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Abstract

With the development of low order scaling
methods for performing Kohn-Sham Density
Functional Theory, it is now possible to per-
form fully quantum mechanical calculations of
systems containing tens of thousands of atoms.
However, with an increase in the size of system
treated comes an increase in complexity, mak-
ing it challenging to analyze such large systems
and determine the cause of emergent properties.
To address this issue, in this paper we present
a systematic complexity reduction methodol-
ogy which can break down large systems into
their constituent fragments, and quantify inter-
fragment interactions. The methodology pro-
posed here requires no a priori information or
user interaction, allowing a single workflow to
be automatically applied to any system of inter-
est. We apply this approach to a variety of dif-
ferent systems, and show how it allows for the
derivation of new system descriptors, the de-
sign of QM/MM partitioning schemes, and the
novel application of graph metrics to molecules
and materials.

1 Introduction

Linear scaling algorithms for Kohn-Sham (KS)
Density Functional Theory (DFT),1,2 devel-
oped already some time ago,3,4 have recently
become accessible to a broader community
thanks to the introduction of reliable and ro-
bust approaches (see e.g. Ref. 5 and refer-
ences therein). This fact has important con-
sequences for the interpretation and design of
first-principle approaches, as the possibility of
tackling systems of unconventionally large sizes
allows for the addressing of new scientific ques-
tions. However, when treating heterogeneous
systems, an increase in system size leads to an
increase in complexity, making the interpreta-
tion of computational results challenging.

For a system containing many thousand
atoms, it is likely that the fundamental con-
stituents (or “moieties”) of the system are of
O(1), i.e. their size does not increase with the
total number of atoms of the system. It appears
therefore interesting to single out such moieties,
and to try to model their mutual interactions
with a less complex description. Thanks to lin-
ear scaling DFT techniques, the full quantum-
mechanical (QM) calculation of the original sys-
tem can be used as an assessment of the quality
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of such simplified descriptions.
When linking together various length scales,

such considerations are no longer optional, but
they rather become compulsory. Performing
a set of production QM simulations with an
unnecessarily costly approach would result in
a study of poor quality, as the simulation
scheme entangles interactions with different
length scales and couplings. In other terms,
the dogma “the more complex the simulation
the better” is not true in all situations. Tak-
ing these considerations into account allows one
to focus on the regions of the system that re-
quire a high level of theory, leading to a better
understanding of the fundamental mechanisms
and avoiding an unnecessary waste of compu-
tational resources.

In this context — which we will from now on
denote as “complexity reduction” — we briefly
want to point out the important difference be-
tween fragmentation and embedding. In the
first case, the full QM system is partitioned
into several fragments, which are each individ-
ually treated at a full QM level, but which are
mutually interacting in a simplified way. Frag-
mentation methods are conceived to simplify
the full ab-initio calculation of a large QM sys-
tem, i.e. they aim to treat the entire system
at the same level of theory. Famous exam-
ples are, for instance, the Fragment Molecu-
lar Orbital approach,6,7 the X-Pol method,8–15

the Molecular Tailoring Approach,16–19 or sub-
system DFT.20,21 Embedding methods, on the
other hand, aim to split the system into a tar-
get region and an environment, each treated at
different computational cost. Embedding ap-
proaches use various levels of theory within a
single calculation, thus paving the way towards
coarse grained models which can be used within
multi-scale QM/MM simulations. Among oth-
ers, we quote here the methods detailed in Refs.
22–36.

A problem common to both fragmentation
and embedding methods is how to derive a gen-
eral and reliable method for partitioning an ar-
bitrary system into a set of fragments. As a
matter of fact, the concept of fragmentation is
to some extent an “ad-hoc” operation, based on
the assumption that the system can be some-

how partitioned into subsystems that mutually
interact. In a previous publication,37 we de-
rived a simple method of determining in a quan-
titative way whether a chosen fragmentation is
reasonable. If this is the case, the fragments
become “independent” of each other and can
be assigned “pseudo-observables” i.e. quantities
with an interpretable physicochemical meaning.

In this paper, we build upon our previous
work on evaluating fragments in order to de-
velop a full methodology for complexity reduc-
tion. We will begin in Sec. 2 by reintroduc-
ing the purity indicator as a measure of frag-
ment quality. Then in Sec. 3, we will define
a new measure called the fragment bond or-
der, which quantifies the interaction strength
between fragments. We then will utilize the
fragment bond order to determine the chemical
significance of the purity indicator. In Sec. 4 we
will further use the fragment bond order to de-
fine an embedding environment for fragments,
and show how that can be used to build a graph
like view of a molecular system. In Sec. 4.1,
we will describe an automatic procedure that
uses the fragment bond order to fragment a
given system such that the purity indicator is
close to zero for each fragment. Finally, we will
conclude by demonstrating this methodology
on a number of systems, and discuss how this
methodology might bring together the concepts
of fragmentation and embedding, enabling gen-
eral multilayered schemes for both the calcu-
lation and interpretation of complex, heteroge-
neous systems.

