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Abstract 

 

The benefits of social behaviour in insects and vertebrates are well-documented in terms of 

mating success and predator avoidance. Social foraging has also been shown to benefit 

organisms in environments where food is patchily distributed, but whether this is true in the 

case where organisms do not rely on long-range communications to coordinate their social 

behaviour has been understudied. To address this question, we use the tractable laboratory 

model organism Caenorhabditis elegans, where a social strain (npr-1 mutant) and a solitary 

strain (N2) are available for direct comparison of foraging strategies. We first develop an on-

lattice minimal model for comparing social and solitary feeding strategies, finding that social 

agents benefit from feeding faster and more efficiently simply due to group formation. To 

compare these simulation results with real experimental data, we modify our minimal model 

to incorporate the specific feeding behaviours of the npr-1 and N2 strains. Surprisingly, the 

resultant strain-specific model predicts that the solitary strain performs better than the social 

one in all food distribution environments that we tested, which we confirm with lab 

experiments. Additional computational experiments identify the N2 strain’s higher feeding 

rate to be the key factor underlying its advantage over npr-1 worms. Our work highlights the 

difficulties in addressing questions of optimal behaviour, and the valuable role of modelling 

as a guiding principle.  

 

Keywords: C. elegans, collective behaviour, social feeding, foraging strategy, on-lattice 

simulation, fitness 
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Introduction 

 

Collective behaviour is displayed in many animals like social insects, fish shoals, flocking 

birds, and mammals (1, 2). Collective behaviour may have evolved when benefits outweigh 

the costs, and the process is thought to be adaptive (i.e., increase an individual’s fitness (3)). 

Possible benefits of collective behaviour may include a decreased risk of attack of an 

individual by a predator (4), faster and more reliable decision-making (5, 6) , and an increased 

probability of finding a mating partner (7). The costs of collective behaviour include 

competition for resources (8), investment in complex communication systems (9), and the 

opportunity cost of waiting for information (10) within the group.  

 

Less well-understood is the effect of collective behaviour on foraging, although recent models 

and field experiments suggest that this collective search for food may improve food detection 

as well as food uptake (11-14). For instance, computational models showed that foraging in 

groups can provide an advantage for finding heterogeneously distributed food, albeit using 

long-range interactions (15). While long-range interactions may apply to animals with good 

visual or acoustic (3, 16) processing, this type of interaction may be less relevant for smaller 

mesoscopic animals with limited sensory modalities, including nematodes, whose collective 

foraging we know little about. Moreover, direct comparison between model predictions and 

experimental data is often limited by uncontrolled natural environments that the animals live 

in (17). The 1 mm-long roundworm C. elegans is not only small and transparent to enable 

easy imaging (18), but is also highly tractable on both the genetic (19-21) and the neural 

circuitry (22) level. Therefore we use C. elegans with its experimentally controllable 

environment to compare collective and solitary foraging strategies using both modelling and 

experimental approaches.  
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C. elegans worms feed on bacteria that proliferate in rotten fruits and stems (23). The food 

resource in the worms’ natural environment fluctuates and is patchily distributed in space and 

time (24). Intriguingly, while C. elegans strains isolated from the wild exhibit varying degrees 

of collective feeding when grown in the lab (25), the laboratory reference strain N2 feeds 

individually. This striking difference led us to hypothesise that the contrasting foraging 

strategies may confer advantages in the strains’ respective resource environments. That is to 

say, collective foraging may be beneficial for wild strains in their natural environments where 

food distribution is likely patchy, whereas solitary foraging may be better suited for the 

laboratory environment where food is omnipresent and virtually unlimited.   

 
Figure 1: Snapshots of C. elegans on E. coli bacterial lawns from brightfield microscopy. (a) Solitary N2 
worms on a bacterial lawn. (b) Hyper-social npr-1(ad609) worms on a bacterial lawn. Red circles indicate the 
food boundary. 
 

To test this hypothesis, we experimentally model solitary versus social behaviour with N2 

(Figure 1a) and npr-1 (Figure 1b) worms, respectively. The latter are N2 worms with a loss-

of-function mutation (ad609) in the neuropeptide receptor gene npr-1, and are hyper-social 

with pronounced group formation on food (25, 26). Thus N2 and npr-1 worms represent 

opposite extremes of the collective phenotype and provide a useful system to compare social 

versus solitary foraging strategies in a genetic background that is identical except for the 

single npr-1 gene. Apart from regulating foraging behaviour, the npr-1 gene influences the 
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responses to O2 levels and pheromones, as well as the susceptibility to pathogens, among 

other effects (27-29). Past work by us and others have examined the behavioural mechanisms 

of aggregate formation for these two strains (26) as well as the fitness consequences of their 

aggregation phenotypes (30); nevertheless, how their contrasting foraging strategies perform 

in diverse resource distribution environments remains unknown. 

