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Abstract. We introduce and analyze a sparse spectral method for the solution of Volterra5
integral equations using bivariate orthogonal polynomials on a triangle domain. The sparsity of6
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1. Introduction. Define the Volterra integral operator15

(1.1) pVKuqpxq :“

ż lpxq

0

Kpx, yqupyqdy,16

where Kpx, yq is called the kernel, upyq is a given function of one variable and the17

limits of integration are either lpxq “ x or lpxq “ 1´ x. This paper concerns Volterra18

integral equations of the first and second kind, that is, to find u satisfying19

VKu “ g or pλI ` VKqu “ g.20

Numerous applications and the fundamental nature of Volterra integral and integro-21

differential equations motivate research into efficient and accurate numerical solvers.22

Various forms of Volterra integral equations are analytically well-understood [13, 41,23

51], have been the subject of various numerical approximation schemes [13, 12, 5, 33],24

and are encountered regularly in various scientific fields as well as engineering and25

finance applications [13, 41, 49, 51, 28, 29].26

In this paper we present a method to compute Volterra integrals and solve Volterra27

integral equations by using orthogonal polynomials on a triangle domain [22, 39] to28

both resolve the kernel and to reduce the equations to banded linear systems. The29

method is in the same spirit as some previous contributions to the field of numerical30

Volterra, Fredholm, singular integral and differential equations based on operators and31

orthogonal polynomials such as [1, 27, 45, 26] but differs in choice of basis and domain,32

leading to operator bandedness properties which can be exploited for significantly33

increased efficiency. Notably the approach introduced in this paper can be used for34

a wider range of kernels than many other Volterra integral equation solvers such as35

the methods based on orthogonal polynomials due to Loureiro and Xu [32, 54], the36

recently developed ultraspherical spectral method in [26] or the Fourier extension37

method in [53] as it is not limited to convolution kernel cases, that is kernels of the38
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form Kpx, yq “ Kpx ´ yq, but works for a wider class of kernels. We prove the39

convergence of the proposed sparse spectral method for second kind Volterra integral40

equations with general kernels which are sufficiently smooth to be approximated by41

Jacobi polynomials as well as for first kind Volterra integral equations with sufficiently42

smooth kernels where @x P r0, 1s : Kpx, xq ‰ 0.43

The sections in this paper are organized as follows: Section 2 introduces the44

required aspects of univariate and bivariate polynomial function approximation on a45

real interval and the triangle respectively. Section 3 introduces an efficient numerical46

method for Volterra integrals and integral equations and discusses how to approach47

kernel computations using a multivariate variant of Clenshaw’s algorithm. In Section48

4 we show the scheme in action in both toy and application-based examples. Proofs49

of convergence for well-posed problems are discussed in Section 5.50

2. Function approximation with orthogonal polynomials.51

2.1. Jacobi polynomials on the real interval. Multivariate orthogonal poly-52

nomials are ordered sets of polynomials satisfying a particular pair-wise and weighted53

orthogonality condition, often of the form54

(2.1) xPm,k, Pn,jy “

ż

Ω

Pm,kpxqPn,jpxqW pxqdA “ Cδmnδjk,55

where C ‰ 0 and Pm,k are total degree m polynomials. Many such sets of orthogonal56

polynomials are well-known and well-studied on various domains Ω such as R, real57

intervals, simple 2D and 3D domains, as well as various higher dimensional spheres58

and polygons [22]. The relevant set of orthogonal polynomials for this paper are the59

Jacobi polynomials on the real line and on the triangle respectively. This section will60

thus give a quick overview of Jacobi polynomials aimed at equipping us with the tools61

needed to develop the Volterra integral equation solvers in later sections. We refer to62

[22, 23] for introductions with broader scope.63

64

The Jacobi polynomials are orthogonal on r´1, 1s:65

ż 1

´1

Cpα,β,m,nq p1´ xq
α
p1` xq

β
P pα,βqm pxqP pα,βqn pxqdx “ δnm,66

where Wpα,βqpxq “ Cpα,β,m,nq p1´ xq
α
p1` xq

β
acts as the weight function and δnm67

is the Kronecker delta. While the choice of r´1, 1s is natural, the Jacobi polynomials68

can be shifted to any real interval an application requires. For α “ β “ 0 the Jacobi69

polynomials reduce to the Legendre polynomials [22].70

71

One of the primary applications of interest for the study of orthogonal polynomials72

are their applications in the expansion of non-polynomial functions:73

fpxq “
8
ÿ

n“0

pnpxqfn “ PpxqTf ,74

where fn is the function-specific coefficient of the n-th polynomial pn and we use the75

notation76

Ppxq :“

¨

˚

˝

p0pxq
p1pxq

...

˛

‹

‚

, f :“

¨

˚

˝

f0

f1

...

˛

‹

‚

.77

78
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For numerical applications one uses finitely many terms in the above sum to obtain an79

approximation. If a distinction between different sets of polynomials and coefficient80

vectors on different domains is required we specify by indicating the type of polyno-81

mials using standard notation for the polynomials, such as Ppα,βqpxq for the Jacobi82

polynomials on a real interval, and the domain using index notation, e.g. for the83

bivariate orthogonal polynomial coefficient vector of gpx, yq on the triangle domain84

we write gM.85

86

To use function approximation of this type in a non-trivial numerical applica-87

tion one needs ways to do computations on functions represented as coefficient vec-88

tors. Basic computations such as addition and subtraction of functions have obvious89

element-wise implementations. Furthermore one can compute xfpxq if fpxq is already90

approximated as a coefficient vector: to do this one uses multiplication operators X̄91

which act as92

PpxqTX̄fr0,1s “ xfpxq.93

This is efficiently possible because the Jacobi polynomials satisfy a three-term recur-94

rence relationship, making X̄ a tridiagonal operator, in fact it is the transpose of the95

Jacobi operator associated with pn:96

(2.2) J “ X̄T “

¨

˚

˚

˚

˚

˝

a0 b0
c0 a1 b1

c1 a2
. . .

. . .
. . .

˛

‹

‹

‹

‹

‚

.97

Additionally, our approach to Volterra integral equations of the second kind will re-98

quire explicit constructors for raising operators S
pα`1,βq
pα,βq ,S

pα,β`1q
pα,βq which are defined99

to increment from the Jacobi bases Ppα,βqpxq to Ppα`1,βqpxq and Ppα,β`1qpxq respec-100

tively. Increments to α and β can be computed using these operators but decrementing101

is generally only well-defined in the sense of weighted lowering operators:102

xfpxq “ Ppα´1,βqpxqTL
pα´1,βq
pα,βq f ,103

p1´ xqfpxq “ Ppα,β´1qpxqTL
pα,β´1q
pα,βq f .104

105

The explicit forms of the operators X̄, S
pα`1,βq
pα,βq , S

pα,β`1q
pα,βq , L

pα´1,βq
pα,βq and L

pα,β´1q
pα,βq are106

well known in the literature, see for example [35, 39, 22] and the references therein.107

2.2. Jacobi polynomials on the triangle. We now briefly discuss how func-108

tion approximation using bivariate orthogonal polynomials works in general and then109

move on to discuss the Jacobi polynomials on the canonical unit simplex110

T 2 “ tpx, yq : 0 ď x, 0 ď y ď 1´ xu .111

We use a basis on this triangle in the following sections to compute Volterra inte-112

grals and solve integral equations. As in the univariate case, bivariate orthogonal113

polynomials are said to be orthogonal with respect to an inner product akin to (2.1).114

Analogously to how functions of a single variable may be expanded into a basis of115

univariate orthogonal polynomials as fpxq “
ř8

n“0 pnpxqfn we can expand a function116
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of two variables in a basis of bivariate polynomials as117

fpx, yq “
8
ÿ

n“0

n
ÿ

k“0

pn,kpx, yqfn,k.118

Writing the bivariate polynomials of total degree n as119

Pnpx, yq “

¨

˚

˚

˚

˝

pn,0px, yq
pn,1px, yq

...
pn,npx, yq

˛

‹

‹

‹

‚

120

allows for the following compact notation for the infinite-dimensional polynomial ba-121

sis:122

Ppx, yq “

¨

˚

˝

P0px, yq
P1px, yq

...