2 Fragmentation and In-

terpretation of Observ-

ables

In a QM system, the expectation value of a one-
body observable Ô can be expressed as 〈Ô〉 ≡
tr
(
F̂ Ô
)

, where we denote by F̂ = |Ψ〉 〈Ψ| =

F̂ 2 the one-body density matrix of the system,
that can be identified in terms of the ground-
state wavefunction |Ψ〉. When a QM system is
susceptible to be genuinely separable in to frag-
ment states |ΨF〉, it should be possible to define
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a projection operator ŴF associated with each
fragment F such that ŴF |Ψ〉 = |ΨF〉. Per-
forming such a fragmentation operation a pos-
teriori is a procedure that presents, of course,
some degrees of arbitrariness and is suscepti-
ble to provide, in the worst case, a system
partitioning into physically meaningless moi-
eties. The spirit of the fragmentation proce-
dure described in37 is to provide indicators that
helps in assessing the physical pertinence of a
given fragmentation. Let us briefly review this
methodology here.

We assume that the density matrix of the sys-
tem, as well as the projection operator, can be
defined in a set of localized, not necessarily or-
thonormal, basis functions |φα〉 as follows:

F̂ =
∑
α,β

|φα〉Kαβ〈φβ| , (1)

ŴF =
∑
µ,ν

|φµ〉RFµν 〈φν | , (2)

and that a generic one-body operator Ô can
be expressed by the matrix elements Oαβ =

〈φα| Ô |φβ〉. In this context the overlap matrix
Sαβ ≡ 〈φα|φβ〉 can be seen as the matrix repre-
sentation of the identity operator.

To be meaningful, the fragment projector
should satisfy:

ŴFŴ G = ŴFδFG ⇒ RFSRG = RFδFG, (3)∑
F

ŴF = Î⇒
∑
F

SRFS = S, (4)

which are the obvious orthogonality (including
projection) and resolution-of-the-identity con-
ditions that a reasonable fragmentation should
implement. The latter condition, when com-
bined with the idempotency of F̂ , provides

F̂
(∑

F Ŵ
F
)
F̂ = F̂ , which would imply the

interesting equation:

Ŵ GF̂

(∑
F

ŴF

)
F̂ Ŵ G = Ŵ GF̂ Ŵ G. (5)

Nonetheless, when the system’s fragmenta-
tion is exact, the fragment density matrices
|ψF〉 〈ψF | = ŴF F̂ ŴF should also be idempo-

tent. Together with Eqs. (5) and (3) this would
imply:

Ŵ GF̂

(∑
F6=G

ŴF

)
F̂ Ŵ G = 0 , (6)

which is a condition that can be realized (ex-
cluding pathological situations) by assuming
that in a meaningful fragmentation, the frag-
ment representation of the density matrix is
block-diagonal, i.e. Ŵ GF̂ ŴF ≡ F̂WFδFG ≡
ŴF F̂ δFG in the span of the basis set chosen.
We may therefore rephrase a meaningful frag-
mentation as the purity condition (F̂F)2 = F̂F

where we have defined the fragment density ma-
trix as F̂F ≡ F̂WF . Such a condition depends
on the combination of the basis set φα and the
projection RF , and cannot be guaranteed a pri-
ori, nor is it a sufficient condition for fragmenta-
tion. Simply, when this condition holds, a sys-
tem is susceptible to be fragmented by the set
of projections identified by the operators ŴF .
However, we emphasize that the purity condi-
tion above is more stringent than the idempo-
tency of the operator |ψF〉 〈ψF | as the latter
would impose the block-like behaviour of F̂ .

At the same time, an operator can be pro-
jected onto the fragment subspace by defining
ÔF ≡ ŴFÔŴF , which would provide, in the
basis set representation, OF = SRFORFS.

The purity condition is itself represented in
the basis set by the expression:

KSRFSKSRF = KSRF , (7)

whose trace enables us to introduce the purity
indicator, defined by:

ΠF =
1

qF
Tr
((

KSF
)2 −KSF

)
, (8)

where qF is the total number of electrons of
the isolated fragment in gas phase and SF ≡
SRFS. We note that Π ≤ 0 and call pure a
fragment whose projection satisfies the condi-
tion Π ' 0.

Such a condition, which we emphasize to be
non-linear in the projector matrix elements
RF , when fulfilled, enables one to interpret the
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fragment-expectation value:

〈Ô〉F ≡ tr
(
F̂FÔ

)
= tr

(
KSRFO

)
, (9)

as a pseudo-observable of the fragment F . In-
deed, by resolution-of-the-identity, we may de-
compose the expectation value in to fragment-
wise values, namely 〈Ô〉 =

∑
F〈Ô〉F . We re-

trieve here the extensivity of the expectation
values: as this condition is linear in the frag-
ment projection operator, a collection of frag-
ments is itself a fragment and their expec-
tation value is the sum of the separate con-
tributions. More importantly, thanks to this
property a fragment pseudo-observable can be
decomposed into different contributions. Let
RF = RF1 + RF2 . Even if the fragments F1,2

were not pure, still we would have 〈Ô〉F =
〈Ô〉F1 + 〈Ô〉F2 . This fact enables us to define
the fragment projection matrix from, for exam-
ple, atomic projectors, even when, as in most
of the cases, the atoms cannot be considered as
pure system moieties.

