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Abstract—A key problem in short-term traffic prediction is 
the prevailing data missing scenarios across the entire traffic 
network. To address this challenge, a transfer learning 
framework is currently used in the literature, which could 
improve the prediction accuracy on the target link that suffers 
severe data missing problems by using information from source 
links with sufficient historical data. However, one of the 
limitations in these transfer-learning based models is their high 
dependency on the consistency between datasets and the 
complex data selection process, which brings heavy computation 
burden and human efforts. In this paper, we propose an 
adaptive transfer learning method in short-term traffic flow 
prediction model to alleviate the complex data selection process. 
Specifically, a self-adaptive neural network with a novel domain 
adaptation loss is developed. The domain adaptation loss is able 
to calculate the distance between the source data and the 
corresponding target data in each training batch, which can help 
the network to adaptively filter inconsistent source data and 
learn target link related information in each training batch. The 
Maximum Mean Discrepancy (MMD) measurement, which has 
been fully validated and applied in transfer learning research, is 
used in combination with the Gaussian kernel to measure the 
distance between datasets in each training batch. A series of 
experiments are designed and conducted using 15-minute 
interval traffic flow data from the Highways England, UK. The 
results have demonstrated that the proposed adaptive transfer 
learning method is less affected by the inconsistency between 
datasets and provides more accurate short-term traffic flow 
prediction. 

Keywords—Short-term Traffic Prediction, Deep Neural 
Networks, Adaptive Transfer Learning 

I. INTRODUCTION 

Short-term traffic prediction has been recognized as 
an essential part in the Intelligent Transportation System 
(ITS), which allows the application of various traffic control 
strategies to properly assign the vehicles and efficiently 
employ the existing road network. Existing studies in short-
term traffic prediction range from statistical methods 
like regression model, Kalman Filtering (KF) and ARIMA [1]-
[5] to machine learning methods like Support Vector 
Regression (SVR), k-Nearest Neighbors (kNN) and Neural 
Networks (NN) [6]-[11]. For example, Kamarianakis & 
Prastacos [1] compared the traffic flow forecasting 
performance of four classic statistical models  using arterial 
loop detector data in Athens, Greece. Guo et al. [11] 
investigated the application of SVR, kNN and Grey System 
 

J, Li and F, Guo are with Department of Civil and Environmental 
Engineering, Imperial College London, London SW7 2AZ, UK. (e-mail: 
junyi.li18@imperial.ac.uk; fangce.guo@imperial.ac.uk). 

*S, Hu is with ZJU-UIUC Institute, Zhejiang University, Zhejiang 
314400, China (e-mail: simonhu@zju.edu.cn, phone: +8618867516624). 

Y, Wang, L, Zhang and *S, Hu are with Institute of Intelligent 
Transportation Systems, School of Civil Engineering and Architecture, 

Model (GSM) in short-term traffic prediction and compared 
prediction accuracy using traffic flow and occupancy data 
collected from the urban area of  London, UK. The Machine 
Learning(ML) methods have gained a great popularity in 
solving the short-term traffic prediction problem and proven 
to be effective in prediction under different traffic demands 
and boundary conditions. In this paper, we focused on using 
the Deep Neural Networks (DNN) in traffic prediction as they 
are not only less complicated to implement, but also 
potentially able to capture more unstable non-linear traffic 
patterns hence provide more accurate short-term predictions. 

Despite the well-established techniques in short-term 
traffic prediction, most of existing studies in traffic prediction 
focused on corridor-level or small network-level problems. 
For traffic prediction in an entire large network, it is not easy 
to obtain sufficient traffic data from all sensor sites, resulting 
in prevailing data missing scenarios and causing extra 
heavy computational burden. In practice, it is impossible to 
collect high-quality data in all minor links across a huge 
network with thousands of links nor calibrate such a huge 
model with different sub-models on each link. Although some 
research successfully applied Convolutional Neural Network 
(CNN) to learn the successive traffic states in an area as 
images, they failed to consider the problems of data 
insufficiency in several weeks and months [12]-[14]. 
Moreover, the training time of such networks can be up to 
several times than other algorithms like kNN and Recurrent 
Neural Network (RNN) [12], which is a huge barrier to real-
time application and on-line learning in practice. 

