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Abstract
The surface warming response to carbon emissions is diagnosed using a suite of Earth system
models, 9 CMIP6 and 7 CMIP5, following an annual 1% rise in atmospheric CO2 over 140 years.
This surface warming response defines a climate metric, the Transient Climate Response to
cumulative carbon Emissions (TCRE), which is important in estimating how much carbon may be
emitted to avoid dangerous climate. The processes controlling these intermodel differences in the
TCRE are revealed by defining the TCRE in terms of a product of three dependences: the surface
warming dependence on radiative forcing (including the effects of physical climate feedbacks and
planetary heat uptake), the radiative forcing dependence on changes in atmospheric carbon and
the airborne fraction. Intermodel differences in the TCRE are mainly controlled by the thermal
response involving the surface warming dependence on radiative forcing, which arise through large
differences in physical climate feedbacks that are only partly compensated by smaller differences in
ocean heat uptake. The other contributions to the TCRE from the radiative forcing and carbon
responses are of comparable importance to the contribution from the thermal response on
timescales of 50 years and longer for our subset of CMIP5 models and 100 years and longer for our
subset of CMIP6 models. Hence, providing tighter constraints on how much carbon may be
emitted based on the TCRE requires providing tighter bounds for estimates of the physical climate
feedbacks, particularly from clouds, as well as to a lesser extent for the other contributions from the
rate of ocean heat uptake, and the terrestrial and ocean cycling of carbon.

1. Introduction

Climate model projections reveal a simple emer-
gent relationship that global-mean surface warming
increases nearly linearly with the cumulative amount
of carbon emitted since the pre-industrial era (Mat-
thews et al 2009, Allen et al 2009, Zickfeld et al 2009,
Gillett et al 2013, Collins et al 2013). This relationship
is important as the sensitivity of warming to cumulat-
ive carbon emission dictates how much carbon may
be released before reaching dangerous climate (Mein-
shausen et al 2009, Zickfeld et al 2009, Matthews et al
2012). This constraint provides a basis for the Paris
climate agreement (Rogelj et al 2016) where limits are
provided for how much carbon may be emitted to
avoid exceeding 1.5◦C or 2◦C warming (Millar et al
2017, Goodwin et al 2018).

While climate model projections reveal this near
linear relationship between surface warming and
cumulative carbon emissions during emissions, the
precise slope of this surface warming relationship
differs among individual climate models (Gillett et
al 2013, Williams et al 2017); such as illustrated
in figure 1 for a suite of 9 CMIP6 and 7 CMIP5
Earth system models following a 1% annual increase
in atmospheric CO2. This slope varies from 1.10
to 2.35 K EgC−1 within the 9 CMIP6 models and
from 1.32 to to 2.16 K EgC−1 within the 7 CMIP5
models (table 1). The intermodel differences in the
surface warming response lead to a wide range in
these model-based estimates of the maximum per-
mitted carbon emission to avoid a particular warm-
ing target. As an example, for a 2◦C warming tar-
get, the maximum permitted emissions extend from
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Table 1. List of 9 CMIP6 and 7 CMIP5 Earth system models diagnosed in this study following an 1% annual increase in atmospheric
CO2 together with the TCRE over years 120 to 140, and the cumulative carbon emission when 2◦C warming is reached.

TCRE Carbon emission (PgC)
Model Name (K EgC−1) at 2◦C warming Reference

CMIP6:
BCC-CSM2-MR 1.22 1550 (Wu et al 2019)
CanESM5 1.86 921 (Swart et al 2019)
CESM2 1.72 1120 (Danabasoglu et al 2020)
CESM2-WACCM 1.55 1180
CNRM-ESM2-1 1.76 1250 (Seferian et al 2019)
IPSL-CM6A-LR 1.99 938 (Boucher et al 2020)
MIROC-ES2L 1.22 1490 (Hajima et al 2019)
NorESM2-LM 1.10 1688 (Seland et al 2020, in prep)
UKESM1-0-LL 2.35 758 (Sellar et al 2019)
CMIP5:
BCC-CSM1-1 1.32 1457 (Wu et al 2013)
BNU-ESM 1.92 852 (Ji et al 2014)
CanESM2 1.88 833 (Arora et al 2011)
HadGEM2-ES 1.82 926 (Collins et al 2011)
IPSL-CM5A-LR 1.58 1192 (Dufresne et al 2013)
MIROC-ESM 2.16 935 (Watanabe et al 2011)
MPI-ESM-LR 1.55 1287 (Ilyina et al 2013)

760 PgC to 1690 PgC for the 9 CMIP6 models and
830 to 1460 PgC for the 7 CMIP5 model integrations
(table 1). Hence, there is a need to understand the
reasons for these intermodel differences in the rate
at which surface warming increases given a carbon
emission, both for the latest set of CMIP6models and
their differences with CMIP5 models (MacDougall et
al 2017, Williams et al 2017, Jones and Friedlingstein
2020).

This ratio of surface warming to cumulative car-
bon emissions is used to define a climate index, the
Transient Climate Response to cumulative carbon
Emissions (TCRE), which is relevant on decadal and
centennial timescales when there are carbon emis-
sions (Matthews et al 2009, Gillett et al 2013, Collins
et al 2013, MacDougall 2016, Williams et al 2016,
Matthews et al 2018, Katavouta et al 2018). Our
aim is to exploit theory to understand how this sur-
face warming relationship in climate model projec-
tions is controlled by physical climate feedbacks, heat
uptake, saturation of radiative forcing and carbon
cycling.