Instead of Eq. (9), we could have defined the
fragment expectation value by the equation:

〈Ô〉F = tr
(
ŴF F̂ ŴFÔ

)
= tr

(
F̂ ÔF

)
, (10)

which we know for a pure fragment would have
lead to the same result. This shows that, even
in the case of an operator that is not fragment-
block diagonal, for a pure fragment only the
diagonal term contributes to the expectation
value, which is a natural result of the use of
Hermitian operators.

2.1 Population Analysis of Frag-
ments

Within this framework, traditional population
analysis schemes might be extended to a sys-
tem’s fragments. In Ref.37 we introduced ex-
pressions for the Mulliken (M) and Löwdin (L)
projectors, which in the basis representation
are:

RFM ≡ TFS−1 , RFM ≡ S−1/2TFS−1/2 , (11)

where TF is a diagonal matrix which has a value
of one for the indices α ∈ F that are associated
to the fragment F . Such an association is some-
how arbitrary, in the sense that it is based on
simple geometric considerations on the domain
of the basis functions. The value of ΠM,L

F en-
ables one to assess whether the fragmentation
is reliable within the chosen population scheme.
Also, the matrix TF may be expressed as:

TF =
∑
a∈F

T a , (12)

where we define the matrices Ta by associating
each index α to one atom a of the system. We
retrieve in this way the traditional Mulliken and
Löwdin atomic projections. The well-known
unreliability of these population methods for
atoms may the be ascribed to the fact that,
in general, the atoms cannot be associated to
pure fragments: in most of the cases Πa would
be significantly different from zero.

3 Significance of the Purity

Indicator

We may give to the purity indicator a chemical
significance. Indeed, given a basis set and a
projection method, the orbital population of a
fragment can be defined as follows:

qFΠF = 〈F̂F〉F − 〈̂I〉F = BFF − 〈̂I〉F . (13)

In the above definitions we have employed the
orbital population of the fragment F , defined
as 〈̂I〉F = tr

(
KSF

)
, as well as the fragment

bond order, which is a quantity that in general
involves two fragments:

BFG = Tr
(
KSFKSG

)
= 〈F̂ G〉F . (14)

Such a quantity is associated to the overall
bonding ability of the two fragments F and G
with respect to the chosen basis set and popu-
lation scheme. This quantity is similar to the
Wiberg index,38 and in the case of the Mul-
liken representation with atomic fragments cor-
responds to the Mayer bond order.39 In this
case, we have defined a more general fragment
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bond order, which describes the interaction be-
tween two arbitrary fragments.

The purity condition defined in this way
strongly resembles the concept of chemical va-
lence,40,41 which measures the ability of an
atom to form chemical bonds in its current en-
vironment, but in this case we include off diag-
onal contributions and scale by the number of
electrons. Indeed it is enough to notice that, in
the Mulliken population scheme, for a fragment
made only of atom a the purity indicator is the
opposite of the atomic valence:

qaΠa = −Va ≡= tr
(
(KSTa)2 −KSTa

)
. (15)

Following this interpretation we can rephrase
the purity condition with a chemical meaning:
a fragment is pure if it has a “zero-valence” con-
dition - i.e. the value of the fragment bond order
with itself equals the fragment orbital popula-
tion. Despite its physico-chemical interpreta-
tion, such a zero-valence condition is a property
of the computational setup and of the projec-
tion method, and it is not a chemical property
per se; however, when the basis set and the
projection scheme are suitably chosen, it en-
ables the splitting of the system’s observables
into fragments.

As mentioned, the purity indicator has a non-
linear behaviour with respect to the combina-
tion of fragments. It is easy to verify that, for
two fragments F and G we can expand the pu-
rity indicator in terms of the fragment bond
order as follows:

qF+GΠF+G = qFΠF +qGΠG+BFG+BGF , (16)

such a result will turn out to be useful in the
forthcoming section.

4 Fragmentation and Sub-

systems

We have seen that the fragmentation operators
are useful to identify pseudo-observables that
can be associated to a system’s moieties. This is
clearly helpful in characterizing a system, pro-
viding information on the impact a given frag-

mentation will have on the reliability of a frag-
ment’s expectation value. However, for certain
observables, it would be nonetheless interest-
ing to rely on moieties which are defined be-
forehand, and analyse their mutual interaction
in order to characterize the system’s building
blocks from an electronic point of view.

Let us consider an example scenario where a
given target set of atoms T is chosen a priori,
and the goal is to compute its properties us-
ing only a subset of the full system. Associ-
ated with that target fragment is a purity in-
dicator ΠT with a absolute value that may be
higher than some desired threshold ε. We have
seen that this implies that the density matrix
is not assumed block-diagonal in the fragmen-
tation provided by T . Let us define the embed-
ded purity indicator ΠT :E as the purity indica-
tor of the joint T and E system, but without
considering the contribution associated to the
environment alone.

Figure 1: Summary of an expansion of the pu-
rity indicator of two fragments F and E in terms
of the fragment bond order. For simplicity, we
assume the Mulliken (or Löwdin) population
scheme with a overlap matrix S that is unitary,
but in the general case the above diagram is the
same with the matrix K replaced by KS.