Another potential solution to address the problems of data 
insufficiency and heavy computation overhead is to improve 
the model transferability between sub-models in different 
links. Consequently, the calibrated transferable model can be 
applied to a series of links after slightly fine-tuning towards 
the target link. In our previous work [15], we combined a Long 
Short-Term Memory (LSTM) network with transfer learning 
techniques to calibrate a shared model that generalizes 
intermediate patterns of traffic state variables of a set of 
similar links. Specifically, in the first step, a source network is 
created using sufficient data from the source links; in the next 
step,  layer parameters are partly extracted and transferred to 
create the target network after fine-tuning towards the 
insufficient target link data. The model sensitivity analysis and 
field studies showed that although the proposed hybrid method 
is able to improve the prediction accuracy of the target link 
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under severe data missing conditions, it is highly dependent on 
consistency between the source link dataset and target link 
dataset. In the prediction of [15], all the candidate source links 
with sufficient data should be evaluated and selected 
according to a complex statistical comparison to the existing 
target link information, which brings about further 
computation burden and human efforts. 

Given the existing works and identified research gaps 
above, the main objective of this paper is to propose an 
Adaptive Transfer Learning (ATL) method based on our 
previous transfer learning framework in [15] to alleviate the 
rigorous data selection criteria to predict short-term traffic 
flow. The network training process is adaptive in accordance 
with the distance between the source data and the 
corresponding target data in each training batch, thus the 
massive data selection work can be significantly reduced. 
With the proposed methodology, a series of field studies are 
conducted to test the optimal hyperparameters of this model 
and validate the efficacy of this ATL method. 

The rest of the paper is organized as follows: Section II 
reviews the previous transfer learning framework in [15] and 
describes the Self-adaptive Neural Network (SNN), the 
domain adaptation loss and the Maximum Mean Discrepancy 
(MMD) measurement. Section III presents a case study in 
which this proposed network is tested and analyzed. Finally, 
the conclusions and outlooks are discussed in Section IV. 

II. METHODOLOGY 

A. Preliminaries 

To make our concepts clear, some notions are firstly 
defined as follows: 

Source dataset: a dataset with sufficient labelled training 
data collected from the source link. 

Source network: a neural network calibrated by the source 
dataset. 

Target dataset: a dataset collected from the target link, 
which suffers severe data insufficiency problems. 

Target network: a neural network transferred from the first 
𝑛𝑛 layers of the source network and finely tuned towards the 
target dataset. 

Data consistency: the data consistency between source 
dataset and target dataset is evaluated via the cross-correlation 
coefficient, which measures the overall data patterns between 
datasets. The consistent source dataset has a high cross-
correlation coefficient towards the target dataset whereas the 
inconsistent source dataset can not match the target dataset 
very well.  

B. Previous transfer learning framework 

The transfer learning framework in our previous work in 
[15] can be simply demonstrated as follows. Firstly, a set of 
source links with sufficient historical data is manually selected 
based on link geographical attributes and data patterns 
between source links and target link. Secondly, a deep neural 

network with three LSTM layers and one fully connected layer 
is empirically selected and trained by using source dataset 
only. In the next step, the first 𝑛𝑛 layers of the source network 
are transferred to the target network. Finally, the target 
network is finely tuned towards the insufficient target dataset 
via different layer-parameter fine-tuning strategies. An 
example with 3 transferred layers is shown in Figure 1. 

