
Open Visualization Environment (OVE): A web framework for
scalable rendering of data visualizations

Senaka Fernandoa,∗, James Scott-Browna, Ovidiu S, erbana, David Bircha,
David Akroyda, Miguel Molina-Solanaa,b, Thomas Heinisa, Yike Guoa,∗

aData Science Institute, Imperial College London, London, United Kingdom
bDepartment of Computer Science and AI, Universidad de Granada, Granada, Spain

Abstract

Scalable resolution display environments, including immersive data observatories, are emerging as equitable and socially engaging
platforms for collaborative data exploration and decision making. These environments require specialized middleware to drive
them, but, due to various limitations, there is still a gap in frameworks capable of scalable rendering of data visualizations. To
overcome these limitations, we introduce a new modular open-source middleware, the Open Visualization Environment (OVE).
This framework uses web technologies to provide an ecosystem for visualizing data using web browsers that span hundreds of
displays. In this paper, we discuss the key design features and architecture of our framework as well as its limitations. This is
followed by an extensive study on performance and scalability, which validates its design and compares it to the popular SAGE2
middleware. We show how our framework solves three key limitations in SAGE2. Thereafter, we present two of our projects
that used OVE and show how it can extend SAGE2 to overcome limitations and simplify the user experience for common data
visualization use-cases.

Keywords: large-scale visualization, data visualization, scalable resolution display environments, SAGE2

1. Introduction

There is an ever-increasing demand to produce meaningful
insight from data in very short timescales, pushing data ana-
lytics pipelines to their limits. Large multi-disciplinary projects
produce and consume vast amounts of data, making it very hard5

to make sense of it in short periods of time. This is where
collaborative group work becomes meaningful, as the ability
to visualize data and incorporate collective thinking of human
experts from various domains still dominates most decision-
making processes [1]. Improving the efficiency of such col-10

laborative data exploration activities is therefore a key priority
for modern data science research.

Immersive analytics has the potential to support deeper, more
equitable and socially engaging collaboration [2]. Academia
as well as industry are building immersive data observatories15

to assist with the challenging task of collaborative data explo-
ration. These environments are capable of visualizing data at
resolutions that are sufficiently large to accommodate a group
of up to 20 people working together. Scalable Resolution Dis-

∗Corresponding author
Email addresses: senaka.fernando15@imperial.ac.uk (Senaka

Fernando), james@jamesscottbrown.com (James Scott-Brown),
o.serban@imperial.ac.uk (Ovidiu S, erban),
david.birch@imperial.ac.uk (David Birch),
david@davidakroyd.co.uk (
David Akroyd), mmolinas@ic.ac.uk (Miguel Molina-Solana),
t.heinis@imperial.ac.uk (Thomas Heinis), y.guo@imperial.ac.uk
(Yike Guo)

play Environments (SRDEs) are becoming increasingly com-20

mon within immersive data observatories and easier to build as
displays decrease in cost. These environments support collec-
tive decision making processes through their ability to recreate
scenarios, retrace approaches, and reenact situations, which are
useful in emerging domains such as explainable AI [3, 4].25

The Data Science Institute at Imperial College London has
several SRDEs purpose-built for data visualization [5]. These
allow multidisciplinary teams to explore big data collabora-
tively [6], in a mixture of immersive and non-immersive en-
vironments. One key challenge of operating such SRDEs is30

that they require specialized middleware to drive them. Whilst
several such software systems have been built, most are based
on OpenGL and intended to run non-web-based applications.
Meanwhile, web browsers are becoming an increasingly im-
portant platform for data visualization. A few systems, such as35

SAGE2 [7], are based on web technologies but focus on dif-
ferent purposes. SAGE2 is primarily intended as a dynamic
windowing environment for co-located and remote collabora-
tion [8, 9]; this makes it unsuitable for our use-cases. We dis-
cuss the limitations of SAGE2 and other comparable frame-40

works further in Section 2.
To overcome these limitations, we developed Open Visual-

ization Environment (OVE), an open-source web framework for
scalable rendering of data visualizations. OVE supports many
web-friendly standards and content formats, and as a result, it is45

capable of displaying content developed using popular visual-
ization libraries such as D3.js [10] and Three.js [11] with few or
no modifications. The compositing technique used by OVE is

Preprint submitted to Future Generation Computer Systems June 27, 2020



capable of combining multiple content of various image, video,
audio, graph, geospatial, HTML and PDF formats by resizing,50

rearranging, joining and overlapping them into a single con-
tiguous interactive visualization that may in many cases span
multiple displays. In terms of key features, this framework is:

• Capable of displaying high-resolution content on display
canvases spanning billions of pixels across multiple dis-55

play devices.

• Implemented using open web technologies with out-of-
the-box support for a large number of web-friendly data
formats. These files can be web-hosted or stored using the
Asset Manager.60

• Designed to be seamlessly integrated with existing data
analytics workflows. It provides a REST API and Python
SDK, enabling bulk operations and scripted deployments.

• Designed to be hardware, platform, and web browser in-
dependent.65

With OVE, we make two key contributions:

1. A highly performing and scalable middleware framework
for data visualization in SRDEs using web technologies.

2. A plug-and-play supplement to the popular SAGE2 mid-
dleware to simplify the user experience for common data70

visualization use-cases.

This paper is organized as follows: Section 2 introduces related
work, followed by a discussion of the key design features and
limitations of OVE (Section 3) and its architecture (Section 4).
We then compare the performance, scalability and usability of75

OVE and SAGE2 in Section 5, highlighting the advantages of
using OVE. And thereafter, in Section 6 we explain how these
two frameworks can complement each other (where necessary),
and present two projects that were developed using OVE.

