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Abstract 

The sophistication in the demand management approaches in both transport and energy sectors and their interaction call for 
modelling approaches that consider both sectors jointly. For agent-based microsimulation models of travel demand and energy 
consumption, this implies the necessity to ensure consistent representation of user behaviour with respect to mobility and energy 
consumption behaviours across the model components. Therefore this paper proposes a microeconomic framework, termed the 
HOT model (Home, Out-of-home, Travel) grounded in the goods-leisure paradigm, but extended to incorporate emerging 
activity-travel behaviour patterns and their energy consumption implications. We discuss how the model can be operationalised 
and embedded within agent-based frameworks with a case study using time use and energy consumption data from the UK. 
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1. Introduction 

The last decade has witnessed profound disruptions to the way people travel and conduct activities. These 
changes include increasing vehicle electrification, large-scale proliferation of ride- and vehicle-sharing services, 
vehicle automation, and a resurgence in popularity of active modes and micro-mobility services. In addition, remote 
activity participation, such as tele-working, online shopping, and social interactions, and activity participation in 
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mobile contexts appears to have spread beyond highly-skilled segments of society with impacts on travel behaviour 
and activity scheduling [1, 2].  

At the same time, transport has remained one of the largest drivers of energy consumption. Furthermore, the 
emerging activity-travel behaviour patterns have been associated with an unprecedented spatial and temporal 
flexibility in conducting activities, implying not only change in future energy demand profiles but also more 
volatility and possibly unpredictability. Strong interactions between energy consumption at home, at work, and 
through travelling, i.e. activity-travel behaviour therefore require a more comprehensive and joint consideration. The 
energy sector, particularly electrical energy, has also been shifting away from the ‘predict and provide’ approach, 
towards more advanced demand management strategies relying increasingly on more volatile renewable sources [3].  

The energy sector demand management measures include demand-responsive pricing, deployment of smart 
meters, localised generation and storage, and energy micro-trading such as vehicle to grid (V2G) technologies. By 
their nature, their exact parameters as well as effectiveness may vary substantially across agents. Hence the 
simultaneous sophistication in the demand management approaches in both transport and energy sectors, and their 
ever closer interaction, call for modelling approaches that systematically look at both sectors together [4]. Typical 
integrated urban models, however, treat energy consumption of individuals as an exogenous variable, while 
considering activity and travel at a disaggregate spatio-temporal level thus forecasting the demand for resources 
based on a needs perspective (i.e. heating, lighting, mobility). Agent-based integrated urban microsimulation models 
have shown promising features to capture the interactions between transport and energy sectors [3, 5]. However, to 
date the links between the activity-travel and energy consumption choices have either been made to a limited extent, 
such as electric vehicle adoption or tele-commuting choices [6, 7], or made at an operational level, combining 
various models into systems of models [8, 9]. These model systems, however, lack an overarching time and resource 
utilisation theory that can link the consumption components.  

Thus, the present paper brings together the two sets of choice considerations, i.e. those related to activity-travel 
behaviour and those related to energy consumption choices, within a microeconomic framework of individual time 
and resource allocation. This is predicated on the fact that both energy and mobility decisions fundamentally concern 
time and monetary budget allocations. We focus on developing a unifying framework that can accommodate existing 
modelling approaches with regards to use cases such as electrification of personal vehicles, flexible working 
schemes, mobility sharing services, vehicle automation and active travel modes (including micro-mobility). We 
discuss how the extended framework can trace pathways in which energy consumption interacts with mobility under 
various scenarios of energy pricing or available mobility options. Further, we demonstrate how the model can be 
operationalised to simulate agent behaviour and responses, using a dataset of activity-time use and energy 
consumption which can then be used to underpin any operational, agent-based model.  

