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Abstract
This paper presents a new three-dimensional thermo-mechanical (TM) coupling approach for thermal fracturing of rocks in
the finite–discrete element method (FDEM). The linear thermal expansion formula is implemented in the context of FDEM
according to the concept of the multiplicative split of the deformation gradient. The presented TM formulation is derived
in the geo-mechanical solver, enabling thermal expansion and thermally induced fracturing. This TM approach is validated
against analytical solutions of the Cauchy stress, thermal expansion and stress distribution. Additionally, the thermal load on
the previously validated configurations is increased and the resulting fracture initiation and propagation are observed. Finally,
simulation results of the cracking of a reinforced concrete structure under thermal stress are compared to experimental results.
Results are in excellent agreement.

Keywords Thermo-mechanical (TM) · Finite element method (FEM) · Discrete element method (DEM) · Finite–discrete
element method (FDEM) · Thermal cracking · Explicit method · Fracture model

1 Introduction

Thermally induced deformations and fracturing are signif-
icant concerns in many engineering fields such as engine
design, nuclear fission reactors, geothermal energy, hydro-
carbon production and radioactive waste disposal. When a
material is exposed to a temperature gradient, it will deform
and cracks may appear, the prediction of those cracks is key
in making robust, efficient and safe designs. In geothermal
energy exploitation, the injection cycles of cool water in the
hot reservoir are likely to induce fractures [37], and in hydro-
carbon production, thermal shocks are found to enhance the
hydraulic fracturing efficiency [6]. In such applications, the
fractures increase the permeability of the reservoirs and have
a positive influence on production. On the contrary, in the
context of radioactive waste disposal fractures are unde-
sirable as initiating new cracks in the rock is potentially
creating new flow pathways for radionuclides to be trans-
ported into the biosphere. As high temperatures are expected
in the vicinity of a geological disposal facility (GDF), pre-
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dicting thermally induced deformations and failure is of
importance for safe disposal of the radioactive waste. In
radioactive repository applications, the major heat-driven
process is the thermal expansion of the rock. Thermal expan-
sion is a strongly coupled process because it requires the
mechanical equations to be modified. A typical granite has a
coefficient of thermal expansion of 8× 10−6/◦C. For a tem-
perature rise of 50 ◦C, this is equivalent to a 0.015% volume
change. Although a ground surface uplift of up to a few tens
of centimetres is expected above the GDF [13,31], large ther-
mal stresses will be localised near the deposition holes. This
is because significant thermal gradients will only be found
within a few tens of metres from the heat source [13]. In
the vicinity of a deposition hole, thermal stresses will influ-
ence the porosity of the media and the fracture apertures.
For a horizontal deposition hole, the generated horizontal
thermal stress is expected to close up vertical fractures and
thus to reduce the overall hydraulic transmissivity of the rock
[3,24,25].

The thermo-mechanical coupling is a common feature
among numerical simulators but thermally induced frac-
turing can only be performed with methods that represent
fractures explicitly. Some research groups developed TM
models for thermal fracturing based on: the extended finite
element method (X-FEM) [5,17,38], the boundary element
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method (BEM) [8,23,26] and the discontinuous deforma-
tion analysis (DDA) [14]. However, these methods do not
consider the effect of the thermal contacts in a multibody
system, e.g. contact between two fracture walls, or heat
resistance due to contact of two solid bodies, etc. In the
last two decades, thermo-mechanical coupling and thermal
fracturing capabilities were increasingly developed within
the particle-based method, a sub-class of distinct element
methods (explicit DEM), originally developed to model the
behaviour of granular materials [4]. In particle-based meth-
ods, the discrete elements are typically discs in 2D and
spheres in 3D. They are considered rigid; thus, only the
element interaction needs to be solved. As a result, this
method benefits from a low computational cost and large
number of particles can be used. This makes particle-based
methods advantageous in micro-fracturing where the parti-
cle approach is a good approximation of the microstructure
of rocks [16]. To model fracture mechanics in particle-based
methods, Potyondy et al. [21] developed a bonded particle
model (BPM) where intact materials are represented by an
assembly of bonded particles which may break under certain
stress intensity.Within this framework,Wanne et al. [30] pro-
posed an extension of the BPMwith thermo-elastic bonds for
the thermal fracturing of granites. To resolve heat conduction
in the particle system, Feng et al. [7] presented a 2D model
where contacting circular particles share heat flux bondswith
their neighbours; such models also exist in 3D using spheri-
cal particles [22]. When combining the thermal and bonded
particle type of models, thermal fracturing was achieved by
Xia et al. [32,33] for circular particles and by Andre et al. [2]
for spherical particles. Among particle-based methods, we
also find the peridynamic method [27] which was the prin-
cipal advantage that its governing equations stay valid over
discontinuities. Within the peridynamics framework, Wang
et al. [29] recently developed a thermo-mechanical model for
the thermal cracking of rocks. However, particle-basedmeth-
ods rely on the assumption that the temperature is uniform
within each particle which is not valid in some configura-
tions. To compute the heat distribution within each particle,
particle-based methods rely, when available, on extra analyt-
ical solutions.