 
Figure 1. A transfer example with 3 transferred layers 

C. Self-adaptive Neural Network 

As described above, the previous transfer learning 
framework in Figure 1 is dependent on consistency between 
datasets that massive manual selection efforts and heavy 
computation burden are inevitable. To address this challenge, 
many scholars add an adaptation layer in their proposed neural 
network to adaptively learn from source data from different 
feature space and different distribution [16]-[19], which is on 
the cutting-edge of current transfer learning techniques. The 
similar notion is applied in this research to achieve the 
adaptation between the source dataset and the target dataset, 
and finally enhance the generalization capability of the 
network. 

Many studies have been conducted on exploring the 
potential domain adaptation method in deep neural networks, 
and a well-established technique is to re-define the loss 
function in the training process: 

𝑙𝑙 = 𝑙𝑙𝑐𝑐(𝐷𝐷𝑠𝑠 , 𝑦𝑦𝑠𝑠) + 𝜆𝜆𝑙𝑙𝐴𝐴(𝐷𝐷𝑠𝑠 ,𝐷𝐷𝑡𝑡) (1) 

where 𝑙𝑙 is the overall loss of the network; 𝑙𝑙𝑐𝑐(𝐷𝐷𝑠𝑠,𝑦𝑦𝑠𝑠) represents 
the conventional loss in the regression task, which is 
calculated as the mean squared error (MSE) between the 
network prediction 𝑓𝑓𝑁𝑁𝑁𝑁(𝐷𝐷𝑠𝑠)  and the ground truth 𝑦𝑦𝑠𝑠 ; 
𝑙𝑙𝐴𝐴(𝐷𝐷𝑠𝑠,𝐷𝐷𝑡𝑡) represents the loss from adaptation, where the loss 
evaluation criteria will be discussed in the next section; 𝐷𝐷𝑠𝑠 is 
the source dataset, 𝐷𝐷𝑡𝑡  is the target dataset; 𝜆𝜆 is the parameter 
that weighs the two parts. 

The adaptation loss 𝑙𝑙𝐴𝐴(𝐷𝐷𝑠𝑠 ,𝐷𝐷𝑡𝑡)  is able to calculate the 
distance between the source data and the corresponding target 
data in each training batch. In this case, the data consistency 
evaluation process is automatically embedded in this network. 
Thus, the source data with high consistency towards the target 
data can be adaptively selected and learned. It is worth to note 
that our Self-adaptive Neural Network is different from 
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current transfer learning methods in image classification area, 
where most scholars used the domain adaptation methods in 
the target network to assist the final fine-tuning process. 
However, the proposed Self-adaptive Neural Network in this 
work aims to apply domain adaptation methods in the source 
network to calibrate a shared model that generalizes 
intermediate patterns of traffic state variables of a set of 
similar links. 

The notion of the proposed Self-adaptive Neural Network 
in this paper is shown in Figure 2 and Figure 3. Different from 
our previous transfer learning method in [15], the proposed 
Self-adaptive Neural Network re-defined the overall loss 
function as the summation of the conventional prediction loss 
and the adaptation loss, and utilized information from both 
source dataset and target dataset to calibrate a shared model 
(i.e. the source network). After transferring layer-parameters 
from the source network to the target network, a series of fine-
tuning strategies are conducted on the target network 
according to the target dataset. 

 
Figure 2. An example of the Self-adaptive Neural Network 

 
Figure 3. An example of the adaptation loss calculation 

D. Maximum Mean Discrepancy (MMD) measurement 

The Maximum Mean Discrepancy (MMD) is initially 
proposed in [20] to measure the distance between two sets of 
observations, which is very effective in finding samples that 

were generated from the same distribution. Given two 
probability distributions 𝑝𝑝 and 𝑞𝑞, MMD is formulated as: 

𝑀𝑀𝑀𝑀𝐷𝐷(ℱ, 𝑝𝑝, 𝑞𝑞) ≔ 𝑠𝑠𝑠𝑠𝑝𝑝𝑓𝑓∈ℱ(𝐄𝐄𝑝𝑝[𝑓𝑓(𝑥𝑥)] − 𝐄𝐄𝑞𝑞[𝑓𝑓(𝑦𝑦)]) (2) 

where 𝑝𝑝 and 𝑞𝑞 are two Borel probability distributions, ℱ is a 
class of functions 𝑓𝑓: 𝒳𝒳 → ℝ. 