2. Related Work80

Using SRDEs for data visualization is not a new idea [12–
17]. While many researchers have developed application-
specific alternatives, those focused on reusability have opted
to either develop new frameworks, introduce new applica-
tions for existing frameworks [7], extend existing frame-85

works [18], or combine multiple frameworks [19]. There are
a number of competing frameworks, including Equalizer [20],
Chromium [21], DisplayCluster [22], CGLX [23], CubIT [24],
ContextuWall [25], and Canvus [26], but SAGE2 is currently
the most widely used and has nearly 100 deployments world-90

wide. The popularity of SAGE2 is partly due to it being a re-
development of SAGE [27], one of the oldest software frame-
works for high-resolution tiled displays. The choice of web
technologies also makes it easier for industry and academia to
adopt it for most data-centric collaborative research projects as95

pointed out by Renambot et al. [7].
Equalizer, Chromium, DisplayCluster and CGLX are all de-

veloped using non-web-based OpenGL technology. Given the

limitations of web browsers and also the WebGL standard com-
pared to the latest OpenGL standard, these frameworks have100

superior performance and scalability when displaying high res-
olution 2D and 3D graphical content. But, adopting OpenGL
for data visualization comes with several usability challenges.
Many popular data visualization [10, 28], mapping [29, 30]
and graph drawing libraries [31, 32] used by data scientists do105

not have direct OpenGL equivalents, introducing considerable
application development overheads. Similarly, most of these
frameworks do not provide Python SDKs or REST APIs, pre-
venting seamless integration with data analytics workflows.

ContextuWall is a framework for co-located and remote col-110

laboration using touch and mobile devices as well as displays
of various sizes. It provides an ecosystem for asset manage-
ment with superior collaborative annotation capabilities. De-
spite these features, ContextuWall only supports image formats
and lacks support for video, audio, HTML and PDF formats.115

CubIT is a multi-user presentation and collaboration frame-
work that was specifically designed for the Cube facility of the
Queensland University of Technology (QUT). Due to the re-
stricted scope of their use-cases, the framework only supports
images, videos and text notes. It does have a useful feature be-120

fitting QUT’s requirement of being able to create presentations
by sequencing the display of content in these three formats, but,
it is not designed as a general purpose framework and it is un-
suitable for deployments involving heterogeneous display de-
vices.125

Canvus is a purpose-built commercial software developed by
MultiTaction to be specifically used by customers who purchase
display walls built using the touchscreens that they sell. It is
a dynamic windowing environment for collaboration and sup-
ports many media formats. Canvus needs to be installed on130

a single computer to which the displays are connected, limit-
ing its scalability and making it unsuitable for environments
with higher resolutions such as EVL’s CAVE2 [33]. Also, it
neither has out-of-the-box support for non-media formats such
as maps, graphs and charts, nor has an application repository135

with a list of extensions. Canvus also uses a customized web
browser (Chromium Embedded Framework) limiting its ability
to embed frameworks such as SAGE2 and ParaViewWeb [34].

In addition to specialized middleware for SRDEs, we also
looked at few other examples, such as the modern game en-140

gines, Unity and Unreal Engine, which are not only used to
develop games but also as platforms for developing interac-
tive experiences, some of which are related to data visual-
ization [35, 36]. Mechdyne Corporation’s getReal3D [37] is
a Microsoft Windows application and a plugin for running145

Unity applications on SRDEs such as CAVE2. DXR [38] and
IATK [39] are toolkits for developing immersive data visual-
izations on Unity. While game engines are suitable for some
use-cases, they have usability limitations (similar to OpenGL-
based frameworks) as they are platform-dependent and require150

considerable development effort. Consequently, many of these
frameworks are not suitable for general purpose data visual-
ization. However, we find several useful features, such as their
support for visibility and occlusion culling which improves per-
formance as well as their modular architecture which improves155

2



scalability.

2.1. Requirements and Limitations of Existing Systems

SAGE2 is a lightweight middleware designed to run on a
web browser that enables local and remote collaboration on
SRDEs [7]. The drawbacks of other frameworks makes it the160

best among currently available options for driving SRDEs in
data observatories. SAGE2 provides a web-interface through
which the user can open applications and load content (images,
videos, PDFs, 3D animations, or a pixel stream from a shared
desktop). SAGE2 also provides features for collaborative work-165

ing, including partitioning the display area and embedding re-
mote sessions to enable multi-site collaboration. However, a
major conceptual di� erence is that SAGE2 acts essentially as a
window manager for a seamless ultra-high resolution desktop
for a tiled display, whereas OVE provides anecosystem for data170

visualization. This introduces a few notable limitations that pre-
vented us using SAGE2 as-is, extending it, or supplementing it
with a combination of existing libraries and frameworks. We
were particularly a� ected by three key limitations of SAGE2:

L1: It relies on server-side libraries such as ImageMagick and175

FFmpeg to process and render images and videos, which
limits the maximum number of pixels of a single contin-
uous application that can be displayed in its vast display
area. As a result, it cannot be used to play 4K or 8K videos.

L2: Existing content developed using popular JavaScript180

frameworks such as D3.js and Three.js needs to be rede-
veloped as SAGE2 applications (with substantial modi�-
cations) before they can be displayed, introducing signi�-
cant development overheads.

L3: The SAGE2 Pointermust be used to interact with most185

applications. This is a key design decision but limits the
capabilities of the framework by preventing performance
optimizations such as culling.

In terms of requirements, Ni et al. present an excellent sur-
vey of a variety of challenges when working with large high-190

resolution display technologies [40]. While they look at various
aspects covering displays, interaction devices, recon�gurability
of the infrastructure etc., a few challenges are speci�cally rele-
vant for middleware designed to visualize data in SRDEs:

C1: Providing a truly seamless tiled display by preventing195

visual discontinuity of content that cross bezels, crucial
when visualizing large networks

C2: Scalability to support 1000 display tiles

C3: Parallelizing rendering (and other workloads) to improve
performance200

C4: Integrating SRDEs into a seamless computing environ-
ment

The design of OVE is greatly in�uenced by that of SAGE2,
and as a result most technologies used by these systems are sim-
ilar. But, OVE also takes design cues from game engines and is205

implemented as a modular microservices architecture address-
ing the challengesC1–C4 as well as the limitationsL1–L3 that
we have outlined above. The key design decisions underpinning
OVE are aimed at addressing these challenges and limitations,
but they also introduce some limitations to our implementation,210

which we discuss in Section 3.