We can define the embedded purity indicator
as follows:

qTΠT :E ≡ qTΠT + BT E . (17)

To clarify the interpretation of this quantity,
in Fig. 1 we provide a matricial representation
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of this block view of the purity indicator.
We note that the correction term BT E repre-

sents the “strength” of the “electronic” interac-
tion between the two fragments. Crucially, the
value of ΠE is not included, with the trace only
running along the FF block. Thus, a good en-
vironment need not satisfy the purity condition
itself. A suitable embedding environment is one
such that the sum of the fragment bond order
values of all fragments excluded from the envi-
ronment is below some cutoff. In general, this
environment might also be split into a number
of different fragments.

By defining a fragmentation procedure and
embedding scheme, we see that a graph like
view of a system emerges. In this representa-
tion, fragments are nodes, and edges are drawn
between fragments in the same embedding envi-
ronment. This representation can be efficiently
computed using the results of a calculation of
the full system. Through judicious choices of a
fragmentation and embedding cutoffs, a coarse
grained view of large complex systems can be
achieved.

4.1 Automatic Fragmentation

In Sec. 2, we established the purity indicator
ΠF as a means of quantifying the choice of a
given fragment F . With a figure of merit es-
tablished, we now consider how to partition a
system such that each fragment fulfills that cri-
teria. Determining the best fragmentation of a
system is ill defined as presented so far, as sev-
eral different fragmentations of the same sys-
tem can fulfill the purity condition. Additional
constraints must be introduced, such as local-
ity in space, similarity to other fragmentation
schemes, uniformity in fragment size, or maxi-
mizing the total number of fragments.

For the purposes of this paper, we will con-
sider a simple greedy, spatially motivated algo-
rithm for fragmenting the system. We begin
by treating each atom as its own separate frag-
ment. Then, we select the fragment with the
lowest purity value to be merged. The fragment
bond order between this fragment and its neigh-
bors within a 10 Bohr radius are computed, and
we merge it with the fragment with the largest

bond order. This process is repeated until all
fragments satisfy the purity condition ΠF > ε.
While this fragmentation is not guaranteed to
maximize the number of fragments, it is efficient
to compute, and the spatially local fragments
will help with subsequent analysis.

5 Reliability of the Ap-

proach

We will now demonstrate the previously pre-
sented tools on a number of example sys-
tems. We consider four example systems: a
cambrin protein (1CRN),42 a Laccase enzyme
from Trametes versicolor (Laccase),43 a clus-
ter of pentacene molecules (Pentacene), and
an RNA molecule binding magnesium (based
on PDB 1I7J44) in solution (MG) (see Fig. 2).
Details of the DFT calculations performed are
presented in Sec. A of the Appendix. These
systems each represent different challenges for
complexity reduction. 1CRN is a well stud-
ied model, and coarse graining of the system
might be achieved by simply decomposing the
fragments based on the amino acid sequence.
Laccase, on the other hand, has four copper
atoms in it, making it not possible to decom-
pose it purely using the amino acids. For the
Pentacene system, the fragmentation guid-
ance is somehow obvious, and it is interesting
to decompose the observables into bulk-like and
surface fragments. For the MG system, while
partitioning of water molecules is an obvious
start, whether the RNA molecule can be par-
titioned remains uncertain, as is determining a
suitable fragmentation for the magnesium ions.
For all of these systems, even once a decompo-
sition has been established, the choice of an em-
bedding environment for each target fragment
remains challenging.

The tools established in the preceding sec-
tions require no a priori information about the
system to be applied, and can generate an un-
biased coarse graining of each type of system.
In this section, we will systematically fragment
and compute embedding environments for these
example systems, and evaluate these reduced
models with a number of different metrics.
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(a) 1CRN (b) Laccase

(c) MG (d) Pentacene

Figure 2: Embeddings of target fragments in the four sample systems. The target regions are in
yellow, and the embedding environment (using a bond order cutoff of 0.01) are in blue. Atoms in
black are those which belong to the full system but are excluded from the subsystem calculations.

5.1 Choice of Purity Indicator
Cutoff

We begin by exploring the choice of purity indi-
cator cutoff’s effect on the number of fragments
in a given system. For each system, the auto
fragmentation procedure described in Sec. 4.1
is applied. The number of fragments for each
system at various cutoffs are plotted in Fig. 3.
We have also analyzed the number of fragments
of just the RNA molecule in the MG system.

One point of interest in the data of Fig. 3 is
that the two proteins (1CRN, Laccase) follow
an extremely similar trend when comparing the
relative number of fragments at a given cutoff
value. This suggests that the average size of a
fragment is similar when systems are composed
of similar building blocks. This is in contrast
to the Pentacene system which has similarly

10−3 10−2 10−1 100

Purity Indicator Cutoff
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Figure 3: The relative number of fragments in
each system compared to an atomic fragmenta-
tion at various purity indicator cutoff (absolute)
values.
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sized fragments, but different building blocks
with different behavior. As a further point of
contrast, the MG system has relatively more
fragments at high cutoff values than all of the
other systems. However, when separately ex-
amining the RNA molecule fragments in MG,
we see a different picture, with a stricter cutoff
leading to fewer fragments.

There appears to exist a region between Π =
−0.01 and −0.05 where the number of frag-
ments is relatively stable, and a coarse grained
view of the system is possible. We note that
this regime matches a similar finding as a study
using localized orbitals to partition domains for
the purpose of accelerating exact exchange cal-
culations.45 In that study, the cutoff was de-
fined in terms of the norm of truncated local-
ized orbital, which corresponds closely with the
purity indicator.

