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Abstract 

This paper presents a theory for the prediction of pressures in circular silos under 

concentric mixed flow, assuming an internal flow channel of conical profile with 

straight but inclined sides. The theory is based on a generalised application of the 

classical method of ‘slice equilibrium’ together with additional assumptions based on a 

treatment of the granular solid as a Coulombic material. Only one of the resulting pair of 

coupled linear ordinary differential equations may be solved in closed form, while both 

numerical and approximate closed-form solutions are explored for the other. The 

derivation of the theory is presented in full and a series of parametric studies explores 

the predictions and compares these with qualitative observations from experiments. In 

particular, the significant overpressure that is known to occur at the ‘effective 

transition’, where the internal flow channel intersects with the silo wall, may be 

estimated quantitatively for the first time. 
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Nomenclature 
r [L] Radius of the cylindrical silo 
hc [L] Height of the cylindrical silo from its base to the effective surface 
m [-] Dimensionless group for the stationary granular solid 
n [-] Dimensionless group for the flowing granular solid  
phce [F.L-2] Mean horizontal pressure in the flowing granular solid 
phce,z [F.L-2] The same as phce except defined in terms of the z coordinate 
phceT [F.L-2] The value of phce at the effective transition 
phse [F.L-2] Mean horizontal pressure in the stationary granular solid 
phseT [F.L-2] The value of phse at the effective transition 
pne [F.L-2] Mean normal pressure at the inclined interface between the flowing and  

stationary granular solids 
pneT [F.L-2] The value of pne at the effective transition 
pte [F.L-2] Mean frictional traction at the inclined interface between the flowing and  

stationary granular solids 
pteT [F.L-2] The value of pte at the effective transition 
pvce [F.L-2] Mean vertical pressure in the flowing granular solid 
pvce,x [F.L-2] The same as pvce except defined in terms of the x coordinate 
pvce,z [F.L-2] The same as pvce except defined in terms of the z coordinate 
pvceT [F.L-2] The value of pvce at the effective transition 
pvse [F.L-2] Mean vertical pressure in the stationary granular solid 
pvseT [F.L-2] The value of pvse at the effective transition 
x [L] Upwards-positive vertical coordinate, zero at the effective outlet 
xT [L] Height of the effective transition above the effective outlet 
z [L] Downwards-positive vertical coordinate, zero at the effective surface 
zT [L] Depth of the effective transition below the effective surface 
Ch [-] Excess in horizontal pressure at the effective transition under mixed flow  

relative to mass flow 
Cw [-] Excess in accumulated wall friction under mixed flow relative to mass flow 
Fe [-] Discharge pressure ratio for the inclined interface between the flowing and  

stationary granular solids 
Ft [-] Ratio of the net outward force under mixed flow relative to that under mass  

flow, as integrated from the effective transition to the ‘crossover’ depth 
Gt [-] Ratio of the gradient of the horizontal pressure just below the effective  

transition under mixed flow relative to that under mass flow 
Ke,cw [-] Discharge pressure ratio for the vertical interface between the silo wall and  

flowing granular solid 
Ke,sw [-] Discharge pressure ratio for the vertical interface between the silo wall and  

stationary granular solid 
St [-] Normalised ‘crossover’ depth of the intersection of the horizontal pressure  

distribution under mixed flow with the Janssen distribution under mass flow 
β [-] Angle of inclination of the internal conical flow channel 
γ [F.L-3] Unit weight for the bulk granular solid 
θcr [-] Hypothesised critical value of combined interface roughness and incline at  

which an internal rupture layer forms inside the flowing granular solid 
μi [-] ‘Ideally rough’ friction coefficient at the inclined interface between the flowing  

and stationary granular solids 
μw [-] ‘Fully developed’ friction coefficient at the vertical interface between the silo  

wall and the granular solid (flowing or stationary) 
ϕi [-] Angle of internal friction of the granular solid 
ϕw [-] Angle of friction at a potentially inclined interface between two solids 
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1.  Introduction 

The evaluation of pressures caused by discharging granular solid from a cylindrical silo 

continues to pose a significant scientific challenge even in the modern era of advanced 

measuring equipment and access to high computing power. The current Eurocode on 

actions on silos EN 1991-4 (2006) considers three nominally concentric discharge flow 

patterns. The entire stored solid is in motion during ‘mass flow’ (Fig. 1a). Under ‘mixed 

flow’, a channel of flowing material expands and reaches the silo wall significantly 

below the surface of the stored material at a location known as the ‘effective transition’ 

(Fig. 1b). If the channel is so steep that it does not intersect with the silo wall (Fig. 1c), 

‘pipe flow’ occurs which is known to cause only very moderate increases in loads during 

discharge (Munch-Andersen and Nielsen, 1990; Nielsen, 1998). However, the pressure 

increase at the effective transition under mixed flow may be quite large depending on 

how the internal flow channel expands from the outlet. The current EN 1991-4 (2006) 

attempts to account for this in a design assessment through empirical ‘patch’ load 

devices, but these are based on past experience with little rigorous theoretical 

background. This paper aims to provide this theoretical background. 

