
AN APPLICATION OF WALL-CROSSING TO NOETHER–LEFSCHETZ

LOCI

S. FEYZBAKHSH AND R. P. THOMAS, WITH AN APPENDIX BY C. VOISIN

Abstract. Consider a smooth projective 3-fold X satisfying the Bogomolov–Gieseker
conjecture of Bayer-Macr̀ı-Toda (such as P3, the quintic threefold or an abelian threefold).

Let L be a line bundle supported on a very positive surface in X. If c1(L) is a primitive
cohomology class then we show it has very negative square.

1. Introduction

Let (X,O(1)) be a smooth polarised complex threefold. For the strongest results we
take O(1) to be primitive. Set H := c1(O(1)), though we do not require it to be effective.

Weak stability conditions on the derived category D(X) were introduced by Bayer-
Macr̀ı-Toda [BMT14]. Together with their Bogomolov-Gieseker Conjecture 3.1 below they
constitute the main technique for producing Bridgeland stability conditions on threefolds.

We only need certain weakenings of the conjecture described in (BG1), (BG2) below.
They are known to hold for many threefolds [BMS16, Ko18a, Ko18b, Li19b, Li19a, MP16,
Ma14, Sc14] such as P3 or the quintic 3-fold. We apply them to certain weak-semistable
objects of D(X) as we move through the space of weak stability conditions. Combined
with wall-crossing techniques this proves results about line bundles on surfaces in |O(n)|.

Theorem 1.1. Fix any irreducible divisor1 D ⊂ X in |O(n)| and any line bundle L on D
with c1(L) 6= 0 in H2(D,Q) and c1(L).H = 0.

(A) If (BG1) holds on X and n ≥ 4 then L2 ≤ −2n

3
.

(B) If (BG2) holds on X and n ≥ 10 then L2 ≤ −2n+ 4.

See below for consequences of (B) on P3, for the observation that it is sharp, and for
stronger inequalities for line bundles L = L|D which are restricted from X.

It is the classes on D which are not restricted from X that most interest us. One
obvious source of such classes is the vanishing cycles of D — the (co)homology classes
of the Lagrangian two-spheres in D that are contracted to nodes as we deform D inside
|O(n)| to a nodal surface. These classes all have square −2 > −2n

3 so Theorem 1.1 tells us
they can never be the class of a line bundle L on D.

Corollary 1.2. The vanishing cycles of D ∈ |O(n)| have empty Noether-Lefschetz loci.
In fact any sum of m disjoint vanishing cycles has empty Noether-Lefschetz locus when

• X satisfies (BG1), n ≥ 4 and m ≤ bn−13 c, or
• X satisfies (BG2), n ≥ 10 and m ≤ n− 3.

In other words, if we look for irreducible D ∈ |O(n)| where our vanishing class has Hodge
type (1, 1) we should find only singular D on which our cohomology class has ceased to
exist (or, considered as a homology class, some part of it has vanished).

1D may be singular. The results also apply to D reducible, so long as L is slope semistable on D.
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So not all classes in H2(D,Z) become (1, 1) under some deformation inside |O(n)|, even
though those which do generate H2(D,Z) over Z by [Vo07, p19].

Method. To prove Theorem 1.1 we move in a space of weak stability conditions on D(X),
and show that if L2 > −2n/3 then the Bogomolov-Gieseker inequality (BG1) implies ι∗L
is unstable in certain regions, where ι : D ↪→ X is the inclusion. We find the wall on which
it becomes unstable, where we show it is destabilised by a map from ι∗L to T (−n)[1], for
some line bundle T with torsion c1(T ). Thus by relative Serre duality for the map ι,

(1) HomX(ι∗L, T (−n)[1]) = HomD(L, T |D) 6= 0,

which means L∗ ⊗ T |D is effective.2 Since L.H = 0 this implies L = T |D, so, in particular
c1(L) = 0 in H2(D,Q).

Projective space. There are two different ways to saturate the inequality (B) on P3 and
hence deduce it is sharp.

Firstly, we can take D to contain disjoint lines L1, L2 ⊂ P3. Their normal bundles inside
D are OP1(−n+ 2), so L := OD(L1 − L2) satisfies L.H = 0 and L2 = −2n+ 4.

Secondly, if an irreducible D ∈ |OP3(n)|, n ≥ 10, contains disjoint degree d 6= 1 plane
curves C1, C2, then (B) applied to OD(C1 −C2) proves n ≥ d+ 2. Thus (B) is saturated
if n = d+ 2, and it is indeed easy to construct D ⊃ C1, C2 of any degree n ≥ d+ 2.

More generally if D ∈ |OP3(n)| contains disjoint degree d curves C1, C2 of genus g1, g2
then (B) applied to OD(C1 − C2) gives g1 + g2 ≤ (n− 4)(d− 1) for n ≥ 10.

Line bundles restricted from X. When L = L|D extends to a line bundle L on X with
L.H2 = 0 then (A) is trivial on any X. In fact L2 = nL2.H is divisible by n and < 0 by
the Hodge index theorem, so

(2) L2 ≤ −n.
But then if (BG2) holds, (B) gives L2.nH ≤ −2n+4, i.e. any line bundle L on X satisfies

L.H2 = 0 =⇒ L2.H ≤ −2.

This appears to be nontrivial, but not very (the Hodge index theorem already gives ≤ −1).
Plugging it back into the argument that gave (2) strengthens it to

(3) L2 ≤ −2n.
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2. Weak stability conditions

In this section, we review the notion of a weak stability condition on the derived category
of coherent sheaves on a smooth threefold. The main references are [BMT14, BMS16].