Recently, Yan and Zheng [35,36] developed a coupled
thermo-mechanical model based on the FDEM with demon-
stration of thermal fracturing in both two and three dimen-
sions. They demonstrated that simulation results were in
good agreement with the analytical solutions and experi-
mental results. However, the expression of the thermal stress
used in their paper (equation 50) belongs to the infinitesimal
strain theory in which the displacements of the solid body
are assumed to be much smaller than any relevant dimen-
sion of the body. In order to deal with large strains and/or
rotations (as often arise in FDEM application fields) which
invalidate assumptions inherent in infinitesimal strain the-

ory, this paper presents a novel thermo-mechanical coupling
formulation in three dimensions for the large strain FDEM
with thermally induced fracturing. This model is also consis-
tent with a considerable body of FDEM theory [12,28], i.e.
themultiplicative decomposition of the deformation gradient
tensor, which specifically adopts finite strain theory based
on the left Cauchy–Green tensor for a consistent Cauchy
stress calculation that takes into account the dissipative part
of the thermal stress. The thermal model introduced in [15]
is coupled with the existing finite strain model of the FDEM
approach [34] and its fracture model [9]. The thermo-elastic
theory for large deformations is presented first, then the ther-
mal stress is validated against analytical solutions and finally
a three-dimensional validation of thermally induced fractur-
ing is presented.

2 Thermo-elastic theory for finite strain
FDEM

2.1 Deformation gradient F

WedefineX as the vector of the initial positions in the element
and x the vector of current positions [34], and we write:

X =
⎡
⎣
X
Y
Z

⎤
⎦ = XonN (1)

x =
⎡
⎣
x
y
z

⎤
⎦ = xcnN. (2)

N = [N1 N2 ... Nne ] is the shape function or interpolation
function, ne is the number of nodes in the element and Xon

and xcn are, respectively, the original and current position
arrays

Xon =
⎡
⎣
X1 X2 . . . Xne
Y1 Y2 . . . Yne
Z1 Z2 . . . Zne

⎤
⎦ (3)

xcn =
⎡
⎣
x1 x2 . . . xne
y1 y2 . . . yne
z1 z2 . . . zne

⎤
⎦ . (4)

The deformation gradient tensor links the current position to
the initial element positions:

F = ∂x
∂X

= xcn
∂N
∂X

. (5)

The determinant of the matrix F is called the Jacobian

J = det(F). (6)
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From here, we define the left Cauchy–Green tensor:

B = FF�. (7)

2.2 Velocity gradient L

We introduce the velocity vector as

v =
⎡
⎣

vx
vy
vz

⎤
⎦ = vcnN. (8)

With vcn ,

v =
⎡
⎣

vx,1 vx,2 . . . vx,ne
vy,1 vy,2 . . . vy,ne
vz,1 vz,2 . . . vz,ne

⎤
⎦ = vcnN. (9)

The velocity gradient is

L = ∇v = ∂v
∂x

= vcn
∂N
∂x

. (10)

We can also write the velocity gradient in terms of the defor-
mation gradient with

Ḟ = ∂F
∂t

= ∂

∂t

(
∂x
∂X

)
= ∂

∂X

(
∂x
∂t

)
= ∂v

∂X
(11)

Ḟ = ∂v
∂X

= ∂v
∂x

∂x
∂X

. (12)

Hence,

Ḟ = L.F. (13)