 

Fig. 1 – Schematic of nominally concentric flow patterns after EN 1991-4 (2006). 
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Mass flow design of silos for coarse-grained materials without a fluidized bottom or 

other flow aids is only possible when the bottom part has inclined walls, for circular 

silos typically a conical hopper. In such silos, classical theories for flow and pressures 

already exist (e.g. Jenike, 1961, 1964; Walker, 1966; Walters, 1973; Nedderman, 1992), 

and they are not explored further here. However, the formation of internal ‘pipes’ during 

flow is known to depend on parameters that cannot easily be incorporated in an 

equilibrium-based algebraic theory (Nielsen, 1998), and the prediction of the shape of a 

flow channel is therefore not a part of this study. For example, pipe flow is known to be 

more likely for densely-packed solids which require extensive dilation to flow that only 

a vertical free-fall through an outlet can provide (Zhong et al., 2001). Conversely, flow 

of a loosely-packed granular solid does not require high dilation and wider ‘mixed’ flow 

channels are possible. A shift may even be seen during the discharge period, where the 

onset of flow may be in pipe flow, but where mixed flow may develop during the 

discharge period.  

A detailed review of modern and historical experimental and analytical research on flow 

pattern, stress and velocity profiles may be found in Saleh et al. (2018) and the narrative 

will not be reproduced here. However, these authors did report that horizontal 

overpressures in the order of two have been observed for silos which exhibit an effective 

transition (e.g. Khelil, 1989; Khelil and Roth, 1990). It will be shown in what follows 

that the discharge overpressure predictions of the mixed flow theory are commensurate 

with observations from these and other past experiments (e.g. Nielsen and Andersen, 

1981; Hartlén et al., 1984), despite the present theory having clear foundations in a 

quasi-static Janssen-type classical treatment.  

Lastly, for rough-walled silos the conventional thinking is arguably that where a stored 

granular material slides along a rough wall the particles closest to the wall move while a 

wall friction coefficient close to the internal angle of friction is developed. This thinking 

is strongly challenged by the theory presented here, which instead indicates that under 

passive stress states particles closest to the wall do not move and a much lower friction 

coefficient exists at what is then an ‘ideally rough’ interface than is currently assumed. 

This result is supported by observations of a ‘rupture layer’ in rough-walled silos 

(Munch-Andersen and Nielsen, 1990), as further discussed in this paper. 
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2.  An equilibrium theory for concentric mixed flow 

2.1  System geometry and boundary conditions 

A silo of radius r and total cylindrical height hc under concentric mixed flow is idealised 

as shown in Fig. 2, using notation that is as far as possible commensurate with that used 

in the European Standard for actions on silos and tanks EN 1991-4 (2006). For reasons 

that will be clarified shortly, it is convenient to work with two coordinate systems to 

locate a horizontal plane through the silo: a downwards-positive z coordinate assumed to 

be zero at an ‘effective surface’ of the stored granular solid at the top of the silo, and an 

upwards-positive x coordinate assumed to be zero at an ‘effective outlet’ at the bottom 

of the silo. The two are related by z = hc – x. Concentric mixed flow discharge is here 

characterised by an axisymmetric ‘effective transition’ at a depth zT or height xT above 

which the granular solid is entirely in motion and below which the granular solid only 

flows within a conical channel with apex half-angle β to the vertical and surrounded by 

stationary material. These two regions of flow are here termed the ‘plug flow’ (0 ≤ z ≤ zT 

or xT ≤ x ≤ hc) and ‘internal hopper flow’ (zT ≤ z ≤ hc or 0 ≤ x ≤ xT) regions, and it is 

convenient to work with these in terms of the z and x coordinate systems respectively. 

The mean vertical pressures over the cross-sections within the flowing and stationary 

solid regions are identified by pvce and pvse respectively. It is also convenient to further 

qualify the pressure component in the flowing material as pvce,z and pvce,x, depending on 

whether it refers to the ‘plug flow’ or the ‘internal hopper’ regions respectively. Due to 

the absence of stationary solid within the ‘plug flow’ region, the associated pressure 

component pvse is not defined here and the region is characterised by a single linear 

differential equation in pvce,z requiring only one equilibrium boundary condition. It is 

assumed that the silo is sufficiently slender to permit the classical Janssen boundary 

condition of zero mean vertical pressure at the top surface to be adopted as a boundary 

condition in the ‘plug flow’ region: 

 , 0 0vce zp BC_MF_1 :         (1) 

The ‘internal hopper’ region contains both pressure components and is characterised by 

a system of two coupled linear differential equations in pvce,x and pvse, requiring a total of 

two equilibrium boundary conditions. It is assumed that pvce,x and pvce,z must be equal at 

the effective transition, such that: 
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   , , vce x T vce z T vceTp x p z p BC_IH_1:       (2) 

It is further asserted that the starting value of the pvse at the effective transition, or pvseT, 

may be deduced from pvceT by considering local equilibrium (presented shortly): 

  vseT vceTp f pBC_IH_2 :         (3) 

For simplicity, the effective outlet is considered to be coincident with the apex of the 

‘internal hopper’, consistent with assumptions made elsewhere (Dąbrowski, 1957; 

Walker, 1966; Walters, 1973; Hampe, 1987; Nedderman, 1992). For slender silos, the 

loss of accuracy associated with neglecting a finite-size outlet orifice is minimal. 