 

To examine whether collective foraging is more effective than solitary foraging in 

heterogeneously distributed food environments, we developed a lattice-based foraging model 

for movement and feeding based on local worm-worm interactions only (where the agents can 

only interact with other agents on directly adjacent lattice sites). First, we used a minimal 

model in which the only difference between social and solitary agents is their tendency to 

form groups on food. Simulation results from this model support the hypothesis that collective 

foraging can be beneficial in patchy food distribution environments, as social agents are both 

faster and more efficient at depleting food than solitary ones. These results motivated us to 

create a more realistic model that incorporates additional strain-specific behavioural 

parameters, in order to facilitate direct comparison with the experimental data. The more 

realistic model predicts that N2 is faster and more efficient at depleting food than npr-1 for all 

tested food distribution conditions, which we confirmed in experiments. We conclude that the 

solitary N2 strain outperforms the social npr-1 strain not necessarily via its foraging strategy. 

The difference could arise from N2 modifying other behaviours such as increasing its feeding 

rate or from aspects of the experiment not captured in the model.  
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Results 

 

Collective foraging is beneficial in patchy food-distribution environments in the minimal 

model  

The minimal model aims to determine whether collective foraging is more effective than 

solitary foraging in terms food intake. To achieve this, social and solitary agents are simulated 

to differ only in their ability to form groups on food. This allows us to examine the effect of 

foraging in groups alone, without any other complications such as different movement speeds 

between the agent types. 

 

The minimal model is designed based on two experimental observations from literature and 

brightfield recordings of solitary N2 worms and social npr-1 worms (Figure 1 and 

Supplementary Movies S1 and S2). Firstly, worms move faster off food than on food, 

presumably to find new food (31). To implement this, both solitary and social agents, with 

identical speeds, move to lattice sites in the remote neighbourhood in the absence of food and 

to lattice sites in the direct neighbourhood in the presence of food (Figure 2a). In our model, 

agents perceive food on the lattice site they are located on and on the lattice sites in their 

direct neighbourhood. Secondly, worms pump their pharynx and ingest bacteria while moving 

(32), which we simulate by letting both types of agents consume one food unit per time step if 

they are on food.  
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Figure 2: Schematics of neighbourhoods and computation of targeted steps. (a) Direct (dark blue) and 
remote (light blue) neighbourhoods of an agent (black worm) on a square lattice. (b) Possible motion updates of 
the black social agent performing a targeted step. Red squares show the direct neighbourhood shared by the red 
and the black agents, and blue squares show the direct neighbourhood shared by the blue and the black agents. 
Therefore, while performing a targeted step, the black agent is only allowed to move to the coloured squares to 
perform a targeted step to the direct neighbourhood of an adjacent agent. (c) Consecutive execution of targeted 
steps in a group of three agents. The order in which motion updates are computed is chosen randomly for every 
time step. The green agent performs the first targeted step and moves to a square adjacent to the blue agent. 
Subsequently, the blue agent executes a targeted step and moves to a square next to the red agent which isolates 
the green agent from the group. This shows that a targeted step may also separate agents from their group. 
 

As a simplifying assumption, the movement of agents is modelled through random steps, 

unless an agent has neighbours in the presence of food. In the latter case, social agents try to 

join a group by switching from random steps to targeted steps towards nearby neighbours 

(Figure 2b,c) (15). By contrast, solitary agents always perform random steps (see flow chart 

in Figure S1a). Hence, the minimal model simulations are constructed exclusively for 

examining the influence of neighbour affinity on foraging (see Material and Methods for 

more details of the minimal model). We chose to ignore long-range chemotaxis by food or 

pheromone signalling as our previous work has suggested these are not important for the 

collective phenotypes of the two strains (26). We implement food distributions with different 

degrees of food clustering controlled by a parameter 𝛾 in a manner similar to (15), so that one 

food unit is placed a distance 𝑑 ≥ 1 away from an existing one with the probability 𝑃(𝑑) =

	𝑑*+ (see Materials and Methods). This parameterisation allows us to continuously vary 
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between a uniformly random (𝛾 = 0) food distribution and distributions with increasing 

patchiness as 𝛾 is increased (Figure 3a).  