Let �𝐱𝐱𝑠𝑠
(𝑖𝑖)�

𝑖𝑖=1,2,…,𝑛𝑛𝑠𝑠
 and �𝐱𝐱𝑡𝑡

(𝑗𝑗)�
𝑗𝑗=1,2,…,𝑛𝑛𝑡𝑡

 be samples that 

consist of independent and identically distributed observations 
from 𝑝𝑝 and 𝑞𝑞, the empirical estimate of MMD can be defined 
as: 

𝑀𝑀𝑀𝑀𝐷𝐷(𝐱𝐱𝑠𝑠, 𝐱𝐱𝑡𝑡)
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ℋ

 (3) 

where 𝜙𝜙(∙)  represents a feature space map to a universal 
reproducing kernel Hilbert space ℋ. 

According to [19], the measurement can be rewritten as a 
kernelized equation form: 
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(4) 

where 𝑘𝑘(𝐱𝐱 
(𝑖𝑖), 𝐱𝐱 

(𝑗𝑗)) represents all possible kernel functions. 

The MMD measurement has been widely applied in 
transfer learning researches to evaluate the dataset differences 
and further reduce their distribution mismatch. Pan et al. [18] 
proposed the transfer component analysis (TCA) method to 
learn some transfer components across different domains in a 
reproducing kernel Hilbert space using MMD. Tzeng et al. 
[21] added an adaptation layer and a novel domain confusion 
loss (measured in MMD) in their CNN architecture to learn 
domain invariant features. More recently, some improved 
MMD measurements like Multi-Kernel MMD and Joint 
MMD are explored and applied in [16], [17] respectively to 
enhance the network adaptation capability. 

In this paper, we attempt to incorporate the classic MMD 
measurement in the supervised learning process to achieve 
adaptive transfer learning in traffic prediction area. Other 
advanced loss function setting will be explored in our future 
study.  

III. CASE STUDY AND RESULTS 

A. Data description 

In our previous work [15], the experimental data are 
manually evaluated and selected according to their 
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geographical attributes, traffic demands and statistical 
distributions. To test the efficacy of our proposed Self-
adaptive Neural Network in alleviating human efforts and 
computational burden in the data selection process, the source 
data are simply selected from adjacent links near the target link 
that suffers severe data missing problems. The cross-
correlation coefficient is calculated to quantify the data 
patterns between datasets and provide different transfer 
scenarios to compare (e.g. transfer between consistent datasets 
or between inconsistent datasets). 

The traffic data used in this paper are 15-minute interval 
Inductive Loop Detector (ILD) traffic flow obtained from the 
open source traffic data platform, Highways England Webtris 
(http://webtris.highwaysengland.co.uk/). Only four source 
links and one target link are selected to initially validate the 
efficacy of the proposed method. Specifically, the sensor sites 
M4/2188, M4/2302, M25/4963, M25/4854 are chosen as the 
source links and site M4/2240 is selected as the target link. For 
all the source links, the training data range from 1st January to 
15th Sep 2019. For the target link, only 3-day data was chosen 
from 18th Sep 2019 to 20th Sep 2019 for training to artificially 
simulate the data insufficiency problem and the following 10-
day data from 21st Sep 2019 to 30th Sep 2019 was chosen for 
testing. The cross-correlation coefficients between different 
sites are in Table 1 and the locations of selected sites are 
shown in Figure 4. 