3. Key Design Decisions and Limitations of OVE

OVE is an ecosystem for data visualization on SRDEs that
provides users with performance, scalability, portability, and
ease of use, above and beyond existing frameworks. OVE is215

designed to run independently or be embedded within other
frameworks that support web application rendering such as
SAGE2 and Canvus.

To allow scaling to large numbers of display tiles (C2), OVE
was designed as amodular middleware based on acomposi-220

tional microservices architecture[41] in which each component
is made up of granular subcomponents that can be deployed to-
gether or separately. Deploying a large resource-intensive ap-
plication downgrades the performance of most middleware that
drive SRDEs, regardless of whether they are web-based or not.225

The ability to isolate the impact of these applications from the
rest of the ecosystem based on their demand makes it possi-
ble to retain optimum performance levels and thereby ensure
greater scalability of the design. Demand-driven isolation be-
comes straightforward when each application, and each service230

consumed by an application, is implemented as a separate mi-
croservice.

This architecture di� erentiates OVE from previously exist-
ing frameworks. For example, it is possible to entirely de-
couple an unused subcomponent from the core server compo-235

nent or have more than one instance of a component for high-
availability. Like SAGE2, OVE uses WebSockets to broadcast
messages between control and display clients. Interactive ap-
plication instances (e.g. a WebGL animation) spanning sev-
eral display tiles tend to produce large quantities of messages in240

shorter timespans, introducing signi�cant bottlenecks on mes-
saging ecosystems that uses WebSockets. Unlike SAGE2, OVE
can provide such application instances with a dedicated mes-
sage broker while other instances of the same application as
well as other applications can share a common message broker245

within the core server component.
To eliminate exhaustive client-side resource consumption

and improve performance, OVE supportsvisibility and occlu-
sion culling — the display clients do not load/render content
that lies outside of its viewport as well as occluded content that250

would not be visible to a user. Deploying 1000 applications
on a SAGE2 canvas spanning 50 display tiles creates 50000 in-
stances of the application in the best case. In OVE, visibility
culling ensures that there are at most 1000 instances (one in-
stance per application) in the best case where there is no occlu-255

sion. Occlusion culling provides a further improvement ensur-
ing that there are at most 50 instances (one instance per display
tile) in the best case when the top-most application instance oc-
cupies the entire display area covering all tiles.

3



It is impossible to support visibility culling in SAGE2 due260

to L3. The SAGE2 Pointer works on amaster-slaveprinciple
where each action made by the user is directly replicated to
each and every display client. This requires each and every
application instance to be present on each and every display tile
regardless of whether the content was within the viewport or265

not. As well as impacting performance, this introduces other
limitations. For example, SAGE2 cannot simultaneously play
more than 16 videos, even if they are distributed across multiple
display tiles, as web browsers such as Google Chrome currently
support a maximum of 16 active WebGL contexts.270

OVE provides an independent control client and a
touch/pointer sensitive overlay that can be rendered as the top-
most layer of the display area. The touch/pointer sensitive over-
lay works on aclient-serverprinciple, capturing user actions
and relaying them back to the control client which in return275

broadcasts corresponding changes to the display clients. This
ensures that OVE does not have the limitationL3. However,
one downside of supporting occlusion and visibility culling is
that content would not necessarily be pre-loaded on each and
every display client, which would invariably introduce over-280

heads if the location of the application on the display changes
frequently. Therefore, to meet the requirements ofC1 by pre-
venting visual discontinuity of content, we always toggle the
visibility (hide, then show) before and after moving an applica-
tion from one location to another.285

A synchronized clock is used by OVE to ensure that all
clients perform actions at precisely the same time. We ini-
tially assumed that all server-side and client-side components
have clocks already synchronized using protocols such as NTP,
but in practice this is not always the case, especially when ad-290

dressingC4. We therefore use the Berkeley clock synchroniza-
tion algorithm proposed by Gusella and Zatti [42] to keep all
active components (control and display clients and as well as
server-side) in sync with the OVE core server, which acts as
the master. As OVE implements a client-server architecture,295

the server is completely unaware of the clients that may exist,
unlike in a master-slave architecture. Therefore, we made a
simple enhancement to the algorithm to let the clients initiate
the synchronization handshake to which the server responds.
Thereafter, when a user performs an interactive operation such300

as starting an animation or playing a video, the control client
schedules it to run at a precise time that is su� ciently far in the
future for the call to reach all display clients before it is due to
execute; in practice, this time is a few milliseconds beyond the
synchronized clock of the control client.305

Synchronized clocks would ensure videos start playing per-
fectly in sync, butC1 also requires videos to continue to play at
the same rate on all display clients. For various reasons, video
playback can be momentarily interrupted on a web browser,
causing some clients to be a few frames ahead or behind the oth-310

ers. To address this, OVE also includes a timekeeping subcom-
ponent in time-critical applications (including the videos appli-
cation). This pauses the playback of videos by a few frames
on faster display clients and resumes the playback at a precise
point in time to ensure that the videos keep playing in sync315

despite these web browser-speci�c delays. This timekeeping

subcomponent runs locally on each display client against its
synchronized clock without introducing additional overheads to
the messaging ecosystem of the overall system. The modular
architecture of OVE combined with features like this makes it320

possible to support truly parallel rendering of content (includ-
ing high resolution images and WebGL animations achieving
60 FPS) to meet the requirementC3.