In this study, the sensitivity of this surface warm-
ing to cumulative carbon emissions is examined using
diagnostics for a suite of 9 CMIP6 and 7 CMIP5 Earth
systemmodels. In section 2, different identities for the
TCRE are set out, either related to changes in temper-
ature, the amount of atmospheric carbon and emitted
carbon (Matthews et al 2009) or related to changes
in temperature, radiative forcing and emitted carbon
(Goodwin et al 2015, Williams et al 2016, Williams
et al 2017), or variants of these identities combined
together (Ehlert et al 2017, Katavouta et al 2018).
Our physically-motivated analysis is complemented
by a related TCRE analysis based on carbon-cycle
feedbacks by Jones and Friedlingstein (2020). In sec-
tion 3, diagnostics on subsets of the CMIP6 and

CMIP5 Earth system models are applied to identities
for the TCRE, providing a mechanistic view of how
intermodel differences in the TCRE are controlled by
physical climate feedbacks, planetary heat uptake, the
dependence of radiative forcing on atmospheric CO2

and the airborne fraction involving the carbon cycle.
Finally, in section 4, the implications of the study are
summarised.

2. Theory

The Transient Climate Response to Emissions
(TCRE) measures the sensitivity of surface warm-
ing to cumulative carbon emissions, which is defined
by the change in global-mean surface air temperature,
∆T(t) in K, relative to the pre-industrial divided by
the cumulative carbon emission, Iem(t) in EgC, such
that

TCRE≡ ∆T(t)

Iem(t)
. (1)

The TCRE is often viewed in terms of a product of
two terms, the change in global-mean air temperat-
ure divided by the change in the atmospheric carbon
inventory, ∆Iatmos(t), and the change in the atmo-
spheric carbon inventory divided by the cumulative
carbon emission, ∆Iatmos(t)/Iem(t) (Matthews et al
2009, Solomon et al 2009, Gillett et al 2013, MacDou-
gall 2016), such that

TCRE=
∆T(t)

Iem(t)
=

(
∆T(t)

∆Iatmos(t)

)(
∆Iatmos(t)

Iem(t)

)
,

(2)
where ∆T(t)/∆Iatmos(t) is related to the Transi-

ent Climate Response, defined by the temperature
change at the time of doubling of atmospheric CO2

(Matthews et al 2009), and ∆Iatmos(t)/Iem(t) defines
the airborne fraction.
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Figure 1. Change in global-mean surface air temperature,∆T(t) in K, versus change in cumulative carbon emissions, Iem in PgC,
since the pre-industrial for (a) 9 CMIP6 models and (b) 7 CMIP5 models, assuming an annual 1% increase in atmospheric CO2

and integrated for 140 years.

Alternatively, the TCRE in (2) may be linked to
an identity involving a thermal response to radiative
forcing, defined by the change in temperature divided
by the change in radiative forcing,∆F, and a radiative
forcing response to carbon emissions, defined by the
change in radiative forcing divided by the cumulative
carbon emissions (Goodwin et al 2015, Williams et al
2016, Williams et al 2017), such that

TCRE=
∆T(t)

Iem(t)
=

(
∆T(t)

∆F(t)

)(
∆F(t)

Iem(t)

)
, (3)

whichmay be extended by rewriting the radiative for-
cing dependence to carbon emissions in terms of the
radiative forcing dependence on atmospheric CO2

and the airborne fraction (Ehlert et al 2017, Katavouta
et al 2018),

TCRE=
∆T(t)
Iem(t)

=

(
∆T(t)
∆F(t)

)(
∆F(t)

∆Iatmos(t)

)(
∆Iatmos(t)
Iem(t)

)
.

(4)

Each of these identities for the TCRE have differ-
ent potential merits: the first identity (2) provides a
clearer connection to changes in carbon cycling via
the airborne fraction, while the second identity (3)
provides a clearer connection to the thermal processes
of climate feedbacks and ocean heat uptake, and to
the radiative forcing that depends upon the change
in the logarithm of atmospheric CO2. Here, we focus
on the combined identity for the TCRE (4), includ-
ing the effects of the thermal response, the radiative
forcing and the airborne fraction.

2.1. Dependence of surface warming on radiative
forcing
The increase in radiative forcing, ∆F(t), drives an
increase in planetary heat uptake, N(t), plus a radi-
ative response, ∆R(t), which is assumed to be equi-
valent to the product of the increase in global-mean
surface air temperature,∆T(t), and the climate feed-
back parameter, λ(t) (Gregory et al 2004, Knutti and

3
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Table 2.Model mean, intermodel standard deviation and coefficient of variation for the thermal and carbon variables for years 120 to
140 for the 9 CMIP6 and 7 CMIP5 Earth system models following a 1% annual increase in atmospheric CO2. The coefficient of
variation is defined by the intermodel standard deviation divided by the model mean, evaluated at the same time. The individual model
responses are provided in table S1.

Variable: ∆T F N λ N/F Iem ∆Iatmos/Iem ∆Iocean/Iem ∆Iland/Iem
Units: K Wm−2 Wm−2 (W m−2)K−1 PgC

CMIP6
mean, x 4.55 7.27 2.42 1.16 0.33 2787 0.57 0.19 0.24
std, σx 1.04 0.45 0.35 0.45 0.05 213 0.04 0.02 0.05
σx/x 0.23 0.06 0.14 0.39 0.16 0.08 0.08 0.08 0.22
CMIP5
mean, x 4.66 7.21 2.28 1.05 0.32 2702 0.59 0.20 0.21
std, σx 0.42 0.98 0.41 0.21 0.05 249 0.06 0.02 0.06
σx/x 0.09 0.14 0.18 0.20 0.16 0.09 0.10 0.09 0.31

Figure 2. Evolution of the carbon budget over 140 years for 9 CMIP6 (left panels) and 7 CMIP5 (right panels) Earth system
models together with their model mean (thick black and grey lines): (a) cumulative carbon emission, Iem in PgC; (b) airborne
fraction,∆Iatmos/Iem; (c) landborne fraction,∆Iland/Iem; and (d) oceanborne fraction,∆Iocean/Iem.