For a given cutoff value, there exists some
freedom based on how coarse grained a view
of a system is desired. For example, with the
MG system, a cutoff in this range may be too
fine grained a view of the system, leading to
a tighter cutoff value for fragmenting the solu-
tion. This is due to the large number of water
molecules in the system. Water molecules have
very low (absolute) purity values, meaning that
a fragmentation of a solution is stable even as
the cutoff value is tightened.

For the remainder of this paper, we will use a
cutoff of Π = −0.05 for automatically fragment-
ing systems. Further analysis will be performed
on this choice of cutoff in Sec. 6.

5.2 Choice of Fragment Bond
Order Cutoff and Reliability
of Fragment Observables

We now consider the appropriate threshold for
defining an embedding environment. As a fig-
ure of merit, we focus our attention to the elec-
trostatic dipole as the chosen fragment observ-
able (the operator Ô of the equations in Sec. 2).
We have chosen the dipole since a faithful repre-
sentation of such observable would demonstrate
the reliability of the electronic density as well
as a good approximation for one of the main

quantities needed for the long-range potential
that a fragment would generate.

To do this, we begin by fragmenting each
of the example systems, with a cutoff of Π =
−0.05. Next, for each system we select the frag-
ment with the largest dipole value (to increase
the signal to noise of subsequent calculations)
and define it as the target fragment for embed-
ding. We then define embedding environments
based on various threshold values. We also
compared this approach with an environment
computed by the nearest neighbor distance be-
tween fragments.

Calculations were then performed from
scratch on the target and embedding environ-
ment, and observables were recomputed. The
dipoles of each target fragment in the various
embedding environments were computed from
the atomic dipoles according to the equations
in our previous publication.37 We emphasize
that no external potential from outside the
embedding environment was included except
through the net charge which was rounded to
the nearest electron.

Images of the various target regions inside an
embedding region with a bond order cutoff of
0.01 are shown in Fig. 2. Errors in the dipole
values are plotted in Fig. 4.

We note that it is remarkable that these cal-
culations are accurate at all given that in many
places we have cut covalent bonds without using
a capping procedure. Calculations performed
on these systems also smoothly converged to
the ground state. The lack of a need for cap-
ping can be attributed to the Π = −0.05 pu-
rity value of the fragments, which already limits
the amount of charge being leaked. In a sense,
the low (absolute) purity value of the embed-
ding fragments enable them to act as a gen-
eral type of cap on the target fragment. By
adding the embedding environment, it is possi-
ble to significantly reduce the errors, until im-
provement stagnates in general with a bond or-
der cutoff of between 0.01 and 0.001. We also
note that while a conservative distance criteria
can define a suitable embedding environment,
the converged distance value is significantly af-
fected by the specific system geometry. Using
the auto fragmentation procedure and bond or-
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Figure 4: Error in the dipole in various em-
bedding environments. The relative error in
norm is defined as ||d

′−d||2
||d||2 where d is the dipole

computed from the full calculation, and d′ the
dipole computed from the subsystem calcula-
tion. The angle error is the angle between the
dipole computed from the full and subsystem
calculations. The region between a fragment
bond order cutoff of 0.01 and 0.001 has been
highlighted to emphasize the converged observ-
ables.

der tools together, one can automatically define
an embedding of all system fragments which ac-
curately reproduces desired observables.

We also consider the error in the atomic
forces. We know that, as the atoms cannot be
associated to pure fragments, an embedding en-
vironment is needed to guarantee that atomic
forces can become reliable. We have computed
the average error in the forces inside the tar-
get fragment and plotted those values in Fig. 5.
Here we see a similar convergence trend, with
the exception being the Pentacene system,
which has very low forces on any given frag-
ment. To put these errors into context, we de-
fine an estimate of noise in the forces as the
standard deviation of the forces with mean zero.
The error in the forces presented becomes of
the same order of magnitude as the noise in the
forces from calculations of the full system, and
are similar to the errors in forces that come from
using the linear scaling version of BigDFT.46

The stagnation in force error reduction with an
increasing environment size is further evidence
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Figure 5: Average error in the atomic forces
(a.u.) in various embedding environments. The
dotted horizontal line is the estimate of the
noise in the force from the calculation of the
full 1CRN system.

that we have captured the essential fragment
environment for all systems using a bond order
cutoff between 0.01 and 0.001.

For a fragment identified with a |Π| = 0.05,
and using a bond order cutoff value of 0.01, the
number of atoms in the four system target re-
gions are 228, 191, 97, and 180 for 1CRN, Lac-
case, MG, and Pentacene respectively. The
embedding environments contain 172, 159, 78,
and 144 atoms. If these regions were used for
production QM/MM calculations, they would
represent larger QM regions than are usually
treated, though recent studies have favored big-
ger QM regions.47 A reduction of the QM region
size is possible when the MM region realistically
mimics the external region, such as through the
inclusion of capping atoms or the use of well
tuned MM potentials.

The procedure presented here requires no di-
rect user interaction, and is instead a general
workflow for studying any kind of system. This
generality is further shown in the supplemen-
tary information, as the calculations on each
system can be performed with the same script
by only changing the input geometry file. The
generality of this scheme makes it a promis-
ing approach for high-throughput calculations
aimed at complexity reduction.
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6 Evaluating The Coarse

Grained View of the Sys-

tem

We now continue our analysis on these systems
by performing a more information centric anal-
ysis of the system fragments. We will begin by
studying the transferability of fragments, and
comparing them to the amino acids of proteins.
We will then generate graph like views of each
system, and see how choices of fragment pu-
rity and embedding environment affect various
graph metrics.

