the amount
of mesh penetration which depends on the penalty func-
tion. Depending on the configuration of the contact (edge
to edge, edge to surface or surface to surface), the penalty

function may or may not influence the surface of contact in
a significant manner, and further research on this topic is
necessary. Nevertheless, the method remains conservative;
the contact heat flux distribution is bound to be equal and
opposite between two solids as the same quantity of heat is
exchanged over the same area.

4 FEM and FDEM perfect contact conduction
validation

In this section, we validate the finite element conduction heat
transfer through one continuous solid and the contact heat
transfer across two contacting solids with a perfect contact.
Results are comparedwith a one-dimensional analytical solu-
tion for conduction in solids.

4.1 Analytical solution

Consider a finite slab of length L, the solid is of an initial
temperature of T0. The left side of the slab is insulated, while
the right side is exposed to a Dirichlet boundary condition
of an imposed temperature TD, see Fig. 6. There is no inner
heat generation in the slab. The one-dimensional transient
conduction equation for this problem is:

∂2T

∂x2
= 1

α

∂T

∂t
, α = c

k
(31)

where α the thermal diffusivity, k the thermal conductivity
and c the thermal capacity. The solution given in [5] is of the
form:

θ =
∞∑
n=1

4 sin(n − π/2)

2(n − π/2) + sin[2(n − π/2)]
cos[(n − π/2)X ]e−(n−π/2)2Fo

θ = T − TD
Ti − TD

X = x

L

Fo = αt

L2 (32)

4.2 Perfect contact validation

For the FEM simulation, we build a 3D bar of a length of 1m,
see Fig. 7a and b. The solid bar has an initial temperature of
0◦ C, and a temperature of 1◦ C is imposed at the right-hand
end face of the bar, and the rest of the faces are insulated.
The FDEM simulation is a composition of two 0.5 m bars
contacting at one end, and the amount mesh of penetration is
of 0.001m, see Fig. 7c and d. The solid bars have an initial
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Fig. 6 Boundary conditions for heat conduction in a slab

temperature of 0◦ C, and a temperature of 1◦ C is imposed
at the right-hand end face of the right-hand bar; the contact-
ing faces have a contact heat flux boundary condition, and
the rest of the faces are insulated. The two solid meshes are
overlapping and heat is flowing in the longitudinal direction,
as shown in Fig. 8. To simulate a perfect contact, the heat
resistance is set to a relatively low value (Table 1) . Simula-
tions are performed with two different mesh sizes, 5.10−2 m
and 1.10−1 m. Results show a very good agreement and are
presented in Figs. 9, 10 and Table 2. It is worth noting that
the computational costs are relatively high for the number
of finite elements considered; this is undoubtedly due to the
fact that a matrix system of equations is solved at each of
the 200,000 time increments. This numerical scheme will

Table 1 Simulation parameters for the FEM configuration

Bar width (0.1 m)

Time step (5 × 10−4s)

(k) (1 W(mK)−1)

(c) (1 JK−1)

Density (100 kgm−3)

(Rc) (FDEM only) 0.001 m K W−1

Fig. 8 FDEM contact overlap close-up

prove its efficiency when handling large systems of particles
(see Sect. 6); for simpler configurations, one may use a ‘fully
explicit’ time marching procedure as traditionally employed
in the FDEM method.

Fig. 7 FEM and FDEM
configuration for validation test
with the 5.10−2 m mesh
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Fig. 9 Temperature profiles for the analytical solution, FEMandFDEM
simulations at times 10s, 50s and 100s with 5.10−2 m mesh size

Fig. 10 Temperature distributions for FEM (above) and FDEM (below)
at 50s with 5.10−2 m mesh size

5 Validation versus 2D Pipe networkmodel

5.1 The pipe networkmodel (Y. T. Feng 2009 [10])

5.1.1 Model description

The pipe network model presented by Y.T. Feng [9,10] is
designed for the modelling of large numbers of circular par-
ticles in 2D as it would represent long or infinite pipes. This
method is presented in the culture of the discrete element
method and is introduced here to form the basis of a valida-
tion study of the new FDEM method. Consider two circular

Fig. 11 Contact heat flux for the discrete thermal element, modified
from [9]

particles A and B having respectively TA and TB as average
temperatures; the thermal resistances of the two pipes are,
respectively, RA and RB . The total thermal resistance is:

RAB = RA + RB + R∗
c (33)

where R∗
c the contact thermal resistance for the pipe network

model. The contact zone of the discrete thermal element is
represented by an arc on the boundary of the element which
is defined with its half angle αi , see Fig. 11. For angles of
contact below 30◦, the discrete element thermal resistance
can be approximated with high accuracy by the formula:

RA = 1

πkA

(
−lnαA + 3

2
+ α2

A

36

)
(34)

where kA, the thermal conductivity of particle A.
The boundaries of the particles are insulated and heat

transfers only through the contact zone. For two contacting
discrete thermal element (see Fig. 12), the heat flow between
the two particles QAB is defined as follows :

(TB − TA) = RAB QAB (35)

Table 2 Average error of FEM
and FDEM simulations in the
analytical solution

Times Average absolute error

Mesh size: 1.10−1 m Mesh size: 5.10−2 m

FEM FDEM FEM FDEM

10 s 0.642 % 0.489 % 0.077 % 0.167 %

50 s 0.009 % 0.098 % 0.005 % 0.050 %

100 s 0.005 % 0.035 % 0.003 % 0.018 %

Computational
run times (min)
Intel Xeon (R)
CPU E5-2630
2.30 GHz proces-
sor

2.30 5.10 21.40 31.50

123



Computational Particle Mechanics

Fig. 12 Pipe network model: two particles with thermal contact, mod-
ified from [10]

5.1.2 Transient analysis

The forward difference explicit time integration will be used
to solve the transient problem. For this test case, the same
method is employed for the FDEMcontact algorithm (θ = 0,
see Eq. 23); therefore,

CAṪ 0
A = QAB (36)

ṪA being the time derivative of the average temperature and
CA the total heat capacity of the particle:

CA = πρcpr
2
A (37)

where cp the heat capacity and rA the particle’s radius.

5.2 Model adjustment

Asdemonstrated byEqs. 21, 14 and 35, 36, the FDEMand the
pipe network model approaches for the heat resistance differ,
and therefore an adjustment is required. The same contact
heat flux contribution needs to be taken into account the heat

Table 3 Simulation parameters for the FDEM two-particle configura-
tion

r 1 m

Mesh type Linear tetrahedral elements

Mesh size 8 × 10−2 m

Time step 1.0 × 10−3 s

Contact heat resistance 1 mK.W−1

k 1 W.(mK)−1

c 1 J.K−1

Density 100 kg.m−3

Mesh penetration, p 1.0 ∗ 10−2 m

Computed contact surface 1.925 ∗ 10−2 m

Initial temperature particle A 0◦C
Initial temperature particle B 1◦C
Particle width L 1 m

Fig. 14 Average temperature evolution of particle j over time

Fig. 13 FDEM mesh of two
contacting cylindrical particles
with a contact overlap
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Fig. 15 Initial, transient and
final state of the pipe network
validation simulation

diffusion equation; therefore, the following condition has to
be fulfilled:

QAB = 1

wcyl
Bc (38)

The left-hand side of the above equation is the heat flux con-
tribution from the pipe network model extended from a 2D
disc to an hypothetical 3D cylinder of a width represented by
wcyl ; the right-hand side corresponds to the FDEM model.
Therefore, we write:

T 0
B − T 0

A

RAB
= 1

wcyl

ΔTc Sc
Rc

(39)

We can also write:

RAB = Rc wcyl

Sc
− RA − RB (40)

This conclusion also implies that TB −TA = ΔTc, i.e. the
particle average temperature difference is equal to the local
temperature difference at the contact zone and such is the
main approximation of the discrete element approach; this
condition will only be verified when the thermal conductivi-
ties are high compared to the contact heat resistance. Tomake
sure this assumption is acceptable in the following simula-
tion, in addition to theΔTc local temperature gap calculation,
a ΔTc calculation based on the particle average temperature
difference has also been implemented in FDEM, the code to
compare with the pipe network model.

5.3 FDEM contact simulation settings

In order to make possible a comparison between the simula-
tion of the 2D problem of two contacting discs and the new
3D contact heat transfer FDEM, we define two contacting
thin cylinders of the same radius r and width wcyl . The two

finite elementmeshes are overlapping at the contact zone, see
Fig. 13. Simulation parameters are summarised in Table 3.
Two different FDEM simulations were performed, the first
with a contact heat flux calculated with the local tempera-
tures, the second calculated with the average temperatures.

The accuracy of the computed contact surface Sc is vali-
dated against a theoretical surface formula Sthc obtained from
the overlap of two circles:

sin αth
A = 1

2 d rA

(
4 d2 r2A − (d2 − r2A + r2B)2

)
(41)

Sthc = 2 αth
A rA L (42)

where d = rA + rB − p, p being the penetration of the two
meshes. For the actual configuration, the theoretical surface is
Sthc = 0.02m2, and the error of the computed contact surface
is therefore of 4%. Again that error is only due to the finite
element approximation of the domain. Contact surface error
reduces to 0.4%with a two-time smaller mesh. Nevertheless,
to reduce errors for this validation test, the computed contact
surface is transformed into the equivalent contact half angle
and then imputed in the pipe network model by means of the
formula:

αA = Sc
2 wcyl rA

(43)