 

 

Fig. 2 – Flow regions and coordinate system definition. 
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2.2  Slice equilibrium 

2.2.1  Material relations 

In slice equilibrium models, it is classically assumed that the mean horizontal pressure 

ph acting against a vertical wall at any level is related to the mean vertical pressure pv 

within the granular solid by a lateral pressure ratio K. In the ‘plug flow’ region (Fig. 2) 

the relationship is here taken as phce,z = Ke,cw·pvce,z while in the stationary solid in the 

‘internal hopper’ region it is taken as phse = Ke,sw·pvse, with constants Ke,cw and Ke,sw 

representing discharge lateral pressure ratios for the two parts of the wall. Similarly, the 

mean normal pressure pne acting against the inclined interface of the flowing and 

stationary solids within the ‘internal hopper’ region is related to the mean vertical 

pressure pvce,x within the flowing solid by a discharge wall pressure ratio Fe. The 

frictional traction at this inclined interface is assumed to be obtained by pte = μi·pne, with 

a friction coefficient μi chosen to appropriately represent the ‘rough’ nature of this 

interface. The wall friction between the granular solid and the silo wall is assumed to be 

fully developed, giving uniform frictional tractions ptce,z = μw·phce,z and ptse = μw·phse, 

where μw is a constant fully developed wall friction coefficient. The equilibrium 

derivations which follow are independent of the choices for Ke,sw, Ke,cw, Fe and μi or 

whether these are functions of the axial coordinate, but careful derivations for these will 

be presented shortly. Only vertical equilibrium is considered in what follows. 

 

2.2.2  Equilibrium within the ‘plug flow’ region 

An infinitesimally thin slice of thickness dz through the granular solid in the ‘plug flow’ 

region is presented in Fig. 3. It is assumed that the mean vertical pressure in the flowing 

solid pvce,z picks up an infinitesimal increment dpvce,z across the slice due to the presence 

of the frictional tractions pwce,z and the self-weight (where γ is the bulk solid density, 

assumed in the solution to be constant throughout the silo). Implementing the material 

assumptions leads to the following equation for vertical equilibrium in the slice: 

, ,vce z vce z

o

dp p

dz z
   where 

,2o
w e cw

r
z

K
       (4) 

This is in fact the Janssen differential equation with zo as the characteristic depth, which 

has the following solution for the mean vertical pressure assuming a stress-free effective 
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surface (BC_MF_1; Eq. 1) and constant material properties: 

   /
, 1 oz z

vce z op z z e           (5) 

The mean vertical pressure within the flowing solid at the top of the ‘internal hopper 

(BC_IH_1; Eq. 2) is thus: 

 /1 T oz z
vceT op z e           (6) 

 

Fig. 3 – Equilibrium on a cylindrical silo element in the ‘mass flow’ region (horizontal 

shear stresses at z and z + dz are neglected). 

 

2.2.3  Equilibrium within the stationary solid at the effective transition 

There is experimental evidence (Hartlén et al., 1984; Munch-Andersen and Nielsen, 

1989; 1990) to suggest that the silo wall experiences an abrupt rise in horizontal pressure 

at the effective transition where the flow channel intersects with the silo. The full 

equilibrium analysis of the ‘internal hopper’ region is presented shortly, but a 

specialised consideration of the equilibrium condition at the effective transition permits 

a direct exploration of any possible horizontal overpressure at this location while also 

furnishing the boundary condition for pvse(x). An infinitesimally thin slice of thickness 

dx just below the effective transition at x = xT is shown in Fig. 4.  

Considering vertical equilibrium within the small wedge of stationary solid only: 

 
,

:   cos sin

:    
T

teT neT c s

vseT s x x wseT s

p p S V

p A p S

  



  

 



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where, ignoring all terms O(dx2) or above:  

2
, 2 tan     0

tan
2     2 tan

cos

Ts x x T s

c T s T

A x dx V

S x dx S x dx

 

  


  

 
 

In the above, As,x-xT is the cross-sectional area of the lower part of the wedge of 

stationary solid material, Sc and Ss are the stationary solid’s lateral surface areas to the 

flowing channel and wall respectively, and Vs is the (negligibly small) wedge volume. 

Substituting for the material assumptions, it may be shown that the starting value for 

pvse(x), pvseT, is (BC_IH_2; Eqs 3 & 6): 

 
 ,

1 cot

1 cot
e i

vseT vceT
w e sw

F
p p

K

 
 





       (7a) 

The ratio pvseT / pvceT may also be rearranged to give the maximum dimensionless 

horizontal overpressure Ch at the effective transition: 

 
 

,

, ,

1 cot

1 cot
e sw e ihseT

h
hceT e cw w e sw

K Fp
C

p K K

 
 


  


      (7b) 

 

Fig. 4 – Equilibrium on a cylindrical silo element at the effective transition (horizontal 

shear stresses at xT and xT – dx are neglected). 

 

2.2.4  Equilibrium within the flowing channel of the ‘internal hopper’ region 

Directly analogous to the ‘plug flow’ region, an infinitesimally thin slice of thickness dx 

through the granular solid in the ‘internal hopper’ region is presented in Fig. 5. The 
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mean vertical pressures in the stationary and flowing solids pvse and pvce,x are similarly 

assumed to pick up an infinitesimal increment dpvse and dpvce,x respectively across the 

slice. Vertical equilibrium within the flowing solid component only, effectively an 

‘internal hopper’, is resolved as follows: 

 
 

, , ,

, ,

:   

:    cos sin

vce x vce x c x dx c

vce x c x te ne c

p dp A V

p A p p S



 
  

  




 

where: 
 

     

2 2
, ,

22 2 2

tan     tan          

    
3

x x dx c x x c x dx x dx

c x x dx x x dx c x x dx x dx x

r x r x dx A r A r

V r r r r dx S r r r r dx

   

 

  

   

    

      
 

In the above, rx and rx+dx are the flow channel radii at the lower and upper boundaries of 

the slice with Ac and Ac,x+dx as the respective cross-sectional areas, while Vc and Sc are 

the volume and lateral surface area (interface area between the flowing and stationary 

solids) of the truncated conical flow channel geometry.  

 

Fig. 5 – Equilibrium on a cylindrical silo element in the ‘internal hopper’ region 

(horizontal shear stresses at x and x + dx are neglected). 