Hegerl 2008, Andrews et al 2012, Forster et al 2013)
by

∆F(t) = ∆R(t)+N(t)≡ λ(t)∆T(t)+N(t), (5)

where N(t) is the planetary heat flux into the climate
system, which is dominated by the heat uptake by the

ocean (Church et al 2011), and ∆F(t) is defined as
positive into the ocean.

The dependence of surface warming on radiative
forcing,∆T(t)/∆F(t), in (3) is then directly connec-
ted to the product of the inverse of the climate feed-
back, λ(t)−1, and the planetary heat uptake divided

4
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by the radiative forcing, N(t)/∆F(t),

∆T(t)

∆F(t)
=

1

λ(t)

(
1− N(t)

∆F(t)

)
, (6)

where (1−N(t)/∆F(t)) represents the fraction of the
radiative forcing that warms the surface, rather than
the ocean interior.

2.2. Dependence of radiative forcing from
atmospheric CO2 on carbon emissions
The dependence of radiative forcing on cumulat-
ive carbon emissions, ∆F(t)/Iem(t), in (3) may be
expressed in terms of changes in the radiative forcing
on changes in atmospheric CO2, ∆F(t)/∆Iatmos(t),
and the airborne fraction,∆Iatmos(t)/Iem(t) (Ehlert et
al 2017),

∆F(t)

Iem(t)
=

(
∆F(t)

∆Iatmos(t)

)(
∆Iatmos(t)

Iem(t)

)
. (7)

The airborne fraction, ∆Iatmos(t)/Iem(t), is related to
the changes in the oceanborne and landborne frac-
tions (Jones et al 2013),

∆Iatmos(t)

Iem(t)
= 1−

(
∆Iocean(t)

Iem(t)
+

∆Iter(t)

Iem(t)

)
, (8)

where the changes in the ocean and terrestrial invent-
ories are denoted by ∆Iocean(t) and ∆Iter(t) respect-
ively.

The sensitivity of the radiative forcing on
atmospheric CO2, ∆F(t)/∆Iatmos(t), saturates with
increasing atmospheric CO2, with the radiative for-
cing represented by a logarithmic dependence,

∆F(t) = a ln(CO2(t)/CO2(t0)), (9)

where a is a radiative forcing coefficient for CO2

(Myhre et al 1998) and t0 is the time of the pre-
industrial. During emissions, the decrease in the
sensitivity of the radiative forcing on atmospheric
CO2,∆F(t)/∆Iatmos(t),may equivalently be viewed in
terms of the ocean acidifying with increasing atmo-
spheric CO2 and decreasing the amount of saturated
carbon that the ocean can hold (Katavouta et al 2018).
Next we apply these theoretical relations (3) to (9) to
understand how the TCRE is controlled.

3. Methods

3.1. Models
Our analyses are applied to 9 CMIP6 and 7 CMIP5
models (table 1), which have been forced by an annual
1% rise in atmospheric CO2 for 140 years starting
from a pre-industrial control, following the 1pctCO2
experimental protocol (Eyring et al 2016). All the
thermal and carbon diagnostics are performed on
the forced model response with the unforced pre-
industrial control (piControl) subtracted off to min-
imise model drift.

3.2. Carbon diagnostics
The Earth systemmodels couple the carbon cycle and
climate together through sources and sinks of CO2

being affected by atmospheric CO2 and the change in
climate (Ciais et al 2014). The sum of the changes in
the atmospheric, ocean and terrestrial inventories of
carbon balance the implied cumulative carbon emis-
sion, Iem(t) in PgC,

Iem(t) = ∆Iatmos(t)+∆Iocean(t)+∆Iter(t), (10)

where the inventory changes are evaluated from the
time integral of the air-sea and air-land carbon fluxes.
Themodel mean for the cumulative carbon emission,
Iem(t), is 2790 and 2700 PgC for years 120 to 140 for
the 9 CMIP6 and the 7 CMIP5 models respectively
(table 2). There are differences in the cumulative car-
bon emission in each of the individual Earth system
models from differences in their terrestrial and ocean
cycling and uptake of carbon (Arora et al 2019) (fig-
ure 2(a)).

The airborne fraction, ∆Iatmos(t)/Iem(t), initially
falls to a minimum between years 50 and 80, and
then increases in time reaching model means of 0.57
for the 9 CMIP6 models and 0.59 for the 7 CMIP5
models for years 120 to 140 (figure 2(b), table 2).
This response is a consequence of the landborne frac-
tion, ∆Iter(t)/Iem(t), increasing in time to a max-
imum over a wide range from years 30 to 120, and
then decreasing (figure 2(c)), as well as from the
oceanborne fraction,∆Iocean(t)/Iem(t), increasing to a
maximum around year 50 and then slightly decreas-
ing (figure 2(d)). The response of the CMIP6 mod-
els is broadly similar to that of the CMIP5 mod-
els, although there is a greater range in the inter-
model differences in the airborne, landborne and
oceanborne fractions for CMIP5 (tables 2 and S1
(stacks.iop.org/ERL/15/0940c1/mmedia)).

