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Abstract—Cache-aided content delivery is studied in a multi-
server system with P servers and K users, each equipped with
a local cache memory. In the delivery phase, each user connects
randomly to any ρ out of P servers. Thanks to the availability
of multiple servers, which model small-cell base stations (SBSs),
demands can be satisfied with reduced storage capacity at each
server and reduced delivery rate per server; however, this also
leads to reduced multicasting opportunities compared to the
single-server scenario. A joint storage and proactive caching
scheme is proposed, which exploits coded storage across the
servers, uncoded cache placement at the users, and coded
delivery. The delivery latency is studied for both successive and
parallel transmissions from the servers. It is shown that, with
successive transmissions the achievable average delivery latency
is comparable to the one achieved in the single-server scenario,
while the gap between the two depends on ρ, the available
redundancy across the servers, and can be reduced by increasing
the storage capacity at the SBSs. The optimality of the proposed
scheme with uncoded cache placement and MDS-coded server
storage is also proved for successive transmissions.

Index Terms—Coded caching, distributed storage, partial con-
nectivity, multi-server caching, femtocaching.

I. INTRODUCTION

Coded caching and distributed storage have received signif-
icant attention in recent years to exploit the available memory
space and processing power of individual network nodes to
increase the throughput and efficiency of data availability.
With proactive caching, part of the data can be pushed to
nodes’ local cache memories during off-peak hours, called the
placement phase, to reduce the burden on the network during
peak traffic periods, called the delivery phase [1] - [12]. A
different type of coded caching also improves the delivery
performance in the so-called “femtocaching” scenario [4],
where multiple cache-equipped small-cell base stations (SBSs)
collaboratively deliver contents to users. Coding for distributed
storage systems has been extensively studied in the literature
(see, for example, [13]), and in the femtocaching scenario,
ideal maximum distance separable (MDS) codes allow users
to recover contents by collecting parity bits from only a subset
of SBSs they connect to [4].

In this work, we combine distributed storage at the SBSs,
similar to the “femtocaching” framework [4], with cache
storage at the users, and consider coded delivery over error-
free shared broadcast links [2]. We consider a library of N files
stored across P SBSs, each equipped with a limited-capacity
storage space (see Fig. 1). Unlike the existing literature, we
consider a boolean random connectivity model [5]: during the
delivery phase, each user connects only to a random subset

Part of this work was presented at the IEEE Wireless Communications and
Networking Conference (WCNC) in 2018 [2].

of ρ SBSs, where ρ ≤ P . This may be due to the density
of distribution of SBSs, physical variations in the channel, or
due to resource constraints. Most importantly, the connections
that form the network topology are not known in advance
during the placement phase; therefore, the cache placement
cannot be designed for a particular network topology. Storing
the files across multiple SBSs, and allowing users to connect
randomly to a subset of them results in a loss in multicasting
opportunities for the servers, indicating a trade-off between the
coded caching gain and the flexibility provided by distributed
storage across the servers, which, to the best of our knowledge,
has not been studied before.

On the other hand, the presence of multiple servers may
improve the latency if user requests can be satisfied in parallel.
Accordingly, two scenarios are discussed depending on the
delivery protocol. If the servers transmit successively, i.e.,
time-division transmission, the total latency is the sum of the
latencies on each link in delivering all the requests. If the
servers operate in parallel, then the latency is given by the
link with the maximum latency.

We propose a practical coded storage and delivery scheme
that exploits MDS coded storage across servers simultaneously
with coded caching and delivery to users. In the successive
transmission scenario, we show that the cost of the flexibility
of distributed storage is a scaling of the latency by a constant.
We also characterize the average worst-case latency (over all
user-server associations) of the proposed scheme by assuming
that the users connect to a uniformly random subset of the
servers; and show that it is relatively close to the best-case
performance, which is the single-server centralized delivery la-
tency derived in [1], achieved when all the users connect to the
same set of servers, maximizing the multicasting opportunities.
We observe that, as the server storage capacities increase,
the average delivery latency vs. user cache memory trade-
off improves, approaching the single-server performance. We
give an analytical expression to compute the average delivery
latency for different server storage capacities, which is shown
to give a fairly accurate estimate of the expected delivery
latency when the number of servers is large. We then consider
the delivery latency when the servers can transmit in parallel.
We characterize the achievable average worst case delivery
latency of the proposed coded storage and delivery scheme as
a function of the server storage capacity for different ρ values.