 

Implementing the material assumptions and retaining only terms up to O(dx) leads to a 

linear differential equation recognisable as that from Walker theory but specialised for 

an ‘ideally rough’ hopper (Drescher, 1991; Nedderman, 1992): 
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,
,

vce x
vce x

dp n
p

dx x
    where   2 1 cot 1e in F         (8) 

The solution for the mean vertical pressure, assuming equilibrium with the ‘plug flow’ 

region at the effective transition (BC_IH_1; Eqs 2 & 6) and constant material properties, 

is as follows: 

 , 1

n n

T
vce x vceT

T T T

xx x x
p x p

x n x x

                
     (9) 

 

2.2.5  Equilibrium within the stationary solid of the ‘internal hopper’ region 

A similar analysis for the stationary solid component only leads to the following 

resolution of vertical equilibrium: 

   ,

,

:   cos sin

:    

vse vse s x dx s te ne c

vse s x wse s

p dp A V p p S

p A p S

      

 




 

where: 
2 2

, , , ,      

    2
s x c x s x dx c x dx

s c s

A r A A r A

V V V S rdx

 


    

  
 

In the above, As,x and As,x+dx are the cross-sectional areas of the stationary solid at the 

lower and upper boundaries of the slice respectively, Vs is the slice volume of the 

stationary solid, Ss is its contact area with the silo wall, and remaining symbols have the 

same meaning as above. Implementing the material assumptions leads to the following 

linear differential equation (n is given by Eq. 8): 

,2 2 2 2

2
2vse T

vse vce x
T T

dp x x m n
p x p

dx x x x x


    
          

 where , cotw e swm K    (10) 

The coefficients point to a singularity as x → xT where the differential equation is no 

longer defined, but the equilibrium relation in Eq. 7 ensures that the solution pvse(x) must 

tend to a finite limit of pvseT at the effective transition. This differential equation has no 

closed-form solution for pvse(x) due a complicated particular integral arising from pvce,x 

(Eq. 9), and it is perhaps best solved numerically by a simple Euler integration scheme 

pvse
i+1 = pvse

i – dpvse
i using the starting value of pvse

i=0 = pvseT at x = xT and progressing in 
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reverse towards x = 0 (Eq. 7). Alternatively, it may be manipulated to yield the 

following solution for pvse(x), assuming constant material properties: 

   
       

 

1

1

1

1

Tm mx
T T

vse m m
xT T

x x x y
p x I y dy

nx x x y





 
   

 
  such that  lim

T
vseTvse xx x

p p


  (11) 

where  
  

   
2

2 1 ...

2 3 1

n

vceT
T

n

T T
T T

y
p y n n

x
I y

y y
x y n x n

x x


  
   
                    

     (12) 

The integral in Eq. 11 is here expressed in terms of a ‘dummy’ variable y and must be 

evaluated numerically. The derivative of pvse(x) with respect to x may be written as: 

   
 
 

 
 

 
     

 
 

2 2

1 11

1

Tm mx
T Tvse

m m
T T xT T T

x x m m x ydp
I y dy I x

dx x x x xn x x x x x y

                    


           (13) 

By expanding the integrand as a two-term Taylor series about x = xT, it may be shown 

that the limiting gradient of pvse(x) at the effective transition is: 

     
 2

2 4 1
lim

2 3 2T

vceT Tvse vse vse

x xxT zTT

p n nm m n x n mdp dp dp

dx dx dzx m m




     
   

 
 (14) 

A further quantity of interest, here called GT, is the ratio of the gradient of the horizontal 

pressure in the stationary solid at the effective transition phseT = Ke,sw·pvseT relative to the 

gradient that would exist in a flowing solid at that location under Janssen conditions 

phceT = Ke,cw·pvceT: 

       
  

0

0

/
0,

/2
,

4 1 1 2

2 3 2

T

T

T

T

hse
z z

c Tz e sw
T z z

e cw c Thce

z

dp
h z n m z e n nm m ndz K

G
K h z m m edp

dz





 
                 
    
  
 

           (15) 

Values of GT >> 0 represent a horizontal pressure increasing beyond phseT with depth and 

thus a pressure ‘bulge’ against the wall just below the effective transition (Fig. 6a), 
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values of GT ≈ 0 represent a flat ‘plateau’ in the horizontal pressure distribution (Fig. 6b) 

while values of GT << 0 (including very negative ones) instead represent a sharp ‘drop’ 

in horizontal pressure from phseT (Fig. 6c). The discriminating condition is: 

 
 

  
  

 
 
 

0/
0

1 bulge 0
4 1

1 plateau 0
21 1 drop 0

T

T
c T

Tz z

T

G
h z n m

G
n nm m nz e G



 
      

    

   (16) 

‘Pointed’ horizontal pressure distributions with steep drops become more likely for 

rougher walls (high μw) or stronger solids (high ϕi) as well as for effective transitions 

that occur lower in the silo (zT → hc). 

 

Fig. 6 – Schematics of typical horizontal pressure distributions depending on the 

conditions at the effective transition. 