3.3. Thermal diagnostics
For the thermal analyses, the planetary heat uptake,
N(t), is provided from 1pctCO2 model output,
but the radiative forcing, ∆F(t), radiative response,
∆R(t), and the climate feedback parameter, λ(t),
need to be diagnosed. The effective radiative forcing,
∆F(t), is calculated using the logarithmic depend-
ence in (9) with the radiative forcing coefficient a=
∆F4xCO2/ ln4. The effective forcing due to a quad-
rupling of atmospheric CO2, ∆F4xCO2 , is diagnosed
from the abrupt-4xCO2 simulations using the y-
intercept of a regression fit for N(t) versus ∆T(t)
(Gregory et al 2004). To account for curvature in the
N(t) versus∆T(t) relationship (Andrews et al 2015),
only the first twenty years of data are used to calculate
the fits.

The regression-based estimate of ∆F4xCO2 yields
an incorrect value for the CNRM-ESM2.1 model,
because in this model simulation for abrupt-4xCO2

the quadrupling of CO2 concentration takes about 15
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years, rather than being instantaneous (see the discus-
sion in Smith et al (2020)). Therefore for this model
only, the forcing is estimated as the difference inN(t)
between two fixed sea surface temperature simula-
tions, piClim-4xCO2 and piClim-control (table 2 in
Smith et al (2020)).

The radiative response, ∆R(t), is next diagnosed
from ∆F(t)−N(t). The time-varying climate feed-
back parameter, λ(t), is then diagnosed from the
least-squares regression slope of∆R(t) against∆T(t)
(Gregory and Forster 2008), where the regression is
calculated from the start of the time series to year t.
For example, λ(t) for year 70 is based on the regres-
sion over the first 70 years, while λ(t) for year 140 is
based on the regression over the entire 140 years.

The diagnostics for ∆R(t), ∆F(t), N(t) and
∆T(t) are smoothed to remove interannual variab-
ility using a moving average filter with a 10 year win-
dow.

The physical feedback parameter, λ(t), is further
decomposed into contributions from the Planck feed-
back, the lapse rate, relative humidity, surface albedo
and cloud feedbacks,

λ(t) = λPlanck(t)+λLR(t)+λRH(t)+λAlb(t)+λCloud(t),
(11)

where the subscripts identify each component. The
radiative impact of water vapour is separated into two
contributions: changes at constant relative humidity,
counted as part of the temperature-driven response,
and a residual contribution due to changes in rel-
ative humidity (Held and Shell 2012). The radiative
decomposition is performed using CAM5 radiative
kernels (Pendergrass et al 2017, Soden et al 2008).

In these Earth system models integrated under a
1% annual increase in atmospheric CO2 scenario, the
radiative forcing ∆F(t) is typically 7.3 W m−2 for
years 120 to 140 (figure 3(a)), which drives an increase
in planetary heat uptake,N(t), of typically 2.4Wm−2

and a radiative response, ∆R(t), of 4.9 W m−2 (fig-
ure 3(b) and (c), table 2). The climate feedback para-
meter, λ(t), varies across the models from 0.7 to
2.5 W m−2 K−1 with a model mean of 1.2 W m−2

K−1 (figure 3(d)). There is a larger intermodel range
in the radiative response and climate feedback para-
meter for the 9 CMIP6 models compared with for
the 7 CMIP5 models (figure 3(c) and (d)), reaching
twice the normalised spread based upon the ratio of
the standard deviation over themodelmean (table 2).

4. Diagnostics of the TCRE

The response of the Earth system models is now
assessed in terms of the TCRE and its relationship to
thermal, radiative forcing and carbon-cycle responses
of the climate system.

4.1. Evolution of the TCRE
The TCRE only slightly varies in time over the
140 years for most of the Earth system models

(figure 4(a)), although sometimes there is a slight
decrease in time. The evolution of the TCRE is usually
viewed in terms of the product of the ratio of the sur-
face warming and the change in atmospheric carbon,
∆T/∆Iatmos, and the airborne fraction, ∆Iatmos/Iem,
in (2) (Matthews et al 2009), as illustrated in fig-
ures 4(b) and (c); this expression may be equivalently
written in terms of the product of a climate sensitiv-
ity and carbon feedback parameters (Jones and Fried-
lingstein 2020).

For the 9 CMIP6 models, the TCRE contribu-
tion from the ratio of the surface warming and the
change in atmospheric carbon, ∆T/∆Iatmos, typic-
ally involves a slight decline, while the airborne frac-
tion,∆Iatmos/Iem, involves an initial decline and then a
slight increase (figures 4(b) and (c), grey line). There
is a broadly similar response for the 7 CMIP5models,
but slightly modified by ∆T/∆Iatmos decreasing after
typically year 40 and with a larger intermodel spread
in the airborne fraction. While the near constancy of
the TCRE is clear in these diagnostics, the control of
the TCRE for different individual Earth system mod-
els is not particularly revealing using this identity (fig-
ure 4, table S1).

Instead we advocate that the TCRE may be inter-
preted in terms of a product of the thermal response,
involving the surface warming dependence on radiat-
ive forcing,∆T/∆F, and a radiative forcing response,
involving the dependence of radiative forcing on car-
bon emissions, ∆F/Iem in (3) (Williams et al 2016,
Williams et al 2017), as illustrated in figure 5.