And

L = Ḟ.F-1. (14)

Finally, we write the rate of deformation matrix as:

D = 1

2
(L + L�). (15)

2.3 Thermal expansion

The law of heat conduction, also known as Fourier’s law,
is implemented to simulate the temperature distribution
within the solid (see detailed implementation in [15]). The
linear thermal expansion coefficient corresponds to the one-
dimensional change in length for a given temperature change
and is noted α. According to the concept of multiplicative

split of the deformation gradient [28], the deformation gra-
dient may be decomposed into a thermal component FT and
an elastic Fe component:

F = FTFe (16)

with

FT = Υ (T )I. (17)

For an isotropic material, Υ = Υ (T ) is the ratio linking
the variation of temperature to a deformation in a principal
direction and I is the identity matrix. We also deduct from
the expression of the velocity gradient (14) that

LT = Υ̇

Υ
I = 1

Υ

∂Υ

∂t
I = 1

Υ

∂Υ

∂T

∂T

∂t
I. (18)

Consider now the volume VT resulting from a thermal expan-
sion event of an initial volume V0 from a temperature T0 to
T

dVT = det(FT )dV0. (19)

According to the relationship J̇ = J . tr(L) [20], the time
derivative of the above expression is:

d

dt
(dVT ) = tr(LT )dV0. (20)

Integrating equation 18 yields

d

dt
(dVT ) = 3

Υ

∂Υ

∂T

∂T

∂t
dV0. (21)

The traditional temperature-dependent thermal expansion
coefficient is:

α(T ) = 1

Υ

∂Υ

∂T
. (22)

Hence,

d

dt
(dVT ) = 3α(T )

∂T

∂t
dV0. (23)

Integrating equation 22 over the temperature change gives

Υ (T ) = exp

(∫ T

T0
α(T )dT

)
. (24)

If the thermal coefficient is considered independent of tem-
perature i.e. α(T ) = α and α|T − T0| << 1, we can admit
the following approximation [28]

Υ (T ) = 1 + α�T , �T = T − T0. (25)
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Fig. 1 Cohesive zone model. (a) Schematic model of the transition
between elastic, plastic and broken zones, (b) representation of the cohe-
sive zone model in FDEM [11]

2.4 Thermo-elastic tensors

Let us now rewrite the previous tensors in terms of the
thermo-elastic decomposition. We start with developing
equation 25 into equation 16

F = (1 + α�T )Fe. (26)

Table 1 Mechanical and thermal parameters for validation, material
properties of concrete taken from [36]

Young’s modulus, E (GPa) 20

Poisson’s ratio, ν (–) 0.2

Lamé first parameter, λ (GPa) 5.56

Lamé second parameter, μ (GPa) 8.33

Thermal expansion coefficient, α (/◦C) 1 × 10−6

Temperature change, �T (◦C) 100

The Jacobian becomes

J = det(F) = det(FT ) . det(Fe) = (1 + α�T )3det(Fe). (27)

We may also write

J = JT Je. (28)

The velocity gradient tensor becomes

L = Ḟ.F−1 = [
FT Ḟe + FeḞT

][
FT Fe

]−1 = ḞT F
-1
T + ḞeF−1

e . (29)

Note that there is commutativity of the matrix product in the
above development because both FT and ḞT are a product
between a scalar and the identity matrix. We obtain

L = LT + Le. (30)

The left Cauchy–Green tensor becomes

B = FF� = FTFe(FTFe)
�. (31)

And

B = BTBe. (32)

Fig. 2 Insertion of joint
elements in 3D: a continuous
FEM formulation, b
discontinuous FEM formulation.
From [10]
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Fig. 3 Finite element model of
the cube with two different
mesh sizes

Fig. 4 Temperature versus volume change of a 1-m cube for two dif-
ferent mesh sizes

Finally, the rate of deformation matrix becomes

D = 1

2
(L + L�) = DT + De. (33)

2.5 Cauchy stress

The Cauchy stress is defined as force per unit area and is
necessary to solve themomentumequation.As given by [34]:

C = μ

J
(B − I) + λ

J
(ln J )I + CD (34)

with λ and μ being the Lamé coefficients and CD the dissi-
pative part of the stress defined as:

CD = 2ηD (35)

with η being the viscosity of the material considered.

