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the RBLRPx model introduces an the 

inverse correlation between rainfall cell duration and intensity, in line with the observed behaviour of 

intense convective rainfall lasting several minutes and milder frontal rainfall lasting for several days. 

 

 

 [1/T].

 

-  respectively. This scaling factor is used as parameter of the 

exponential distribution of cell durations and to determine the distributions of rainstorm 

activity duration, rain cell depth, and rainfall cell arrival. All these random variables are 

mutually independent, which implies in particular that total storm rainfalls are mutually 

independent.

 

, where  [-] is a model parameter.

 

-] is a model parameter. The truncation is 

defined by the storm activity duration: 

 

.

 Each rain cell is assigned an intensity that is a random variable whose distribution could e.g. 

be exponential, gamma or Pareto. Its mean is  where  [L] is a model parameter. In the 

present study, we choo -] and scale 

parameter .



 -   [L],  

[- -], and  [-].

both extreme and standard statistics at fine timescales (e.g. hourly and sub-hourly). The analytical 

expression of the proportion of dry (or wet) periods derived by Rodriguez-Iturbe et al. (1988) was also 

included the calibration. 

A variant of the particle swarm optimization algorithm (Cho et al., 2011) was used to identify the 

parameters which minimise the following objective function: 

 (1) 

 

,where  and  for  respectively represent the  modelled and observed rainfall 

statistics selected for use in the calibration, and  for  represent the weight factors 

given to each statistic. 

The s used for the calibration in this study are the mean, variance, covariance, skewness, 

and proportion of wet periods at 5-, 10-, 15-, 30-, 60-, 120-, 240-, 480-, 960-, 1440-minute 

aggregation, so n is 50 (5 different statistics x 10 aggregation intervals). The calibration was 

performed separately for each calendar month. The weight factors wi may be determined in various 

manners depending on the purpose for which the synthetic rainfall is to be used (Kim et al., 2012). In 

this study, each weight factor  is determined as the inverse of the variances of the corresponding 

observed property : i.e.. using the following equation: 



 (2) 

 

, where  represents the ith statistic of a given calendar month of year y;  represents 

the mean of  over the years; and m represents the number of years of observation. 

 This entails that statistics with greater inter-annual variability have less weight. This choice 

has been shown to define an optimal generalized method of moments (Jesus and Chandler, 2011)  

 

This module shuffles the rainstorms generated by the RBL model. Figure 3 describes the 

shuffling process. The rainstorms are shuffled based on the following sequence: 

(1) While generating the fine-scale rainfall in the Module 1, the time of the rainstorm occurrence 

and the set of rain cells contained in each of the rainstorms are stored in the database. 



(2) Empty the original time series except for the occurrence times of the rainstorms. 

(3) Randomly select a rainstorm from the database and place it at the location of the first 

rainstorm occurrence. Here, each of the rainstorms has the same probability of being selected. 

The selected storm is then excluded from the database. 

(4) Another storm is chosen from the database and placed at the next storm occurrence location. 

Here, the probability Pi of the rainstorm  being selected, is given by the following equation: 

 (4) 

 (5) 

and  and  represent the total depths of the ith rainstorm and that of the previously 

selected rainstorm respectively.  is calculated as follows: 

 (6) 

, where  and  represent the intensity and the duration of the rain cell, respectively, 

and the first and the second subscripts are the indices corresponding to the rainstorm and the 

rain cell respectively. For example,  represents the duration of the jth rain cell contained 

in the ith rainstorm.  represents the total number of rain cells contained in the rainstorm. 

 represents the similarity between the ith rainstorm and the previously selected rainstorm. 

 is the number of rainstorms remaining in the database at stage i of the process.  is a 

model parameter to be calibrated. The selected storm is then excluded from the database.  

(5) Step (4) is repeated until the entire storm occurrence places in the time series are filled with 

selected rainstorms. 

 



Probability Pi (Equation 5) is designed to reflect the similarity in the depths of successive 

rainstorms characterising the observed rainfall. After this shuffling, it is therefore more likely that 

storms with relatively similar total depths follow one another. This algorithm amounts to altering the 

RBL model by replacing the assumption of storm independence, with that of a dependence between 

consecutive total storm rainfalls defined by the conditional probabilities  The other assumptions of 

the RBL model remain valid. 

The rainstorms occur at times defined by the storm arrival Poisson process of the RBL model, 

and each of the selected rainstorms selected for relocation at each rainstorm occurrence time has of 

course already been generated in the simulation of the RBL model (see Section 2.2.1). Hence, the 



statistical properties of the wet-dry process as well as of the marginal depth distribution (mean, 

variance, skewness) at scales finer than the typical storm duration are largely unaffected by this 

reshuffling. For larger scales, all but the mean depth will be altered. However, the alteration is small 

for scales and time-lags whose product exceeds the typical storm duration, but again the effect is 

 

Note that the probability Pi could be adjusted so as to reflect the similarity of not only depth but 

also duration of storms. This would, for instance, enable this reshuffling process to enable the 

generated rainfall to reflect the rainfall characteristics of the monsoon season, during which long-

duration rainfall events successively occur. 

Model parameter  represents the impact of the degree of similarity between the successive 

rainstorms, as characterised by the modulus of the logarithm of the ratio of their total depths

. It is calibrated separately from the RBL parameters so that the monthly variance of the 

shuffled synthetic rainfall time series resembles that of the observed rainfall. An analytical approach 

to the calibration could not be implemented due to the absence of the equation representing the 

monthly variance of the shuffled synthetic rainfall. Therefore, the pattern search optimization 

algorithm (Audet and Dennis, 2002) was used to minimize the objective function that is numerically 

calculated in the following manner: 

(1) 300 months of 5-minute rainfall time series are generated using Module 1. 