Let (X,O(1)) be a smooth polarised complex threefold, and H = c1(O(1)). Denote the
bounded derived category of coherent sheaves on X by D(X) and its Grothendieck group
by K(X) := K(D(X)). We define the µH -slope of a coherent sheaf E on X to be

µH(E) :=

{
ch1(E).H2

ch0(E)H3 if ch0(E) 6= 0,

+∞ if ch0(E) = 0.

Associated to this slope every sheaf E has a Harder-Narasimhan filtration. Its graded
pieces have slopes whose maximum we denote by µ+H(E) and minimum by µ−H(E).

For any b ∈ R, let A(b) ⊂ D(X) denote the abelian category of complexes

(4) A(b) =
{
E−1

d−→ E0 : µ+H(ker d) ≤ b , µ−H(coker d) > b
}
.

Then A(b) is the heart of a t-structure on D(X) by [Br08, Lemma 6.1]. Let w ∈ R \ {0}.
On A(b) we have the slope function3

Nb,w(E) :=

{
w chbH2 (E).H− 1

6
w3 ch0(E)H3

w2 chbH1 (E).H2 if chbH1 (E).H2 6= 0,

+∞ if chbH1 (E).H2 = 0,

where chbH(E) := ch(E)e−bH . When w > 0 this defines a Harder-Narasimhan filtration on
A(b) by [BMT14, Lemma 3.2.4]. It will be convenient to replace this with

(5) νb,w := σNb,σ + b, where σ :=
√

6(w − b2/2),

3This is called νb,w in [BMT14, Equation 7], but we reserve νb,w for its rescaling (5).
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for w > b2/2. This is because

(6) νb,w(E) =

{
ch2(E).H−w ch0(E)H3

chbH1 (E).H2 if chbH1 (E).H2 6= 0,

+∞ if chbH1 (E).H2 = 0

has a denominator that is linear in b and numerator linear in w, so the walls of νb,w-

instability will turn out to be linear ; see Proposition 4.1. Note that if chi(E).Hn−i = 0
for i = 0, 1, 2, the slope νb,w(E) is defined by (6) to be +∞. Since (5) only rescales and
adds a constant, it defines the same Harder-Narasimhan filtration as Nb,σ, so it too defines
a weak stability condition on A(b).

Definition 2.1. Fix w > b2

2 . We say E ∈ D(X) is νb,w-(semi)stable if and only if

• E[k] ∈ A(b) for some k ∈ Z, and
• νb,w(E[k]) (≤) νb,w(F ) for all non-trivial quotients E[k]→→ F in A(b).

Here (≤) denotes < for stability and ≤ for semistability.

Remark 2.2. Given (b, w) ∈ R2 with w > b2

2 , the argument in [Br07, Propostion 5.3]

describes A(b). It is generated by the νb,w-stable two-term complexes E = {E−1 → E0} in
D(X) satisfying the following conditions on the denominator and numerator of νb,w (6):

(a) chbH1 (E).H2 ≥ 0, and

(b) ch2(E).H − w ch0(E)H3 ≥ 0 if chbH1 (E).H2 = 0.

That is, A(b) is the extension-closure of the set of these complexes.

3. Bogomolov-Gieseker inequality

We recall the conjectural strong Bogomolov-Gieseker inequality of [BMT14, Conjecture
1.3.1], rephrased in terms of the rescaling (5).

Conjecture 3.1. For νb,w-semistable E ∈ A(b) with chbH2 (E).H =
(
w − b2

2

)
ch0(E)H3,

chbH3 (E) ≤
(
w

3
− b2

6

)
chbH1 (E).H2.

Although this conjecture is known not to hold for all classes on all threefolds [Sc17], it
is possible it always holds for objects of the classes ch(ι∗L) that we consider. In Theorem
1.1 we only need the conjecture in special cases, namely

(BG1) Conjecture 3.1 holds for sheaves of class ch(ι∗L) and stability parameters (−n
2 , w)

for any w > n2

4 −
1
H3 for fixed n ≥ 4.

(BG2) Conjecture 3.1 holds for both

• sheaves of class ch(ι∗L) and stability parameters (−n
2 , w) for any w > n2

4 −
3
H3

and fixed n ≥ 10, and
• torsion-free sheaves F with ch0(F ) = 1, ch1(F ).H2 = 0, ch2(F ).H ∈ {−1,−2},

and stability parameters (b∗, w∗) with b∗ = ch2(F ).H− 1
2H3 , w

∗ = (b∗)2+ ch2(F ).H
H3 .

Conjecture 3.1 is a special case of [BMS16, Conjecture 4.1], which has now been proved for
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• X is projective space P3 [Ma14], the quadric threefold [Sc14] or, more generally,
any Fano threefold of Picard rank one [Li19a],
• X an abelian threefold [MP16], a Calabi-Yau threefold of abelian type [BMS16],

a Kummer threefold [BMS16], or a product of an abelian variety and Pn [Ko18a],
• X with nef tangent bundle [Ko18b], and
• X is a quintic threefold and (b, w) are described below [Li19b].

Theorem 3.2. [Li19b, Theorem 2.8] Let X be a smooth quintic threefold. Then Conjecture
3.1 is true for (b, w) satisfying

(7) w >
1

2
b2 +

1

2

(
b− bbc

)(
bbc − b+ 1

)
.

In particular (BG1) and (BG2) hold on X.

Proof. Using the notation (α, β) for (w, b), [Li19b, Theorem 2.8] proves that (7) implies
[BMS16, Conjecture 4.1]. This gives Conjecture 3.1, so we are left with checking that the
parameters in (BG1), (BG2) satisfy (7).

For (BG1) we take n ≥ 4, b = −n
2 and w > n2

4 −
1
H3 . Then certainly n2 > 8

H3 + 1,
which can be rearranged to give

(8)
n2

8
+

1

8
<

n2

4
− 1

H3
< w.

But since b = −n
2 we have

(9)
1

2
b2 +

1

2

(
b− bbc

)(
bbc − b+ 1

)
≤ n2

8
+

1

8

which by (8) gives (7).