2.6 Analysis of stress response

Now considering only internal forces caused by the thermal
expansion, we have

CT = μ

JT
(BT − I) + λ

JT
(ln JT )I + CDT (36)

with JT being the volume change induced by thermal expan-
sion:

JT = det(FT ) = (1 + α�T )3 (37)

which yields

CT =
[

μ

(1 + α�T )3
((1 + α�T )2 − 1)

+ λ

(1 + α�T )3
ln(1 + α�T )3

+ 2ηα

1 + α�T

∂T

∂t

]
I.

(38)

We can use the two above expressions to perform a validation
test, controlling the volumetric expansion with JT and the
associated stress with CT .

2.7 Fracture model

The model used to simulate thermally induced fracturing in
this paper was developed by Guo el al. [10], a novelty in the
three-dimensional FDEM. In this section, this fracturemodel
is introduced briefly. For the nonlinear fracturing process,
a cohesive zone model [18] handles the transitional elasto-
plastic behaviour of joint elements (Fig. 1).

When using the fracturemodel joint, elements are inserted
between triangular (2D) or tetrahedral finite elements (3D)
pre-simulation as shown in Fig. 2.

The joint elements are four-noded in 2D and six-noded
in 3D. They may be cohesive (i.e. unbroken) to represent
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Fig. 5 3D model of the hollow
cylinder

Table 2 Mechanical and thermal parameters for validation

Geometry

Inner radius, a (m) 0.03

Outer radius, b (m) 0.15

Height, h (m) 0.01

Mechanical

Young’s modulus, E (GPa) 20

Poisson’s ratio, ν 0.2

Internal cohesion (MPa) 20

Tensile strength (MPa) 10

Fracture penalty number (GPa) 103

Fracture normal energy release rate (J/m2) 50

Fracture shear energy release rate (J/m2) 100

Internal friction angle (◦) 30

Thermal

Thermal expansion coefficient, α (/◦C) 5 × 10−6

Initial temperature, �T (◦C) 0

Inner temperature, Ta (◦C) 0

Outer temperature, Tb (◦C) 100

the intact rock or broken to represent new or pre-existing
fractures. In tension, joint elements act as springs until they
are broken which is analogous to the approach used in the
explicit DEM codes, while in compression, joint elements
will not penetrate each other significantly because the contact
force is calculated with the penalty function method [9].

3 Validation work

The TM model has been implemented in the framework
of a solid modelling code: Solidity (Solidityproject.com)

which is an open-source, multi-purpose explicit mechani-
cal solver. Solidity can solve the mechanical equations with
a hybrid continuum (FEM)–discontinuum (DEM)—FDEM
approach; this reduces to the FEMwhen dealingwith a single
solid; FEM simulations will be referred as solving a ‘con-
tinuum’. Solidity can also solve with a fully discontinuum
explicit DEM (discrete element method) approach, i.e. the
fracture model introduced previously which will be referred
as solving for a ‘discontinuum’. In this section, the thermo-
mechanical coupling implemented in Soliditywill be verified
for both continuum and discontinuum problems.

3.1 Cauchy stress validation

To make sure that the thermo-mechanical coupling model
presented in this paper is implemented correctly, the Cauchy
stress response to a temperature change is verified. A single
finite element is fixed in all directions and subjected to a
temperature change. The Cauchy stress generated by thermal
expansion at the element level is compared to the analytical
result (Eq. 38). With the parameters given in Table 1 [36],
the Cauchy stress in all three directions is 3.332MPa and the
value computed with Solidity for one element is 3.332 MPa.
Note that we do not consider here the transient term of the
Cauchy stress which is associated with the dissipative part of
the stress and depends on how fast the temperature changes.

3.2 Thermal expansion validation

The thermal expansion of a material for a given temperature
change is verified as follows. Consider a cubical solid with
1-metre edges meshed with two different element sizes, (a)
1 m and (b) 0.1 m (Fig. 3). A simulation is performed with
the thermo-mechanical properties and temperature change
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Fig. 6 Steady-state temperature profile in the hollow cylinder

Fig. 7 Radial thermal stress σrr in the hollow cylinder

listed in Table 1. The temperature is increased uniformly
from 0 ◦C to 100 ◦C over 0.1 s with an integration time step
of 1.0 × 10−5 s for (a) and of 1.0 × 10−6 s for (b). For the
given temperature increase, the 1m3 cube expands to reach
a volume of 1 ∗ JT = (1 + α�T )3 = 1.003003m3. This
value is in accord with the simulation results for models (a)
and (b), as shown in Fig. 4; results are in agreement with the
analytical solution. Note that no significant thermal stress is
generated in this configuration because the temperature is
increased uniformly and the cube is free to expand.