Table 1. Cross-correlation coefficients between datasets 

 

 
Figure 4. Locations of selected datasets 

B. Sliding window 

The sliding window is used in the data loading process to 
transform the original time sequence to multi-dimensional 
sequence, thus the traffic flow patterns can be adequately 
learned by the network. In this case, the input data and the 
label data are formulated as: 

𝑋𝑋𝑖𝑖𝑛𝑛𝑝𝑝𝑖𝑖𝑡𝑡 = �
𝑥𝑥1 ⋯ 𝑥𝑥𝐿𝐿
⋮ ⋱ ⋮
𝑥𝑥𝐾𝐾 ⋯ 𝑥𝑥𝐾𝐾+𝐿𝐿−1

�       𝑋𝑋𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝑥𝑥𝐿𝐿+1
⋮

𝑥𝑥𝐾𝐾+𝐿𝐿
� (5) 

where 𝐾𝐾 = 𝑁𝑁 + 1 − 𝐿𝐿, 𝐿𝐿 is the sequence length and 𝑁𝑁 is the 
length of the original time sequence.  

C. Experiment setup 

Three groups of experiments are conducted in this section, 
namely baseline group, transfer learning group and adaptive 
transfer learning group. The baseline group only uses existing 
3-day traffic flow data on the target link to calibrate the LSTM 
network and provide predictions for the following 10 days. 
The transfer learning group refers to the transfer framework in 
our previous study and the adaptive transfer learning group 
uses the proposed Self-adaptive Neural Network in this paper. 
According to our empirical studies and other related works 
[15], [17], [19], the hyperparameters in the case study are 
selected as Table 2. It is worth to note that our method 
redefines the loss function in the source network training 
process whereas most scholars in image classification area add 
the adaptation loss in the final fine-tuning process. Hence, the 
weight 𝜆𝜆 is positive in transfer learning in image classification 
but negative in our work. The fundamental idea is that the data 
inconsistency between the training data and the corresponding 
target data in each training batch can be detected and 
quantified in the adaptation loss function, if a batch of training 
data from the source dataset is highly inconsistent with the 
corresponding batch of the target dataset, a more negative 
adaptation loss will be added on the conventional prediction 
loss, resulting in a smaller overall loss. In this case, parameters 
in the network will be less influenced by the inconsistent 
source data thus the adaptive learning is achieved. 

Table 2. Settings of the standard parameters 

 
For the MMD measurement, the Gaussian kernel is 

selected as the kernel function in this study since it has been 
accepted as a universal kernel and proven to make MMD 
useful in practice [22]. Therefore, the Kernel function in 
Equation (4) can be reformulated as the form in Equation (6). 
We expect the combination of MMD measurement and 
Gaussian kernel can provide accurate prediction results in 
adaptive transfer learning in short-term traffic prediction. The 
other distance measurements and Kernel functions will be 
investigated in our future studies. 

𝑘𝑘Gaussian�𝐱𝐱 
(𝑖𝑖), 𝐱𝐱 

(𝑗𝑗)� = exp (−
�𝐱𝐱 

(𝑖𝑖) − 𝐱𝐱 
(𝑗𝑗)�

2

2𝜎𝜎2
) (6) 

where σ is the standard deviation. 

D. Results and analysis 

The training process and initial experiment results of 
different models are shown in Table 3 and Figure 5,6. Only 
one-step ahead prediction (i.e. 15 minutes ahead) is conducted 
to verify the efficacy of our proposed network. The multi-step 
ahead experiments will be investigated in the future. Both unit 
dependent criteria (i.e. Mean Squared Error (MSE) and Mean 
Absolute Error (MAE)) and unit independent criteria (i.e. 
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Mean Absolute Percentage Error (MAPE)) are used to 
evaluate the prediction accuracy of different models. MAPE is 
more emphasized in this experiment since it provides a scale-
independent and intuitive measure to compare. 