For (BG2) we take n ≥ 10, b = −n
2 and w > n2

4 −
3
H3 . Then certainly n2 > 24

H3 + 1,
which can be rearranged to give

n2

8
+

1

8
<

n2

4
− 3

H3
< w.

By (9) this gives (7).
For the second part of (BG2), use the obvious inequality (2ε− x)(ε− x) + (ε− 1)x > 0

for ε ∈ {1, 2} and x ∈ (0, 1). By rearranging this is equivalent to

1

2

(
−ε− x

2

)2
− εx >

x

4

(
1− x

2

)
.

Substituting in ε = − ch2(F ).H, x = 1
H3 and b∗ = ch2(F ).H − 1

2H3 makes this

(b∗)2

2
+

ch2(F ).H

H3
>

1

4H3

(
1− 1

2H3

)
.

For w∗ = (b∗)2 + ch2(F ).H
H3 this is

w∗ − (b∗)2

2
>

1

2

(
1− 1

2H3

)
1

2H3
=

1

2

(
b∗ − bb∗c

)(
bb∗c − b∗ + 1

)
,
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i.e. the inequality (7) for (b∗, w∗) as required. �

4. Wall and chamber structure

In Figure 1 we plot the (b, w)-plane simultaneously with the image of the projection map

Π: K(X) \
{
E : ch0(E) = 0

}
−→ R2,

E p−→
(

ch1(E).H2

ch0(E)H3
,

ch2(E).H

ch0(E)H3

)
.

b, ch1 .H2

ch0H3

w = b2

2

w, ch2 .H
ch0H3

Π(E)

U

ch2(E).H
ch0(E)H3

ch1(E).H2

ch0(E)H3

Figure 1. (b, w)-plane and the projection Π(E)

Note that for any weak stability condition νb,w, the pair (b, w) is in the shaded open subset

(10) U :=

{
(b, w) ∈ R2 : w >

b2

2

}
.

Conversely, the image Π(E) of νb,w-semistable objects E with ch0(E) 6= 0 is outside U ,(
ch1(E).H2

ch0(E)H3

)2
− 2

ch2(E).H

ch0(E)H3
≥ 0,

by the classical Bogomolov-Gieseker-type inequality of [BMS16, Theorem 3.5],

(11) ∆H(E) :=
(
ch1(E).H2

)2 − 2(ch0(E)H3)(ch2(E).H) ≥ 0,



AN APPLICATION OF WALL-CROSSING TO NOETHER–LEFSCHETZ LOCI 7

for the H-discriminant ∆H(E) of a νb,w-semistable object E.4

Proposition 4.1 (Wall and chamber structure). Fix an object E ∈ D(X) such that
the vector

(
ch0(E), ch1(E).H2, ch2(E).H

)
6= 0 is non-zero. There exists a locally finite

collection of lines {`i}i∈I in R2 (called “ walls”) which satisfies the following conditions:

(a) Any line `i passes through the point Π(E) if ch0(E) 6= 0, or has fixed slope ch2(E).H
ch1(E).H2

if ch0(E) = 0.
(b) The νb,w-(semi)stability of E is unchanged as (b, w) varies within any connected

component (called a “ chamber”) of U \
⋃
i∈I `i.

(c) For any wall `i there exists ki ∈ Z and a map f : F → E[ki] in D(X) such that
– for any (b, w) ∈ `i ∩ U , the objects E[ki], F lies in the heart A(b),
– E[ki] is νb,w-semistable with νb,w(E) = νb,w(F ) = slope (`i) constant on
`i ∩ U , and

– f is an injection F ⊂ E[ki] in A(b) which strictly destabilises E[ki] for (b, w)
in one of the two chambers adjacent to the wall `i.

`2

`1

ch0(E) 6= 0ch0(E) = 0

b, ch1 .H
2

ch0H3

w, ch2 .H
ch0H3

b, ch1 .H
2

ch0H3

w, ch2 .H
ch0H3

U U

Π(E)

`1

`2

Figure 2. The line segments `i ∩ U are walls for E.

Proof. For E ∈ D(X) the existence of a locally finite set of walls in the (b, w) plane follows
from the arguments in [Br08, Proposition 9.3] or [BMS16, Proposition 12.5].

Suppose that E is νb,w-strictly semistable. Then there is a k ∈ Z such that E[k] ∈ A(b)

and a νb,w-stable destabilising object F ⊂ E[k] in A(b). The condition that νb,w(E[k]) =

νb,w(F ) is

(12)
w − ch2(E[k]).H

ch0(E[k])H3

b− ch1(E[k]).H2

ch0(E[k])H3

=
w − ch2(F ).H

ch0(F )H3

b− ch1(F ).H2

ch0(F )H3

if ch0(E[k]) 6= 0 6= ch0(F ),

4[BMS16, Theorem 3.5] state (11) with ch replaced by chbH , but the result is still ∆H(E). We use the
stronger Bogomolov inequality ch1(E)2.H − 2 ch0(E)(ch2(E).H) ≥ 0 for µH -semistable sheaves in (25).
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or

(13)
w − ch2(E[k]).H

ch0(E[k])H3

b− ch1(E[k]).H2

ch0(E[k])H3

=
ch2(F ).H

ch1(F ).H2
if ch0(E[k]) 6= 0 = ch0(F ),

or

(14)
ch2(E[k]).H

ch1(E[k]).H2
=

w − ch2(F ).H
ch0(F )H3

b− ch1(F ).H2

ch0(F )H3

if ch0(E[k]) = 0 6= ch0(F ).