To make it less likely that a browser will interrupt playback
due to being late to bu� er a video (which is a common occur-325

rence), OVE also waits for a certain percentage of the video
to bu� er before enabling the play button on the control client.
These features, together with the synchronized clock, elimi-
nate the need for server-side synchronization of video playback,
overcoming the limitationL1 as that a� ects SAGE2, and allow-330

ing the playback of 4K and 8K videos. The videos application
does not create a distinction between local, remote or stream-
ing videos (unlike SAGE2, which plays YouTube videos using
its web browser application rather than its video player appli-
cation). Therefore, unlike SAGE2, OVE also synchronizes 8K335

YouTube videos (which is the highest resolution supported by
YouTube at the time of writing) spanning multiple display tiles
meeting the requirements ofC1.

OVE loads content for each application by URL, which is
di� erent to most contemporary frameworks where users are ex-340

pected to upload assets to a server-side storage. For use-cases
where assets need to be versioned, stored securely, or shared
among a limited set of users, OVE also provides anasset man-
ager, as a separate modular microservice. The asset manager
can connect to multiple local and external stores making it pos-345

sible to distinguish between private, shared and public assets.
Immovable data (stored on Neo4J/MongoDB databases) and
live streaming data (streaming audio/video and WebRTC based
video conferencing and screensharing sessions) are not stored
on the asset manager and are accessed directly as in the case350

of SAGE2. Furthermore, multiple assets (of various types) can
be grouped together and stored under a project structure de-
scribed by an optional manifest �le (project.json ) instruct-
ing OVE how they should be displayed as a single composite
visualization. Another feature of the asset manager is to coordi-355

nate one or more microservices (calledWorkers) to pre-process
assets on-demand or as they are uploaded. Workers can extract
zip �les, automatically convert high resolution image �les into
Deep Zoom Images (DZIs) or pre-run layout algorithms on �les
containing graph data. This addressesL1 as it avoids the need360

for additional server-side libraries.
Compositing visualizations is the most notable capabil-

ity of OVE, which is achieved on the server-side through a
project model (described using aproject.json ) and the use
of iFrames on the display clients to isolate application instances365

from each other, allowing the use of multiple JavaScript li-
braries without con�icts. OVE makes use of a number of web
frameworks and JavaScript libraries [11, 29–32, 43–49] to ren-
der content. The choice of iFrames makes it possible to em-
bed existing content with few or no modi�cations, meetingL2.370

D3.js based content is rendered with no modi�cations using
the Tuoris [43] library whilst Three.js content require a sim-
ple modi�cation to include theDistributed.js library pro-

4



vided by OVE. By using borderless iFrames with transparent
backgrounds, it is possible to seamlessly join or layer multiple375

fragments of content of various types as desired.
One of the key bene�ts of OVE is the possibility to break-

down a complex visualization into portions and render them
individually; this increases the rendering speeds as well as the
reliability of the system. A simpler example will be rendering380

a graph with four separate iFrames containing (i) the vertices
and edges, (ii) the labels, (iii) the axes and legends and (iv) the
annotations. In this example, the vertices and edges would be
rendered using one instance of the networks application while
the labels can be rendered using another. If the axes and legends385

were drawn in SVG, they can be rendered using the SVG appli-
cation and the annotations can be made using either the HTML
application or the whiteboard application. OVE also natively
supports semi-transparent overlaying by controlling the opac-
ity of iFrames, making it not only possible to overlay semi-390

transparent text and graphics but also videos, maps, WebGL
animations and even DZIs.

Deployment complexityis perhaps the most substantial lim-
itation of OVE, as it consists of several microservices. To sim-
plify the installation experience, the binary release of OVE395

is a multi-container docker application along with a docker-
compose description that is capable of downloading and run-
ning the containers in a couple of steps. Those who prefer not
to use Docker or who want to extend and improve OVE can
compile the source code and deploy the resulting Node.js ap-400

plications using the PM2 [50] daemon process manager. In ad-
dition to that, as explained previously, OVE components (and
subcomponents) can be deployed together or as a set of isolated
instances. To further simplify the management of the installa-
tion, the OVE docker application also includes (a) a lightweight405

NGINX load balancer which reduces the number of exposed
ports to a handful and (b) a status UI which provides availabil-
ity and uptime details of each component. It is also possible to
deploy a minimum subset of OVE components on systems with
very low resources — a system that is only rendering images re-410

quires activating just the OVE core and the images application
backend components, while all other microservices can remain
deactivated.

Lastly, OVE is aframework based on web technologies
similar to SAGE2, Canvus, CubIT and ContextuWall. This is a415

huge bene�t in terms of data visualization, but makes the frame-
work inferior to some other OpenGL based frameworks such
as Equalizer, Chromium, DisplayCluster and CGLX which are
much more performant and capable of rendering immersive 3D
experiences at a much higher quality. We see this as a limita-420

tion, but this is a trade-o� that we willingly made.

4. OVE Architecture

OVE is a modular middleware providing users with an
ecosystem of built-in applications and specialized services that
can be used along with popular JavaScript frameworks to de-425

sign and develop interactive composite data visualizations suit-
able for SRDEs with minimum e� ort. OVE is implemented

Figure 1:The architecture of OVE. This �gure describes the key components
of OVE and distinguishes between the control message �ows, CRUD messages
used for persistence, and data �ows.

as a collection of loosely coupled components (i.e. microser-
vices) which can be deployed together or in isolation. These
components integrate with each other by passing messages us-430

ing WebSockets and REST APIs. The architecture of OVE is
shown in Figure 1 and explained in detail below.

4.1. OVE core

The OVE core is a platform-independent non-blocking
Node.js application. This can be scaled by introducing more435

than one instance of OVE core, making it highly available and
capable of supporting a large volume of requests. It has a client-
server architecture, and the server has four subcomponents for,
(a) space management, (b) message brokering, (c) clock syn-
chronization and (d) peer management. The client-side is de-440

signed to run on a modern web browser and has two subcom-
ponents: (e) display clients and (f) a JavaScript SDK.