 

In natural environments, C. elegans coexists with other nematodes competing for the same 

food resources, so fast and efficient food depletion may enable a species to outperform its 

competitors (23, 33). Thus we measured both time to 90% food depletion and foraging 

efficiency in our model simulations. In environments with uniform randomly distributed (𝛾 =

0) or slightly patchy food (𝛾 ≤ 1), social agents need longer to deplete food than solitary ones 

(Supplementary Movies S3-4). When food is strongly patchy (𝛾 > 1), social agents deplete 

food faster than solitary ones (Supplementary Movies S5-6). The crossover between the two 

foraging strategies can be found at approximately 𝛾 ≈ 1.5 (Figure 3b). Overall, these results 

confirm our initial hypothesis, indicating that a solitary foraging strategy is beneficial in 

environments with uniformly distributed food whereas collective foraging prevails in 

environments with patchy food. Interestingly, restricting food perception to the agent’s 

current lattice site diminishes the advantage of solitary agents in environments with uniformly 

random distributed or slightly patchy food (𝛾 ≤ 1) (Figure S2a).  
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Figure 3: Food distributions used in minimal model simulations and time steps social and solitary agents 
need to deplete food. (a) Food distributions for different 𝛾 values. Red dots show the agents (distributed 
uniformly random in all cases), and the colour bars show the number of food units per lattice site. (b) Mean 
number of time steps taken by social and solitary agents to deplete 90% of the distributed food depending on the 
degree of food clustering, showing a crossover with social agents eating faster than solitary agents in patchy food 
environment (	𝛾>1.5) and vice versa. Error bars show 1 SD.  
 

The benefit of the collective foraging strategy remains when success is measured in terms of 

foraging efficiency (Figure S3a,b), which is computed for individual agents by dividing the 

total number of food units it consumes by the total number of steps it takes; similar benefit-

cost trade-offs had been considered by others in previous works (34, 35). In environments 

with uniformly random or slightly patchy food (𝛾 ≤ 1), solitary agents forage with a higher 
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median efficiency than social ones, while the opposite is true in environments with patchy 

food distributions (𝛾 > 1). However, the efficiencies of both social and solitary agents 

decrease as patchiness increases. At the individual level, food is distributed more evenly 

among solitary agents than among social ones in environments with uniformly random 

distributed food (Figure S3c,d). With restricted food perception, this effect disappears (Figure 

S2d,e), and the individual efficiencies of social and solitary agents resemble each other for 

𝛾 ≤ 1 (Figure S2b,c). These findings underline that collective foraging may be advantageous 

in environments with patchy food distribution due to the higher efficiency and thus lower 

energy expenditure.  

 

Solitary foraging of N2 agents is more successful in all food distribution environments in 

strain-specific simulations 

As the social npr-1 and solitary N2 C. elegans strains vary in a number of behavioural 

parameters, next we incorporate these strain-specific differences into the minimal model in 

order to create a more realistic version of the model. We implement two main behavioural 

differences reported in literature: Firstly, the speeds of npr-1 and N2 worms differ depending 

on food availability. Both strains move at roughly the same speed in the absence of food, but 

N2 worms slow down to roughly half this speed when on food, whereas npr-1 worms only 

slow down significantly upon joining a group of worms on food (25). Secondly, npr-1 and N2 

worms exhibit different feeding rates, as calculated by us previously (36). These literature 

parameters are listed in Table 1 and adapted for our strain-specific simulations (model 

parameters are listed in Table 2). We also considered food-leaving probabilities, but food-

leaving is extremely rare on the thin food lawns that we use for our experiments compared to 

what others have reported under different experimental conditions (37, 38). Food-leaving 

probability in our experiments are near zero (0.013±0.013 (mean ± standard deviation) events 

per worm per hour for npr-1 and 0.025±0.025 events per worm per hour for N2, see 
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Supplementary Methods for details), which is consistent with our previous report that worms 

are mostly on food under the same experimental conditions (26), so we do not use different 

food-leaving rates in our simulations. Nevertheless, our strain-specific model is constructed 

so that different food-leaving rates can easily be incorporated to test additional parameter 

combinations (see Supplementary Methods and Supplementary Figure 1b for details).  