As we move through the (b, w) plane, (12) is the equation of the straight line joining Π(E)

and Π(F ), (13) is the straight line though Π(E) of slope ch2(F ).H
ch1(F ).H2 , and (14) is the line

through Π(F ) of slope ch2(E[k]).H
ch1(E[k]).H2 . In each case the slopes of E[k] and F are constant on

the wall, and satisfy strict (and opposite) inequalities on the two sides of the wall. This
explains the shape of the walls of instability.

If ch0(E[k]) = 0 = ch0(F ) we do not get a wall since both slopes remain constant as we
move throughout the whole of U in the (b, w) plane.

Finally, if we move along a wall, the νb,w-slopes of all the Jordan-Hölder factors of

E[k] coincide and remain constant. So long as they’re finite, Remark 2.2 implies that the
Jordan-Hölder factors remain in the heart A(b), and so E[k] does too. If they’re infinite
the wall is vertical, and the category A(b) is constant, so the conclusion is the same. �

5. Large volume limit

As usual we consider a line bundle L on D ∈ |O(n)| such that L.H = 0. The Chern
character of its push-forward is

(15) ch(ι∗L) =

(
0, nH, ι∗(c1(L))− n2

2
H2,

1

2
L2 +

n3

6
H3

)
.

To move through the space U (10) of weak stability conditions, we begin in the large volume
region w � 0. We use the fact that L is slope stable on D since it has no proper saturated
subsheaves when D is irreducible. (The results of this paper also hold for reducible D if
we assume that ι∗L is slope semistable.)

Lemma 5.1. The sheaf ι∗L is νb,w-semistable for any b ∈ R and w � 0.

Proof. We sketch the proof, which is very similar to [Br08, Proposition 14.2]. The key
point is that a sheaf ι∗E pushed forward from D has rank 0 so its νb,w-slope (6),

(16) νb,w(ι∗E) =
ch2(ι∗E).H

ch1(ι∗E).H2
=

ch1(E).H

ch0(E)H2
− n

2
= µH(E)− n

2
,

is independent of (b, w) ∈ R2 and essentially reduces to the ordinary slope of E on D. Here
the intersections take place on X in the second term and on D in the third term. (On
reducible D the denominator ch0(E)H2 would be replaced by the leading coefficient of the
Hilbert polynomial of E.)
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Fix a real number b ∈ R. The sheaf ι∗L is in the heart A(b). Fix a subobject E1 of ι∗L
in A(b) with quotient E2. Then the ordinary cohomology sheaves Hi of these objects sit
in a long exact sequence

0 −→ H−1(E2) −→ H0(E1) −→ ι∗L −→ H0(E2) −→ 0.

In particular E1 is a sheaf. Suppose first that rank (E1) 6= 0. Since E1 ∈ A(b) we know

µ−H(E1) > b⇒ µH(E1) > b⇒ chbH1 (E1).H
2 > 0. By (6) therefore, +∞ > νb,w(E1)→ −∞

as w → ∞, so E1 does not destabilise ι∗L for w � 0. As in [Br08, Proposition 14.2] one
can in fact make the bound on w (so that E1 does not destabilise) uniform in E1.

If rank (E1) = 0 then H−1(E2) = 0 because E2 ∈ A(b) implies that H−1(E2) is a torsion-
free sheaf. Therefore E1 is a subsheaf of ι∗L, which by (16) and the slope semistability of
L cannot strictly νb,w-destabilise ι∗L. �

6. The first wall

From now on we work in one of the situations

(i) suppose (BG1) holds, n ≥ 4 and L2 ≥
⌊−2n

3

⌋
+ 1, or

(ii) suppose (BG2) holds, n ≥ 10 and L2 ≥ −2n+ 5.

Then moving in the space U of weak stability conditions we will try to show that c1(L) is
a torsion class in H2(D,Z). This will prove Theorem 1.1.

By Proposition 4.1 the walls of instability for ι∗L are all lines of slope −n
2 in the (b, w)

plane; see Figure 3. The lowest such line which intersects U is w = −n
2 b −

n2

8 , which is

tangent to ∂U at (−n
2 ,

n2

8 ). Therefore the vertical line

(17) b ≡ b0 := −n
2

intersects all the possible walls of instability of ι∗L. We will move down this vertical line
from the large volume region w � 0.

By (15), chbH2 (ι∗L).H = 0 = ch0(ι∗L) on the line b = b0, so we can apply the Bogomolov-
Gieseker Conjecture 3.1 for stability parameters

(
−n

2 , w
)
. That is, if ι∗L is νb0,w-semistable

then

chb0H3 (ι∗L) ≤
(
w

3
− b20

6

)
chb0H1 (ι∗L).H2.

Using (15) and rearranging gives

(18) w ≥ wf :=
n2

4
+

3L2

2nH3
.

Note that case (i) gives wf >
n2

4 −
1
H3 , while case (ii) gives wf >

n2

4 −
3n−6
nH3 > n2

4 −
3
H3 .

In both cases then, wf >
b20
2 = n2

8 , so (b0, wf ) lies inside U .
Therefore, when we move down the line b = −n

2 , we find there is a point w0 ≥ wf where

ι∗L is first destabilised. We next show that in fact w0 ∈
[
wf ,

n2

4

]
.
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b, ch1 .H2

ch0H3

w = b2

2

w, ch2 .H
ch0H3

Π(OX(−n)) =
(
− n, n2

2

)

n2

4

w0

wf

−n
2

0

` U

b2 b1
x

Figure 3. Walls for ι∗L

Proposition 6.1. There is a wall of slope −n
2 for ι∗L that bounds the large volume chamber

w � 0. It passes through a point (b0, w0), where w0 ∈
[
wf ,

n2

4

]
.

In the destabilising sequence F1 ↪→ ι∗L � F2 in A(b0), we have dim suppH0(F2) ≤ 1,
the object F1 is a rank one sheaf with ch1(F1).H

2 = 0 and, in cases (i), (ii),

(i) ch2(F1).H = 0,
(ii) ch2(F1).H ∈ {0,−1,−2}.