The two particles with different temperature are in contact
initially. Figure 14 shows the evolution of the temperature
changes against time. Results of the temperature are pre-
sented for particle B in Fig. 14. We obtain an average error
of 7.6 % between the pipe network model and the origi-
nal FDEM (with a local temperature difference) against an
average error of 0.63%with FDEMwith the particle average
temperature difference. In this configuration, it is evident that
the main assumption of the pipe network model, being the
consideration of the particle’s temperature to be uniform, is
not valid as the heat conductivity is relatively small (Fig. 15).
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Fig. 16 Average temperature evolution of particle j over time with an
increased heat conductivity

Fig. 17 Particle mesh (metal nut shape) composed of 192 tetrahedral
finite elements

We consider now the same configuration with a heat con-
ductivity a hundred times greater, and results are presented
in Fig. 16. In this case, both FDEM simulations produce
the same result with an average error of 0.7 %; hence, the
pipe network approximation can here be considered valid.
In summary, the foregoing examples show that when signif-
icantly varying temperatures exist in the contacting bodies,
the FDEM code can capture the complexity of the time his-
tory, giving quite different results when the assumption of
average temperature within the particle is imposed.

Table 4 Simulation parameters of the multibody simulation

Nut inner radius 0.026 m

Nut outer width 0.04 m

Container inner diameter 0.45 m

Container wall thickness 0.02m

Contact heat resistance 0.01 mKW−1

Heat conductivity k 0.001 W.(mK)−1

Heat capacity c 1 J.K−1

Density 1000 kg.m−3

Young’s modulus 7.5 GPa

Poisson’s ratio 0.22

Penalty force 0.75 MPa

Time step size 1s

Number of time steps 80

6 Multibody simulation

This section presents a static multibody heat transfer simula-
tionwith 2000 particles packed up into a cylindrical container
which is heated from the outside. To obtain such a configura-
tion, the particles are dropped into the container usingFDEM.
After all the particles are deposited, a fixed temperature
boundary condition of 300◦C is applied to the container. Note
that for this simulation, only heat conduction heat transfer
is considered. Moreover, the system is static during heating
because thermal expansion effects are not taken into account.
The deposited particles are in the shape of a metal nut, and
their mesh is composed of 192 elements (see Fig. 17). Simu-
lation properties are listed in Table 4. Finally, Figs. 18 and 19
show the heat transfer simulation with the nut particles being
heated up from 0 to 300◦C (Fig. 20).

7 Conclusion

Anew3Dapproach is presented in this paper, first with a one-
dimensional heat conduction validation test that has proven
to give very accurate results. However, we are aware that this
simulation was for a perfect contact; thus, a very low con-
tact resistivity was chosen. For this reason, the temperatures
on both sides of the contact zone are almost the same and
we have a temperature continuity; thus, FEM and FDEM
produce a very similar result. This first validation case is
strengthened with a second successful one which is a real-
istic contact problem as a higher thermal resistivity is set.
The FDEM approach has offered here more flexibility than
a discrete element approach as it can consider cases where
the average temperature is not representative of the problem.
Thismeans FDEMcanmodel problemswith extreme bound-
ary conditions and complex particle heat distributions with
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Fig. 18 Thermal simulation
set-up of 2000 nut particles
inside a cylindrical container
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Fig. 19 Heating up simulation
of 2000 nut particles as
performed on a Intel Xeon (R)
CPU E5-2630 2.30GHz
processor (cross section view)
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Fig. 20 Heating up simulation
of 2000 nut particles as
performed on a Intel Xeon (R)
CPU E5-2630 2.30 GHz
processor
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accuracy. Finally, as the multibody simulation demonstrates,
FDEM can handle large sets of particles and compute the
thermal distribution at desired times. The strength of FDEM
is also that it can be coupled with existing fracture, plasticity
and thermal expansion models. Hence, it is critical for the
future of this method to provide a more detailed understand-
ing of the linkage between contact force and heat resistance
which has been so far been neglected in thiswork and requires
further theory and method for implementation.

8 Future work

As the FDEM method presented here is already capable
of tackling multibody dynamic problems, future work will
include such simulations with heat transfer. We have pre-
sented here the process to capture the contact area of two
penetrating meshes; however, it is dependent on the penalty
function method [21] and the amount of mesh penetration.
Hence, it is important to investigate the sensitivity of the
surface calculation to the mesh penetration. The role of the
penalty function is to calculate element-to-element intersec-
tion for the contact force. Therefore, it will be powerful to
insert in this method an empirical law linking the element-to-
element intersection to the heat resistance and contact surface
such as in Bahrami et al. works [3]. Finally, the contact heat
transfer method will be validated further in more complex
configurations and with experimental results. To validate the
contact heat transfer, suitable experiments can be selected
from those performed in a vacuum [6] or where conduction
heat transfer is largely dominant [32].
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