˛

‹

‚

.123

In this notation the expansion of a function of two variables in the bivariate polynomial124

basis becomes125

fpx, yq “
8
ÿ

n“0

n
ÿ

k“0

pn,kpx, yqfn,k “ Ppx, yqTf .126

For function approximation one simply uses an appropriate finite cutoff of this expan-127

sion.128

On the triangle T 2 we focus on the Jacobi weights xαyβp1´x´ yqγ . One elegant129

way to define the corresponding Jacobi polynomials Ppα,β,γqpx, yq on the canonical130

triangle T 2 is by referring to the Jacobi polynomials Ppα,βqpxq on the real interval131

r´1, 1s (compare [22, Proposition 2.4.1]):132

(2.3) P
pα,β,γq
k,n px, yq “ p1´ xq

k
P
p2k`β`γ`1,αq
n´k p2x´ 1qP

pγ,βq
k

ˆ

2y

1´ x
´ 1

˙

.133

Defined as such the triangle Jacobi polynomials are orthogonal with respect to a134

weighted integral over the canonical triangle domain T 2:135

ż 1

0

ż 1´x

0

xαyβp1´ x´ yqγP
pα,β,γq
k,n px, yqP

pα,β,γq
j,m px, yqdydx “ Cpα,β,γqδjkδmn.136

The detailed form of the constant Cpα,β,γq is not important here but can for example137

be found in [22]. We will primarily use the Jacobi polynomials shifted to the r0, 1s138

interval and denote them by P̃pα,βqpxq, which allows us to write the Jacobi polynomials139

on the triangle as:140

(2.4) P
pα,β,γq
k,n px, yq “ p1´ xqkP̃

p2k`β`γ`1,αq
n´k pxq P̃

pγ,βq
k

ˆ

y

1´ x

˙

.141

As in the 1-dimensional case we can define multiplication operators X and Y, one for142

each variable, which respectively act as143

Ppx, yqTXfM “ xfpx, yq,144

Ppx, yqTYfM “ yfpx, yq,145146
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for a given bivariate polynomial basis. Unlike the 1-dimensional Jacobi polynomial147

case these operators are not tridiagonal but block tridiagonal Jacobi operators for the148

triangle Jacobi polynomials [39]:149

(2.5) XT “

¨

˚

˚

˚

˚

˝

Ax0 Bx0
Cx0 Ax1 Bx1

Cx1 Ax2
. . .

. . .
. . .

˛

‹

‹

‹

‹

‚

, YT “

¨

˚

˚

˚

˚

˝

Ay0 By0
Cy0 Ay1 By1

Cy1 Ay2
. . .

. . .
. . .

˛

‹

‹

‹

‹

‚

,150

where Axn, A
y
n P Rpn`1qˆpn`1q, Bxn, B

y
n P Rpn`1qˆpn`2q and Cxn, C

y
n P Rpn`2qˆpn`1q.151

Analogous operators to the raising and lowering operators discussed for the real in-152

terval case can be constructed for the Jacobi polynomials on the triangle as well, see153

[38, 39], but we omit their discussion as we will not make direct use of them in this154

paper.155

To make use of Jacobi polynomials for the approximation of functions on the trian-156

gle domain in a numerical context one requires efficient algorithms to determine the157

coefficient vector fM for a given function fpx, yq of two variables. This can be done158

using an algorithm and its implementation in a C library by Slevinsky [42, 43, 44].159

2.3. Function evaluation using Clenshaw’s algorithm. Clenshaw’s algo-160

rithm provides an efficient and direct method to evaluate functions expanded into or-161

thogonal polynomial bases at given points, i.e. to evaluate
řN
n“0 pnpxqfn at x˚ P Rd,162

cf. [16, 39]. The algorithm makes use of the polynomial basis’ recurrence relationships163

to reduce function evaluation to the solution of an upper triangular linear system us-164

ing backward substitution. In this section we give an outline of how this is done for165

Jacobi polynomials on the real interval and the triangle, which is discussed in more166

detail in [39]. An operator valued variant of what is discussed in this section will be167

used for efficient kernel computations for Volterra integrals in section 3.2. We mention168

a major benefit of Clenshaw’s algorithm over building polynomials/operators via for-169

ward recurrences is that there is substantially less memory needed in the intermediary170

calculations.171

172

For the case of Jacobi polynomials on a real interval, the three-term recurrence173

relationship seen in the Jacobi operator in (2.2) can be used to write174

LN px˚qPpα,βqN px˚q “ e0,175

LN px˚q “

¨

˚

˚

˚

˚

˚

˝

1
a0 ´ x˚ b0
c0 a1 ´ x˚ b1

. . .
. . .

. . .

cN´2 aN´1 ´ x˚ bN´1

˛

‹

‹

‹

‹

‹

‚

,176

177

where e0 is the first standard basis vector with 1 in its first component and of appro-178

priate length. Solving this lower triangular system via forward substitution provides a179

way to recursively evaluate each component of Ppα,βqpxq and thus also Ppα,βqpxqTf if180

the coefficients of fpxq in this basis are known. Clenshaw’s algorithm is conceptually181

similar but uses backward substitution on the system182

(2.6) fpx˚q “ P
pα,βq
N px˚q

Ta “ eT
0LN px˚q´Ta ,183
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where a is the column vector collecting a0 to aN . The case for the Jacobi polynomials184

on the triangle was recently discussed in [39] and on the basis of the recurrence in185

(2.5) involves a block triangular system for evaluation at x˚ “ px˚, y˚q instead:186

LN px˚qPpα,β,γqN px˚q “

¨

˚

˚

˚

˚

˚

˚

˚

˝

11

Ax0 ´ x˚11 Bx0
Ay0 ´ y˚11 By0

Cx0 Ax1 ´ x˚12 Bx1
Cy0 Ay1 ´ y˚12 By1

. . .
. . .

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

P
pα,β,γq
N px˚q “ e0,187

where 1k denotes the k ˆ k identity matrix. As this is not a triangular but a block188

triangular matrix one cannot use forward substitution without first applying a pre-189

conditioner:190

¨

˚

˚

˚

˝

1
B`0

B`1
. . .