 

2.3  Mohr-Coulomb failure criteria 

2.3.1  Naïve analysis 

The granular solid is treated here as a cohesionless Coulombic material characterised by 

an angle of internal friction ϕi. The classical interpretation of the stress state in a 

granular solid adjacent to a wall of with a fully developed wall friction coefficient μw = 

tanϕw, assuming the solid is simultaneously in a state of rupture against the wall 

(characterised by the Wall Yield Locus, or WYL) and internal rupture (characterised by 

the Internal Yield Locus, or IYL), is performed with the aid of a Mohr’s circle as shown 

in Fig. 7a. The sign convention of positive compressive stresses and positive anti-
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clockwise shears from soil mechanics is adopted here. The Mohr’s circle leads to the 

following expression for the ‘wall pressure ratio’ at discharge pne / pve: 
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    (17) 

This expression is widely used for steep hoppers under discharge whose derivation may 

be found in classical textbooks (Hampe, 1987; Nedderman, 1992; EN 1991-4, 2006). It 

is a natural potential first choice for adoption into the mixed flow theory to describe the 

conditions with the ideally rough ‘internal hopper’ (Fig. 4) in the limit as ϕw → ϕi: 
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       (18) 

 

 

Fig. 7 – Mohr’s circle for the stress at the wall in a steep conical hopper at discharge. 

 

However, as the granular solid should arguably be in a ‘passive’ state (i.e. phe > pve) 

within the internal flow channel under discharge, the stress state shown in Fig. 7a only 

satisfies this if 

2
2w

              (19) 

as otherwise phse < pvse and the stress state corresponds to an ‘active’ one. Hoppers 

which are increasingly shallow (β↑) or rough (ω↑ and ϕw↑) are more likely to violate this 
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condition. Unfortunately, according to this reasoning the limiting case of the above 

system for an ‘ideally rough’ hopper (ϕw → ϕi; Fig. 7b) is always ‘active’, corresponding 

physically to a rupture plane W parallel to the ‘wall’ of the hopper (in the present 

context this is the inclined interface between the flowing and stationary solids; Fig. 5) as 

well as a second rupture plane A inclined at π/2 – ϕi to W. For this reason, Eq. 17 cannot 

be used as a starting point for the mixed flow theory.  

 

2.3.2  Rigorous analysis of the ‘active’ state 

For completeness, the derivation of the Mohr-Coulomb failure criterion for an ‘active’ 

stress state at a wall of arbitrary incline and roughness is briefly reproduced here. 

According to the system diagram (Fig. 8a), to ensure positive shears on the wall W and 

horizontal H planes as well as WYL < IYL the input parameters must satisfy: 
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The lateral K and wall pressure F ratios for the ‘active’ state may be derived as: 
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In the limiting case of a vertical wall, under ideally smooth (ϕw → 0) and rough (ϕw → 

ϕi) the K equation tends to the two well-known results: 
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The often-used K = aK0 relation, where a ≥ 1 and K0 = 1 – sinϕi is the frictionless ‘at 

rest’ ratio from soil mechanics, gives values in-between the above limits (Rotter, 2001). 
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Fig. 8 – Mohr’s circles for the stress states and illustrations of failure planes adjacent at 

an interface of arbitrary incline β and roughness ϕw assuming a) ‘active’, b) ‘smooth 

passive’ and c) ‘rough passive’ states. 
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2.3.3  Rigorous analysis of the ‘passive’ state 

The discussion in Section 2.3.1 suggests that the derivation of K and F expressions for 

the ‘passive’ state that are fully continuous in ϕw and β requires special consideration. 

The Mohr’s circle construct is here divided into a ‘near-smooth’ state (Fig. 8b) where, as 

long as 0 ≤ ϕw << ϕi, the granular solid continues to exhibit a rupture layer parallel to the 

wall with the point W being on the WYL. It is then hypothesised that under increasing 

wall roughness (ω↑ and ϕw↑) or incline (β↑), at a critical value of ω + ϕw + 2β = θcr the  

rupture plane no longer forms parallel to the wall but within the material itself (point C ≠ 

W is on the WYL, but W is not; Fig. 8c). There is experimental evidence to support this, 

through observations of the formation of a plastified ‘lubrication’ layer several particles 

wide during discharge in rough-walled silos (Munch-Andersen and Nielsen, 1989; 

1990). Beyond θcr, the stress state undergoes no further changes even though ϕw < ϕi, 

suggesting that the ideally rough limiting condition under a ‘passive’ stress state is 

achieved at lower values of wall friction than ϕi, which may be shown to be given by: 
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      (22) 

According to the system diagram (Fig. 8b & c), to ensure positive shears on the wall W 

and horizontal H planes, WYL < IYL as well as a ‘passive’ stress state at arbitrary ϕw 

and β, the input parameters must always satisfy: 

0 2
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     (23) 

The ‘critical’ value rotation of the V-H axis to the σ-axis at which the plastified 

‘lubrication’ layer is assumed to begin forming is not yet known and would require 

experimental verification. Two potential values, together with their implied conditions 

on the permissible inclination of the flow channel, proposed at this stage are: 

H lies opposite A:    to avoid negative wall shears
2 4 2

2 W lies opposite A:    to avoid 'active' state
2 2

i
i

cr
i

i

  


   

    
   


 (24) 

The lateral K and wall pressure F ratios for the ‘passive’ state may then be derived as: 
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                               (25a,b) 

In the limiting case of a vertical wall, under ideally smooth (ϕw → 0) and rough (ϕw → 

ϕw,cr ≤ ϕi) the K equation tends to two well-known results: 
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3.  Individual explorations of the mixed flow theory 