Improving the client-side performance is critical for the scal-
ability of OVE core, and it works best when each display client
(opened in a web browser) spans a moderate number of pix-445

els — for instance a resolution of1920x1080. Many smaller
clients will increase the communication overhead, and simi-
larly, few larger (higher resolution) clients will increase the
time taken by the web browser to render/paint content. The dis-
play canvas (an OVE space) can span multiple display tiles to450

provide an extremely large overall resolution. Within an OVE
space, each application instance is loaded in its own container
(an OVE section), which is a rectangular region within a space.
Sections may overlap with each other and can be grouped to-
gether to represent a composition. The space management sub-455

component is responsible for de�ning spaces, creating sections
and grouping them for which it provides a REST API to be used
by other OVE components.

The Message Broker (MB) subcomponent uses WebSock-
ets and operates in a broadcast model. Several types of mes-460

sages are exchanged through the MB, for synchronizing clocks,

5



describing the creation or deletion of sections, and executing
application-speci�c operations such as playing videos or pan-
ning a map (Section 4.2). To minimize the use of network band-
width, OVE uses two levels of �ltering before transmitting the465

messages over WebSockets: (a) at each publisher, it �lters out
each message to only include the deltas of what changed, and
(b) at the broker it introspects message headers and only passes
on the messages relevant to each consumer. In addition to re-
ducing the number of application instances displayed on each470

client (through visibility and occlusion culling), OVE is capable
of minimizing the message volume received by each client us-
ing the �ltering described above and thereby signi�cantly out-
perform SAGE2 in terms of client-side resource consumption
(which we demonstrate in Section 5).475

The peer management subcomponent of OVE makes it pos-
sible to introduce additional instances of OVE core for high-
availability and for scalability (such as having a dedicated MB
for an instance of a resource-intensive application). It helps
distribute load among server-side peers and improves the re-480

liability of the system. The client-side of OVE core con-
sumes services provided by the server-side subcomponents.
The JavaScript SDK provides a simpli�ed interface for dis-
play clients and OVE applications to consume these services; it
(i) obtains geometry information of the respective display tile,485

(ii) communicates among client-side peers within a single web
browser or across many, (iii) obtains the time from the synchro-
nized clock, and (iv) reads and writes application state.

4.2. Applications

Each OVE application embeds a base-library exposing a490

REST API for application state management at the server-side
as well as client-side code to consume the JavaScript SDK pro-
vided by OVE core. The majority of the functionality provided
by an application is implemented in this base library, and it is
possible to introduce new OVE applications (similar to SAGE2)495

by simply embedding and extending this library. In addition
to the read/write APIs, the server-side also provides APIs to
transform the state of an application corresponding to a zoom
or pan operation. Such operations can be simultaneously trig-
gered across multiple application instances, and therefore, the500

interactivity of a composite visualization is not just limited to
the top-most layer.

The server-side of a typical application extends these com-
mon APIs with application-speci�c functionality such as start-
ing or stopping playback of audio and video or �ltering a graph.505

Whilst the server-side of an OVE application is made up of
a single subcomponent the client-side contains two subcom-
ponents: (a) a viewer (for displaying content) and (b) a con-
trol client (for controlling what is displayed). Each viewer is
designed to be deployed into an OVE section that spans one510

or more display clients of OVE core. Each control client is
a web application that is designed to be opened in a separate
web browser (which can be on a desktop, tablet or a mobile
phone). Applications can also have a third client-side subcom-
ponent corresponding to the various players (or libraries) used515

for content-speci�c rendering. These are designed as JavaScript

Audio: plays an audio �le or stream

Charts: displays the result of applying a Vega-Lite [32]
speci�cation to a dataset

HTML: displays a web-page, which may contain an inter-
active visualization created with JavaScript

Images: displays an image (either from a single image �le,
or from a source of image tiles such as a DZI)

Maps: displays a map, which can be a combination of sev-
eral raster and vector layers

Networks: displays a node-link diagram of a network

PDF: displays a PDF �le

QR Code: draws a QR code for a provided URL

SVG: displays SVG content rendered using the Tuoris [43]
library, which may contain an interactive visualization

Videos: plays a video (from a single video �le, video
streaming service or source of video tiles)

WebRTC: displays a shared screen or a videoconference us-
ing the OpenVidu [49] library

Whiteboard: allows annotations to be drawn and displayed

Table 1:List of built-in applications.

libraries that can be consumed by and embedded within viewers
and control clients.

To cover requirements for data visualization, OVE provides
twelve built-in applications, each dedicated to the display (or520

playback) of a particular kind of content, as shown in Table 1.
OVE also provides three special applications: theAlignment

application supports bezel corrections to ensure precise posi-
tioning to accommodate (a) bezel width, (b) misalignment of
screens due to uneven �oor surfaces and physical displacement525

caused by wear and tear, and (c) heterogeneous screens and dis-
play devices. TheReplicator application makes it possible to
embed a replica of another space (which may even belong to a
remote OVE deployment) in an OVE section. TheController
application is used to render a touch/pointer sensitive overlay530

as the top-most layer of a display area.

4.3. Specialized services and UIs

The OVEpersistence servicesupplements the space man-
agement functionality of the core and the state management
functionality of applications. In situations where there are more535

than one server-side instance of either the core or an applica-
tion, this optional service provides replication to ensure that
multiple instances always have a single copy of its con�gura-
tion, which would otherwise be stored in-memory.

Theasset managerof OVE (discussed in Section 3) is made540

up of three subcomponents: (a) a server-side component that
takes care of interaction with object stores and provides APIs
for the client-side, (b) a UI at the client-side, and (c) a col-
lection of content-speci�c workers. Where necessary, the spe-
cialized project loader service is used to parse manifest �les545

6



(project.json ) and launch composite visualizations using
content stored on the asset manager.