Proof. By Proposition 4.1 and (18), ι∗L is νb0,w0
-destabilised by a sequence F1 ↪→ ι∗L� F2

in A(b0) for b0 = −n
2 and some w0 ≥ wf . The corresponding wall is denoted by ` in Figure

3. It has equation w = −n
2 b+ x, where

x = w0 −
n2

4
≥ wf −

n2

4
=

3L2

2nH3

satisfies

(19) x >

{
− 1
H3 in case (i),

− 3
H3 in case (ii).
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Let b2 < b1 be the values of b at the intersection points of ` and the boundary w = b2

2
of U ,

b1 =

√
n2

4
+ 2x− n

2
, b2 = −

√
n2

4
+ 2x− n

2
.

We claim that

(20) b1 > − 1

2H3
and b2 + n <

1

2H3
.

Both are equivalent to
√

n2

4 + 2x > n
2 −

1
2H3 , and therefore to 2x > 1

4(H3)2
− n

2H3 . Since

x ≥ 3L2

2nH3 it is sufficient to show

3L2

n
≥ 1

4H3
− n

2
.

For (i) this follows from L2 ≥
⌊
− 2n

3

⌋
+1 ≥ −2n

3 + 1
3 and the inequality −2+ 1

n > −
n
2 + 1

4H3

that holds for n ≥ 4. For (ii) it follows from L2 ≥ −2n+5 and the inequality n
2 > 6−15

n + 1
4H3

that holds for all n ≥ 10.
Taking cohomology from the destabilising sequence F1 ↪→ ι∗L� F2 gives the long exact

sequence of coherent sheaves

(21) 0 −→ H−1(F2) −→ H0(F1) −→ ι∗L −→ H0(F2) −→ 0.

In particular, the destabilising subobject F1 is a coherent sheaf. As we saw in the proof of
Proposition 4.1, if it had rank 0 then its slope would be constant throughout U , like that
of ι∗L, so we would not have a wall. Thus ch0(F1) > 0 so (21) gives

ch0(H−1(F2)) = ch0(F1) > 0.

As in Proposition 4.1, Π(F1) and Π(F2) lie on the line `. All along `∩U (i.e. for b ∈ (b2, b1))
the objects F1 and F2 lie in the heart A(b) and (semi)destabilise ι∗L. Therefore by the
definition (4) of A(b) and the inequalities (20),

(22) µ+H(H−1(F2)) ≤ b2 < −n+
1

2H3
and µ−H(F1) ≥ b1 >

−1

2H3
.

Thus dividing
(
ch1(ι∗L)− ch1(H0(F2))

)
.H2 =

(
ch1(F1)− ch1(H−1(F2))

)
.H2 by ch0(F1)H

3

gives

n

ch0(F1)
− ch1(H0(F2)).H

2

ch0(F1)H3
= µH(F1)− µH(H−1(F2))(23)

≥ µ−H(F1)− µ+H(H−1(F2)) ≥ b1 − b2 > n− 1

H3
.

Since H0(F2) has rank zero, ch1(H0(F2)).H
2 ≥ 0 so n

ch0(F1)
≥ (23). Thus the inequali-

ties imply ch0(F1) = 1 and ch1(H0(F2)).H
2 = 0. In particular, H0(F2) is supported in

dimension ≤ 1.

Hence µH(F1) = ch1(F1).H2

H3 is an integer multiple of 1
H3 , so the inequality (22) implies that

µH(F1) ≥ 0. Similarly (22) gives µH(H−1(F2)) ≤ −n while (23) gives µH(H−1(F2)) ≥ −n.
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The upshot is that µH(F1) = 0 and µH(H−1(F2)) = −n. Hence ch1(F1).H
2 = 0 and Π(F1)

lies on the w-axis. But it also lies on the wall ` given by w = −n
2 b+ x, so

(24) x =
ch2(F1).H

ch0(F1)H3
=

ch2(F1).H

H3
.

Since the sheaf F1 is νb0,w0-semistable, Π(F1) lies outside U by (11). Thus x ≤ 0 which is

w0 ≤ n2

4 , as claimed. Combining this with (19) and (24) gives, finally,

0 ≥ ch2(F1).H >

{
−1 in case (i),
−3 in case (ii).

�

Proposition 6.2. Under the assumptions of Proposition 6.1, the destabilising subobject

F1 of ι∗L satisfies ch2(F1).H = 0. That is, x = 0, w0 = n2

4 , and the wall bounding the
large volume chamber is the line of slope −n

2 through the origin.

Proposition 6.1 proves this in case (i). We will prove Proposition 6.2 in case (ii) in
Section 8 by applying the Bogomolov-Gieseker conjecture 3.1 to F1 and F2. This gives
upper bounds for ch3(F1) and ch3(F2) respectively. In turn the latter gives a lower bound
for ch3(F1). If we work only at (b0, w0), as in [To12], the bounds are not optimal, but by
working at more general points of the (b, w)-plane we get stronger bounds which together
force ch2(F1).H = 0.

Lemma 6.3. Under the assumptions of Proposition 6.1, dim suppH0(F2) = 0 and

ch1(H−1(F2)) = −nH in H2(X,Q).

Proof. By Proposition 6.1, F2 has rank 1 and lies in A(b0) (4), so H−1(F2) is a torsion-free
rank one sheaf. Therefore it is µH -semistable and the classical Bogomolov inequality says

(25) ch1(H−1(F2))
2.H − 2 ch2(H−1(F2)).H ≥ 0.

From the exact sequence (21) we calculate chi(H−1(F2)) = chi(F1)−chi(ι∗L)+chi(H0(F2)).
Taking i = 2 and intersecting with H, Proposition 6.2 kills the first term while (15) and
L.H = 0 calculate the second, yielding

(26) ch2(H−1(F2)).H =
n2H3

2
+ ch2(H0(F2)).H.