Individual predictions of mixed flow pressure distributions are illustrated here under 

purposefully limited sets of inputs. Except where otherwise indicated, a generic material 

was assumed with γ = 9 kN/m3, μw = 0.44 and ϕi = 33.6° (upper characteristic values for 

wheat for a smooth wall from Annex E of EN 1991-4, 2006). For each combination of 

inputs, the horizontal pressure distribution phe(z) under mixed flow discharge was 

normalised by the Janssen ‘great depth’ value of the discharge horizontal pressure Kep0, 

where p0 = γz0 (Eq. 4). Separately, phe(z) was also normalised by the local Janssen value 

of the horizontal pressure Kepvce,z(z) (Eq. 5), with the maximum value of this ratio 

identifying the maximum horizontal overpressure Ch (also given by Eq. 7b) at the 

effective transition under mixed flow. Lastly, the integral of the frictional traction under 

mixed flow pwe(z) = μwphe(z) from the top surface to any given depth was normalised by 

the integral of the frictional tractions under concentric Janssen conditions pwce = 

μwKepvce,z(z) (Eq. 5). The maximum value of this ratio is identified here as Cw (Eq. 26, 

where the assumed constant μw has been cancelled out of the equation), and may be 

interpreted as an excess in membrane compression in the silo wall just below the 

effective transition as a consequence of mixed flow discharge. 
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For each generated distribution, a check was additionally performed to confirm that 

vertical equilibrium (Eq. 27) at the base of the silo was satisfied to within a very small 

numerical tolerance ε: 

       2 2 2
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0 0

0 0 2 2
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           (27) 

The discharge lateral pressure ratios Ke,cw and Ke,sw were assumed to be the same, and 

defined by the expression corresponding to an ‘active’ stress state, namely Eq. 21a. The 

internal flow channel was assumed to be under ‘passive’ conditions, with relations given 

according to the equations in Section 2.3.3. The critical angle θcr was assumed to be 

such that the point W cannot rotate anti-clockwise further than the point opposite A’ on 

the Mohr’s circle, such that: 
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Equation 22 implies that the friction coefficient at the interface of the flowing and 

stationary solids corresponding to ‘fully rough’ conditions in a ‘passive’ state of failure 

cannot be taken as μi = tanϕi as is classically assumed, but must instead adopt the 

reduced value   
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though it is stressed that μi = tanϕi is still achievable under ‘active’ conditions (Fig. 8a). 

For ϕi = 33.6°, μi = μw,cr ≈ 0.53tanϕi, and the angle ω (Eq. 23) plays no further role in the 

calculations for the flow channel. The discharge wall pressure ratio Fe for the internal 

flow channel is taken to be that for an ideally-rough inclined interface under ‘passive’ 

stress conditions, namely Eq. 25b. With this choice of θcr, Eq. 25b yields a less onerous 

Fe value, namely: 
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In the first two explorations, the material properties were maintained unchanged while 

the geometry of the system was varied. In the first case, the aspect ratio was held 

constant at a slender value of hc / dc = 6 and the depth of the effective transition was 

varied from zT / hc = 0.1 to 0.7 in increments of 0.2. The pressure distributions (Fig. 9) 

translate to loadings which would cause a significant local rise in both the 

circumferential tension (up to threefold under these conditions) and meridional 

compression (up to twofold) in the shell wall in the vicinity of the effective transition. 

The highest relative overpressures are predicted to occur in the top regions of the silo 

and decrease as the depth of the effective transition increases. Although the absolute 

pressures are smaller in these regions the optimised shell wall is also thinner and 

potentially more susceptible to large sudden changes, particularly in meridional 

compression. In the second case, the depth of the effective transition was held constant 

at a slender value of zT / hc = 0.3 and the aspect ratio was varied from hc / dc = 2.5 to 10 

(very slender). The predicted distributions (Fig. 10) suggest that the horizontal 

overpressure Ch may increase significantly with aspect ratio at constant zT / hc, from Ch ≈ 

1.98 for hc / dc = 2.5 to Ch ≈ 3.39 at hc / dc = 10, making the consequences for mixed 

flow potentially significantly more severe for slender silos. Changes in Cw are more 

modest but still substantial, with the value remaining between 1.33 and 1.4 in this range.  

 

Fig. 9 – Predicted dimensionless pressure distributions at constant hc / dc = 6, μw = 0.44, ϕi 

= 33.6° and varying zT / hc. 



 21

 

Fig. 10 – Predicted dimensionless pressure distributions at constant zT / hc = 0.3, μw = 0.44, 

ϕi = 33.6° and varying hc / dc. 

 

In the next two explorations, the geometry of the system was maintained unchanged 

while the material properties were varied. Firstly, the silo wall friction coefficient μw 

was varied so as to achieve a wall friction angle ϕw ranging from a very smooth wall (ϕw 

/ ϕi = 0.1) to an ‘ideally rough’ wall (ϕw / ϕi = 1), assuming that the solid against the silo 

wall remained in a state of ‘active’ failure. The predicted distributions (Fig. 11) may be 

interpreted to suggest that smoother walls lead to significantly higher rises in both 

circumferential tension (up to fivefold under these conditions) and meridional 

compression (up to twofold) at the effective transition. Secondly, the silo wall friction 

coefficient was kept constant at μw = 0.44 (ϕw ≈ 23.5°) and the internal friction angle was 

varied from ϕi = 25° to 45° in increments of 5°, such that ϕw < ϕi. The pressure 

distributions (Fig. 12) in this case suggest that stronger solids may exhibit higher 

overpressures at the transition, with Ch and Cw ranging from ~1.45 and ~1.07 for ϕi = 

25° to ~4.22 and ~1.45 for ϕi = 45° respectively. The larger peak pressure for stronger 

materials has been observed in several tests (Nielsen and Andersen, 1981; Nielsen, 

1998). In all distributions shown, the entire portion of the shell below the effective 

transition suffers a rise in meridional compression, with the peak consistently occurring 

just below it.  
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Fig. 11 – Predicted dimensionless pressure distributions at constant hc / dc = 6, zT / hc = 0.5, 

ϕi = 33.6° and varying ϕw / ϕi. 