 

Table 1: Literature values for npr-1 and N2 behavioural parameters. 
 reference npr-1 N2 
speed in the presence of food (25) 183 µm/s 109 µm/s 
speed in the absence of food  (25) 225 µm/s 232 µm/s 
feeding rate  (36) 0.576 unit 1 unit 

 

Table 2: List of parameters used in modelling simulations.  
 

 minimal model strain-specific model 
 social agents solitary agents npr-1 agents N2 agents 
Step length in the 
presence of food 

to direct 
neighbourhood 

to direct 
neighbourhood 

in a group: to direct 
neighbourhood 
alone: to remote 
neighbourhood 

to direct 
neighbourhood 

Step length in the 
absence of food 

to remote 
neighbourhood 

to remote 
neighbourhood 

to remote 
neighbourhood 

to remote 
neighbourhood 

Feeding rate 1 food unit/time 
step 

1 food unit/time 
step 

0.2304 food 
unit/time step 

0.4 food unit/time 
step 

Food-leaving 
probability 

Not used Not used 0  0  

 

In this more realistic, strain-specific model, agents perceive food only at the lattice site that 

they occupy. As in the minimal model, social npr-1 agents can join groups on food by 

performing targeted steps, whereas N2 agents can only perform random steps (see flow chart 

in Figure S1b). To compare simulation outcomes with experimental results, we chose food 

distributions that can be experimentally reproduced: food is distributed in one-, two-, or four-

spot configurations whilst keeping the total amount of food constant (Figure 4a). Note that a 

food “spot” is conventionally referred as a food “patch”, but here we use the term “spot” 

instead of “patch” for both strain-specific simulations and the corresponding experiments. 

This is to avoid confusion with the term “patchiness” (as opposed to uniformity), which in 
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this context would refer to the presence of multiple spots (as opposed to a single spot). Each 

“spot” itself has a uniform distribution of food.  

 

 
 
Figure 4: Food distributions used in strain-specific simulations and time steps npr-1 and N2 agents need to 
deplete food. (a) Food distributions with one, two or four food spots. Red dots show agent configurations at the 
start of the simulations, with dark blue indicating no food and yellow indicating food. (b) Mean time for npr-1 
and N2 agents to deplete 90% of the distributed food units, shown for different numbers of food spots. Error bars 
show 1 SD. (c) Same as b), but with npr-1 agent feeding rate set to the same value as N2. Simulation time is 
converted from time steps to real time in b) and c): as there is maximally a single agent per lattice site the lattice 
spacing is equal to the worm size (~ 1 mm). By noting that worm speed on food is approximately 100-200 µm/s 
and that it takes an agent one time step to cross the 1 mm lattice site, the timescale should be roughly Δt ≈5-10 s.  
Eventually Δt = 10 s is chosen to approximate the order of magnitude to broadly match the experimental data in 
Figure 5. 
 

To assess the foraging success in this strain-specific model, we first calculated the time 

needed to deplete 90% of the distributed food for both npr-1 and N2 agents. Social npr-1 

agents need longer than N2 to consume the same amount of food independent of the number 

of food spots (Figure 4b, Supplementary Movies S7-9). Furthermore, time to food depletion 

barely varies amongst different food spot number configurations for both npr-1 and N2. 

Overall, now the solitary foraging strategy of N2 agents wins out in all tested food 
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distribution environments, which contrasts with the findings of the minimal model 

simulations. We also analysed the foraging efficiency of npr-1 and N2. These results show 

that N2 agents forage with a substantially higher efficiency than npr-1 in all tested conditions, 

even though the range of the individual efficiencies of N2 agents is larger compared to npr-1 

agents (Figure S4a,c). Apart from this, N2 agents have a marginally higher food intake in 

environments with one or two food spots than npr-1 agents (Figure S4b,d; Figure S5a,b), 

indicating that individual N2 agents forage more successfully than npr-1 individuals. 

However, fewer npr-1 than N2 agents have an extremely low food intake in all environments 

(Figure S5a-c). This may suggest that the overall population survival of npr-1 worms could be 

better than N2 when food is scarce, as fewer individual npr-1 worms face starvation despite 

the lower overall foraging efficiency.  