Table 3. Experiment results 

 
 

 
Figure 5. An example of training loss versus training steps  

 
Figure 6. An example of different transfer scenarios 

Table 3 summarizes experiment results of one-step ahead 
prediction with transfer learning and adaptive transfer learning 
under different transfer scenarios. The results show that both 
transfer learning and adaptive transfer learning methods are 
able to improve the prediction accuracy no matter the 
consistency between datasets. However, it is worth to note that 
the existing transfer learning method in [15] performs well 
with consistent source dataset (i.e. transfer from M4/2188 and 
M25/4854). However,  the main limitation of the existing 
model is that it cannot predict properly when the source dataset 

is not consistent with the target dataset (i.e. transfer from 
M4/2302 and M25/4963). The results also show that it is 
essential to conduct the rigorous data selection process in the 
previous hybrid method, which significantly affects the final 
prediction results. 

However, the proposed adaptive transfer learning method 
is less influenced by the consistency between datasets. 
Acceptable prediction accuracy can be achieved even with 
inconsistent source data from M4/2302 and M25/4963 (9.24% 
and 9.39% respectively), which is mainly due to the embedded 
adaptive learning process. As demonstrated in Figure 5, the 
training loss in our proposed Self-adaptive Neural Network 
fluctuate more and converge slower compared with the 
conventional training process without the adaptation loss 
(shown in Figure 5(b) and 5(a) respectively), which reveals the 
adaptive learning process. 

An example of different transfer scenarios is shown in 
Figure 6. It can be seen in Figure 6, the two transfer learning 
methods perform similarly well when the highly consistent 
data from link M4/2188 is selected as the source dataset 
whereas the prediction accuracy of our previous method 
suffers more when the inconsistent source dataset from link 
M25/4963 is chosen. Based on this, there is evidence that this 
improved adaptive transfer learning method is able to 
adaptively filter inconsistent source data and learn target link 
related information in each training batch. Hence, the complex 
data selection process in our previous study can be alleviated. 

IV. CONCLUSION AND FUTURE WORK 

This paper has proposed a novel short-term traffic 
prediction mdoel with an adaptive transfer learning method to 
alleviate the complex data selection process in previous 
transfer learning framework. Specifically, a Self-adaptive 
Neural Network with a novel domain adaptation loss is 
developed. The domain adaptation loss is able to calculate the 
distance between the source data and the corresponding target 
data in each training batch, thus the network can adaptively 
filter inconsistent source data and learn target link related 
information in each training batch. The Maximum Mean 
Discrepancy (MMD) measurement, which has been fully 
validated and applied in transfer learning research, is used in 
combination with Gaussian Kernel to measure the distance 
between the source data and target data in each training batch. 
A series of experiments are designed and conducted using 15-
minute interval traffic flow data from Highways England. 
Based on the initial experiment results, there is evidence that 
the proposed adaptive transfer learning method is less 
influenced by the inconsistency between datasets and the 
rigorous data selection process can be alleviated. However, the 
difference in prediction accuracy between the two transfer 
learning methods is not significant and the conducted 
experiments are not sufficient for model validation. Below are 
some improvements which should be made in future studies: 

• More experiments should be designed and tested to 
validate this method under different transfer scenarios. 
Especially, transfer between inconsistent datasets should be 
emphasized.  
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• Apart from adding an MMD measured domain 
adaptation loss to the overall loss function, some other 
potential adaptive learning techniques, like other Kernel 
functions, other distance evaluation criteria and the separate 
domain adaptation layer, should be studied. 

 
• In this paper, all the layer parameters in the source 

network are transferred and finely tuned towards the target 
dataset. Although the proposed method is able to adaptively 
filter inconsistent source data and learn target link related 
information, some attributes extracted from the source dataset 
might be not helpful in the target dataset and negative transfer 
may appear in this case. As a result, this adaptive learning 
method should be used in combination with different transfer 
strategies to determine how many layer parameters should be 
transferred and to what extent the parameters should be fine-
tuned. 
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