(2) The original synthetic rainfall time series is shuffled based on a given value of . 

(3) The shuffled 5-minute rainfall time series is aggregated to monthly rainfall, and the variance 

of the aggregated monthly rainfall is calculated. 

(4) The objective function value is calculated as the absolute value of the difference between the 

observed monthly rainfall variance and the synthetic monthly rainfall variance. 

 

Figure 4a shows the relationship between  and the variance of the shuffled synthetic rainfall 

aggregated to the monthly level. The parameter of July of the study area was used to generate the fine-



scale rainfall. The figure a general increase of the variance as a function of . This is because, as  

increases, a greater value of Pi is assigned to the rainstorms with the depth similar to the previous 

rainstorm, so the greater value, the more similar rainstorms flock together, which increases the 

occurrence of both wet and dry months, thereby increasing the monthly variance. 

 
Figure 4. Relationship between  and the variance of the monthly rainfall depth.  

 

Note that the two variables do not have a smooth relationship because the variance shown in the 

y-value is calculated from the stochastically generated rainfall. For this reason, the pattern-search 

optimisation algorithm was employed, to identify the optimal parameters in the objective function 

surface with random sampling noise. Figure 4b shows the calibrated  for each of the calendar 

months. This exhibits a clear seasonal trend. Since greater  values represent greater inter-storm 

correlations, this result reveals that consecutive summer rainfall events of the study area are less likely 

to resemble one another in terms of total storm depth, and vice versa for the winter rainfall events, 

which is to be expected. 

  



2.2.3. Module 3: Monthly rainfall shuffling 

 

Figure 5. The schematic of Module 3 of the model. (a) A monthly rainfall time series is generated 
using a coarse-scale model (e.g.the SARIMA model). (b) The Fine scale time series is segmented into 
monthly blocks. (c) The final time series is composed by adopting the sequence and rank of the 
coarse-scale time series and the amount and the internal structure of the fine-scale time series. 

 

Figure 5 describes the process involved in Module 3. This module rearranges the stochastically 

generated rainfall time series so that it can account for the variability at timescales greater than 1 

month following the steps described below: 

(1) The monthly rainfall time series is generated for the same length as the fine-scale rainfall 

time series using a separate coarse-scale rainfall model. Any coarse scale model can be used. 

Here, we call each of the monthly rainfalls generated by the coarse- -

 



(2) The shuffled synthetic fine-scale rainfall time series is segmented into different calendar 

m -  

(3) The quantile matching between the fine-scale rainfall blocks and the coarse-scale rainfall 

blocks is performed based on the total rainfall depth for each of the months of a given 

calendar month. For example, the fine-scale rainfall block with the nth greatest depth is placed 

in the location of the coarse-scale rainfall block with the nth greatest depth of the same 

calendar month. This process is repeated for all 12 calendar months (Figure 5c). 

This study uses the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model for 

monthly rainfall generation. The model structure is as follow: 

ARIMA(p,d,q)(P,D,Q) = ARIMA(0,0,0)(3,0,3) 

,where p and P represent the degrees of the nonseasonal and seasonal autogressive polynomials 

respectively; q and Q represent the non-seasonal and seasonal moving average polynomials 

respectively; and d and D represent the non-seasonal and seasonal degrees of differencing in the linear 

time series. Note that the optimal model structure of (p,d,q)(P,D,Q) = (0,0,0)(3,0,3) is only valid for 

the monthly rainfall data investigated in this study. They were determined through an optimization 

process to minimize the Akaika Information Criterion (AIC) in the parameter space where p, d, q, P, 

D, and Q discretely vary between 0-2, 0-2, 0-2, 0-9, 0-1, and 0-9, respectively. 

The shuffling algorithm suggested here adopts the sequence and the ranks from the blocks of the 

coarse-scale time series while it borrows the amount and the temporal structure from the fine scale 

rainfall time series internal to the blocks. Here, the key to a seamless coupling between the two 

models is whether the marginal distribution of the amounts of fine scale rainfall aggregated to the 

monthly level match the distribution of the amounts of monthly rainfall generated by the coarse scale 

model, at least up to the second-order. While the means of both distributions are identical because 

they are reproduced by the RBL model at all time-scales, Module 2 ensures a match at the second-



order because the parameter  of Module 2 is calibrated so as to preserve the variance of observed 

monthly rainfall, which the SARIMA model of Module 3 is also designed to reproduce. 

For convenience, we define the names of the models depending on the level of processing as follows: 

(1) RBL: The Randomized Bartlett-Lewis model (Module 1 only) 

(2) RBL-S: The RBL model with Module 2 (rainstorm shuffling algorithm) 

(3) RBL-S2: The RBL model with Module 2 and Module 3 (both rainstorm shuffling and 

monthly rainfall shuffling algorithm) 

2.3. Model application and validation 

500 years of synthetic rainfall data were generated. Both the standard statistics and the extreme 

values were compared at timescales from 5-minutes to a decade. 

 

 



 

-1) which varies between 1.3 days (November) and 2.8 days 

(February). This is because, as the lag of the ACF increases, the rainfall values from independent 

rainstorms are considered in the calculation of the autocorrelation coefficient (See Figure 1b), which 

abruptly decreases the ACF value. 







 



 



 













 