˛

‹

‹

‹

‚

LN px˚q “ L̃N px˚q.191

L̃N px˚q is then a proper lower triangular matrix and can be used in an analogous192

system to the ones above to evaluate the polynomials, and thus a function expanded193

into that polynomial basis, recursively via forward substitution. A preconditioner194

which satisfies these requirements is the block diagonal matrix whose elements are195

comprised of a left inverse of the blocks196

Bn “

ˆ

Bxn
Byn

˙

,197

such that B`nBn “ 1n. Clenshaw’s algorithm for the triangle Jacobi polynomials is198

thus199

fpx˚q “ P
pα,β,γq
N px˚q

TA “ eT
0 L̃N px˚q´TA.200

This system can be solved via backward substitution in optimal OpN2q complexity if201

one chooses B`n carefully, see [39].202

3. A numerical method for Volterra integral equations.203

3.1. Volterra integrals on the triangle. In this section we describe how to204

represent Volterra integrals using bivariate orthogonal polynomials on a triangle do-205

main by moving to a view of operators acting on coefficient vectors. The following206

section extends this method to Volterra integral equations of the first and second kind.207

208

We first describe the idea behind the relevant operators and their use before209

determining their entries in matrix representation. The first operator we need is the210

integration operator for a function given as the coefficients of orthogonal polynomials211

on a triangle. We label this operator Qy and it acts as212

PpxqTWQQyfM “

ż 1´x

0

fpx, yqdy,213
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where WQ is a to-be-determined weight function which depends on the used basis.214

The reason for the limits of integration to be defined in this way for Qy will become215

clear once we discuss the explicit form of these operators and how one can make216

optimal use of the triangle domain’s symmetries. Second, we need an operator Ey217

which extends a one-dimensional function on r0, 1s to one on T 2, that is:218

PpxqTfr0,1s “ Ppx, yqTEyfr0,1s219

Together these two operators can be used to compute integrals of the form220

ż 1´x

0

fpyqdy “ PpxqTWQQyEyfr0,1s221

with function f depending on a single variable. To instead integrate from 0 to x222

we use a reflection operator. Due to symmetries of the polynomials, particular basis223

changes in a Jacobi basis obey the simple rule [35, 22]:224

P̃ pα,βqn pxq “ p´1qnP̃ pβ,αqn p1´ xq.225

We use R to refer to the operator that uses the above property to reflect the function226

on the r0, 1s interval via an appropriate basis change. The operators X and Y have227

important commutation relations with the introduced Qy and Ey operators. As the Qy228

operator integrates with respect to y and collapses a bivariate coefficient vector back to229

a univariate one the multiplication-with-x operator changes from being multiplication-230

with-x on the triangle (“ X) to being multiplication-with-x on the real interval (“ X̄)231

when pulled through the Qy operator. A similar relation holds for similar reasons for232

Y and Ey:233

QyXfM “ X̄QyfM,(3.1)234

YEyfr0,1s “ EyX̄fr0,1s.(3.2)235236

We now give the explicit matrix representations for the operators Qy and Ey and237

discuss a sensible polynomial basis choice. The explicit form of the Jacobi operators238

on the real line is known in the literature (e.g. [22, 39]) and thus receives no further239

discussion here. To determine the explicit form of Qy we begin by plugging in the240

polynomial expansion of fpx, yq into the intended integral operation and using the241

Jacobi polynomials on the triangle domain as seen in (2.4) for our basis pn,k with242

α “ β “ γ “ 0:243

Pp1,0qpxqTWQQyfM “

ż 1´x

0

fpx, yqdy “

ż 1´x

0

8
ÿ

n“0

n
ÿ

k“0

pn,kpx, yqfn,kdy244

“

8
ÿ

n“0

n
ÿ

k“0

fn,kp1´ xq
kP̃

p2k`1,0q
n´k pxq

ż 1´x

0

P̃
p0,0q
k

ˆ

y

1´ x

˙

dy245

“

8
ÿ

n“0

n
ÿ

k“0

fn,kp1´ xq
k`1P̃

p2k`1,0q
n´k pxq

ż 1

0

P̃
p0,0q
k psqds,246

247

where a substitution of y
1´x Ñ s was made in the last step. As P̃

p0,0q
k are just248

the Legendre polynomials on r0, 1s we see that
ş1

0
P̃
p0,0q
k psqds “ 0,@k ą 0 and249
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ş1

0
P̃
p0,0q
0 psqds “ 1, resulting in250

Pp1,0qpxqTWQQyfM “
8
ÿ

n“0

fn,0p1´ xqP̃
p1,0q
n pxq251

252

for integration from 0 to 1 ´ x. By using the reflection operation we obtain an253

analogous result for integration from 0 to x. This derivation shows that starting in the254

Jacobi polynomial basis on the triangle T 2 with α “ β “ γ “ 0 for the approximation255

of fpx, yq results in the following block diagonal structure for the integration from 0256

to 1´ x operator with weight WQ “ p1´ xq:257

Qy “

¨

˚

˚

˚

˝

1
1 0

1 0 0
. . .

. . .
. . .

. . .

˛

‹

‹

‹

‚

258

where the n-th block is an n-dimensional row vector with 1 in the first element and 0259

in all remaining elements. An additional p´1qn term and change of basis changes this260

integration to be from 0 to x instead. The expansion operator Ey from the Pp1,0qpxq261

basis to the canonical triangle Jacobi polynomials where α “ β “ γ “ 0 has the block262

diagonal structure263

Ey “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

ˆ

ˆ

ˆ

. . .

. . .

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

264

where the n-th block is an n-dimensional column vector whose j-th entry is given by265

p´1qj`np2j ´ 1q

n
.266

Importantly, multiplication of Qy and Ey yields a diagonal matrix whose n-th entry267

can be directly generated without any matrix multiplication being required (compare268

[35]):269

pQyEyqn,n “ pDyqn,n “
p´1qn`1

n
.270

These observations justify the basis choices as well as the choice of the limits of in-271

tegration for Qy from the standpoint of computational efficiency. Defining Qy as the272

integration operator from 0 to x does not avoid the reflection step and only results in273

a less efficient or equivalent placement for it.274

275

3.2. Kernel computations using Clenshaw’s algorithm. Putting all the276

above observations together means one can save a significant amount of computation277

time by the use of a recurrence when simultaneously using an operator valued poly-278

nomial approximation for the kernel KpX,Yq and then using the known commutation279
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relations in (3.1–3.2). To illustrate the idea behind this approach we first discuss how280

to do this for a monomial kernel (or equivalently a kernel approximated in a monomial281

basis) and then show how these ideas can be expanded to arbitrary polynomial bases282

for the kernel using a variant of Clenshaw’s algorithm.283

Assuming a monomial expansion for the kernel, i.e. Kpx, yq “
ř8

n“0

řn
j“0 knjx

n´jyj ,284

the primary part of the Volterra integration operator has the form285

QyKpX,YqEy “ Qy

˜

8
ÿ

n“0

n
ÿ

j“0

knjX
n´jYj

¸

Ey “
8
ÿ

n“0

n
ÿ

j“0

knjX̄
n´jQyEyX̄j ,286

where we have used the commutation relations in (3.1–3.2) to rewrite the summation287

using the Jacobi operator for the interval Jacobi polynomials. Recalling that QyEy288

is a diagonal matrix which can be generated without any need to separately compute289

and multiply Qy and Ey, all that is left to compute are the required combinations290

of QyEy with the Jacobi operators, which can be built up recursively. This kind of291

recursive computation of all the required elements for the kernel can save significant292

computation cost if executed correctly. Since only the coefficients of Kpx, yq for this293

basis actually change across different problems one can in principle also store the basis294

elements X̄n´jQyEyX̄j and re-use them making this numerical evaluation of Volterra295

integrals even faster upon repeated use. This approach differs slightly depending on296

whether one intends to compute integrals from 0 to 1 ´ x or to compute integrals297

from 0 to x. In the case of integrals from 0 to x, one is either required to supply298