In a related work [10], the authors study coded caching
schemes presented in [1] and [9] when parity servers are
available. The authors consider special scenarios with one and
two parity servers. They propose a scheme that stripes the
files into blocks, and codes them across the servers with a
systematic MDS code, and they also propose a scheme for the
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scenario in which files are stored as whole units in the servers,
without striping. In our work, we do not specify servers as
parity servers, and instead propose a scheme that generalizes
to the use of any type of MDS code and any number of storage
servers. We study the impact of the topology on the sum and
maximum delivery rates, and the trade-off between the server
storage capacity and the average of these rates.

In [11], the authors consider multiple servers, each having
access to all the files in the library, serving the users through
an intermediate network of relays. They consider the so-called
linear network model, in which the network topology is fixed
but unknown at the relay nodes. The authors study the delivery
latency considering parallel transmissions from the servers,
and show that there is a gain from using multiple servers when
the relay nodes employ simple random linear network coding.
Note that, our model considers both limited storage servers and
random network topology over the delivery network, which is
unknown during the placement phase, but known during the
delivery phase. Compared to the linear network model, our
model corresponds to an identity network transfer matrix, in
which the scheme of [11] does not provide any gains, since it
is not optimized for the realization of the topology.

Another line of related works study caching in combination
networks [12], [14], which consider a single server serving
cache-equipped users through multiple relay nodes. The
server is connected to these relays through unicast links,
which in turn serve a distinct subset of a fixed number of
users through unicast links. A combination network with
cache-enabled relay nodes is considered in [14]. In our paper,
we relax the symmetry of a standard combination network
and the assumption of a fixed and known network topology,
which would be unrealistic in many practical scenarios, to a
certain degree by allowing each user to connect to a random
fixed number of servers, thus breaking the symmetry from
the servers’ perspective while maintaining the symmetry from
the end-users’ perspective.

Notations. For two integers i < j, we denote the set {i, i+
1, . . . , j} by [i : j], while the set [1 : j] is denoted by [j].
Sets are denoted with the calligraphic font, and |A| denotes
the cardinality of set A. For A = {a1, a2, . . . , ap}, we define
XA , (Xa1 , . . . , Xap). 1E denotes the indicator function of
the event E, i.e., its value is 1 when the event E happens. bxc
denotes the largest integer less than or equal to x. dxe denotes
the smallest integer greater than or equal to x.

II. PROBLEM SETTING

We consider the system model illustrated in Fig. 1 with
P servers, denoted by S1,S2, . . . ,SP , serving K users, de-
noted by U1,U2, . . . ,UK . There is a library of N files
W1,W2, . . . ,WN , each of length F bits uniformly distributed
over [2F ]. Each user has access to a local cache memory of
capacity MUF bits, 0 ≤ MU ≤ N , while each server has a
storage memory of capacity MSF bits. The caching scheme
consists of two phases: placement phase and delivery phase.
We consider a centralized placement scenario as in [1], which
is carried out centrally with the knowledge of the servers

S1 S2 S3

U1 U2 U3 U4

(a) ρ = 2, q1 = 2, q2 = 4, q3 = 2.

S1 S2 S3

U1 U2 U3 U4

(b) ρ = 2, q1 = 4, q2 = 4, q3 = 0 (best topology (for successive
transmissions), worst topology (for parallel transmissions)).

S1 S2 S3

U1 U2 U3 U4

S1 S2 S3

U1 U2 U3 U4

(c) ρ = 2, q1 = 3, q2 = 3, q3 = 2 (worst topology (for successive
transmissions), best topology (for parallel transmissions))

Fig. 1: Examples of different network topologies for P = 3
and K = 4 with ρ = 2.

and the users participating in the delivery phase. However,
neither the user demands, nor the network topology is known
in advance during the placement phase. In the delivery phase,
we assume that each user randomly connects to ρ servers out
of P with a uniform distribution over all ρ−subsets, where
ρ ≤ P , and requests a single file from the library. This is
an instance of a boolean model network [5], which is a first-
order approximation of isotropic wireless communication. A
user connects to an SBS independently of the other SBSs,
where the SBSs are assumed to be uniformly distributed, if
the received SNR from that SBS is above a certain threshold,
and ρ is determined by the density of SBSs or other resource
constraints. We define α , ρ

P as the connectivity of the
network, where 0 ≤ α ≤ 1. For j ∈ [K], let Zj denote the set
of servers Uj connects to, where |Zj | = ρ, and dj ∈ [N ]
denotes the index of the file it requests. For example, in
Fig. 1(a), Z1 = {S1,S2}, Z2 = {S1,S2}, Z3 = {S2,S3}
and Z4 = {S2,S3}. Let the demand vector be denoted by
d , (d1, d2, ..., dK). The topology of the network, i.e., which
users are connected to which servers, and the demands of the
users are revealed to the servers at the beginning of the delivery
phase.