Using this identity, the thermal response,∆T/∆F,
is revealed to increase in time for all the models
(figure 5(b)), while the radiative forcing response,
∆F/Iem, decreases in time (figure 5(c)). There is a
broadly similar dependence in both the subsets of the
CMIP6 and CMIP5 models. The intermodel spread
is greater for the thermal response, ∆T/∆F, and is
instead smaller for the radiative forcing response,
∆F/Iem for the 9 CMIP6 models relative to the 7
CMIP5 models (figure 5(b) and (c); tables 3 and S2).

Hence, the near constancy of the TCRE is a con-
sequence of nearly compensating contributions: a
strengthening in the thermal response, ∆T/∆F, off-
setting a weakening in the radiative forcing response,
∆F/Iem.

4.2. Evolution of the components of the TCRE
The strengthening in the thermal response given by
the surface warming dependence on radiative for-
cing, ∆T/∆F (figure 6(a)), from (6) is due to two
reinforcing contributions: (i) a weakening in the cli-
mate feedback parameter, λ, and (ii) an increase in
the fraction of radiative forcing used to warm the
surface, (1−N(t)/∆F(t)) (figure 6(b) and (c)). The
decrease in λ over time is a well-documented fea-
ture of the response of coupled climate models to
CO2 forcing (Andrews et al 2015), resulting from sea
surface warming patterns evolving in time (Armour

6
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Figure 3. Evolution of the radiative and heat budget over 140 years for 9 CMIP6 (left panels) and 7 CMIP5 (right panels) Earth
system models together with their model means (thick black and grey lines): (a) radiative forcing,∆F in W m−2, which drives an
increase in (b) planetary heat uptake, N in W m−2 and (c) a radiative response,∆R in W m−2, together with (d) the climate
feedback parameter, λ=∆R/∆T in W m−2K−1.

et al 2013, Rugenstein et al 2016, Ceppi and Gregory
2017, Andrews and Webb 2018). The reducing frac-
tion of radiative forcing taken up by the ocean interior
is also well reported (Solomon et al 2009, Good-
win et al 2015, Williams et al 2016, Williams et al
2017). This thermal response is similar in pattern
for both the CMIP6 and CMIP5 models. There is
though a greater intermodel spread in these thermal
responses and their contributions from λ−1 for the
9 CMIP6 models relative to the 7 CMIP5 models
(table 3).

The weakening in the radiative forcing response
given by the radiative forcing dependence on cumu-
lative carbon emissions, ∆F/Iem (figure 7(a)), from

(7) is mainly due to a weakening in the radi-
ative forcing dependence on atmospheric carbon,
∆F/∆Iatmos, from a saturating effect (Myhre et al
1998) together with smaller contributions from the
changes in the airborne fraction (Matthews et al 2009)
(figure 7(b) and (c)). This response is also explained
in terms of how far the ocean is from a carbon equi-
librium with the atmosphere (Goodwin et al 2015,
Williams et al 2017, Katavouta et al 2018). This radi-
ative forcing response is similar in pattern for both
the CMIP6 and CMIP5 models. There is though a
smaller intermodel spread in both the radiative for-
cing dependence on atmospheric carbon and the
changes in the airborne fraction responses for the
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Figure 4. Evolution of the TCRE, surface warming dependence on atmospheric carbon and airborne fraction for 9 CMIP6 (left
panels) and 7 CMIP5 (right panels) Earth system models together with their model means (thick black and grey lines): (a) the
TCRE from the dependence of surface warming on cumulative carbon emissions,∆T/Iem in K EgC−1; (b) the Transient Climate
Response (TCR) from the dependence of surface warming on atmospheric carbon,∆T/∆Iatmos in K (EgC)−1; and (c) the
airborne fraction,∆Iatmos/Iem.

Table 3.Model mean, intermodel standard deviation and coefficient of variation for the TCRE and its components for years 120 to 140
for the 9 CMIP6 and 7 CMIP5 Earth system models following a 1% annual increase in atmospheric CO2. The coefficient of variation is
defined by the intermodel standard deviation divided by the model mean, evaluated at the same time. The individual model responses
are provided in table S2.

Variable: TCRE ∆T/∆Iatmos ∆T/∆F ∆F/Iem λ−1 (1−N/ ∆F/∆Iatmos ∆Iatmos/
Units: K EgC−1 K EgC−1 K (Wm−2)−1 (W m−2) (EgC)−1 K (Wm−2)−1 ∆F) (W m−2) (EgC)−1 Iem

CMIP6
mean, x 1.64 2.87 0.63 2.63 0.96 0.67 4.59 0.57
std, σx 0.41 0.65 0.17 0.27 0.31 0.05 0.30 0.04
σx/x 0.25 0.23 0.26 0.10 0.32 0.08 0.06 0.08
CMIP5
mean, x 1.75 2.94 0.66 2.71 0.99 0.68 4.55 0.59
std, σx 0.28 0.27 0.10 0.56 0.21 0.05 0.62 0.06
σx/x 0.16 0.09 0.16 0.21 0.21 0.07 0.14 0.10

9 CMIP6 models relative to the 7 CMIP5 models
(table 3).

4.3. Intermodel spread for the TCRE
The normalised spread for the separate sets of 9
CMIP6 and 7 CMIP5models are next assessed by dia-
gnosing the coefficient of variation (also called the

relative standard deviation) given by the intermodel
standard deviation for each variable and dividing by
the multi-model mean, all evaluated at the same time
(Williams et al 2017, Katavouta et al 2019). The nor-
malised spreads for the TCRE for years 120 to 140
are 0.25 and 0.16 for the subsets of 9 CMIP6 and
7 CMIP5 models respectively (figure 8(a), tables 3
and S2).
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Figure 5. Evolution of the TCRE and its components for 9 CMIP6 (left panels) and 7 CMIP5 (right panels) Earth system models
together with their model means (thick black and grey lines): (a) the TCRE from the dependence of surface warming on
cumulative carbon emissions,∆T/Iem in K EgC−1; (b) the thermal response from the dependence of surface warming on
radiative forcing,∆T/∆F in K (Wm−2)−1; and (c) the dependence of radiative forcing on cumulative carbon emissions,∆F/Iem
in (W m−2) EgC−1.

