Synthesis of Highly Enantioenriched Sulfonimidoyl Fluorides and Sulfonimidamides by Stereospecific SuFEx Reaction

Abstract: Sulfonimidamides present exciting opportunities as chiral isosteres of sulfonamides, with potential for additional directional interactions. Here we present the first modular enantioselective synthesis of sulfonimidamides, including the first stereoselective synthesis of enantioenriched sulfonimidoyl fluorides, and studies on their reactivity. A new route to sulfonimidoyl fluorides is presented from solid bench, NBoc-sulfonamide salt building blocks. Enantioenriched arylsulfonimidoyl fluorides are shown to be readily racemized by fluoride ions. Conditions are developed which trap fluoride, and enable the stereospecific reaction of sulfonimidoyl fluorides with primary and secondary amines (100% ee) generating sulfonimidamides with up to 99% ee. Aryl and alkyl sulfonimidoyl fluoride reagents are suitable for mild late stage functionalization reactions, exemplified by coupling with a selection of complex amines in marketed drugs.

Directional interactions are crucial to the development of active ingredients in pharmaceutical and agrochemical products. Inclusion of chiral moieties can increase complementarity and hence potency and selectivity of a compound for a biological target.[1] In contrast to sulfones and sulfonamides, their chiral azahalo analogues, sulfoximines and sulfonimidamides (Fig 1a), have been underrepresented in the life sciences despite their beneficial chemical properties.[2,3] They have high chemical and metabolic stability, and can improve physicochemical properties of a molecule, such as increased solubility, with the introduction of both hydrogen bond donor and acceptor capabilities for NH-derivatives.[4,5] It is notable that sulfoximines have appeared in several new S(VI) clinical candidates as single enantiomers (Fig 1b).[6,7,8] Sulfonimidamides are less developed in drug discovery, but present similar potential advantages.[9] However, to date there are no general methods available to prepare these in enantioenriched form.

Similarly, sulfonimidoyl fluorides have been developed by Sharpless as click reagents in sulfur-fluorine exchange (SuFEx) reactions, and are used increasingly as biological probes.[10,11] To date, application of the chiral sulfonimidoyl fluoride derivatives as biological probes is limited,[10a,10c] but presents interesting potential for improved specific directional interactions.

Methods for the synthesis of sulfonimidamides have developed significantly in recent years including powerful NH transfer methods.[12] A valuable disconnection for divergent synthesis is formation of the S–N bond, by coupling an electrophilic S-source with amines.[13,14] Several methods proceed via the sulfonimidoyl chloride, including recent powerful methods developed by Chen[15] and Willis (Fig 1c).[16] However,
Enantoienriched sulfonimidoyl fluorides have been unknown until very recently. Zuhlhofer isolated the first example of an enantoienriched sulfonimidoyl fluoride, generated by the reaction of a racemic sulfonimidoyl chloride with KF, followed by separation of the enantiomers by chiral HPLC. Notably these reagents reacted with phenols in the presence of DBU, without requiring silylation, but underwent racemisation ascribed to the base. Using sodium phenolate provided enantoienriched sulfonimidates in a rapid reaction.

Here we describe a method to prepare highly enantoienriched sulfonimidoyl fluorides from bench-stable sulfanamide salts, and their use in the synthesis of a diverse range of enantoienriched sulfonimidamides by stereospecific SuFEx reaction (Figure 1). The first stereocontrolled synthesis of sulfonimidoyl fluorides is reported. Fluoride ions are demonstrated to cause racemization of the sulfonimidoyl fluorides, which is avoided by fluoride trapping. The mild coupling reagents allow the use of neutral primary and secondary amines, and the methodology is exemplified in the functionalization of amine containing drug entities and diverse chemical libraries. A readily removed NBoc-protecting group on the imide nitrogen is employed, which also increased the electrophilicity of the sulfonimidoyl fluoride.

By analogy with sulfonyl fluorides, we envisaged a new route to sulfonimidoyl fluorides through fluorination of sulfanamide salts. Initially, racemic p-tolyl sulfanamide salt 1a was prepared from the corresponding NBoc-sulfonimine by elimination of acrylate (see SI). Pleasingly, sulfonimidoyl fluoride 2a was formed in high yield and excellent purity using Selectfluor, after a simple azeotropic workup (Scheme 1a, Procedure A). Furthermore, we developed conditions for the reaction of 2a with 11 examples of primary and secondary amines (Procedure B, e.g. piperidine, 77% yield 3a in Scheme 1a. See SI for further examples).

While this route demonstrated the proof of concept, a key aim for this project was in the development of an efficient strategy to enantoienriched sulfonimidamides. The corresponding enantoienriched salt (S)-1a was formed from commercial (S)-(−)-p-toluenesulfinamide (S)-4 (Table 1; (S)-4 to (S)-1a). However, when using the enantoienriched sulfanamide salt, a significant loss of ee occurred in both fluorination and coupling steps (Scheme 1b). Monitoring the reduction of ee over the course of the SuFEx reaction showed sulfonimidoyl fluoride (R)-2a rapidly racemized (Scheme 1c, see SI for additional data). Sulfonimidamide (R)-3a retained a low ee and was proven to be configurationally stable under the reaction conditions.