This extended toolkit allows systematic conceptualisation of the trade-offs faced by individuals operating under 
such circumstances, and hence is central to understanding and validating agent responses to various policy measures. 
Without this theoretical backbone, different operational models can lead to different kinds of demand response 
behaviours due to operational assumptions, rather than the underlying, behavioural ones. For example, the 
conventional operational practice sees income included as one of the covariates in models of agent behaviour. Yet 
such models would not typically consider reduction in the disposable income resulting from a particular activity and 
travel decision and the consequent impact on the consumption of the agent, or their other activity-travel behaviour 
decisions. Such considerations are key to better understand the implications of policies aimed at demand response. 
This issue has been a central problem with many of the agent-based microsimulation models of transport-land use. 

2. Microeconomic Framework 

The goods-leisure framework is a utility-maximisation microeconomic framework in which an individual derives 
utility from the consumption of goods and allocation of time to leisure, subject to budget and total time constraints. 
The constraints capture the trade-off between consumption and leisure, which translates into the time allocation 
decision between income-generating work and non-salaried leisure. In this framework, travel choice is modelled as a 
discrete decision concerning the mode of travel that incurs monetary and time costs. In the existing microeconomic 
models of time use, energy consumption and expenditure are included only implicitly in the budget constraint, which 
is too restrictive to accurately capture the interactions between transport and energy sectors.  



 Jacek Pawlak  et al. / Procedia Computer Science 170 (2020) 785–790 787
 Jacek Pawlak et al / Procedia Computer Science 00 (2020) 000–000  3 

In our framework, a utility-maximising individual seeks to allocate their work and leisure time between Home, 
Out-of-home and Travel contexts, i.e. the HOT model. In addition, the individual can select their generalised 
consumption level, as well as travel mode and schedule. The utility function to be maximised can be formalised as: 

subject to of the following constraints: 
• total monetary budget constraint: 

• total time budget constraint: 

• travel time use constraint: 

• allocation of work time between home, office and mobile (travel) locations, considering the possibly differing 
productivities at such locations:  

where U(.) is the direct utility function to be maximised and is a function of , which are times 
allocated to Work or Leisure (non-work) at home, office, or while travelling, and the level of generalised 
consumption of goods (non-energy) is G. M is non-salary income and w is work salary per unit time, relative to the 
consumption goods price level, assumed to be exogenous.  is the total time available in the reference frame. ci and ti 
are monetary travel cost and travel time by mode i, and s is the discrete activity schedule.  and  are work 
productivity relative-to-office when working from home or travelling by mode i, respectively. F(.) is the energy 
expenditure function that relates duration of home activities and their schedule s to energy consumption and cost.  

 The particularly novel extension in this framework, to the best of our knowledge, is the energy expenditure 
function F(.). It relates time allocations to home-based activities to energy cost, typically capturing the energy prices 
and energy consumption per-unit-time from activities, sometimes called conversion factors or electricity footprints 
[10]. The explicit specification allows us to incorporate into the time allocation arbitrarily complex, elaborate 
structures for energy pricing by time of day, electric vehicle charging or choice of fuel, including renewable ones. 
This achieves the purpose of integrated the modelling of activity-travel behaviour with energy consumption. This 
further enables us to reflect the emerging mobility and activity participation patterns and their interactions with the 
energy sector. The following are examples of how such emerging patterns could be captured in the model: 
• electric mobility: reflected as a separate transport mode i with additional energy expenditure (vehicle charging) 

related to home-based activities. V2G technologies could result in a combination of positive and negative 
conversion factors especially when allowing temporal and spatial price differences, e.g. schedule-based pricing. 

• shared mobility services: could be reflected as a separate transport mode i with a varying travel cost ci dependent 
on the time of day and with implications for travel time productivity . 

• vehicle automation: allowing travel time to be used productively and enjoyably which is reflected in the explicit 
presence of work and leisure during travel time (WT, LT) and travel time productivity ; 

• active travel modes: could be reflected in lower (or null) monetary travel cost ci and relatively low travel time 
productivity  emphasising the more leisure-oriented and personal nature of the mode; 

• flexible working schemes: reflected in the allocation of work time between home, office and travel locations (WH, 
WO, WT) with potentially different relative productivities. 
The examples above are not exhaustive, nor are definitive suggestions concerning how to capture the postulated 

phenomena. In particular, the framework is general enough to link and make use of the existing, and more specific 
models concerning transport and energy interactions. 