OVE also provides threeUIs to (a) display the status of sys-
tem on a per-component basis, (b) launch new applications and
load content into them, and (c) preview an entire space (at a550

lower resolution) on a single web browser. The Python SDK
provided by OVE can be used as an alternative to both the
launcher UI and the project loader service.

5. Performance and Scalability Analysis

Throughout this paper we made several claims about the su-555

perior performance and scalability of OVE compared to con-
temporary frameworks. We explained how OVE addresses
three key limitations in SAGE2 (L1–L3), as well as four chal-
lenges relevant to data visualization middleware for SRDEs
(C1–C4). The key design decisions behind OVE and its archi-560

tecture (discussed in the previous sections) address these lim-
itations and challenges. This section presents results from a
series of tests on our implementation of OVE. These tests were
conducted to validate our design. Using these, we measure the
performance and prove the scalability of OVE. Thereafter, we565

compare the results from OVE and SAGE2, tested in an identi-
cal environment.

We ran our tests in the immersive data observatory in Impe-
rial College London's Data Science Institute, which has been
showcased in previous publications [5, 51]. The client-side is570

made up of 64 Full HD (1920x1080pixels) Samsung UD46D-
P professional video wall displays, arranged in a cylindrical lay-
out in 4 rows and 16 columns; this gives the SRDE a total pixel
width of 30720and height of4320, so the total display resolu-
tion is 132.7 megapixels. This system is powered by 32 com-575

pute nodes, each of which has 12 CPUs1 and32GBof memory.
In our tests each display client was always opened in a separate
Google Chrome browser window, and therefore, we had a to-
tal of 64 web browsers (1 per screen and 2 per compute node).
Some of our test cases used more than 64 display clients, where580

we opened more than 2 web browsers per compute node. In
terms of the server-side, each test case had its own dedicated
OVE (or SAGE2) environment, which was anUbuntu 18.04
virtual machine with 4 virtual CPUs and8GBof memory. T6
(noted below) used several instances of OVE that were installed585

in separate virtual machines of the same speci�cation.
We conducted six di� erent types of tests, each of which has

one or more test cases. We ran each test case 10 times to reduce
the e� ect of random errors on our measurements and increase
the reliability of our results.590

T1: Displaying more than one application

T1a: Playback of 1–16 videos on OVE and SAGE2

T1b: Playback of 1–1000 videos on OVE

T2: Displaying content of di� erent dimensions

1Intel Core i7-5820K CPU at 3.30GHz per core

T2a: Playback videos of various resolutions595

T2b: Playback of an8Kvideo made up of 16 full HD tiles

T3: Rendering a DZI across 1–1000 display clients on OVE
and SAGE2

T4: Displaying a single application on a SRDE with 1000
display clients: we displayed a single PDF �le on a600

space spanning 1000 web browsers and compared OVE
vs SAGE2

T5: Managing 10–1000 display clients without deploying any
applications

T6: Running all OVE components on a single server vs sep-605

arating OVE core, the MB subcomponent and the server-
side subcomponent of an OVE application (this test is a
variant ofT3)

We present the results of these tests in Figures 2, 3, 4 and 6.
The network bandwidth consumption is reported inMbpsand610

the CPU and RAM consumption are expressed as a percentage.
On the client-side, 100% CPU represents 12 cores and 100%
RAM represents4GB. On the server-side, 100% CPU represents
4 virtual processors and 100% RAM represents8GB.

5.1. Suitability for displaying hundreds of applications at a615

time

We measured server-side and client-side performance as well
as the client-side network consumption inT1. The 1000 videos
we used were sourced from tra� c cameras in London2 and were
of the Common Intermediate Format (CIF) with a resolution of620

352x288 pixels and a �le size of around200KB. SAGE2 was
only capable of playing 16 videos at a time due to a limitation
in web browsers (noted in Section 3), and therefore, we ran two
test casesT1a andT1b. In the �rst test case we displayed all
16 videos on a single display client; in the second we evenly625

distributed up to 1000 videos among 64 display clients.
The results of this test (Figure 2) show that the client-side

CPU, RAM and network bandwidth consumption is directly
proportional to the number of videos displayed on a client in
both OVE and SAGE2. The two systems consume similar630

amounts of CPU and RAM, but SAGE2 consumed 20–30 times
more network bandwidth than OVE. The amount of network
bandwidth consumed by SAGE2 is much larger than the �le
size of the video, introducing a signi�cant stress on the infras-
tructure. This combined withL1 makes SAGE2 unsuitable for635

playing videos of resolutions higher than Full HD. The two lev-
els of message �ltering at both the publisher and the broker
(Section 4.1), the support for visibility and occlusion culling
(Section 3), as well as the non-reliance on server-side libraries,
contribute to the signi�cant reduction of network bandwidth640

consumption in OVE.
On the server-side, the amount of RAM consumed was con-

stant on both frameworks irrespective of the number of videos

2https://tfl.gov.uk/traffic/status

7



Figure 2: CPU, RAM and network bandwidth consumption when displaying more than one application.These graphs show results fromT1. SAGE2 is
only capable of playing 16 videos at a time, therefore, we had a separate test caseT1b to validate the scalability of OVE when playing 1–1000 videos. We �nd
that SAGE2 consumes 20–30 times more network bandwidth on the client-side and twice the amount of CPU than OVE. On the server-side, the amount of CPU
consumed by OVE increases with the number of videos, and it consumes twice as much RAM as SAGE2, but usingT6 (seen in Figure 6), we show that these issues
are addressed by the modular microservices architecture of OVE.