Taking i = 1 and intersecting with H2, Proposition 6.1 kills the first and third terms,
giving

ch1(H−1(F2)).H
2 = −nH3.

So by the Hodge index theorem

(27) n2H3 =

(
ch1(H−1(F2)).H

2
)2

H3
≥ ch1(H−1(F2))

2.H,

with equality if and only if ch1(H−1(F2)) is a multiple of H in H2(X,Q).
Combining (25), (26) and (27) gives

(28) − 2 ch2(H0(F2)).H ≥ 0.



AN APPLICATION OF WALL-CROSSING TO NOETHER–LEFSCHETZ LOCI 13

But Proposition 6.1 also showed that H0(F2) is supported in dimension ≤ 1, so (28) shows
it must have 0-dimensional support and (28, 27) are equalities. Thus ch1(H−1(F2)) is a
multiple of H in H2(X,Q).

To determine the multiple we calculate from the sequence (21) that ch1(H−1(F2)).H
2 =

ch1(F1).H
2−ch1(ι∗L).H2. The former is zero by Proposition 6.1 and the second is nH3. �

So H0(F2) is supported in dimension 0 and is a quotient of ι∗L by (21). Thus there is a
0-dimensional subscheme Z ⊂ D with ideal sheaf IZ on D such that (21) simplifies to

(29) 0 −→ H−1(F2) −→ F1 −→ ι∗(L⊗ IZ) −→ 0,

where H−1(F2) and F1 are rank 1 torsion free sheaves. By Lemma 6.3 there is a dim ≤ 1
subscheme C ⊂ X such that

(30) H−1(F2) ∼= T (−n)⊗ IC
for some line bundle T with c1(T ) = 0 ∈ H2(X,Q). Rotating the exact triangle (29), we
get a short exact sequence in A(b0):

(31) 0 −→ F1 −→ ι∗(L⊗ IZ) −→ T (−n)⊗ IC [1] −→ 0.

In fact any rank zero sheaf such as ι∗(L⊗ IZ) lies in the heart A(b0). Since T (−n) is a line
bundle, it is a µH -semistable sheaf of the same slope as H−1(F2), and thus its shift by [1]
lies in A(b0) because F2 does. By the same reasoning,

(32) 0 −→ T (−n)⊗OC → T (−n)⊗ IC [1] −→ T (−n)[1] −→ 0

is also a short exact sequence in A(b0).

7. Proof of main Theorem

We are now ready to prove Theorem 1.1. We compose the A(b0)-surjections (the third
arrows) of (31) and (32) to give

ι∗(L⊗ IZ) −→ T (−n)[1].

Since this is a surjection in A(b0), it is a nonzero element of

(33) Ext1(ι∗(L⊗ IZ), T (−n)) ∼= Ext1(ι∗L, T (−n)) ∼= Hom(L, T |D).

(The first isomorphism follows from Ext<3(OZ , T (−n)) = 0, by dimZ = 0, and the second
from relative Serre duality for ι.) Thus L∗ ⊗ T |D is effective. Since L.H = 0 this implies
L = T |D. In particular, c1(L) = 0 in H2(D,Q). �

Remark 7.1. In fact, calculating ch2(F1).H from (29) and (30) gives −H.C, which by
Proposition 6.2 is zero. Therefore both C and Z are 0-dimensional and the νb,w slopes of

T (−n)⊗ IC and ι∗(L⊗ IZ) are the same as those of T (−n) and ι∗L respectively. Thus the
map ι∗L→ T (−n)[1] produced in (33) also destabilises in A(b) on the first wall. That is,

0 −→ O(−n) −→ O −→ OD −→ 0

– tensored with T and rotated – gives the destabilising short exact sequence in A(b).
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8. Destabilising objects in case (ii)

What remains is to prove Proposition 6.2 in case (ii). So we assume (BG2) holds,
n ≥ 10 and L2 ≥ −2n + 5. By Proposition 6.1, in A(b) there is a destabilising sequence
F1 ↪→ ι∗L� F2 for ι∗L along the wall ` with equation

w = −n
2
b+

ch2(F1).H

H3
.

Moreover rankF1 = 1 = − rankF2, and, by Proposition 6.1,

ch1(F1).H
2 = 0 and ch2(F1).H ∈ {0,−1,−2}.

We will assume that ch2(F1).H 6= 0 and apply the Bogomolov-Gieseker inequality to F1

and F2 to get a contradiction.

It will be convenient to work with b = b1 := − 1
H3 because then, by (6),

νb1,w(E) =
ch2(E).H − w ch0(E)H3

ch1(E).H2 + ch0(E)

has a denominator D1(E) := ch1(E).H2 + ch0(E) which

• is integral and ≥ 0 for E ∈ A(b1),
• is additive on K-theory classes: D1(E1 + E2) = D1(E1) +D1(E2), and
• takes the minimal nonzero value 1 on F1.

This means that in A(b1) the object F1 can only be destabilised by objects with denomina-
tor D1 = 0.5 Such objects have ν = +∞ so, in particular, F1 can never be semi-destabilised:
it is either stable or strictly unstable, and has no walls of instability. Since it is semistable
on `, and this intersects b = b1 at the point

w1 =
n

2H3
+

ch2(F1).H

H3

which defines a weak stability condition in U by

w1 −
b21
2

=
n

2H3
− 1

2(H3)2
+

ch2(F1).H

H3
≥ nH3 − 1− 4H3

2(H3)2
> 0,

we conclude the following.

Lemma 8.1. The destabilising sheaf F1 is νb1,w-stable for any w >
b21
2 . �

Similarly if we work with b = b2 := −n+ 1
H3 then the denominator of νb2,w is

D2(E) := ch1(E(n)).H2 − ch0(E).