 

Experimental findings confirm predictions from the strain-specific model  

To test the predictions of the strain-specific model, we conducted experiments with npr-

1(ad609) mutants and N2 worms. For both worm strains, 40 age-matched young adults were 

imaged on low peptone NGM agar plates containing one, two, or four spots of E. coli OP50 

bacteria (Figure 5a). The total amount of bacteria remains the same across different 

experiments regardless of the spot number (i.e., 20 µL for one spot, 10 µL per spot for two 

spots and 5 µL per spot for four spots; see Materials and Methods for further experimental 

details). Low peptone (0.13% w/v) in the media minimises bacterial growth during the 

experiment.  

 

We measured the time the worms need to deplete the bacteria lawns. The end point of the 

assay is estimated from the detectable increase in worm speed once food becomes completely 

depleted (Figures S6). This can most clearly be seen in Supplementary Movies S1 and S2, 

where the texture of the background changes upon depletion from smooth to coarse, and the 
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dramatic speed-up of the worms can be visually detected. Figure 5b shows the mean time npr-

1 and N2 animals need to deplete different numbers of bacteria spots in the experiment. The 

N2 strain depletes bacteria faster than the npr-1 strain independent of the number of bacteria 

spots. Thus, the experimental results confirm the prediction of the strain-specific model.  

 

 

Figure 5: Food distribution used in experiments and time npr-1 and N2 worms need to deplete bacteria in 
the experiments. (a) Schematics of E. coli spots (green) on imaging plates used in the experiments. (b) Mean 
time for 40 npr-1 or N2 worms to deplete one, two, or four bacterial food spots in the experiments. Data is 
available for 3-4 independent replicates for each condition. Error bars show 1 SD.  
 

Feeding rate is the key factor for N2’s foraging advantage  

To gain further insights into which aspect of the model determines the differences in 

performance between the two foraging strategies, the strain-specific simulations were 

repeated, but with equal feeding rates for npr-1 and N2 agents (using the N2 value from Table 

2). As a result, the difference between the strains in foraging time is completely abolished 

(Figure 4c). Furthermore, the distributions of individual efficiencies (Figure S4c,e) as well as 

of ingested food units (Figure S4d,f) for npr-1 and N2 agents now resemble each other after 

(a) 20 µL E. coli spot 10 µL E. coli per spot 5 µL E. coli per spot

35 mm

(b)         

number of bacteria spots
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setting the feeding rates equal. These results suggest that the higher feeding rate of N2 is the 

main reason for its foraging advantage. The fact that there is no difference in foraging 

efficiency between the two strategies once the feeding rates have been made equal, is 

consistent with the patchy environment being roughly equivalent to a food distribution with γ 

= 1.5 where we also observed no difference in efficiency in the minimal model. 

 
 
Discussion 

 

We hypothesised that collective foraging in groups confers an advantage when foraging in 

environments with heterogeneously distributed food. To test this hypothesis we implemented 

lattice-based simulations, which are more computationally efficient than agent-based models 

(26) or spatial Gillespie simulations (39), and have a long history in ecological modelling 

(34). Unlike previous lattice-based simulations (15), we only allowed for short-range 

interactions in order to exclude the role of visual cues and long-range chemotaxis. Our 

approach is also different from other works which investigate optimal foraging in patchy 

environments based on the marginal value theorem (34, 35). Our minimal model confirms our 

hypothesis that foraging in groups can be beneficial in environments with patchy food 

distributions, as social agents deplete food faster and more efficiently than solitary ones. The 

simple presence of a worm may convey social information to other worms, such as indicating 

that food quality is sufficiently high (5, 17, 40). This type of swarm intelligence may be 

particularly valuable in the absence of sophisticated communication systems or long-range 

interactions. 

 

In contrast to the minimal model, our more realistic strain-specific simulations show that the 

solitary N2 agents performs better than the social npr-1 agents in environments with patchy 

food distributions (i.e. multiple food spots). The results of the strain-specific simulations were 
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confirmed by experiments that demonstrate faster food depletion by N2 than by npr-1 worms 

regardless of food spot numbers. Assuming fast food depletion as a fitness advantage, these 

results agree with a previous study reporting that the aggregating strains are less fit in 

laboratory conditions (41). Another recent study shows that the observed fitness advantage of 

N2 over npr-1 worms is in fact dissociable from their aggregation phenotypes (30). Indeed, 

we conducted further simulations using a modified strain-specific model to show that N2’s 

better foraging performance may be more attributable to other behavioural differences such as 

higher feeding rate, than to its solitary foraging strategy. Therefore our strain-specific model 

suggests that collective foraging is not an efficient strategy, at least under our tested food 

distribution conditions, while our minimal model indicates that this remains a theoretical 

possibility. 