6.1 Fragmentation Comparison
of Proteins

For 1CRN, a different natural fragmentation
might be to use the amino acid sequence of the
protein instead of the auto fragmentation pro-
cedure. We have computed the purity values
of those fragments as generated by the FU pro-
gram,48 and plotted them in Fig. 6. We see that
by our purity criteria of Π > −0.05, the amino
acids are a reasonable system fragmentation,
which is not surprising for this kind of model
system. Nonetheless, the auto fragmentation
procedure requires no a priori fragment infor-
mation, making it applicable to a wider class of
systems. When additional fragmentation guid-
ance is available, the two approaches can be
combined if a coarser grained view of the system
is desired. For example, with the 1CRN sys-
tem, tightening the threshold from Π = −0.05
to −0.025 to −0.01 reduces the number of frag-
ments from 39 to 18 to 5. When starting from
the amino acids for the Laccase system, the
drop is from 452 to 215 to 77 fragments.

This result further demonstrates that some
arbitrariness exists in the choice of system frag-
mentation. This might hint that there exist
a broader set of descriptors for describing bi-
ological systems than just the amino acid se-
quence. Using the open babel code,49,50 we can
for each fragment compute a molecular finger-
print, and then compute a similarity score be-
tween each pair of fingerprints. For this study,
we will use the FP2 fingerprint, which creates
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Figure 6: Purity indicator values for the 1CRN
system when fragmented by amino acid using
the FU program.

a binary string representation of a fragment
based on short linear and ring molecule sub-
structures, and evaluate the similarity between
those strings using the Tanimoto coefficient (see
Willet51 for an overview of this approach). In
Fig. 7, we demonstrate this approach by first
comparing the fragments of 1CRN using the
auto fragmentation tool and the amino acid se-
quence. We see that these fragments are indeed
significantly different, despite the fact that both
the amino acid partitioning and the auto frag-
mentation procedure result in the same num-
ber of fragments (39). Next, we investigate the
transferability of fragments by comparing the
fragments of 1CRN with Laccase. For Lac-
case, it is difficult to determine an appropriate
fragmentation for the copper atoms without a
tool like the auto fragmentation procedure, but
for this comparison we have by hand merged all
the copper atoms with their neighboring cys-
tine amino acids. When comparing the amino
acids of 1CRN and Laccase, we unsurpris-
ingly identify many similar fragments. How-
ever, we also compare the fragments of 1CRN
generated with the auto fragment tool, and
find that there are also many similar fragments
shared between the two systems. Thus, while
the auto fragmentation tool identifies new kinds
of fragments, these fragments remain transfer-
able, making them a promising source of new
descriptors that can more adequately be put in
relation with QM calculations in a given com-
putational setup.
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Figure 7: Histogram of Tanimoto coefficients
when comparing the fragments of 1CRN with
Laccase. Note that Tanimoto coefficient val-
ues range from 0 to 1, with values closer to 1
being more similar.

6.2 Graph Metrics on General
Systems

We finish this demonstration by turning to the
generation of graph like views of a system. For
each of the example systems, we once again
perform auto fragmentation with a Π = −0.05
cutoff and use this fragmentation to define the
graph’s nodes. Then, for each fragment, we
compute its embedding environment at various
thresholds, and use that environment to define
the edges of the graph.

We may examine the graph characteristics of
a system with a change in purity indicator cut-
off while keeping the bond order cutoff fixed.
By increasing the purity cutoff closer and closer
to zero, we can generate low resolution views of
a system’s connectivity. This process is demon-
strated in Fig. 8. In this example, we begin
with the connectivity of the 1CRN system with
the fragments defined by the amino acids and
the connectivity with a 0.01 bond order cutoff.
As we push the cutoff closer to zero, the shape
of the graph changes significantly, resulting in
a simpler and simpler picture of the system.

From this representation, we compute some
sample graph metrics: the average shortest
path length and the average clustering coef-
ficient.53 These metrics have been applied to
proteins in the past, as reviewed by Estrada.54

In most previous studies, however, the focus

Cutoff = -0.05 Cutoff = -0.025

Cutoff = -0.01 Cutoff = -0.005

Figure 8: Coarse graining of the 1CRN graph
structure starting with the amino acids frag-
ments. The diagrams here are generated using
the Kamada-Kawai algorithm52 for visual clar-
ity, so node locations are not related to atomic
positions in space.

was on long range van der Waals interactions.
Other authors have used interaction energies
such as those derived from forcefield calcula-
tions.55 Sladek and coworkers recently utilized
pair interaction energies56 to define network
edges, and showed how the properties analyzed
using an energy based model differ from stan-
dard distance based analysis.57

Values of the average shortest path length
metric are reported in Fig. 9. Note that in
the analysis presented here, the average short-
est path length is defined in terms of the num-
ber of edges traversed, without consideration
to physical inter-fragment distances. From this
figure, we find additional supporting evidence
for a bond order cutoff of 0.01 for the embed-
ding environment. When a smaller value is
used, the graphs of these systems are no longer
fully connected. Even with a bond order cutoff
value of 0.1, the MG system is disconnected, re-
flecting how pure the water molecule fragments
are. The two proteins are connected as soon as
any bond order is considered, but the average
shortest path length quickly decreases with a
decrease in fragment bond order cutoff, leading
to a very different description of the system.