Kp1´ x, yq to the algorithm or alternatively the Jacobi operators on the left can be299

replaced by p1 ´ X̄q to account for the reflection, meaning that the basis elements300

become p1´X̄qn´jQyEyX̄j . Taking the weight WQ into consideration the full Volterra301

integral operator is then302

Rp1´ X̄qQyKpX,YqEy “ Rp1´ X̄q
8
ÿ

n“0

n
ÿ

j“0

knjp1´ X̄qn´jQyEyX̄j .303

This straightforward approach evidently only works if the kernel is of a form that may304

sensibly be approximated using monomials but it inspires an analogous approach305

based on expanding the kernel in its own orthogonal polynomial basis which need306

not be the same as those used to expand the function f . We use a variant of the307

Clenshaw algorithm introduced in section 2.3 to build the kernel in terms of the308

Jacobi operators. In principle one could compute KpX,Yq as a full multiplication309

operator acting on a triangle Jacobi coefficient vector using an operator-valued version310

of Clenshaw’s algorithm as discussed in [39]. This is not the most efficient way to311

approach this problem, however, as it would mean losing the diagonal QyEy since for312

such an operator the multiplication with KpX,Yq would need to happen between Qy313

and Ey. Nevertheless, we will briefly discuss how to generate this multiplication by314

KpX,Yq operator in order to see which modifications one can make to this approach315

in order to respect the symmetries of the triangle and end up with recursive basis316

generation similar to the monomial kernel expansion case.317

The multiplication by Kpx, yq operator, which we label MK , can be written in an318

operator Clenshaw approach as (see [39, 36, 50]):319

(3.3) MK “ pe0 b 1qL´TKM,320
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where b denotes the Kronecker product and L is defined as321

L “

¨

˚

˚

˚

˚

˚

˚

˚

˝

p11 b 1q

pAx0 b 1q ´ p11 bXq pBx0 b 1q

pAy0 b 1q ´ p11 bYq pBy0 b 1q

pCx0 b 1q pAx1 b 1q ´ p12 bXq pBx1 b 1q

pCy0 b 1q pAx1 b 1q ´ p12 bYq pBy1 b 1q

. . .
. . .

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

.322

As discussed for the Clenshaw evaluation method in section 2.3 this system requires323

preconditioning to become solvable via backward substitution. For this case the pre-324

conditioner is325

¨

˚

˚

˚

˝

p11 b 1q

pB`0 b 1q

pB`1 b 1q

. . .

˛

‹

‹

‹

‚

L “ L̃,326

with the B`n defined as in section 2.3. Using such an operator valued Clenshaw algo-327

rithm one can compute MK and thus obtain QyKpX,YqEy via QyMKEy. However, as328

discussed above, for our purposes of Volterra integral operators this is computationally329

wasteful and misses the chance to take advantage of the triangle symmetries which330

allow for QyEy to be directly computable and diagonal. So instead we replace the KM331

in (3.3) by pKMbQyEyq. The relations (3.1–3.2) then imply that all X operators may332

be replaced by a left multiplication with X̄ and all Y operators may be replaced by333

a right multiplication with X̄ (respectively denoted by a ˛ on the appropriate side).334

The system to solve thus becomes335

QyKpX,YqEy “ pe0 b 1qL´T
V pKM bQyEyq,336

with337

LV “

¨

˚

˚

˚

˚

˚

˚

˚

˝

p11 b 1q

pAx0 b 1q ´ p11 b X̄˛q pBx0 b 1q

pAy0 b 1q ´ p11 b ˛X̄q pBy0 b 1q

pCx0 b 1q pAx1 b 1q ´ p12 b X̄˛q pBx1 b 1q

pCy0 b 1q pAx1 b 1q ´ p12 b ˛X̄q pBy1 b 1q

. . .
. . .

. . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

.338

After preconditioning as above, this allows the recursive and efficient computation339

of QyKpX,YqEy via an operator valued Clenshaw-type algorithm while at the same340

time taking advantage of the diagonal nature of QyEy. As in the monomial case,341

this approach has to be modified when integrating from 0 to x instead of from 0 to342

1 ´ x. In the 0 to x case one needs to take the reflection into account, which ends343

up either replacing all the left multiplications with X̄ by left multiplications with344

p1´ X̄q for the same reasons as above, while the right multiplications corresponding345

to y multiplication remain the same, or requiring that Kp1 ´ x, yq be supplied to346

the algorithm. Finally, this operator still requires left multiplication with the basis347

dependent weight WQ to represent the full Volterra integral operator for this approach.348
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3.3. Numerical solutions to linear Volterra integral equations. The com-349

putational method for Volterra integrals described above has a natural extension to350

solving Volterra integral equations, which we describe in this section. Most generally351

a Volterra integral equation is any equation in which the unknown appears at least352

once as the integrand of a Volterra integral as defined in (1.1) above. One usually dis-353

tinguishes between at least two types of Volterra integral equations which are labeled354

Volterra integral equations of the first and second kind respectively. The Volterra355

integral equation of the first kind we will be interested in takes the following form:356

(3.4)

ż x

0

Kpx, yqupyqdy “ gpxq,357

where upxq is the unknown function to be solved for, Kpx, yq is a given kernel and358

gpxq is a given function. Volterra integral equations of the second kind we will be359

interested in take the following form1:360

(3.5) upxq ´

ż x

0

Kpx, yqupyqdy “ gpxq,361

where once again upxq is the unknown function and Kpx, yq and gpxq are given. While362

this is not further explored in this paper, there are natural extensions of these meth-363

ods for other linear Volterra-type integral equations such as the third-kind equations364

discussed in [2, 3, 46].365

Whenever we write QyKp1´X,YqEy in the coming sections, we mean to imply that366

this operator is computed using the Clenshaw approach detailed in section 3.2.367

3.3.1. Equations of the first kind. Extending the above methods for Volterra368

integrals to Volterra integral equations is straightforward, though one needs to be369

mindful of the appropriate reflections. Using the above notation conventions, one370

way to write the Volterra integral equation of the first kind is371

P̃p1,0qpxqTp1´ X̄qQyKp1´X,YqEyu “ P̃p1,0qpxqTḡ,372

ñ P̃p1,0qpxqTu “ P̃p1,0qpxqT
`

p1´ X̄qQyKp1´X,YqEy
˘´1

ḡ.373374

The notation ḡ is used to indicate that we are directly supplying the coefficients of375

the reflected gp1´xq to save an unnecessary additional reflection step, as formally we376

are solving the equivalent377

(3.6)

ż 1´t

0

Kp1´ t, yqupyqdy “ gp1´ tq.378

All function coefficient vectors in this section are initially expanded in the P̃p1,0qpxq379

basis. This method works in numerical experiments but deriving convergence prop-380

erties for it proves to be difficult (as is usual for Volterra equations of the first kind).381

However, under the condition that we can expand the function qpxq “ gp1´xq
1´x instead382

of gp1´xq in P̃p1,0qpxq, one can find convergence conditions (see section 5 for details).383

Note that solvability of the Volterra integral equation of the first kind implies that384

both g and q must vanish when the upper limit of integration vanishes. When using385

1For simplicity, we have divided through by λ and incorporated into K and g.
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q to denote the coefficient vector of qpxq “ gp1´xq
1´x the method then becomes386