For the CMIP6 subset of models, there is a larger
normalised spread for ∆T/∆F of 0.26 and a smal-
ler normalised spread for ∆F/Iem of 0.10. Instead
for the CMIP5 subset of models, there is the oppos-
ing response with a smaller normalised spread for
∆T/∆F of 0.16 and larger normalised spread for
∆F/Iem of 0.21 (figure 8(a), table 3). Hence, for years
120 to 140, the intermodel spread for the TCRE
is being controlled more strongly by the thermal
response for the 9 CMIP6 models, but instead more
strongly by the radiative and carbon responses for the
7 CMIP5 models.

If the normalised spread for each thermal and
radiative forcing responses, ∆T/∆F, and ∆F/Iem,
were assumed to be independent of each other and
combined in the same manner as random errors,
then the normalised spread for the TCRE would be
comparable to the square root of the sum of the
squared contributions making up the TCRE in (3)

(figure 8(a), grey line). This estimate of the normal-
ised spread from the sum of these two contributions,
∆T/∆F and ∆F/Iem, is always larger than the actual
normalised spread for the TCRE. This inference of
partial compensation is supported by the two contri-
butions,∆T/∆F and∆F/Iem, being negatively correl-
ated to each other with a correlation coefficient value
of typically -0.5 (figure 8(d), black line).

4.4. Uncertainties in∆T/∆F and∆F/Iem
The normalised spread for the thermal response,
∆T/∆F, ranges typically from 0.2 to 0.3 for both the
CMIP6 andCMIP5models (figure 8(b)), but the nor-
malised spread becomes larger for the CMIP6models
than the CMIP5 models by years 120 to 140 (table 3).
The normalised spread of∆T/∆F in both the CMIP6
and CMIP5 models is dominated by the contribu-
tion of the inverse of the climate feedback, λ−1, rather
than from the fraction of the radiative forcing used
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Figure 6. Evolution of (a) the thermal response from the dependence of surface warming on radiative forcing,∆T/∆F in
K (W m−2)−1; (b) 1/climate feedback parameter, λ−1 in K (W m−2)−1; and (c) the fraction of radiative forcing that warms the
surface, (1−N/∆F), for 9 CMIP6 (left panels) and 7 CMIP5 (right panels) Earth system models together with their model means
(thick black and grey lines).

to warm the surface, 1−N/∆F, where N is effect-
ively the ocean heat uptake, based upon (6). This
response does differ though between these subsets of
CMIP6 and CMIP5 models with a larger spread for
the λ−1 contribution for CMIP6 for years 120 to 140
(table 3).

While the intermodel spread in λ−1 is more
important than that in ocean heat uptake, N, there is
a strong partial compensation in the changes in λ−1,
and the fraction of the radiative forcing used to warm
the ocean interior, N/∆F, with a correlation coeffi-
cient of typically -0.9 (figure 8(d), red line). Hence
for a given radiative forcing, a larger physical climate
feedback is associated with less ocean heat uptake,
whereas a smaller physical climate feedback is asso-
ciated with more ocean heat uptake.

The normalised spread for the radiative for-
cing response, ∆F/Iem, is typically 0.1 for the 9

CMIP6 models and 0.2 for the 7 CMIP5 models
(figure 8(c), table 3). This smaller normalised spread
for CMIP6 is through smaller reinforcing contribu-
tions from the dependence of the radiative forcing
on atmospheric carbon,∆F/∆Iatmos, and the airborne
fraction,∆Iatmos/Iem based upon (7); both terms have
a weak positive correlation to each other of typically
0.5 or less (figure 8(d), blue line). The intermodel dif-
ferences in the airborne fraction are themselves more
dominated by the landborne fraction (figures 2(b)–
(d)); the intermodel spread for the landborne fraction
is a factor of 2 or 3 larger than that for the oceanborne
faction for CMIP6 and CMIP5 respectively (tables 2
and S1).

4.5. Effects of physical climate feedbacks
A dominant cause of intermodel differences in
the TCRE is from the thermal response, which
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Figure 7. Evolution of (a) the dependence of radiative forcing on cumulative carbon emissions,∆F/Iem in W m−2 EgC−1; (b) the
ratio of the radiative forcing and the change in the atmospheric carbon inventory,∆F/∆Iatmos in W m−2 EgC−1; and (c) the
airborne fraction,∆Iatmos/Iem, for 9 CMIP6 (left panels) and 7 CMIP5 (right panels) Earth system models together with their
model means (thick black and grey lines).

is itself mainly controlled by intermodel differ-
ences in the physical climate feedback for both
the 9 CMIP6 and 7 CMIP5 models. The over-
all radiative response and climate feedback para-
meter is positive, acting to cool the surface
(figure 9(a)).