The average clustering coefficients are plot-
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Figure 9: Average shortest path length for
each system at various cutoff values. The path
length of a disconnected system is ∞, so those
values are not shown here.

ted in Fig. 10. The low average clustering
value for the MG system reflects the general
lack of structure of the water molecules, while
the other systems are significantly more con-
nected. For both of these metrics, we find
inflection points with a bond order cutoff of
around 0.01 or 0.001, after which the measures
increases/decrease linearly with the fragment
bond order. However, the slope of the linear
region depends on the system. Thus, while net-
works might be generated with large distance
cutoffs to incorporate long range interactions,
the fundamental structure of graphs can be un-
derstood by looking at the short ranged cova-
lent interactions using the fragment bond order
tool.
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Figure 10: Average clustering coefficients for
each system at various cutoff values.

Next, we apply this approach to all four ex-

ample systems using the fragments defined by
the auto fragmentation procedure. For each of
these systems, we compute the average short-
est path length at various purity cutoffs, and
plot it against the log of the number of frag-
ments in Fig. 11. For the MG system, certain
values of the network were disconnected, so an
average was taken over each subgraph. For a
network with small world characteristics, the
average shortest path length should grow loga-
rithmically with the number of nodes.58 Intrigu-
ingly, we do see such growth for the two pro-
tein molecules, though with an inflection point
around a purity indicator cutoff of Π = −0.025.
For the other two systems, there also appears
to be two distinct patterns centered at a pu-
rity value of Π = −0.025. This suggests that
there is a cross over point at which a view of
the local structure is lost and the global struc-
ture dominates the description of the molecu-
lar system. In the complexity reduction frame-
work proposed here, this information can be
extracted using the BigDFT code, enabling in-
sight into system properties at the desired level
of detail.
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Figure 11: The average shortest path length vs.
the number of fragments for each system at var-
ious purity value levels. The dotted vertical line
represents the number of nodes when a purity
value of Π = −0.025 is used.
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7 Fragmentation vs. Em-

bedding

In the framework introduced thus far, users
have two degrees of freedom to consider for
building a coarse grained model of a system.
The first is the coarseness of the fragments, as
determined by the purity indicator. The sec-
ond is the choice of embedding environment as
defined by the fragment bond order. The bal-
ance between these two variables depends on
the choice of observable one wishes to compute,
as we will demonstrate through the following
case study: computing the density of states
(DoS) of the Laccase system.

First, we consider the problem of computing
the density of states of a system projected on to
a given fragment (PDoS). In the framework of
fragmentation, the projected density of states
can be computed by the formula

ρF(ω) =
∑
i

tr
(
ŴF |ψi〉 〈ψi|

)
δ(εi − ω) , (18)

where |ψi〉 are the Kohn-Sham orbitals of en-
ergy εi. It is indeed possible to compute the
PDoS for any arbitrary fragment. However, we
know that the DoS of a given fragment will be
influenced by its environment, with the degree
of influence determined by the purity indica-
tor of that fragment. When a fragment is not
pure, if we recompute that fragment in isola-
tion, we can’t expect to reliably reproduce the
PDoS embedded in the full system. However,
by including more and more environment in a
buffer region using the fragment bond order as
a guide, we can eventually reach a converged re-
sult, as shown in Fig. 12. Thus, the bond order
tool allows us to make up for the lack of purity
of a given fragment by performing embedding
calculations.

Now we turn to computing the full DoS of
the entire systems. Here we might be tempted
to use the same approach (i.e. for each frag-
ment, we compute its embedding environment,
perform an embedded calculation, compute the
projected DoS, and finally sum up the values).
However, an alternative approach would be to
simply use the auto fragmentation procedure
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Figure 12: The projected density of states of
the target region of the Laccase protein com-
puted with different embedding environments.
Plot was obtained using a smearing parameter
of 0.3 eV and each line has been shifted for vi-
sual clarity.

with a stricter cutoff, and use no embedding
environment, as shown in Fig. 13. The ben-
efit of an embedding environment is that the
target region has an effective purity value that
is closer to zero than by itself. However, by
building the embedding environment, we also
improve the purity value of each of the embed-
ding fragments, resulting in a total purity value
for a joint target-embedding fragment that is
much closer to zero than the lone target. Thus,
a non-buffer approach can reduce the amount of
repeated work from overlapping environments,
with the trade-off depending on the scaling of
the computational cost with the system size.

The difference between computing the DoS
and the PDoS is that in one case we care about
a system level observable and in the other a frag-
ment level pseudo-observable. For each calcula-
tion quantity, we should consider the level of de-
tail it is computed at. The fragment dipole and
the PDoS are fragment level quantities, whereas
the DoS or the total energy are system level
quantities. The purity indicator gives us a mea-
sure that informs whether such quantities can
be computed independent of the environment.
In cases where it is not possible, the bond order
tool can define a suitable embedding such that
one reproduces the desired value.
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Figure 13: The density of states of the full Lac-
case protein computed as a composite from
subsystems computed at different purity values.
Plot was obtained using a smearing parameter
of 0.3 eV and each line has been shifted for vi-
sual clarity.