3. Empirical Application 

In order to understand the modelling implications of the framework above, it is possible to solve the optimisation 
(using substitution or Lagrangian approach) using first order conditions, leading to the following expression: 

 (Eq.1)  

 (Eq.2)  

 (Eq.3)  

 (Eq.4)  

 (Eq.5)  
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Equation 6 can be interpreted as a combined response in the utility from additional allocation of a unit time to work 
and leisure. Assuming the following form of the utility function: 

Where xj is the amount of consumption of a particular good or time allocated to an activity j among the J 
alternatives, Z is the vector of covariates and βj are parameters to be estimated associated with the baseline marginal 
utility (also marginal utility at zero consumption). The associated marginal utilities have a convenient form that also 
reflects that they diminish with an increasing consumption of xj: 

Further assumptions are imposed to enable model operationalisation using the available datasets (described below): 
•  i.e. parameters associated with time allocations are normalized with respect to goods consumption; 
• , i.e. productivity at home is similar to office conditions; 
•  , i.e. marginal utility of office-work is a parallel shift of marginal utility of out-of-home leisure, 

always below it, meaning that individuals would always enjoy more out-of-home leisure to office work; 
•  , where  is energy price per kWh and  and are energy intensities of 

activities, i.e. consumption of electricity per unit time. 
The assumptions above lead to the formulation of Eq.6 as a linear-in-parameters model: 

 
where β0 is an additional term, under current formulation, that captures heterogeneity in energy intensity of 

domestic activities ( ) while  is a normally distributed error term censored so as to ensure non-negativity 
of the LHS. The latter requirement warrants formulation of Eq.9 as a tobit model and estimation using the maximum 
likelihood approach. To demonstrate operationalisation in a real-world context, an innovative dataset from METER: 
UK household electricity and activity survey, is used [11]. Electricity readings and activity records were collected 
from UK households in 2016 along with detailed sociodemographic information and dwelling characteristics [10]. 
An electricity recorder was attached below the household’s electricity meter to collect readings of electricity 
consumption for every minute. Activities were self reported via a dedicated app. Respondents could participate for 
several days, typically for 2 days. Table 1 presents a descriptive summary of the dataset used in our analysis. 

For the energy consumption and expenditure sub-model, i.e. F(.), we chose the simple conversion factor, 
assuming fixed energy prices faced by individuals across the day. We calculated the electricity usage of each activity 
based on the start time and end time of the activity and the data from the electricity recorder. We are specifically 
interested in the energy consumption of home-based work and home-based leisure, as they have a direct impact on 
individuals’ expenditure based on their time allocation. For this study, we grouped the original 100 activity types 
based on their location (home, office, travel), and work and non-work (leisure). For each activity, start time is 
recorded and we assumed the start time of the next activity to be the end time of the previous activity. The electricity 
readings were then averaged for specific activity categories to obtain values for  and . pe was assumed 
£0.14852 per kWh based on the Office of Gas and Electricity Markets data, the government regulator for the energy 
markets in the UK. In line with the 7% saving ratio observed in the UK, G was estimated as 93% of weekly income 
(mid-interval of an income group used), scaled to the size of the available time use diary. Day of week variables 
were included based on whether the diary fell within those dates (hence multiple days could be reported). 

 

(Eq.6)  

 
(Eq.7)  

 

(Eq.8)  

 
(Eq.9)  
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Table 1 Descriptive summary of sample characteristics. 