P̃p1,0qpxqTQyKp1´X,YqEyu “ P̃p1,0qpxqTq,387

ñ P̃p1,0qpxqTu “ P̃p1,0qpxqT pQyKp1´X,YqEyq
´1

q.388389

meaning that solving this type of equation for upxq is as simple as computing the390

coefficient vectors and operators (see the respective sections above for efficient ways391

to do so) and then solving a banded system of linear equations.392

3.3.2. Equations of the second kind. Using the above-introduced weighted393

lowering operator L
p0,0q
p1,0q which shifts to the P̃p0,0qpxq basis while multiplying with394

p1´ xq, reflecting the result and then using a raising operator S
p1,0q
p0,0q to return to the395

P̃p1,0qpxq basis we can write Volterra integral equations of the second kind as396

P̃p1,0qpxqT
´

1´ S
p1,0q
p0,0qRL

p0,0q
p1,0qQyKp1´X,YqEy

¯

u “ P̃p1,0qpxqTg,397

ñ P̃p1,0qpxqTu “ P̃p1,0qpxqT
´

1´ S
p1,0q
p0,0qRL

p0,0q
p1,0qQyKp1´X,YqEy

¯´1

g,398
399

which can once again be solved for upxq using any linear system of equations solver.400

Reflecting without the lowering and raising operator is not possible (although there401

are alternative ways to use such operators to accomplish the same goal) as this would402

result in an inconsistency between the bases used for the two appearances of u.403

3.3.3. Different limits of integration. As mentioned above, a similar deriva-404

tion leads to an analogous method for Volterra integral equations of the first and405

second kind with different limits of integration:406

ż 1´x

0

Kpx, yqupyqdy “ gpxq,(3.7)407

upxq ´

ż 1´x

0

Kpx, yqupyqdy “ gpxq,(3.8)408
409

This results in an identity operator replacing the reflection and conversion operators410

in the above solution methods and in fact makes these types of equations even more411

efficient to solve but limits of integration of this sort are seen less often in applications.412

In particular, the operator version of Volterra integral equations of the first kind with413

limits of integration 0 to 1´ x is:414

P̃p1,0qpxqTQyKpX,YqEyu “ P̃p1,0qpxqTq,415

ñ P̃p1,0qpxqTu “ P̃p1,0qpxqT pQyKpX,YqEyq
´1

q.416417

where now q is the coefficient vector of qpxq “ gpxq
1´x . Equations of the second kind418

with these limits of integration can be written as:419

P̃p1,0qpxqT
`

1´ p1´ X̄qQyKpX,YqEy
˘

u “ P̃p1,0qpxqTg,420

ñ P̃p1,0qpxqTu “ P̃p1,0qpxqT
`

1´ p1´ X̄qQyKpX,YqEy
˘´1

g.421422

We present an implementation of both options for the limits of integration in the next423

section.424
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4. Numerical examples. We present four sets of numerical examples to vali-425

date our implementation. The first set concerns itself with Volterra integral equations426

of the first kind and the second with Volterra integral equations of the second kind427

with kernels of varying oscillatory intensity. In the third set we study a parametrized428

set of Volterra integral equations requiring increasing orders of polynomials to accu-429

rately approximate and the fourth set discusses a singular Volterra integral equation430

stemming from a heat conduction problem with mixed boundary conditions. In the431

third set we also provide performance comparisons to the state-of-the-art collocation432

method package Chebfun [40, 8, 21] which introduced an option for Volterra inte-433

gral equations in [20]. As oscillatory functions require high orders of polynomials to434

approximate accurately and the method was not designed for singular kernels, the435

second, third and fourth set are also designed to test the method’s stability.436

The computations presented in this section have been performed with an implemen-437

tation of the scheme in the Julia programming language [9] in the framework of438

ApproxFun.jl and MultivariateOrthogonalPolynomials.jl [37, 36, 47]. The coefficients439

of the solution have relative accuracy with standard floating point arithmetic, even440

as they decay below machine precision. Values for absolute errors presented in this441

section converge beyond the precision of 64-bit floating point numbers because of the442

rapid convergence of the method and the way ApproxFun.jl implements function ap-443

proximation (cf. [37, 36, 47])—the only time beyond 64-bit floating point precision444

numbers (via the inbuilt BigFloat type) were used is in the analytic solutions used445

as comparisons, as otherwise the convergence of the error would be capped by the446

precision at which the analytic solution is evaluated.447

4.1. Volterra integral equations of the first kind. We investigate the nu-448

merical solution of the following two example Volterra integral equations of the first449

kind:450

e´x ` exp´1` 2xq “ 4

ż x

0

ey´xu1pyqdy,(4.1)451

sinp4π2x2q

x
“

ż x

0

e´10px´ 1
3 q

2
´10py´ 1

3 q
2

u2pyqdy.(4.2)452
453

The analytic solution to the first equation can be found to be:454

u1pxq “ xex.455

We present the absolute error between the analytic and numerical solution for u1pxq456

using the orthogonal polynomial method introduced in this paper in Figure 1A for dif-457

ferent matrix dimensions nˆn and the absolute error between the numerical solution458

for u2pxq and a high degree solution computed with n “ 5050 in Figure 1B.459

4.2. Volterra integral equations of the second kind with oscillatory ker-460

nels. We seek numerical solutions u1, u2 and u3 to the following three Volterra inte-461

gral equations of the second kind with kernels of varying oscillatory intensity:462

u1pxq “
e´10πx

p1`20πq´2`cosp10πxq`sinp10πxq
20π `

ż x

0

2sin2
p5πpx´ yqqu1pyqdy(4.3)463

u2pxq “
e
x
2

π
`

ż x

0

psinp10πxq ` cosp10πyqqu2pyqdy(4.4)464

u3pxq “ ex
2
´2x `

ż 1´x

0

`

´2x` y ` sinp25x2 ` 8πyq
˘

u3pyqdy.(4.5)465
466
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We include contour plots of the specified kernels on their natural triangle domains in467

Figure 2. One can find an analytic solution to the first equation:468

u1pxq “ e´10πx.469

For the other two equations, we instead compare to a numerical solution of high470

degree (n “ 5050). We plot the absolute error convergence of the numerical solutions471

in Figure 3. Due to the oscillatory character of these kernels and the number of472

coefficients involved, this can be considered a moderate stress test of the Clenshaw473

approach to computing Volterra integral operators.474

4.3. Performance comparison for high polynomial orders. In order to475

visualize the performance improvements one gains from making use of the bandedness476

of the Volterra operator, we turn to the following parametrized example of a Volterra477

integral equation of second kind:478

(4.6) ukpxq “ gkpxq `

ż x

0

px` yqukpyqdy,479

where k P N and gkpxq is480

gkpxq “
cos

`

k2x2
˘

` 2k2 sin
`

k2x2
˘

´ 1

2k2
´
x

k

c

π

2

ż

?
2
π kx

0

sin

ˆ

πy2

2

˙

dy.481

While gkpxq in this example contains a so-called type-S Fresnel integral [35, 7.2(iii)]482

which can be thought of as a special case Volterra integral with kernel Kpx, yq “ 1,483

there is little reason to compute Fresnel integrals using a Volterra operator approach,484

as accurate high performance code for these already exists in most programming485

languages. The analytic solution to the above integral equation can be found to be486

ukpxq “ sinpk2x2q,487

for all k P N. With increasing k the solution to this integral equation rapidly becomes488

increasingly oscillatory and thus requires high orders to accurately approximate. This489

parametrized set of Volterra integral equations provides us with a structured way490

to capture performance improvements over dense collocation methods. We compare491

computation time and error compared to the analytic solution for the proposed sparse492

spectral method and Chebfun’s implementation of Volterra integral equations [20] for493

different parameter values k in Table 1 and present a visualization of convergence494

rate for the sparse method in Figure 4. Exponential convergence is observed once495

the polynomial order is high enough to resolve the frequency of the solution. For496

reasons discussed above we start benchmarking time after the approximation of the497