8 Discussion

In this work, we have presented a complex-
ity reduction scheme which takes large, hetero-
geneous systems, and uses the results of lin-
ear scaling DFT calculations to generate coarse
grained models. We have demonstrated how
this approach can be applied without bias to
different classes of systems with no a priori
user information. Furthermore, by applying
this method to generate model systems of a tar-
get in an environment, and using these models
to accurately compute fragment observables, we
have shown that this approach provides chem-
ically meaningful descriptions of system inter-
actions.

Fragments form the basis for many low order
scaling methods for computing large systems.
Those methods compute the properties of a sys-
tem from the ground up, using either prede-
fined fragments (for example, using the amino
acid structure of proteins30,59), fragments re-
fined using distances between fragment ele-
ments,60–62 cheminformatics,63 or bonding in-
formation in combination with chemically moti-
vated rules64–67 to define the partitioning. A re-
cent review by Collins and Bettens27 describes
many of these types of methods. The approach
presented here differs in that it is instead works
from the top down, using the results of linear

scaling calculations to determine system frag-
ments. This work is thus more focused on post-
processing systems for chemical understanding
than on fast calculations. Nonetheless, our
approach can serve as a complement for such
methods by defining initial partitioning and em-
bedding systems, which then can be treated at
a higher level or theory, have their geometry op-
timized, or used to perform molecular dynamics
with such fragment methods.

The interaction between fragments also has
been a topic of many studies, in particular when
trying to determine intermolecular forces for
studying reactions.56,68,69 This work goes back
to the pioneering development of the theory of
atoms in molecules,70 as the critical points in
the electron density can be used to define which
atoms interact.71–77 It has been continued by re-
cent work in the framework of partition density
functional theory78 with a focus on describing
chemical reactivity.79,80 Similar to the method-
ology presented here, these works also can de-
scribe both covalent and non-covalent interac-
tions between fragments, though the focus is on
an atomic level. The methodology we have pre-
sented here is instead density matrix based, and
works at a coarser, fragment level view. Par-
titioning is achieved through a fall off of the
density matrix in the linear scaling regime.

In this work, three classical ideas have re-
emerged: valence, population analysis, and
bond order (see Mayer81 for a review). At the
time when these ideas were developed, calcula-
tions on systems with even hundreds of atoms
remained out of reach, allowing for careful anal-
ysis of individual atomic contributions. In this
work, we have taken those ideas which were de-
fined at the atomic level of granularity and re-
defined them for molecular fragments. By mov-
ing to the fragment level, not only is it possible
to derive more chemically meaningful observ-
ables, but also to enable coarse grained analysis
of large systems.

In the following few years, the next genera-
tion of exascale class supercomputers promises
to enable the routine application of fully quan-
tum mechanical methods to systems with tens
of thousands of atoms. With this, information
derived from the electronic structure will begin
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to have an impact on entirely new disciplines.
One piece of information from these calcula-
tions is the locality of the electronic structure,
which we have used to partition systems and
describe interactions between fragments. The
novel fragments generated by this approach and
the graph structures that tie them together are
promising new tools for theoretical studies. Our
future work will focus on applying this method-
ology to an even wider class of systems, in hopes
of generating novel design rules and insights
into large, heterogeneous systems.
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A DFT Calculation Details

Calculations of each system were performed
with the BigDFT code83 using density func-
tional theory in the linear scaling mode46,84

with the PBE85 exchange and correlation
functional and free boundary conditions.
Hartwigsen-Goedecker-Hutter (HGH)86,87

pseudopotentials were used with 11 and 2
valence electrons for copper and magnesium
respectively. Fragmentation and bond order
calculations have been implemented in a new
python based pre/post-processing library called
PyBigDFT. These calculations may be run us-
ing python notebooks, as have been included
in the supplementary materials along with all
geometry files.

In the linear scaling mode of BigDFT, finite
distance based cutoffs for kernel values are em-
ployed to maintain the sparsity of the hamilto-
nian and density matrix.88 We note that these
distances are much larger than the embedding
region sizes tested in the preceding sections,
and as such these a priori cutoffs should not
affect the resulting analysis. One of the key
steps for this analysis is computing the product
of the density matrix and overlap matrix. As
an extra precaution, we compute this matrix
with no distance cutoff, instead filtering values
of magnitude below 1× 10−6 using the NTPoly
library.89

B Supporting Information

The python notebooks used to setup calcula-
tions, perform analysis, and generate figures
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have been included in the supporting informa-
tion.

• CR2.ipynb a python notebook for per-
forming a complexity reduction analysis
on any of the systems used in this paper.

• CR2-DoS.ipynb a python notebook for
performing the density of states case
study.

• Summary.ipynb a python notebook for
generating summarizing figures.

In addition to the actual notebooks, static web-
sites generated by these notebooks have been
included (see the .html files in the directory
Static/) for each of the system considered.

Geometry files in the XYZ format, as well as
BDA files used to identify amino acid fragments
(only of the proteins systems) have also been
included in the Geometries/ and BDA/ di-
rectories, respectively.
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