 

 

Fig. 12 – Predicted dimensionless pressure distributions at constant hc / dc = 5, zT / hc = 0.5, 

μw = 0.44 and varying ϕi. 
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4.  Global parametric investigation 

A comprehensive parametric investigation is offered here to illustrate the predictions of 

the mixed flow pressure theory across an exhaustive range of all realistically possible 

inputs. Each individual predicted pressure distribution was characterised by a select and 

compact group of dimensionless variables: 

 Ch, the horizontal overpressure at the effective transition (Eq. 7b); 

 Cw, the maximum value of the ratio of the integral of the frictional wall tractions 

at any depth under mixed flow relative to what it would have been under mass 

flow (Eq. 26). This is the excess in accumulated wall shears and induced 

membrane compression in the silo wall; 

 Ft, the ratio of the net outward force under mixed flow (obtained by numerically 

integrating the horizontal pressure distribution from the effective transition to the 

‘crossover’ depth, see the definition for St below) to the force that would have 

been present under mass flow integrated over the same region; 

 Gt, the ratio of the gradient of the horizontal pressures at the effective transition 

relative to what it would have been under mass flow (Eq. 15); 

 St, the depth of the intersection of the horizontal pressure distribution under 

mixed flow with the Janssen distribution under mass flow below the effective 

transition (the ‘crossover’ depth) normalised by the silo diameter. 

The following complete parameter ranges were investigated: 

 Aspect ratios hc/d from 1 to 5 in increments of 0.2, assuming a unit radius r; 

 Effective transition positions zT / hc from 0.1 (almost pipe flow) to 0.8 (almost 

mass flow) in increments of 0.05; 

 Silo wall friction coefficients μw from 0.2 (smooth) to 0.6 (rough) in increments 

of 0.05; 

 Internal friction angles ϕi from 20° (weak) to 40° (strong) in increments of 2°. 

All permutations of the above were considered as long as they satisfied the conditions 

that μw ≤ tanϕi at the silo wall as well as Eqs 23 and 24. Both assumptions for θcr (Eq. 

24) were investigated, labelled θcr,1 and θcr,2 respectively, leading to two data sets of 
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approximately 10,500 solutions each. As the mixed flow theory is linear in the unit 

weight γ, a single representative constant value of 10 kN/m3 was chosen in all cases. The 

process was controlled using the SIMULIA Isight (2017) automation software.  

Given the large number of results, the descriptive dimensionless variables are presented 

in the form of frequency histograms in Fig. 13 which offer a global overview of the 

distribution of likely values. Linear correlation coefficients of these variables against the 

input variables are offered in Table 1, reflecting many of the same tendencies globally as 

those identified in Section 3 for individual distributions. The Ch variable exhibits a 

significant right skew and appears to follow a log-normal distribution, suggesting that 

under most combinations of uniformly-sampled geometry and material inputs the most 

probable overpressure at the effective transition is approximately 1.8 times the local 

(filling) Janssen pressure. Globally, Ch exhibits a medium-strength positive correlation 

with aspect ratio and effective transition depth (contrary to that shown in Fig. 9), and a 

negative correlation with the internal friction angle. Some very high overpressures are 

possible, but these correspond to increasingly unlikely combinations. Similarly, the 

strongly right-skewed Cw variable suggests that the most likely increase in meridional 

membrane compression in the silo wall will be approximately 10% under these 

conditions, though some less likely combinations of inputs can be more severe. Cw is 

globally strongly negatively correlated with the internal friction angle. 

The strong left skew of the Gt variable histograms suggests that almost all predicted 

pressure patterns will exhibit a sharp pressure peak at the effective transitions followed 

by a steep descent (left-hand side of Fig. 6). Indeed, Gt is negatively correlated with all 

input variables. The symmetrically-distributed St variable suggest that most of these 

steeply-descending pressure patterns will most probably intersect with the hypothetical 

Janssen distribution at a depth of approximately one diameter below the effective 

transition. This ‘crossover’ depth is likely to increase with the aspect ratio, but decrease 

with the internal friction angle. The similarly symmetrically-distributed Ft variable 

points to a most probable net increase of the net radial force applied to the silo wall of 

~30% under mixed flow, and exhibits only weak correlations with the input variables. 

Lastly, the predictions of the concentric mixed flow theory do not appear to be very 

sensitive to the choice of critical angle θcr assumed here, and changing between these 

values does not cause a qualitative change in the tendencies described above. 
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Fig. 13 – Histograms and summary statistics of the Ch, Cw, Gt, St and Ft dimensionless 

variables for two expressions for θcr. 
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Table 1 – Linear correlation coefficients for Ch, Cw, Gt, St and Ft dimensionless variables 

against the dimensionless inputs hc / dc, zT / hc, μw and ϕi. 

 hc / dc zT / hc μw ϕi 

Ch 0.43 0.50 0.16 -0.64 

Cw 0.19 0.34 0.04 -0.82 

Gt -0.65 -0.41 -0.39 -0.31 

St 0.40 -0.02 0.02 -0.64 

Ft 0.24 0.31 0.12 -0.32 

 

5.  Discussion 

The theory, as described above, offers a rigorous treatment of mixed flow pressures 

allowing for studies of influence by all parameters necessary for design as in EN 1991-4 

(2006). Reference has been made to experiments, which show that important phenomena 

are reflected such as a significant redistribution of pressure during discharge, most 

significantly that the redistribution potential (difference between maximal filling 

pressure and maximal discharge pressure) increases with an increase in the internal 

angle of friction of the stored material.  This means that, opposite to the prediction of the 

widely used Janssen theory (1895), silos exposed to mixed flow experience more 

demanding loads the higher the internal angle of friction of the stored material. 