Fresnel integral with Julia and MATLAB internal tools to avoid Julia’s faster Fresnel498

integral computation influencing the results. However, even taking the computation499

and approximation of the Fresnel integral into account for the benchmarking, the500

sparse method never exceeded 1s of CPU time.501

4.4. Singular Volterra integral equation of the second kind in heat con-502

duction with mixed boundary conditions. Finally we discuss a more application-503

oriented example discussed in a handful of different variations in [19, 18, 17, 52, 7]:504

(4.7) upxq “ gpxq `

ż x

0

yµ´1

xµ
upyqdy.505
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To see how equations of this type can result from heat conduction problems of the form506
B
2u
Bx ´

1
α2
Bu
By “ 0 with mixed boundary conditions, see for example [18]. This equation507

varies both in its singularity properties as well as its number of solutions depending508

on the parameter µ. This example equation stemming from an application of Volterra509

integrals demonstrates that the method developed in this paper has a broader range510

of applicability and can in some cases extend to certain classes of singular problems511

as well, despite this not being part of the considerations during the development of512

the method. For testing purposes we choose the following for gpxq:513

g1pxq “ p1` x` x
2q514

g2pxq “
p1` 4π2x2qsinhp2πxq ´ 2πxcoshp2πxq

4π2x2
.515

516

The following analytic solutions to these equations can be found for general µ for g1517

(e.g. in [52]) and for µ “ 3 for g2:518

u1px, µq “
µ

µ´ 1
`
µ` 1

µ
x`

µ` 2

µ` 1
x2,519

u2px, µ “ 3q “ sinhp2πxq.520521

As the kernel is separable, the problem can instead be treated as

xµupxq “ xµgpxq `

ż x

0

yµ´1upyqdy,

which can be solved by appropriately adding multiplications with Jacobi operators522

or altering the supplied gpxq in the method to solve Volterra integral equations of523

the second kind. We plot numerical solutions obtained for g1pxq with µ “ 7 and524

g2pxq with µ “ 3 in Figure 5. The naturally more error prone neighborhood of the525

singularity can be well approximated arbitrarily close to the singularity (though not526

at the exact point of the singularity itself) using higher values of n if needed. For527

g2pxq the method shows no instability at the singularity of the kernel.528
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Fig. 1: (a) shows absolute error between (4.1) and the known analytic solution while
(b) compares (4.2) to a solution computed with n “ 5050.
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(a) K1px, yq (b) K2px, yq (c) K3px, yq

Fig. 2: Contour plots of oscillatory kernels for equations (4.3–4.5) on their natural
triangle domains.

6 21 45 78 120 171
n

10 50

10 40

10 30

10 20

10 10

100

ab
s. 

er
ro

r

u_1
u_2

(a)

2145 78 120 171 231 300 378 465
n

10 15

10 10

10 5

100

ab
s. 

er
ro

r

u_3

(b)

Fig. 3: Absolute errors for equations (4.3–4.5). u1pxq is compared to the analytic
solution, u2pxq and u3pxq are compared to a solution computed with n “ 5050.

k (Sparse) CPU time approx. order abs. error

1 0.001s 19 7.8e-16
10 0.002s 128 4.0e-14
50 0.08s 2200 9.0e-13
75 0.29s 3850 3.1e-12

k (Chebfun) CPU time autom. order abs. error

1 0.18s 17 1.0e-15
10 0.48s 119 2.9e-14
50 27.0s 1768 7.9e-13
75 163.5s 4096 2.0e-12

Table 1: Quantitative performance comparison of sparse method and Chebfun for
Equation (4.6). Chebfun’s approximation order was automatically chosen, while the
sparse method can generate results with similar accuracy in less time. CPU time
measured on Intel Core i7-6700T CPU @ 2.80GHz.
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Fig. 4: Sparse method absolute errors for Equation (4.6) with k “ 75.
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(a) g1pxq with µ “ 7
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Fig. 5: Numerical and analytic solutions to the problem in (4.7).

5. Convergence of the method. In this section we make use of the fact that529

the coefficient space of orthogonal polynomials is equivalent to an infinite-dimensional530

Banach space (in particular a sequence space). We prove convergence of the proposed531

method for second kind problems with general kernels which are sufficiently smooth to532

be approximated by Jacobi polynomials and for first kind problems with sufficiently533

smooth kernels given that @x P r0, 1s : Kpx, xq ‰ 0. The strategy for the analysis of534

the method is to show that the operators to be inverted for Volterra integral equations535

of the second kind can be written as compact perturbations of the identity (compare536

[36, 45, 31]), i.e. can be written as537

(5.1) p1`Kqu “ g,538

where K is compact. Operators of this form are either invertible or neither injective nor539

surjective by the Fredholm alternative, cf. [6, 30]. The assumption of well-posedness540

for the equation thus guarantees that an operator of this form is invertible and stan-541

dard convergence results for finite section methods [11] then guarantee convergence.542

We begin by discussing the solver for Volterra integral equations of the second kind,543

as the analysis for first kind problems is more involved.544

545

5.1. Equations of the second kind.546
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Definition 5.1. We define the projection operators Pn : `2 Ñ `2 which map a547

given coefficient vector to a truncated version of itself with non-zero entries for the548

first n coefficients only.549

Definition 5.2. The analysis operator E : L2p0, 1q Ñ `2 is the inclusion of a550

square integrable function into the `2 coefficient space of the complete basis of or-551

thogonal Jacobi polynomials and is a bounded operator. The synthesis operator is its552

inverse E´1 : `2 Ñ L2p0, 1q, which is also bounded. Note the terms analysis and553

synthesis are terminology in frame theory [14, 15].554

Lemma 5.3. The coefficient space Volterra integral operator VK is compact, where
VK : `2 Ñ `2 for a given kernel Kpx, yq P L2rT 2s with limits of integration 0 to x
acting on the coefficient vector Banach space `2 of the Jacobi polynomials P̃p1,0qpxq is
of the form

VK “ L
p0,0q
p1,0qQyKp1´X,YqEy,

with the respective operators defined as in section 3.555

Proof. VK “ L
p0,0q
p1,0qQyKp1 ´ X,YqEy follows from the definition of the involved556

operators, see section 3. To see compactness of VK we consider the following diagram557

of functions between Banach spaces which represents the formalized version of the558

method:559

L2p0, 1q L2p0, 1q

`2 `2

E

VK

VK

E´1

VK for a kernel Kpx, yq P L2rT 2s is the Volterra integral operator for said kernel acting560

on L2p0, 1q. It is a classical result of functional analysis that such Volterra integral561

operators VK are Hilbert–Schmidt operators and thus compact [34]. It follows that562

VK “ E ˝VK ˝E´1 is a finite composition of bounded and compact operators between563

Banach spaces and hence itself compact.564

Lemma 5.4. For VK and Pn defined as above, we have

lim
nÑ8

}VK ´ PnVKPT
n } “ 0.