File Type URL File Size
CIF video https://tfl.gov.uk/traffic/status 200KB
720p video https://www.nasa.gov/sites/default/files/files/Apollo_11_moonwalk_montage_720p.mov 44MB
HD video http://ultravideo.cs.tut.fi/video/HoneyBee_1920x1080_30fps_420_8bit_AVC_MP4.mp4 7.2MB
4K video http://ultravideo.cs.tut.fi/video/Bosphorus_3840x2160_30fps_420_8bit_AVC_MP4.mp4 29MB
8K video https://upload.wikimedia.org/wikipedia/commons/1/1e/First_8K_Video_from_Space_-_Ultra_HD_VP9.webm 491MB

DZI http://www.in2white.com/about/ —

Table 2:URLs for the list of videos and the DZI used in our tests. The DZI that we used has a resolution of365 gigapixels.

displayed. OVE consumes double the amount of RAM (as it is
made up of many microservices, whereas SAGE2 is a monolith)645

but results fromT6 prove that this is not a limitation. OVE con-
sumed almost constant amount of CPU for smaller video counts
(1–50) while we saw this number gradually increase to almost
double the amount when we played 1000 videos. On the other
hand, SAGE2 consumed twice as much CPU as OVE from the650

start (when playing 4 videos), and this kept increasing even for
smaller video counts (8–16) unlike OVE. The gradual increase
of CPU consumption on OVE as we increased the number of
videos played to a 1000 was due to the overheads introduced
by the MB. This impact can be dealt with by isolating the MB655

from OVE core (which is also covered byT6). Therefore, our
results show that OVE is scalable and is suitable for display-
ing hundreds of applications, unlike SAGE2 which had several
bottlenecks.

5.2. Suitability for displaying ultra-high resolution content660

We tested SAGE2 and OVE to understand their suitability
for displaying ultra-high resolution content. InT2a we used
videos with resolutions up to8K and inT3 we used a365 gi-
gapixel DZI (Table 2 lists the videos and image that we used

in our tests).L1 prevents playback of4K and8K video reso-665

lutions on SAGE2, therefore to compensate for this limitation
we tested videos of a much lower resolution (CIF format).T2a
reveals that in both frameworks, the client-side CPU, RAM and
network bandwidth consumption increased proportional to the
resolution of the content displayed. While the RAM consump-670

tion of the frameworks were similar, we found that SAGE2
consumes 4 times more CPU and the amount of network band-
width used by SAGE2 to play a720p video (with a resolution
of 1280x720) was similar to what OVE required to play an8K
video. This recon�rms that SAGE2 consumes 20–30 times the675

bandwidth required by OVE, regardless of the video resolution.
In T3 we displayed a DZI across 1–1000 web browsers. Un-

like when playing videos (where the web browser needs to con-
sume the entire �le) rendering images (including DZIs) bene�t
from visibility culling in OVE. Therefore, we �nd that OVE680

uses constant CPU and RAM to display DZIs regardless of
the number of display clients. Unlike in OVE, on SAGE2, the
amount of CPU and RAM keeps increasing with the number of
display clients. This makes it impossible for SAGE2 to display
DZIs spanning hundreds of display clients and therefore limits685

the total resolution at which content can be displayed. Results
are presented in Figure 3.

8



Figure 3:CPU, RAM and network bandwidth consumption when displaying content of di� erent dimensions.These graphs show results fromT2 andT3. We
prove that OVE is capable of displaying content of various dimensions spanning hundreds of display clients while pointing out two signi�cant scalability bottlenecks
in SAGE2: (a) it is unable to support playback of videos beyond Full HD quality, and (b) it fails to render the DZI we chose across 100 display clients or more.

On the server-side, for bothT2a andT3, OVE and SAGE2
consume a �xed amount of memory. OVE consumes a �xed
amount of CPU regardless of the video resolution, but the690

amount of CPU consumed by SAGE2 keeps increasing propor-
tional to the resolution of the video. However, SAGE2 con-
sumes �xed amount of CPU when rendering a DZI, but on
OVE the amount of CPU consumed increases proportionally
to the number of display clients involved due to the overheads695

introduced by the MB. As noted previously, this bottleneck
can be overcome by deploying dedicated MBs for resource-
intensive application instances and isolating them from the rest
of the ecosystem. Importantly, the scalability and performance
characteristics of the two frameworks varied based on the con-700

tent that was displayed. OVE was superior to SAGE2 in all
fronts except for server-side memory where it needed twice the
amount required by SAGE2.

In order to play videos of even higher resolutions such as16K
and32KOVE supports playing tiled videos meeting the require-705

ments ofC3. In this scenario, each high resolution video would
be broken down into tiles of a lower resolution. For example, an
8Kvideo would have 16 Full HD tiles while a16Kvideo would
have 64 tiles; and, in such a situation, on a display of a Full
HD resolution there would be 4 video tiles at most. In order to710

support the playback of tiled videos OVE relies on its synchro-
nized clock. This introduces a considerable performance gain
by resolving a limitation of web browsers performing poorly
(and are often unable to retain the frame rates) when rendering
very large video �les at very high resolutions.715

Results fromT2b (Figure 3) show that playing an8Kvideo
made up of 16 Full HD video tiles has comparable client-side
RAM consumption to playing a4Kvideo. The CPU consump-
tion would be similar to playing an8Kvideo that was not tiled,

but the network bandwidth would be much less and roughly720

equal to playing 4 Full HD videos. On the server-side, OVE
consumes a �xed amount of RAM but around 50% more CPU,
due to the considerable amount of messaging involved to keep
the playback in sync. The results fromT6 show how these over-
heads can be managed.725

In summary,T2a, T2b andT3 show that OVE is suitable for
displaying ultra-high resolution content. SAGE2, unlike OVE
does not have a concept of a synchronized clock and does not
support the playback of tiled videos. It also had several bottle-
necks preventing the playback of4Kand8Kvideos and display-730

ing ultra-high resolution DZIs across a large number of display
tiles.