We proposed that degenerate nucleophilic attack of fluoride ions in solution on the sulfonimidoyl fluoride center was causing the racemization (Scheme 1d). To explore this hypothesis, two fluoride ion sources, TBAF and KF, were added to the sulfonimidoyl fluoride (R)-2a in THF at rt for 3 h. In the absence of a soluble fluoride ion source (Entry 1), a small amount of racemization occurred, presumably as a result of elimination of fluoride ions from the starting material. A soluble fluoride source (TBAF, Entry 2) caused the complete racemization of the sulfonimidoyl fluoride whereas the highly insoluble, inorganic KF did not release fluoride ions into solution and may, in fact, have complexed with F− present to prevent racemization (Entry 3).

This directed us to examine fluoride trapping strategies (See SI). Firstly, in the fluorination step, changing the solvent to ethanol, being polar and protic, resulted in full preservation of ee. However, the yield of the fluorination was much reduced, presumably from the protonation of the sulfanamide salt causing reduced nucleophilicity of the sulfur center. The introduction of potassium acetate as a soluble inorganic base resulted in an increased yield for this step with no loss of ee (Table 1. (S)-1a to (R)-2a).

Preventing racemization of the sulfonimidoyl fluoride in the amine coupling step required more extensive optimization (Table 1. (R)-2a to (R)-3a). A selection of trapping additives was examined (Entries 2–6). A typical organic fluoride ion scavenger, TMS-Cl shut down the reactivity and resulted in almost complete recovery of starting material. The addition of water resulted in an increased yield, however, there was only a small increase in ee observed. Soluble inorganic salts were investigated to precipitate insoluble fluoride salts. Adding KBr was not beneficial, whereas LiCl gave complete preservation of ee. The use of more soluble LiBr resulted in complete preservation of ee and an increase in yield. Changing the solvent had a lesser effect on ee than in the fluorination step and alcohol solvents caused a significant amount of sulfonimidate formation (Entries 7-8). However, changing the solvent to MeCN resulted in an increased yield (Entry 9), and...
when combined with LiBr resulted in the formation of an enantioenriched sulfonimidamide in excellent yield (Entry 10).

Table 1. Optimization of amine coupling for retention of ee and yield

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Additive</th>
<th>Yield (%)<sup>a</sup></th>
<th>ee<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>THF</td>
<td>-</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>TMS-Cl</td>
<td>75</td>
<td>n.d.</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>H<sub>2</sub>O</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>KBr</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>THF</td>
<td>LiCl</td>
<td>11</td>
<td>>99</td>
</tr>
<tr>
<td>6</td>
<td>THF</td>
<td>LiBr</td>
<td>19</td>
<td>>99</td>
</tr>
<tr>
<td>7</td>
<td>EIOH</td>
<td>-</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>MeCN</td>
<td>-</td>
<td>69</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>MeCN</td>
<td>LiBr</td>
<td>-</td>
<td>>99</td>
</tr>
<tr>
<td>10</td>
<td>MeCN</td>
<td>LiBr</td>
<td>-</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

^a Reactions performed on 0.1 mmol scale. ^b Yields determined by H-NMR using 1,3,5-trimethoxybenzene as internal standard. Isolated yields in parentheses.

% ee = % ee_t% ee_u. For details on Procedure C, see SI.

With the optimized conditions in hand, the amine scope of the reaction was explored (Scheme 2). Pleasingly, both primary and secondary amines were suitable in this reaction with complete enantiospecificity in all cases. Aliphatic, benzyl, and aliphatic amines were all coupled in good yields ((R)-3b–(R)-3g). Acyclic and cyclic secondary amines reacted in excellent yields ((R)-3h–(R)-3l). Ketones and gem-difluoro substituents were all well tolerated on the amine substrate ((R)-3m–(R)-3u). Chemoselective reactivity was observed with 6-piperidinol to form sulfonimidamide (R)-3o without significant competing sulfoniminate formation. Finally, more highly functionalized piperidines and piperazine heterocycles were coupled in good yield under the mild conditions ((R)-3p–(R)-3s), including the drug desipramine. Treating (R)-2a with both enantiomers of α-methylbenzylamine gave different single diastereoisomer products ((R)-3t and (R)-3u).

Scheme 2. Amine scope using the p-tolyl sulfonimidamide salt. Reactions performed on 0.25 mmol scale. Coupling reaction performed using (R)-2a (95–99% ee) with no loss of ee in this step.