The dominant contribution to the physical cli-
mate feedback, λ, in (11) is the Planck feedback (fig-
ure 9(a)) acting to cool the surface (with a positive λ
in our sign convention), which is reinforced by smal-
ler positive contributions from the lapse rate and rel-
ative humidity. There are negative contributions from
the albedo and generally from clouds, both acting
to increase surface warming. The intermodel spread
in λ is dominated by intermodel differences in the
shortwave and longwave effects of clouds with the
net effect of clouds ranging from strongly negative
(acting to enhance surface warming) to weakly pos-
itive (Ceppi et al 2017).

The analyses for the contribution to the feedback
parameter, λ, between the sets of CMIP6 and CMIP5
models vary from being almost identical to very sim-
ilar for the Planck feedback, the lapse rate and relative
humidity contributions (figure 9(a)). There is a nar-
rower spread for the albedo contribution for CMIP6
relative to CMIP5. However, there is a larger spread
for the longwave and shortwave contributions from
clouds for CMIP6 relative to CMIP5, which leads to
the overall net climate feedback parameter having a
larger positive range for CMIP6 (figure 9(a), tables 2
and S1).

The feedback parameter, λ, does evolve in time,
consistent with figure 6(b), becoming smaller inmag-
nitude, mainly due to the shortwave cloud contribu-
tion becoming more negative and acting to enhance
surface warming (figure 9(b)). These analyses are in
agreement with diagnostics of more extensive sets
of CMIP5 and CMIP6 models (Andrews et al 2015,
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Figure 8. Evolution of the normalised spread of the TCRE and its components for 9 CMIP6 models (left column) and 7 CMIP5
models (right column), given by the coefficient of variation (from the intermodel standard deviation divided by the model mean):
(a) the TCRE,∆T/Iem (thick black line), and its components for the thermal response,∆T/∆F (red line) and the radiative
forcing response,∆F/Iem (blue line), together with the expected variation of the TCRE (grey line) if each of the contributions
operate independently of each other; (b) the thermal response given by the dependence of surface warming on radiative forcing,
∆T/∆F (red line), 1/climate feedback, λ−1 (dashed red line) and the fraction of the radiative forcing warming the ocean interior,
∆N/F (red dot-dash line) together with the expected variation of the∆T/∆F (grey line); and (c) the dependence of radiative
forcing on cumulative carbon emissions,∆F/Iem (blue line), the ratio of the radiative forcing and the change in the atmospheric
carbon inventory,∆F/∆Iatmos (green dashed line) and the airborne fraction,∆Iatmos/Iem (purple dashed line) together with the
expected variation of the∆F/Iem (grey line). In addition, (d) shows the correlation coefficient for each of the components
included in (a) to (c).

Ceppi and Gregory 2017, Ceppi et al 2017, Zelinka et
al 2020).

4.6. Comparison of the drivers of the TCRE
between CMIP5 and CMIP6
The spread in the TCRE is now presented in a norm-
alised fashion for each set of 9 CMIP6 and 7 CMIP5
models, where each model response is normalised by
dividing by the model mean for years 120 to 140 (fig-
ure 10, left column). There is a slightly larger norm-
alised spread for this subset of 9 CMIP6 compared
with the subset of 7 CMIP5 models. This difference
is probably a consequence of the choice and num-
ber of the models analysed, since other studies do not
find a significant difference in the TCRE for CMIP5

and CMIP6 (Arora et al 2019, Jones and Friedling-
stein 2020).

There are robust differences in the controls of
the intermodel differences in the TCRE as revealed
by separating the TCRE into a thermal response
involving the dependence of surfacewarming on radi-
ative forcing, ∆T/∆F, the dependence of the radi-
ative forcing on atmospheric CO2, ∆F/∆Iatmos, and
the airborne fraction, ∆Iatmos/Iem (figure 10, middle
column). The normalised spread for the thermal
response, ∆T/∆F, is much greater for the 9 CMIP6
models than the 7 CMIP5 models. In contrast, the
normalised spread for the dependence of the radi-
ative forcing on atmospheric CO2, ∆F/∆Iatmos, and
the airborne fraction, ∆Iatmos/Iem (figure 10, middle
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Figure 9. (a) Climate feedback parameter λ, in W m−2 K−1, diagnosed using a regression over years 1 to 140 of the 1% annual
increase in atmospheric CO2 simulations of 9 CMIP6 (diamonds) and 7 CMIP5 models (circles), decomposed into contributions
from the Planck feedback, changes in the lapse rate (LR), relative humidity (RH), surface albedo (Alb) and clouds (Cld). The
cloud term is further separated into longwave (LW) and shortwave (SW) contributions. The sum of the climate feedbacks is given
by the net feedback (Net). The residual misfit is the difference between the net feedback and the sum of the kernel-decomposed
feedbacks, reflecting inaccuracies in the kernel method. (b) Time evolution of λ, calculated as the difference between λ(140) and
λ(70), where λ(70) is diagnosed using a regression over years 1 to 70 of the experiment and λ(140) over years 1 to 140. The sign
convention is such that positive values for λ in (5) imply a negative physical feedback acting to oppose surface warming.

Figure 10. Intermodel normalised spread for the TCRE and its components for 9 CMIP6 (diamonds) and 7 CMIP5 models
(circles) over years 120 to 140 including the thermal response from the dependence of surface warming on radiative forcing,
∆T/∆F, the radiative forcing dependence on the change in atmospheric carbon,∆F/∆Iatmos, and the airborne fraction,
∆Iatmos/Iem. Each of the individual model responses are normalised by the relevant model mean for either CMIP6 or CMIP5 over
years 120 to 140. For comparison, the normalised spread is also shown for the TCR,∆T/∆Iatmos, and the airborne fraction,
∆Iatmos/Iem.
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column) is smaller for the 9 CMIP6models versus the
7 CMIP5 models.