3.3 Thermal stress validation: hollow cylinder

Now that the implementation of the TM model is verified;
a validation of the thermal stress field is performed. A ther-

Fig. 8 Transverse thermal stress σθθ in the hollow cylinder

Fig. 9 Transverse thermal stress σθθ in the hollow cylinder

mal gradient must be present in order to generate differential
thermal stress in the material. Consider a hollow and thin
cylinder as presented in Fig. 5, with an inner and outer radii,
respectively, a and b and a height h. A Dirichlet boundary
condition is applied on the inner boundary of the thin cylin-
der with a temperature Ta and on the outer boundary with
a temperature Tb. The faces normal to the Z direction are
considered adiabatic. For this problem, the temperature and
stress solution are given by [19]:

T (r) = Ta + (Tb − Ta)
ln a
ln b

σrr = αE
2 (Tb − Ta)

[
− ln (r/a)

ln (b/a)
+

(
1 − a2

b2

)
b2

b2−a2

]

σθθ = αE
2 (Tb − Ta)

[
− 1+ln (r/a)

ln (b/a)
+

(
1 + a2

b2

)
b2

b2−a2

]
.

(39)
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Fig. 10 Thermal fracturing of the hollow cylinder at different times
(a–c). First row is the maximal principal stress (σ1), second row is the
crack pattern, and third row is the temperature field displayed on the

continuummesh. Note that the engineering sign conventional is adopted
where tensile stress is positive and hot red colour indicates tensile stress
is generated at the outer surface in (a) top row. (Color figure online)

Fig. 11 Thermal cracking due
to differential thermal expansion
of a reinforcement embedded in
concrete [1]

To validate the above analytical solution, the hollow cylin-
der ismeshedwith 0.005mfinite elements, as shown in Fig. 5.
Note that when employing the hybrid FDEM on a single
body, the discontinuum part is not recruited and the solver
only uses the FEM. Thereby, two simulations are performed,
one with the FEM solver (referred as ‘continuum’) and other
with the explicit DEM fracturemodel (referred as ‘discontin-
uum’). Simulations are performed with an integration time

step of 5.0 × 10−9s, and the total simulation time is of
5.0 × 10−3s. Material properties and boundary conditions
are listed in Table 2. Temperature, radial and transverse ther-
mal stress results are, respectively, presented in Figs. 6, 7
and 8, and good agreement is observed between simulation
results and analytical solution.
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Table 3 Mechanical and
thermal parameters for
validation

Outer cylinder: concrete Inner cylinder: steel

Geometry

Radius (m) b = 0.15 a = 0.03

Height, h (m) 0.01 0.01

Mechanical

Young’s modulus, E (GPa) 20 40

Poisson’s ratio, ν 0.2 0.3

Density, ρ (kg/m3) 2300 2300

Internal cohesion (MPa) 20 20

Tensile strength (MPa) 10 20

Fracture penalty number (GPa) 4.103 4.103

Contact penalty number (GPa) 40 40

Fracture normal energy release rate (J/m2) 50 100

Fracture shear energy release rate (J/m2) 100 100

Internal friction angle (◦) 30 30

Thermal

Thermal expansion coefficient, α (/◦C) 7.0 × 10−6 2.2 × 10−5

Initial temperature, T0 ( ◦C) 0

Temperature increase, �T ( ◦C) 100

Fig. 12 3D model of the
concrete reinforcement

3.4 Thermal fracturing validation: hollow cylinder

Now that the stress field has been validated against Equation
39, and this analytical solution is used again to dimension a
simulation that will generate a fracture. For a tensile fracture
to appear, the thermal stress in the transverse direction (σθθ )
must exceed the tensile strength of the material. The thermal
expansion coefficient of the material is increased sixfold;
the maximal σθθ that will be generated in the cylinder is now
higher than the tensile strength of thematerial, as highlighted
in Fig. 9; fractures are expected to initiate on the outer bound-