Sulfonimidamide (R)-3h was determined to be (R)-stereocchemistry by single crystal X-ray diffraction analysis (Scheme 3; CCDC 1991431). This indicates inversion in the substitution reaction. Nucleophilic substitution with inversion at the sulfur center has precedent with sulfonimidoyl chlorides and sulfonimidates^[14,21,28] and more recently in the nucleophilic attack of phenols on sulfonimidoyl fluorides.^[22] Fluorination is presumed to occur with retention of the configuration similar to prior studies on chlorination (S changing to R due to priority change).^[20]
enantiopure drug compound dulo

high yields and maintained high sulfinamide salts. Treatment of bench form the sulfoximine PhB(OH)

Scheme 4. Preparation enantioenriched 4-bromophenyl sulfonimidamides. Ligand 1 = (S)-(−)-2-N-(3,5-dioكساوسيل)-2-amino-3,3-dimethyl-1-butanol. Stereoselectivity of 8 assigned based on prior literature.2h Suzuki conditions = PhB(OH)2 (1.5 equiv), K2CO3 (2 equiv), Pd(dtbpf)Cl2 (10 mol%). MeCN/H2O (1:1, 0.2 M), 80 ºC, 2 h.

Catalytic enantioselective oxidation of sulfide 7 gave sulfoxide 8 in 68% yield and 99% ee (S).2d Rh-catalyzed NBoc transfer to form the sulfoximine (S)-9, which has been shown to occur with retention of ee, and elimination of methyl acrylate from the sulfinamide salt (S)-1b. The elimination occurred with preservation of ee, as indicated by re-protonation of a sample of the salt. This provides a new approach to enantioenriched sulfinamide salts. Treatment of (S)-1b with Selectfluor gave fluoride (R)-2b with 92% ee. Reaction of (R)-2b with amines gave high yields and maintained high ee ((R)-3v–(R)-3x). Using the enanpurep drug compound duloxetine yielded a single diastereoisomer product (R)-3y. Moreover, the 4-bromophenyl substituent of (R)-3x was shown to be a suitable handle for further derivatization, as exemplified in a Suzuki–Miyaura cross-coupling to give enantioenriched biphenyl derivative (R)-10.

Moreover, additional racemic aryl and alkyl sulfnamide salts 1c–1h were prepared (See SI). These were converted to new sulfonimidoyl fluorides 2c–2h with Selectfluor and coupled with piperidine to form a collection of NBoc-protected sulfonimidamides (3z–3aj, Scheme 5). Electron-rich methoxyphenyl (3ab), and electron-poor pyridine derivatives (3ac) were successfully employed. Alkyl sulfnamide salts were also successfully converted to piperidine sulfonimidamides 3ad and 3ae. Procedure A (DMF) was more suitable for the fluorination step with the alkyl derivatives. The SuFEx reaction with methylsulfonimidoyl fluoride 2h was demonstrated with several amines, including the marketed drugs primaquine, desipramine and amoxapine (3ah–3aj).

Finally, the NBoc protecting-group was readily removed on both tertiary and secondary enantioenriched sulfonimidamide substrates with TFA in CH2Cl2 (Scheme 6). Treating (R)-3a and (R)-3f with TFA effected deprotection with no racemization to give NH-sulfonimidamides (R)-11 and (R)-12.
Keywords: sulfur • sulfonimidamides • synthetic methods • chirality • SuFEx reaction

Acknowledgements

We gratefully acknowledge The Royal Society [University Research Fellowship, UF140161 (to J. A. B.), URF appointed grant RG150444, and URF enhancement grant, RG18E1180031], and EPSRC [CAF to J.A.B. (EP/J001538/1), DTA Studentship, UF140161 (to J. A. B.)] for financial support. We also thank The Royal Society [University libraries. preparation of novel chemical entities and diverse chemical good to excellent yields, suitable coupling partners for the SuFEx reaction to access a diverse array of sulfonimidamides. The methodology can be applied to the late stage functionalization of drug molecules all in good to excellent yields, which has the potential to accelerate the preparation of novel chemical entities and diverse chemical libraries.

In conclusion, we have reported a new, practical method to access sulfonimidamides from bench-stable sulfinate salt building blocks by a SuFEx reaction of sulfonimidoyl fluorides. We describe the first facile route to enantioenriched sulfonimidamides, which are currently underrepresented in the life sciences. Moreover, the stereocontrolled synthesis of enantioenriched sulfonimidoyl fluorides is reported for the first time. Similar to the achiral sulfonyl fluorides, we see great potential for enantioenriched sulfonimidoyl fluorides as novel warheads for chemical biology and molecular pharmacology. Our synthetic methodology has a broad substrate scope of sulfinate salt starting materials and both primary and secondary amines are suitable coupling partners for the SuFEx reaction to access a diverse array of sulfonimidamides. The methodology can be applied to the late stage functionalization of drug molecules all in good to excellent yields, which has the potential to accelerate the preparation of novel chemical entities and diverse chemical libraries.

References
Stereocontrolled synthesis provides highly enantioenriched sulfonimidoyl fluorides for SuFEx chemistry. Enantiospecific S–N bond formation is achieved with inversion by preventing fluoride promoted racemization. A diverse array of sulfonimidamides are synthesized using primary and secondary amines including complex amine containing drugs.

Institute and/or researcher Twitter usernames: @jamesabull