5.3. Suitability for managing 1000 display tiles
The third dimension of scalability and performance is the

suitability for managing an extremely large display area. We735

usedT3, T4 andT5 to show that OVE is capable of managing
1000 display tiles, each of which were Full HD providing a total
resolution of2.07 gigapixels. UsingT5 we were able to con-
�rm that OVE consumes �xed CPU and RAM on both server-
side and client-side when managing 10–1000 display tiles, if740

we did not deploy a single application (see supplementary ma-
terial for additional details). Like OVE, SAGE2 is also capable
of managing 1000 display tiles and shows similar performance
characteristics. However, we see a major di� erence in terms of
performance when we start deploying applications on these two745

frameworks.
In T4 we displayed a PDF �le3 (sourced from the open

3https://bitbucket.org/sage2/sage2/raw/
8ac17e4a503c746f30dee1b428c29cd6e1673aad/public/uploads/
pdfs/SAGE2_collaborate_com2014.pdf

9



Figure 4:Client-side and server-side resource consumption when display-
ing a PDF �le on a display environment made up of 1000 display clients.
These graphs show results fromT4 andT5. Here we show the amounts of re-
sources consumed when there are no applications deployed and then take two
display clients: one on which the PDF application is deployed and visible and
another where the application is not visible. Interesting di� erences in the re-
sults show us the bene�ts of visibility culling in OVE and the corresponding
limitations in SAGE2

source repository of SAGE2) using an instance of the PDF ap-
plication spanning1920x1080 pixels on a display that had a
total resolution of480000x4320pixels. On OVE, this resulted750

in 2–3% more CPU on the client-side and 15% more CPU on
the server-side. The RAM consumption on both client-side and
server-side had no noticeable changes. On SAGE2, the server-
side RAM consumption remained unchanged, but everything
else increased. On the client-side, SAGE2 consumed 4 times755

more RAM (an increase of around500MB), and the CPU con-
sumption increased by around 8–10%. The two frameworks
use the same library to display PDF �les [46] and the di� er-
ence in terms of performance was a questionable observation.
Unlike OVE where each display tile was limited to a resolu-760

tion of 1920x1080, each display tile on SAGE2 spanned the
entire480000x4320pixel resolution - as a result ofL3. While
this had no performance impact when no applications were de-
ployed, the web browser consumed more CPU and RAM on the
client-side even with a single application.765

We also observed high server-side CPU (an increase from
around 20% to 70%) on SAGE2 withT4. This was due to
SAGE2 not supporting visibility culling. We found that SAGE2
created an instance of the PDF application on each and every
display tile (1000 in total) even though it was only visible on770

a single display client, unlike OVE (which loaded the applica-
tion on a single display tile). The communications overheads

on SAGE2 was what contributed to the increase in server-side
CPU consumption. These results (presented in Figure 4) point
out major advantages of visibility culling in OVE. Despite these775

issues SAGE2 manages to display the PDF �le at a resolution
of 1920x1080 pixels, but fromT3 we �nd that it eventually
fails when attempting to display an application spanning a suf-
�ciently high resolution. Using the results fromT3 and T4
we conclude that SAGE2 does not perform well when display-780

ing content on SRDEs with an extremely large display area.
And, based on these observations we �nd OVE to be more suit-
able than SAGE2 for a gigapixel display such as the Reality-
Deck [52].

The RealityDeck is made up of 416 display tiles, each of785

which has a resolution of2560x1440, providing a total reso-
lution of 133120x11520. At the Data Science Institute, we do
not have an SRDE that can provide us with 416 screens for test-
ing. Therefore, we replicated this environment by opening 13
web browsers per compute node on our SRDE with 64 screens.790

We then opened the DZI fromT3 to prove that OVE is capa-
ble of rendering content at such a resolution. We thereafter in-
creased the resolution of each display client to5120x2880and
repeated this experiment, proving that OVE can render content
on a6.13 gigapixel display. Figure 5 shows three photographs795

from these two experiments along with another taken while run-
ning T3 showing OVE rendering the same DZI on a2.07 gi-
gapixel display made up of 1000 display clients. We have in-
cluded the three videos corresponding to these three images as
supplementary material. The RealityDeck still remains one of800

the largest SRDEs, and, due to the limitations in display res-
olutions, graphics adapters and display cables as well as the
practical challenges in navigating such large environments, it is
unlikely that there would be displays much larger than a few
gigapixels, at least for a few more years. This makes OVE suit-805

able for operating the largest SRDEs that can be found today
and mostly likely for a few more years ahead.

5.4. E� ect of deploying microservices on di� erent virtual ma-
chines

One of the recurrent observations in Figures 2, 3, and 4 was810

that OVE consumed much more server-side RAM than SAGE2.
We also found OVE to consume a higher amount of CPU when
we increased the number of applications to 1000. We therefore
designedT6 to prove that the modular microservices architec-
ture of OVE is capable of addressing this issue. In Figure 6815

we show the server-side CPU and RAM footprints in four situ-
ations:

S1: The OVE core (inclusive of the MB) and the images appli-
cation are deployed together on a single VM.

S2: The OVE core (inclusive of the MB) is deployed on a sin-820

gle VM and the images application is deployed on another
VM — we monitor the performance of OVE core.

S3: The OVE core (inclusive of the MB) is deployed on a sin-
gle VM and the images application is deployed on another
VM — we monitor the performance of the images appli-825

cation.

10




	Introduction
	Related Work
	Requirements and Limitations of Existing Systems

	Key Design Decisions and Limitations of OVE
	OVE Architecture
	OVE core
	Applications
	Specialized services and UIs

	Performance and Scalability Analysis
	Suitability for displaying hundreds of applications at a time
	Suitability for displaying ultra-high resolution content
	Suitability for managing 1000 display tiles
	Effect of deploying microservices on different virtual machines
	Discussion

	Example Use-cases
	The Map of the Universe
	Polarization of public viewpoint on Brexit, based on tweets
	Using OVE as a supplement to SAGE2

	Conclusion