 

The question remains why C. elegans wild strains aggregate into groups, if it is not essential 

for foraging success in a patchy food distribution environment? One possible explanation is 

that the patchy food distribution environment (with multiple food spots) that we 

computationally and experimentally created here does not represent the actual ecological 

context of C. elegans, which we know surprisingly little about (24, 42). The food clusters in 

the real natural environment may well be several orders of magnitude further apart from each 

other than what we tested with the multiple food spot experiments here, and with temporal 

fluctuations and varying quality which we have not considered here. Therefore our simulation 

and experimental results regarding foraging success in patchy food distributions may not be 

so “patchy” or “realistic” in the end to conclude that wild C. elegans do not benefit from 

collective foraging in their natural resource environments. Regardless of food distribution, 

aggregation may nevertheless serve as a mechanism for protecting C. elegans from dangers 

associated with the high-oxygen surface environment (such as desiccation or UV radiation) 

(43) or from pathogens that infect the worm through its cuticle (36), so collective foraging 
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may be a means to balance the costs of foraging with the benefits of avoiding such dangers. 

Moreover, our simulation results provide yet another hypothesis: while collective foraging 

may decrease the overall foraging efficiency of the social strain, it could also reduce the 

number of worms at the risk of extreme starvation (Figure S5). This view is consistent with 

optimal foraging theory which typically considers optimal movement strategies and the trade-

off between exploitation and exploration (34, 44-47). Joining groups may enhance foraging in 

environments with big food clusters and decrease the variance of foraging success (47), which 

is recapitulated by our minimal and strain-specific models, respectively.   

 

In conclusion, our simulations and experiments were designed to test whether collective 

foraging helps to consume patchily distributed food, which may be representative of resource 

distributions in the wild. While we conclude that it does in our minimal model, in the more 

realistic simulations incorporating strain-specific behavioural parameters, the solitary agents 

deplete food faster and have a higher median efficiency of food uptake, and so outperform the 

social agents at a population level. However, social agents are better at preventing starvation 

of its individuals. Our simulations only considered spatial variation in the food distributions, 

but have not explored temporal fluctuations of the environment. The dynamics of 

environmental fluctuations have been shown to influence whether sensing or stochastic 

phenotype switching is favoured in growing populations (48). An alternative approach is to 

consider under what environmental conditions collective foraging strategies emerge by 

evolution (49). Thus the role of both fluctuating environments and evolution of foraging 

strategies are avenues for further work on the benefits of collective foraging strategies. 
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Material and Methods 

 

Basic simulation rules 

The following basic rules apply to all simulations: Parameter 𝑛 represents the number of 

agents (𝑛 = 40) simulated on a square-lattice with 𝐿6 lattice sites (𝐿 = 35) using periodic 

boundary conditions (15). The direct neighbourhood of an agent is defined as the eight 

surrounding lattice sites, whereas the 16 lattice sites surrounding the direct neighbourhood are 

defined as the remote neighbourhood (Figure 2a). Each lattice site contains a certain number 

of food units depending on the underlying food distribution. Volume exclusion is enforced in 

all simulations so that every lattice site can only be occupied by a single agent. We use 

random initial positions of the agents. At every time step, each agent checks if there is food at 

its current position, eats one food unit (if there are any) and then attempts to move. All 

simulations are implemented with MATLAB R2017a. Simulations are run 500 times for each 

condition, using the same initial distribution of food and agents. For every simulation the time 

taken to 90% food depletion is measured for the population, and the foraging efficiency and 

the total food uptake are measured for individual agents. 