Continuous Variables min max mean SD Parameter 
Time allocated to Work at home (min) 0 1260 75.9 145.7  
Time allocated to Work at office (min) 0 1358 142.0 213.2  
Time allocated to Work while traveling (min) 0 1314 82.4 185.8  
Time allocated to Leisure at home (min) 0 4091 1058.2 443.6  
Time allocated to Leisure at office (min) 0 1565 134.0 192.5  
Time allocated to Leisure while traveling (min) 0 1398 121.4 169.4  
Energy consumption  (Wh) 1.9 5070.5 897.6 688.5  
Energy consumption  (Wh) 6.1 2899.2 749.3 486.2  
Goods consumption 1 8 2.2 0.7  
Household size 0 6 2.9 1.2  
Categorical Var. Freq. Categorical Var. Freq. Categorical Var. Freq.  
Age 8-19 15.0% Employed 69.6% Day of week: Tuesday 29.0% 

 
Age 20-34 16.5% Student 16.3% Day of week: Wednesday 36.6% 
Age 35-49 38.2% Female 52.5% Day of week: Thursday 19.7% 
Age 50-70 24.7% Work from home 60.4% Day of week: Saturday 19.7% 
Age 70+ 5.6% Day of week: Monday 30.0% Day of week: Sunday 19.2% 

Model estimation involved finding parameters that maximise the likelihood function, while ensuring 
identifiability through setting several reference categories with fixed parameters. The observed consumption 
expenditure level is set as the reference given it is the only non-time-use argument in the utility maximisation 
problem. Table 2 presents the estimation results. The first observation is that only a handful of covariates were found 
to be statistically significant. The model turned out to be most effective in describing heterogeneity in preferences to 
work at home. Recalling from Eq.7 that a negative coefficient indicates higher utility, we observe that people who 
report being able to work from home at least one day per week are indeed also more likely to allocate time to it. 
Fridays and Saturdays are days when people find utility of working from home comparatively higher to other days of 
the week. This is intuitive as end of working week would be when people may find it more convenient to avoid the 
commute trip and provide smoother transition to discretionary activities. Lastly, people with larger household sizes 
report higher utility from working at home, reflecting a way to more easily reconcile work and home responsibilities. 

Table 2 Model estimation results. 

 
 

   
 

 (reference category) 
Constant -19.5905 95.8313*** 72.4294 3.8400 -15.3326 - 
Female 26.7966***  . . . - 
Work from home 26.7512 -51.3043** . . . - 
Household size 14.8740** -16.8697* . . . - 
Day of week: Friday or Saturday 42.2634* -45.8992* . . . - 
Goodness of fit:  LL( =0) -1426   LL at convergence: -1393 
Significance: ***  ≤ .01 **  ≤ .05 *  ≤ .10 

  

 

Fig. 1 An illustrative electricity demand response to variation in reference energy price (£0.14852 per kWh). 
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In terms of β0 factors, which is a proxy for heterogeneity in energy intensity of domestic activities, we observe 
that female respondents would on average have highest intensities. Within the data we observe higher association 
between female respondents and domestic activities that are energy intensive, including cooking or baking. In 
addition, we observe larger households to also report more energy intensive activities. This results from an aggregate 
reporting of energy intensity. In other words, while activities are associated with energy consumption temporarily, 
parallel consumption of other household members would also be captured in the recording, thereby inflating it. 
Further modelling work is aimed at resolving this confounding problem. To demonstrate applicability of the model 
in simulating a response of an agent’s activity-travel behaviour to energy policy, Figure 1 provides an example of the 
model used to produce optimal time allocations and the associated electricity consumption under various energy 
pricing scenarios. As expected, with an increase in price, an agent shifts their time away from (home-based) 
activities, for which they incur the cost of energy. 

4. Conclusions 

In response to the growing interaction between transport and energy systems, this paper extends a microeconomic 
time allocation framework grounded in the goods-leisure paradigm to incorporate emerging activity-travel behaviour 
patterns and their energy consumption implications. The proposed framework enables predictions of agents’ 
responses to transport and energy policies, ensuring a consistent representation of the user behaviour within agent-
based microsimulation models. The present study constitutes the first step towards expanding an agent-based travel 
demand model into allowing the more sophisticated energy consumption expenditure functions to appropriately 
reflect the smart and flexible energy pricing schemes. Future effort will seek to extend the current operationalisation 
beyond time allocations to also allow responses in the scheduling of activities and travel. Lastly, we seek to integrate 
the present contribution with an agent-based and activity-based microsimulation model system [14], to allow 
detailed representations of the demand side responses for a large-scale population of agents. 
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