Proof. This follows directly from the compactness of VK and the fact that `2 is565

a Hilbert space and thus has the approximation property [30].566

The above lemma justifies referring to the finite-dimensional projections PnVKPT
n567

of the Volterra operator as approximations.568

Lemma 5.5. S
p1,0q
p0,0qRL

p0,0q
p1,0qQyKp1 ´ X,YqEy is compact on `2 and thus Volterra569

integral equations of the second kind can be written in the form p1`Kqu “ g with K570

compact.571

Proof. The operators S
p1,0q
p0,0q and R acting on the Banach space `2 can both readily572

be seen to be bounded operators from their definitions from the Jacobi polynomial’s573

recurrence relationships [35, 18.9.5]. The result then follows from the observation574

that the Volterra integral operator L
p0,0q
p1,0qQyKp1´X,YqEy was shown to be compact575
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and composition of bounded operators with a compact operator yields a compact576

operator.577

An analogous chain of arguments immediately establishes:578

Lemma 5.6. The Volterra integral operator for the limits 0 to 1 ´ x is compact
and can be written as

VK “ p1´ X̄qQyKpX,YqEy.

The method is thus also of the form in (5.1).579

Corollary 5.7. The method described in section 3.3 converges like }u´Pnu} Ñ580

0 as nÑ8 for well-posed Volterra integral equations of the second kind.581

Proof. As the method is of the form in (5.1), i.e. p1`Kqu “ g with K compact,582

the result is a corollary of the above results combined with the known invertibility583

and convergence properties for problems of this form in finite section methods, see584

e.g. [11].585

5.2. Equations of the first kind. The Fredholm alternative and Neumann586

series arguments underlying the proofs above break down for first kind problems as587

the Volterra operator VK : `2 Ñ `2 is compact on the infinite dimensional Banach588

space `2 and therefore is strictly singular, cf. [6]. Thus, while the finite dimensional589

approximations Vn of the Volterra operator may have an inverse V´1
n , it is not obvious590

that un “ V´1
n q converges to u in the limit. The problem can be made well-posed,591

however, if one considers the Volterra operator as a map between two different ap-592

propriately chosen Banach spaces. Under sufficient continuity assumptions as well593

as the assumption that a given Volterra integral equation of the first kind has a so-594

lution, this problem may then be salvaged by finding a preconditioner which allows595

us to rewrite it as a problem involving operators which are compact perturbations of596

Toeplitz operators. We begin by assuming a polynomial kernel from where an exten-597

sion argument directly yields that it also applies for the non-polynomial case. Note598

that in this section we will prove convergence of the method only for the case of limits599

of integration 0 to 1´ x. This is not a limitation for the case of integral equations of600

the first kind, since solving601

ż t

0

Kpt, yqupyqdy “ gptq.602

and603

ż 1´x

0

Kp1´ x, yqupyqdy “ gp1´ xq.604

are formally equivalent, as solving one automatically solves the other with t “ 1 ´605

x. The reason for the particular choice for our proofs is that some arguments are606

more clear in this variant. Furthermore, as the monomial expansion and Clenshaw607

algorithm based Volterra operators are the same for polynomial kernels the analysis608

will make use of the simpler structure of the former.609

To discuss invertibility for equations of the first kind we need to reframe the Volterra610

operator as a map between two different Banach spaces, which are similar in spirit to611

Sobolev spaces.612
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Definition 5.8. Let `2λ with λ ě 0 denote the Banach space with norm

}u}`2λ “

g

f

f

e

8
ÿ

n“0

pp1` nqλ|un|q
2
ă 8.

Any u P `2λ corresponds uniquely to a u P `2 so we have `2λ Ă `2 whereas the613

converse is clearly not the case.614

Lemma 5.9. Let VK : `2 Ñ `21 denote the Volterra operator in coefficient space of
P̃p1,0qpxq with limits of integration 0 to 1´ x for a given polynomial kernel

Kpx, yq “
M
ÿ

n“0

n
ÿ

j“0

knjx
n´jyj .

Then

VK “ p1´ X̄qD

˜

D´1
M
ÿ

n“0

n
ÿ

j“0

knjX̄
n´jDX̄j

¸

,

with D “ QyEy, D : `2 Ñ `21 and D´1 : `21 Ñ `2.615

Proof. That D “ QyEy is diagonal with entries p´1qn`1

n is due to properties of the
Jacobi polynomials, see section 3 as well as [35, 18.6.1 and 18.17.1]. The important
observation to make is that D can be thought of as D : `2 Ñ `21, which makes D a
bounded and invertible operator with D´1 : `21 Ñ `2. With VK and Kpx, yq as above,
we thus have

VK “ p1´ X̄q
M
ÿ

n“0

n
ÿ

j“0

X̄n´jDX̄j “ p1´ X̄qD

˜

D´1
M
ÿ

n“0

n
ÿ

j“0

knjX̄
n´jDX̄j

¸

,

via Section 3.2.616

Definition 5.10. When solving Volterra integral equations of the first kind with
the method described in Section 3.3, it is useful to distinguish the operator without the
weight p1´ xq which is to be inverted from the full Volterra operator. We will denote
this operator ṼK : `2 Ñ `21, where

p1´ X̄qṼK “ VK .

We furthermore see that

ṼK “ D

˜

D´1
M
ÿ

n“0

n
ÿ

j“0

knjX̄
n´jDX̄j

¸

.

as an immediate corollary of Lemma 5.9.617

Lemma 5.11. ṼK may be written as

ṼK “ DpTrf s `Kq,

where Trf s is a Toeplitz operator with symbol f and K is compact. Furthermore, the
symbol is uniquely determined by the coefficients of the polynomial kernel Kpx, yq “
řM
n“0

řn
j“0 knjx

n´jyj to be

fpzq “
M
ÿ

n“0

n
ÿ

j“0

knj cos2n

ˆ

θ

2

˙

where z “ eiθ.
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Proof. From the Lemma 5.9 we see that the first statement is equivalent to the
claim that

M
ÿ

n“0

n
ÿ

j“0

knjD
´1X̄n´jDX̄j

is of the form T ` K and thus asymptotically Toeplitz. To show this we need two618

observations: First, under sufficient continuity assumptions for the kernel, which are619

satisfied due to the kernel being polynomial, we have that620

(5.2) T rasT rbs “ T rabs ´HrasHrb̄s,621

and in particular
T rasT ras “ T ra2s ´HrasHrās,

where Hras, Hrās and Hrb̄s are compact Hankel operators [10]. Thus any asymptot-
ically Toeplitz operator (of sufficiently continuous symbol) raised to a finite power is
again an asymptotically Toeplitz operator, as pT `Kq2 “ T 2`TK`KT `K2 and T 2

is again Toeplitz plus something compact via the above relation. The composition of
bounded operators with compact operators is compact making TK ` KT ` K2 com-
pact. An induction argument demonstrates that this is true for any power n P N. In
particular, since it is known that X̄ is a compact perturbation of a Toeplitz operator
[35] we know that X̄j is a compact perturbation of a Toeplitz operator as well. The
second observation is that for the banded operator X̄n´j , the operator D´1X̄n´jD is
also a compact perturbation of a Toeplitz operator and in fact we have that X̄n´j and
D´1X̄n´jD differ only in their compact part, i.e. have the same Toeplitz component.
Via (5.2) we thus have that

řM
n“0

řn
j“0 knjD

´1X̄n´jDX̄j is of the form pT`Kq and
thus asymptotically Toeplitz.
Along with the above observations, Equation (5.2) tells us that we can compute the
symbol of the Toeplitz part of a product of operators which are compact perturbations
of Toeplitz operators if we know the symbols of the individual Toeplitz components.
Due to bandedness it is straightforward to confirm that the symbol of the Toeplitz
part of the multiplication operator X̄ is p 1

2 `
z
4 `

z̄
4 q “ cos2

`

θ
2

˘

for the Jacobi polyno-

mials P̃p1,0qpxq, which is thus also the symbol of the Toeplitz part of D´1X̄D. Note
at this point that

`

D´1X̄D
˘n´j

“ D´1X̄n´jD

due to the outer operators cancelling. Given these tools as well as the linearity of the
Fourier series it follows that the symbol of the Toeplitz part of the Volterra operator
ṼK is the linear combination

fpzq “
M
ÿ

n“0

n
ÿ

j“0

knj cos2n

ˆ

θ

2

˙

.