However, for a practical use of the theory, a number of considerations should be kept in 

mind. Firstly, materials that are known to develop cohesion, such as cement, flour, soya 

meal and powders, have not been considered. However, powder containers are generally 

designed to achieve mass flow and thus mixed flow is unlikely to occur. Secondly, 

granular materials consisting of particles with one or more dimensions significantly 

larger than any other, such as wood chips, are unsuitable for treatment as a Coulombic 

material (Nielsen, 1998). Additionally, highly anisotropic granular materials cannot be 

guaranteed to be free-flowing under gravity, and their handling requires specialist 

equipment and design procedures (EN 1991-4, 2006). Lastly, the conical form of the 

internal flow channel is an assumption taken for mathematical convenience in 
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formulating the exploratory differential equations, although it is a reasonable 

representation of channels based on experimental observations (Nielsen and Askegaard, 

1977). An extension of the present theory for flow channels of arbitrary cross-section, a 

powerful tool to explore the sensitivity of the pressure regime to the assumed flow 

pattern, will be presented at a later time. It should be added that two key hypotheses of 

this theory, the dimensionless overpressure and the treatment of the passive stress state 

under ideally rough conditions, are independent of the profile of the flow channel. 

Direct experimental verification of the phenomena described in this paper is to this day 

scarce and what historical data exists indicates a more complex behaviour than can be 

captured through equilibrium treatments alone. Embedded pressure cells have been used 

to obtain information about horizontal and vertical stresses in the plug flow zone in a 

silo with mass flow (Munch-Andersen and Nielsen, 1989; 1990). These experiments 

indicate that the transition takes place in a zone above and below the transition plane 

assumed by the theory. This means that the magnitude of the theoretical peak pressure as 

well as the precise distribution of the flow pressure may differ from the predicted value. 

This justifies the use of an empirical factor on the peak pressure to be introduced in 

Standards to become in line with safety margins which have served well. 

 

6.  Conclusions 

This paper has presented an equilibrium-based algebraic theory to predict the silo wall 

pressures under the idealised condition of a fully-developed mixed flow pattern with the 

silo in a filled state. This ‘mixed flow theory’ offers a rigorous basis for the algebraic 

evaluation of loads in mixed flow silos for the first time, and is recommended to be used 

as a basis for forming load models for silos with mixed flow. 

A careful interpretation of the predictions of the theory was performed in the context of 

the parameters used in EN 1991-4 (2006), and limitations for practical use have been 

discussed. Further experimental verification is needed, particularly regarding: 

 Flow pattern and resulting wall pressure observations in full-scale silos; 

 Verification of the stress state adjacent to the wall in the ‘plug flow’ region 

above the effective transition;  
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 Detailed descriptions of pressure distributions near the effective transition; 

 Careful verification of the stress regime in the rupture layer in rough-walled silos 

under passive conditions. 

The authors suggest that the theory developed in this paper may be applied directly by 

industry as long as the results are interpreted with insight and caution. 

 

Appendix A – Location of peak axial compression in the silo wall 

The two critical metrics of the mixed flow theory for structural design are the 

overpressure at the effective transition Ch and the maximal increase in frictional 

tractions described by Cw. Although a simple closed-form solution exists for Ch (Eq. 7), 

establishing Cw requires an onerous numerical solution to the differential equation 

governing the pressure in the stationary solid (Eqs 10 & 11) as well as the subsequent 

integral (Eq. 26). This Appendix offers two closed-form procedures to approximate Cw. 

 

A.1  Partially closed-form procedure to approximate Cw 

Let the solution for the mean vertical pressure within the stationary solid is 

approximately expressed in terms of the z coordinate as: 
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where pvseT and (dpvse/dz)|zT are obtained from Eqs 7a and 14a respectively, and Rhc is the 

residual of the differential equation (Eq. 10) after substitution with the above functional 

form and set to zero at the bottom of the silo (z = hc). A closed-form procedure for 

obtaining an approximate value of Cw and its location zw is as follows: 
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where  
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 (A.6) 

Identifying Cw and the depth zw below the reference surface at which it occurs requires 

an inspection of a plot of Eq. A.1 within the range zT ≤ z ≤ hc. The accuracy of Cw and zw 

established in this manner is illustrated in Fig. A.1. 

 

 

Fig. A.1 – Scatterplot of accurate and approximate Cw and its location zw/hc, established 

by identifying the maximum of a plotted distribution (Eq. A.1).  
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A.2  Fully closed-form procedure to approximate Cw 

A fully closed-form approximation for the location of Cw is as follows (assuming Ke,cw = 

Ke,sw): 
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 but no less than zT and no greater than hc  (A.7) 
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and a1, a2 and a3 are as given by Eqs A.2 to A.4. Introducing zw as z in Eq. A.1 will 

allow the direct approximation of Cw. These coefficients were established with the aid of 

a Taylor series expansion of the derivative of the contents of the brackets in Eq. A.1 

about z = zT and the isolation of the appropriate root which identifies zw. The accuracy of 

Cw and zw established in this manner is illustrated in Fig. A.2.  

 

 

Fig. A.2 – Scatterplot of accurate and approximate Cw and its location zw/hc, established 

by a closed-form expression (Eqs A.1 & A.7).  
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