ary of the cylinder. Note that in Fig. 9, only the continuum
stress profile is compared to the analytical solution because
when fractures are generated in the discontinuum simulation,
the stress field is perturbed.Graphical results of the discontin-
uum simulation are presented in Fig. 10. The first two cracks
appear on the outer boundary of the cylinder (Fig. 10b) and
propagate the centre of the cylinder (Fig. 10c). Then, several
cracks initiate in the inner boundary of the cylinder, three
of them propagate outward (Fig. 10d) and two of them cut
through to the outer boundary of the cylinder (Fig. 10d).

123



Computational Particle Mechanics

Fig. 13 Radial stress σrr in the outer cylinder

4 Application of thermal cracking for
concentric cylinders under thermal stress

The cracking of reinforced concrete structures under thermal
stress was investigated numerically and experimentally by
[1]. This work has been the basis for validation of some of
the numerical methods presented in “Introduction” of this
paper [36], [29]. Reinforcements in concrete are often made
of steel which has a higher thermal expansion coefficient.
Upon heating, the steel exerts a pressure on the concrete
cover and induces fracturing, as shown in Fig. 11.

A solution of the radial stress is given in [1]:

σθθ = a2(b2 + r2)

r2(b2 − a2)
p

p = (αa − αb)�T Ea

Ea/Eb(β + νb) + (1 − νa)

β = b2 + a2

b2 − a2
.

(40)

First, this expression is verified with the continuum and
discontinuummodels using coefficients of thermal expansion
ten times smaller than the experiment: αa = 7.2× 10−7/◦C
and αb = 2.2 × 10−6/◦C. Then, the discontinuum model
is employed with the thermal expansion coefficients of the
experiment (Table 3) and the fracture pattern is compared to
the experiment. The model presented in Fig. 12 is meshed
with 0.005 m finite elements; for all simulation, an integra-
tion time step of 5.0 × 10−9 s is used. The total simulation
time is of 5.5 × 10−3 s, and temperature is increased uni-
formly from 0◦C to 100◦C over a time of 5.0 × 10−3 s.
Results are presented in Fig. 13 for σrr and in Fig. 14 for
σθθ . The stress profiles show that the tangential stress is max-

Fig. 14 Tangential stress σθθ in the outer cylinder

imal for r = a. This is where fracture is expected to initiate
when using the experimental thermal expansion coefficients
αa = 7.2 × 10−6/◦C and αb = 2.2 × 10−5/◦C. Simulation
results of the thermal fracturing simulation performed with
the experimental thermal expansion coefficients are shown in
Fig. 15. In summary, Fig. 14 shows good agreement between
the stress profile and the analytical solution. Moreover, the
final fracture pattern (Fig. 15d) is consistent with experimen-
tal results (Fig. 11a) in the sense that radial cracks propagate
in the concrete, from the interface with steel and up to the
outer boundary. In the light of the several successful valida-
tions performed in this paper, the thermo-mechanical strong
coupling is considered complete.

5 Conclusions

The new three-dimensional TM model in the context of the
FDEM is presented in this paper. The thermal expansion for-
mula is implemented and successfully integrated in FDEM
based on the multiplicative decomposition of deformation
gradient. The first two validation tests: static Cauchy stress
and deformation under thermal load, show that the model
gives very accurate results and is not sensitive to mesh size.
The third and fourth validation tests: distribution of thermal
stress and thermal fracturing in a hollow cylinder, also show
very good agreement with the analytical solutions. Finally,
the implemented finite strain TMmodel is used for a thermal
cracking application, i.e. the cracking of reinforced concrete
structures under thermal stress. The results show good agree-
ment between the stress profile and the analytical solution,
and the final fracture pattern is consistent with experimental
results. The TM method has the potential to tackle complex
TM-coupled configurations in fractured rock media. How-
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Fig. 15 Thermal fracturing of the reinforced concrete cylinder at different times (a–c). The first row is the maximum principal stress (σ1), and the
second row is the crack pattern

ever, it should be noted that enhanced accuracy is achieved
at the expense of higher computational costs compared to
other continuum- or discontinuum- only numerical methods.
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