This has the same properties as D1(E), except the third is replaced now by D2(F2) = 1
being minimal. Again ` intersects b = b2 in a point

w2 =
n2

2
− n

2H3
+

ch2(F1).H

H3

5This argument is familiar from the analogous fact that rank 1 sheaves can only be destabilised by rank
0 torsion sheaves when working with slope (for which the denominator is rank).



AN APPLICATION OF WALL-CROSSING TO NOETHER–LEFSCHETZ LOCI 15

inside the space U of weak stability conditions, by

w2 −
b22
2

=
n

2H3
− 1

2(H3)2
+

ch2(F1).H

H3
≥ nH3 − 1− 4H3

2(H3)2
> 0.

So the same argument as for Lemma 8.1 gives the following.

Lemma 8.2. The destabilising quotient F2 is νb2,w-stable for any w >
b22
2 . �

Proposition 8.3. ch3(F1) ≤
2

3
ch2(F1).H

(
ch2(F1).H −

1

2H3

)
.

Proof. Recall the line {b = b1} ∩ U used in Lemma 8.1. Its base on w = b2

2 is the point(
− 1

H3 ,
1

2(H3)2

)
. Let `2 denote the line connecting this point to Π(F1) =

(
0, ch2(F1).H

H3

)
,

(34) w =

(
ch2(F1).H −

1

2H3

)
b+

ch2(F1).H

H3
.

b, ch1 .H2

ch0H3

w = b2

2

w = b2 + ch2(F1).H
H3

w, ch2 .H
ch0H3

b= −1
H3

`2

U

Π(F1)

b∗

w∗

Figure 4. The first wall for the sheaf F1

By the description of the walls of instability (Proposition 4.1), the w ↓ b21
2 limit of Lemma

8.1 therefore shows that F1 is νb,w-semistable for any (b, w) ∈ `2 ∩ U ; see Figure 4.
To apply the Bogomolov-Gieseker Conjecture 3.1 to F1 on `2 we need to find a point of

`2 ∩ U satisfying chbH2 (F1).H =
(
w − b2

2

)
ch0(F1)H

3, i.e.

ch2(F1).H

H3
+
b2

2
= w − b2

2
.
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This intersects `2 (34) at the point (b∗, w∗), where

b∗ = ch2(F1).H −
1

2H3
and w∗ =

(
ch2(F1).H

)2
+

1

4(H3)2
.

νb∗,w∗ is a weak stability condition since w∗ − (b∗)2

2 = 1
2

(
ch2(F1).H + 1

2H3

)2
> 0, so by

(BG2) we may apply Conjecture 3.1 to give

ch3(F1)− b∗ ch2(F1).H −
(b∗)3H3

6
≤ 1

3

(
w∗ − (b∗)2

2

)
(−b∗H3)

=
1

3

(
ch2(F1).H

H3
+

(b∗)2

2

)
(−b∗H3).

Simplifying gives

ch3(F1) ≤
2

3
b∗ ch2(F1).H. �

Proposition 8.4. ch3(F2(n)) ≤ 2

3
ch2(F2(n)).H

(
ch2(F2(n)).H +

1

2H3

)
.

Proof. By Lemma 8.2, F2 ∈ A(b2) is νb2,w-semistable for w � 0. Thus F2(n) ∈ A(b2+n) =

A(−b1) is ν−b1,w-semistable for w � 0. Therefore, by [BMT14, Lemma 5.1.3(b)] the shifted
derived dual F2(n)∨[1] lies in an exact triangle

F ↪−→ F2(n)∨[1] −→−→ Q[−1],

with Q a zero-dimensional sheaf and F a νb1,w-semistable object of A(b1) for w � 0. Since

rankF = 1 it is a torsion-free sheaf by [BMS16, Lemma 2.7]. We also have ch1(F ).H2 =
ch1(F2(n)).H2 = 0. Thus F has all the properties of F1 used in Lemma 8.1 and Proposition
8.3, so the latter gives

ch3(F ) ≤ 2

3
ch2(F ).H

(
ch2(F ).H − 1

2H3

)
.

Since ch2(F2(n)).H = − ch2(F ).H and ch3(F2(n)) = ch3(F2(n)∨[1]) = ch3(F ) − ch3(Q) ≤
ch3(F ) the claim follows. �

Proof of Proposition 6.2. Set c := ch2(F1).H ∈ {0,−1,−2}, so by Proposition 8.3,

(35) ch3(F1) ≤
2c

3

(
c− 1

2H3

)
.

Using ch0(F1) = 1, ch1(F1).H
2 = 0 and the exact triangle F1 → ι∗L→ F2 we compute

ch1(F2(n)).H2 = 0, ch2(F2(n)).H = −c and ch3(F2(n)) = −nc− ch3(F1) +
L2

2
.

The inequality of Proposition 8.4 therefore becomes

−nc− ch3(F1) +
L2

2
≤ −2c

3

(
−c+

1

2H3

)
.
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Combined with (35) and our assumption L2 > −2n+ 4 this gives

−n(c+ 1) + 2 < −nc+
L2

2
≤ ch3(F1)−

2c

3

(
−c+

1

2H3

)
≤ 4c

3

(
c− 1

2H3

)
.

If c = −1 this gives the contradiction 2 < 4
3 + 2

3H3 . If c = −2 we get n+ 2 < 16
3 + 4

3H3 < 7
but n ≥ 10. So c = 0. �

9. Curve counting

The results of this paper are a special case of the results in [FT19], which in turn
builds on [GST14]. Consider 2-dimensional torsion sheaves of the form ι∗(L⊗ IC), where
D ∈ |O(n)| and IC ⊂ OD is the ideal sheaf of a subscheme of dimension ≤ 1. We take
L.H = 0 and n is sufficiently large as in this paper; the main difference in [FT19] is that
we allow nonempty C.