 

Food distribution in simulations 

Two different types of food distributions are used in the simulations. The first type is used for 

the minimal simulations, where food distribution is parameterised by 𝛾 (𝛾 = 0, 1, 1.5, 2, 3),	

which	controls	the	degree	of	clustering	(Figure	3a) (15). For γ > 0, every new food unit is 

placed at a distance 𝑑	(1 ≤ 𝑑 ≤ K
√6
	) in a random direction to a random existing food unit. For 

𝛾 = 0 the food is distributed uniformly random on the lattice. For 𝛾 > 	0 the distance 𝑑 is 

calculated as follows: 𝑑 = 𝑟
NO
P , where 𝑟 is a random number distributed uniformly between 0 

and 1. If 𝑑 is larger than 𝐿/√2, a uniform random value between 1 and 𝐿/√2 is chosen 
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instead. The value of 𝑑 is calculated independently for every food unit. To initialise 

simulations, one food unit is placed on a randomly chosen lattice site and then the remaining 

food units are distributed accordingly. For strain-specific simulations we use the second type 

of food distribution, where one, two, or four food spots are distributed on the lattice and food 

is distributed evenly within the spot (Figure 4a). The total food level is the same among 

simulations for the minimal model (𝐿6 ∙ 10), but slightly varies for the strain-specific model 

depending on the number of food spots (because each spot has to be made up of an integer 

number of lattice sites). To ensure consistent comparisons, we calculated the time to 

consuming 𝐿6 ∙ 10 ∙ 0.9 food units as time to depletion for every simulation.  

 

Minimal model simulations 

Minimal model simulations are conducted with parameters listed in Table 2. The basics of 

random and targeted steps are explained in the main text (Figure 2), and a flow chart is 

provided in Figure S1a. Food is perceived on the lattice site the agent occupies and in the 

direct neighbourhood. Agents try all possible lattice sites until it finds an available site 

unoccupied by another agent. If no such site is available, the agent remains in its current 

position. Social agents perform a targeted step when food is present and at least one other 

agent is present in its direct neighbourhood. In this case, the agent moves randomly to one of 

the lattice sites located next to another agent in the direct neighbourhood (Figure 2b,c). For 

the calculation of individual efficiencies, moving to the remote neighbourhood counts as two 

steps, moving to the direct neighbourhood counts as one step, and if the agent remains at its 

position then it counts as zero step.  

 

Strain-specific model simulations  

The parameters for strain-specific simulations are given in Table 2, and a flow chart is 

provided in Figure S1b. In these simulations, agents sense food only on the lattice site they 
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occupy. The strain-specific model incorporates food-leaving probability r (see Supplementary 

Methods), which is set to zero for our simulation results here. Foraging efficiencies for strain-

specific simulations are calculated in a manner similar to that for the minimal model 

simulations. 

 

Experimental procedure to validate the strain-specific simulations 

The experimental procedures used here are identical to the “Bright field standard swarming 

imaging” method that we previously published (26). A step-by-step protocol is available at 

http://dx.doi.org/10.17504/protocols.io.vyhe7t6. Briefly, 35 mm imaging plates containing 

low peptone NGM agar are freshly seeded with 20 µL of diluted E. coli OP50 bacteria (OD600 

= 0.75) shortly before imaging, with the 20 µL equally divided between the required number 

of food spots to produce different patchiness conditions (i.e., four spots of 5 µL each, two 

spots of 10 µL each, or one spot with 20 µL). Forty age-synchronised young adult worms are 

washed and transferred onto the imaging plate in a liquid drop without disturbing the bacterial 

spots, and imaging commences immediately. Time-lapse images were recorded at 25 fps for 7 

hours at 20° C with Gecko software (v2.0.3.1) and a custom-built six-camera rig equipped 

with Dalsa Genie cameras (G2-GM10-T2041). The images were segmented in real time and 

automated animal tracking was conducted with the Tierpsy Tracker software (v1.3) (50) to 

extract speed. Three to four replicates of the experiments are available for each combination 

of worm strain and food distribution condition. 

 

Estimating the time to food depletion from experimental data 

As worms speed up when food becomes depleted, we identified increases in the mean worm 

speed as a proxy for food depletion. The recordings were first analysed by eye to find periods 

of increased activity which helped to identify the corresponding peak in speed. As imaging 

commenced as soon as worms were transferred to the imaging plate in a liquid drop, the 
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foraging start time is manually defined as the moment when the liquid drop completely 

absorbs into the media allowing all worms to crawl out. To identify periods with increased 

speed, we followed mean worm speed (calculated per second) over the duration of the 

recordings. Mean speed is smoothed with a window size of 500 seconds centred on the 

current time to give distinguishable peaks in speed.  Note that plots can have more than one 

local maximum for experiments with more than one food spot, as the food spots are not 

depleted simultaneously. In this case, the last local maximum is defined as the time in which 

most bacteria are depleted (Figure S6a-c). 
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