The standard way of interpreting the TCRE in
terms of the Transient Climate Response involving
the dependence of surface warming on atmospheric
carbon, ∆T/∆Iatmos, and the airborne fraction,
∆Iatmos/Iem (figure 10, right column) shows a much
larger spread for∆T/∆Iatmos for CMIP6 thanCMIP5,
and a comparable spread for the airborne fraction.

5. Conclusions

The TCRE is an important climate metric, defining
how surface warming increases with cumulative car-
bon emissions (Matthews et al 2009, Gillett et al 2013,
Collins et al 2013, Goodwin et al 2015, MacDougall
2016, Williams et al 2016, Matthews et al 2018) and
helps determine how much carbon may be emitted
before exceeding any warming targets (Meinshausen
et al 2009, Zickfeld et al 2009). The TCRE remains
nearly constant in time during carbon emissions for
projections from Earth system models, although the
value of the TCRE differs between individual Earth
systemmodels (Gillett et al 2013,Williams et al 2017).
While the near constancy of theTCREhas beenwidely
reported, there have been fewer studies explaining the
intermodel differences in the TCRE (Williams et al
2017, MacDougall et al 2017). Here, we explore how
the TCRE is controlled using diagnostics of two sub-
sets of Earth system models, 9 CMIP6 and 7 CMIP5,
following a 1% annual rise in atmospheric CO2.

How the TCRE is controlled is explored using
a radiative forcing identity, where the TCRE equals
the product of a thermal response, from the sur-
face warming dependence on radiative forcing, and a
radiative forcing response, from the radiative forcing
dependence on cumulative carbon emissions (Wil-
liams et al 2016). The near constancy of the TCRE
is due to a strengthening in the thermal response,
which is offset by a weakening in the radiative forcing
response.

Intermodel differences in the TCRE, on timescales
of the first 100 years for CMIP6 and the first 50 years
for CMIP5 models, are controlled primarily by inter-
model differences in the thermal response, arising
from intermodel differences in the effect of physical
climate feedbacks and, partly compensating, effects
of planetary heat uptake. There are smaller inter-
model differences in the radiative forcing response
arising from intermodel differences in how the radi-
ative warming saturates with increasing atmospheric
CO2 and differences in the airborne fraction.

The thermal response is controlled by the product
of the inverse of the climate feedback parameter and
the fraction of the radiative forcing used to warm
the surface. The inverse of the climate feedback para-
meter increases in time mainly due to the shortwave
cloud feedback acting to enhance surface warming.
The ratio of the planetary heat uptake and radiative

forcing decreases in time, so that the fraction of radi-
ative forcing used to warm the surface increases in
time, consistent with the ocean becoming more strat-
ified.

There is a larger intermodel spread in the thermal
response due to a larger spread in the physical
feedbacks, particularly shortwave and longwave
effects of clouds, for the subset of CMIP6 models
compared within the subset of CMIP5 models. These
diagnostics are consistent with analyses of a larger
number of CMIP6 models revealing a greater range
of higher values in climate sensitivity (Zelinka et al
2020).

The radiative forcing response is controlled by
the product of the radiative forcing response to
changes in atmospheric carbon and the airborne
fraction (Ehlert et al 2017, Katavouta et al 2018).
The radiative forcing response to changes in atmo-
spheric carbon systematically declines in time due
to a saturation in the radiative forcing with an
increase in atmospheric CO2. The airborne frac-
tion both decreases and increases in time accord-
ing to changes in the land and ocean uptake of
carbon.

Our inference that the thermal response and the
effect of physical climate feedbacks play a domin-
ant role in determining intermodel differences in the
TCRE is revealedmore clearly using our radiative for-
cing framework, than if the TCRE is expressed as a
product of the Transient Climate Response and the
airborne fraction (Matthews et al 2009, Jones and
Friedlingstein 2020). Our framework separates the
Transient Climate Response into a product of partly
compensating contributions, a dependence of sur-
face warming on radiative forcing and a radiative
dependence on atmospheric carbon. The dependence
of surface warming on radiative forcing may then
be directly connected to the physical climate feed-
backs and ocean heat uptake acting in the climate
system.

The uptake of carbon by the land and ocean is
important in providing a feedback to carbon emis-
sions to the atmosphere (Friedlingstein et al 2003,
Friedlingstein et al 2006, Gregory et al 2009, Arora
et al 2013, Arora et al 2019, Jones and Friedling-
stein 2020), which alters how much carbon may
be emitted before exceeding warming targets. The
effect of the carbon cycle may though be underes-
timated in the Earth system model integrations that
include a prescribed atmospheric CO2, such as the 1%
annual increase analysed here, rather than follow an
emission-driven scenario (Friedlingstein et al 2014).
In a more idealised atmosphere-ocean model, the
changes in carbon cycle may even dominate thermal
effects on multi centennial timescales after emissions
cease (Katavouta et al 2019).

In summary, improved bounds on the TCRE are
needed in order to constrain estimates of how much
carbon may be emitted to avoid warming targets. To
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achieve these tighter constraints on theTCRE requires
improved bounds on the thermal response from the
effects of physical climate feedbacks, especially from
clouds, and the effects of planetary heat uptake on
multi-decadal timescales. The TCRE also alters from
how radiative forcing saturates with increasing atmo-
spheric CO2, as well as on multi-decadal times-
cales and longer timescales from changes in carbon
cycling.
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