We show the moduli space of slope semistable sheaves in the class of ι∗(L ⊗ IC) is
isomorphic to the product of Pictors(X)6 – the line bundles on X with torsion c1 – and the
moduli space of Joyce-Song pairs

(36) O(−n)
s−−→ IC .

Here IC ⊂ OX is an ideal sheaf on X and s ∈ H0(O(n)) is a nonzero section with zero
divisor D ⊃ C. The correspondence takes the cokernel of (36) and tensors it with a line
bundle L with torsion c1(L) to get a sheaf of the form ι∗(L⊗ IC).

For n � 0 the moduli space of pairs (36) is a projective bundle over the moduli space
of ideal sheaves IC . The fibre P

(
H0(IC(n))

)
has Euler characteristic χ(IC(n)). If X is a

Calabi-Yau 3-fold with H1(OX) = 0 this gives the relation

#(2-dimensional sheaves) = #H2(X,Z)tors · χ(IC(n)) ·#(ideal sheaves).

The first term is a DT invariant counting Gieseker stable sheaves7 of the same topological
type as ι∗(L ⊗ IC). The next two terms are topological constants. The final term is the
DT invariant counting ideal sheaves of the topological type of IC .

The set of all of these DT invariants counting ideal sheaves is equivalent, by the MNOP
conjecture [MNOP] (proved for most Calabi-Yau 3-folds in [PP17]), to the set of Gromov-
Witten invariants of X. The upshot is that the Gromov-Witten invariants of X are gov-
erned by counts of 2-dimensional sheaves. In turn the generating series of the latter are
conjectured by physicists to be mock modular forms due to S-duality.

Both this paper and [FT19] use very similar methods to those employed so impressively
by Toda [To12] to prove the famous OSV conjecture on Calabi-Yau threefolds X with
PicX = Z satisfying the Bogomolov-Gieseker conjecture. Toda also considers slope stable
sheaves of dimension two and follows them down the wall b = b0 (17), using the Bogomolov-
Gieseker inequality to find the first wall of instability `. One difference between the papers
is that in Proposition 6.1 we analyse the destabilising objects F1, F2 along the wall `, and

6Note this is not the set of torsion line bundles, though it contains it of course.
7We show that for n� 0, slope semistability is equivalent to slope stability and to Gieseker stability.
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use the fact that they lie in A(b) at its endpoints ` ∩ ∂U to constrain ch(Fi). Toda works
only on b = b0 and uses different arguments to analyse ch(Fi). A similar comment applies
to the work in Section 8 to prove Proposition 6.2, as described in the discussion below
Proposition 6.2.

The main difference between our work and Toda’s is that we consider subtly different
Chern characters. In [FT19] we consider two dimensional sheaves with ch1 = nH and

ch2 = −β − n2

2
H2

for n� 0 and some curve class β (in this paper ultimately β = 0 ∈ H4(X,Q)). Toda also
considers ch1 = nH but

ch2 = −β,
for fixed β and n � 0. To apply his methods to our class would require a bound like
β.H ≥ 1

2n
2H3, while his paper works in the opposite regime β.H < εn2. As a result he

manages to express counts of 2-dimensional sheaves in terms of both ideal sheaves and
stable pairs, whereas for us the stable pairs are absent and the results rather different.

Appendix A. The case of P3

By Claire Voisin

When X = P3 we can prove a very similar result to (B) by more classical methods.

Theorem A.1. Let D be a smooth surface of degree n ≥ 4 in P3. Any nontrivial line
bundle L on D with c1(L).H = 0 satisfies L2 ≤ −2n+ 5.

Proof. The K3 case n = 4 is trivial: Riemann-Roch gives h0(L)+h0(L−1) = h1(L)+2+ L2

2

so if L is nontrivial with L.H = 0 this gives 0 = h1(L) + 2 + L2

2 and so L2 ≤ −4.
So we can take n ≥ 5. By Riemann-Roch,

(37) h0(L) + h0(KD ⊗ L−1) ≥ χ(L) = χ(OD) +
1

2
L2 − 1

2
KD.L.

We assume for a contradiction that L is nontrivial and L2 ≥ −2n + 6. Using KD =
OD(n− 4), L.H = 0 and h1(OD) = 0, (37) gives

(38) h0(L−1(n− 4)) ≥ h0(OD(n− 4))− (n− 4).

Let C := H ∩ D be a smooth plane section and LC := L|C . Then the exact sequences
0→ L−1(i− 1)→ L−1(i)→ L−1C (i)→ 0 give

(39) h0
(
L−1(i)

)
− h0

(
L−1(i− 1)

)
≤ h0

(
L−1C (i)

)
.

Since h0(L−1) = 0, summing over 1 ≤ i ≤ n− 4 gives

(40) h0
(
L−1(n− 4)

)
≤

n−4∑
i=1

h0
(
L−1C (i)

)
.
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Replacing L−1 by OD gives equality in (39) for 1 ≤ i ≤ n−4 by Kodaira vanishing, and so

(41) h0
(
OD(n− 4)

)
− 1 =

n−4∑
i=1

h0
(
OC(i)

)
.

Comparing (38), (40) and (41) shows that h0
(
L−1C (i)

)
≥ h0

(
OC(i)

)
for some 1 ≤ i ≤ n−4.

Since degLC = 0 this implies LC = OC by [Ha86, Theorem 2.1, 2(b)].
By standard methods, this now implies the contradiction L = OD. For instance, consider

the blow up π : D̂ → D of D in the baselocus of a pencil of Cs, giving a fibration p : D̂ → P1.
Then π∗L is trivial on the fibres, so is the pullback from P1 of the line bundle p∗(π

∗L) ∼=
OP1(d). Restricting π∗L to (the proper transform of) another plane section (a multisection
of p) and using L.H = 0 shows that d = 0. �
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