Theorem 5.12. The method described in Section 3.3 converges for well-posed
Volterra integral equations of the first kind with limits of integration 0 to 1´ x

VKu “ g,

rewritten as
ṼKu “ q,

with qpxq “ gpxq
1´x for a polynomial kernel Kpx, yq P L2rT 2s and with q P `21, subject to622

the symbol of the Toeplitz part of ṼK not vanishing on the complex unit circle. This623

condition is fulfilled if and only if @x P r0, 1s : Kpx, xq ‰ 0.624
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Proof. The requirement q P `21 arises formally due to the need to first invert D and625

can be understood as stemming from the inverse integration being a differentiation.626

The invertibility conditions of asymptotically Toeplitz operators of the form pT`Kq627

are known in the literature (see e.g. [25, 11] and the references therein): A compactly628

perturbed Toeplitz operator on `2 is invertible if it is a Fredholm operator, its index is629

0 and it has a trivial kernel [24, 11, 25]. Furthermore, a compactly perturbed Toeplitz630

operator is Fredholm if its symbol (which is just the symbol of the Toeplitz part) does631

not vanish anywhere on the complex unit circle.632

In general, it holds that the index of a Toeplitz operator which is Fredholm is
the sign-flipped winding number of its symbol on the complex unit disk [11]. Since
the symbol of the Toeplitz part of the unweighted Volterra operator is real-valued
and continuous its index is thus 0 if and only if it does not vanish anywhere on the
complex unit circle, which is a necessary condition for it to be Fredholm in the first
place. Since cos2

`

θ
2

˘

P r0, 1s, the symbol vanishes at some point θ P r0, 2πs, i.e.

M
ÿ

n“0

n
ÿ

j“0

knj cos2n

ˆ

θ

2

˙

“ 0,

if and only if for some x P r0, 1s we have

M
ÿ

n“0

n
ÿ

j“0

knjx
n “ 0.

This in turn is precisely the condition that Kpx, xq “ 0, since

Kpx, yq “
M
ÿ

n“0

n
ÿ

j“0

knjx
n´jyj .

Conversely, if @x P r0, 1s : Kpx, xq ‰ 0 then the Volterra operator is Fredholm because
the symbol of its Toeplitz part has no roots on the unit circle and as this symbol is
real valued its winding number and thus index is 0. This necessary condition for
invertibility of the operator becomes a sufficient condition if in addition to this we
have kerpT`Kq “ t0u, as this yields injectivity and via the index formula [11]:

ind(T) “ indpT`Kq :“ dimpkerpT`Kqq ´ dimpcokerpT`Kqq,

with indpT ` Kq “ 0 also implies surjectivity. kerpT ` Kq “ t0u is a consequence of633

the classical result that the Volterra integral operator has no non-zero eigenvalues.634

The convergence of the method is then a consequence of known results in the theory635

of finite section methods, see e.g. [25].636

Remark: The motivation for solving ṼKu “ q with qpxq “ gpxq
1´x instead of VKu “ g

directly can be understood at this point, since for VK the symbol of the Toeplitz part
is instead found to be

M
ÿ

n“0

n
ÿ

j“0

knj sin

ˆ

θ

2

˙

cos2n

ˆ

θ

2

˙

,

which always has a root on the complex unit circle at θ “ 0 and thus its induced637

Toeplitz operator is not Fredholm and not invertible. Therefore the presented proof638

strategy only succeeds if qpxq “ gpxq
1´x may be used instead to get rid of the additional639
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sine terms. The symbol of the Toeplitz part of ṼK is comparably very well-behaved640

for a variety of kernels.641

So far we have only been working with polynomial kernels of order M , henceforth642

denoted KM , when it comes to Volterra equations of the first kind. We will need the643

following theorem (see [4, 48]) which we restate without proof for the extension of the644

above arguments to a non-polynomial kernel:645

Theorem 5.13. Let X and Y be normed linear spaces with one or both being
Banach spaces and let T : X Ñ Y be a bounded and invertible operator with T ´1 :
Y Ñ X. Then if the bounded operator M : X Ñ Y satisfies

}M´ T } ă 1

}T ´1}
,

it follows that M is also invertible with bounded inverse operator M´1 : Y Ñ X and

}M´1} ď
}T ´1}

1´ }T ´1}}T ´M}
,

}M´1 ´ T ´1} ď
}T ´1}2}T ´M}

1´ }T ´1}}T ´M}
.

Lemma 5.14. Given that

}ṼKM ´ ṼK} ÝÝÝÝÑ
MÑ8

0

for a sequence of Volterra operators induced by polynomial kernels KM px, yq and a
not necessarily polynomial kernel Kpx, yq, we have

}uM ´ u} ÝÝÝÝÑ
MÑ8

0,

where uM is the solution to the approximated problem

ṼKMuM “ q.

Proof. The method can be extended to more general K “ Kpx, yq if KM is
interpreted as the polynomial approximation of order M of the full kernel K. To show
that the method can be extended sensibly to non-polynomial kernels what remains to
be shown is that }uM ´ u} ÝÝÝÝÑ

MÑ8
0. This can be achieved by use of Theorem 5.13:

The assumptions of the theorem are satisfied when setting T “ ṼK and M “ ṼKM

since if }ṼKM ´ ṼK} ÝÝÝÝÑ
MÑ8

0 then for some M all subsequent ṼKM satisfy

}ṼKM ´ ṼK} ă
1

}Ṽ´1
K }

.

This immediately yields invertibility of ṼKM and more importantly the desired result
that

}Ṽ´1
KM

´ Ṽ´1
K } ă

}Ṽ´1}2}ṼKM ´ ṼK}

1´ }Ṽ´1}}ṼKM ´ ṼK}
ÝÝÝÝÑ
MÑ8

0

which justifies calling the solution uM “ Ṽ´1
KM

q an approximation to u “ Ṽ´1
K q.646
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6. Discussion. The method proposed in this paper can efficiently compute647

Volterra integrals as well as solve Volterra integral equations of the first and sec-648

ond kind with high accuracy using bivariate orthogonal polynomials to resolve the649

kernel along with an operator valued Clenshaw algorithm and is not restricted to650

convolution kernels. Numerical experiments suggest it can even be applicable to cer-651

tain singular equations. Our approach takes advantage of the sparsity of the required652

integration and extension operators which are due to the symmetries of the Jacobi653

polynomial basis on the triangle domain. The method was shown to converge for654

well-posed Volterra integral equations of the first and second kind, using a link to655

compact perturbations of Toeplitz operators.656

Extensions of this approach to various so-called integro-differential equations of657

Volterra-type, where both differentiation and Volterra operators act on the unknown658

function, as well as extensions to non-linear Volterra equations, where the unknown659

function can appear in non-linear fashion in the Volterra integral, while non-trivial660

are conceivable and will be addressed in future work.661
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