The complete library must be stored at the servers in a
coded manner to provide redundancy, since each user connects
only to a random subset of the servers. Since any user should
be able to reconstruct any requested file from its own cache
memory and the servers it is connected to, the total cache
capacity of a user and any ρ servers must be sufficient to
recover the whole library; that is, we must have MU+ρMS ≥
N .

Let Kp denote the set of users served by Sp, for p ∈ [P ],
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and define the random variable Qp , |Kp|, which denotes the
number of users served by Sp. We shall denote a particular
realization of Qp as qp and define q , (q1, . . . , qp), where
we have

∑P
p=1 qp = Kρ. For example, in Fig. 1(a), we have

K1 = {U1,U2},K2 = {U1,U2,U3,U4},K3 = {U3,U4},
and q = (2, 4, 2). In the delivery phase, server Sp transmits
message Xp of size RpF bits to the users connected to it,
i.e., the users in set Kp, over the corresponding shared link.
We assume that each server is allocated a separate orthogonal
delivery channel, and the message it transmits is received by
all the users connected to this server. The message Xp is a
function of the demand vector d, the network topology, the
storage contents of server Sp, and the cache contents of the
users in Kp. User Uk receives the messages XZk , {Xp :
p ∈ Zk}, and reconstructs its requested file Wdk using these
messages and its local cache contents.

A. Formal Problem Statement
We now provide the formal definition of the caching prob-

lem. Let {Wn}Nn=1 be N independent random variables each
uniformly distributed over [2F ] for some F ∈ N. Each Wn

represents a file of size F bits. Let Rp, p ∈ [P ], be the number
of bits, normalized by the size of a file, transmitted by server
p ∈ [P ] during the delivery phase. A (MS ,MU , R1, . . . , RP )
storage and caching scheme consists of P server storage
functions, K caching functions, P

(
P
ρ

)K
encoding functions,

and K
(
P
ρ

)K
decoding functions.

The caching function

φk : [2F ]N → [2bFMUc], k ∈ [K], (1)

maps the library {Wn}Nn=1 into the cache contents, of user Uk
during the placement phase:

Vk , φk(W1, . . . ,WN ) (2)

The server storage function

σp : [2
F ]N → [2bFMSc], p ∈ [P ] (3)

maps the library {Wn}Nn=1 into the storage of server Sp:

Yp , σp(W1, . . . ,WN ). (4)

We define a separate encoding function for each server depend-
ing on the network topology. Hence, the encoding function for
server Sp, p ∈ [P ],

ψp{Kp}Pp=1
: [N ]K × [2bFMSc]→ [2bFRpc] (5)

maps the demand vector and the memory contents of server
Sp to message Xp, i.e.,

Xp , ψp{Kp}Pp=1
(d, Yp), (6)

which is delivered to the users in Kp during the delivery
phase. Finally, we define a separate decoding function for each
user depending on the network topology. Hence, the decoding
function for user Uk, k ∈ [K], is

µk({Zk}Kk=1)
:

[N ]K × [2bFRπk(1)
c]× · · · × [2bFRπk(ρ)

c]× [2bFMUc]→ [2bFc],
(7)

where πk(1), . . . , πk(ρ) denote the ρ servers in set Zk, maps
the demand vector d, the received signals XZk from the
servers in Zk, and the local cache content Vk to the estimate
Ŵdk , i.e.,

Ŵdk , µk({Zk}Kk=1)
(d, XZk , Vk) (8)

The probability of error for this scheme, for a fixed topology,
is defined as

max
d∈[N ]K

max
k∈[K]

Pr(Ŵdk 6=Wdk). (9)

We remark here that the storage and caching functions σp and
φk do not depend on the network topology, while the encoding
and decoding functions do.

Definition 1. The tuple (MS ,MU , R1, . . . , RP ) is said to be
achievable if for every ε > 0 and large enough file size F
there exists a (MS ,MU , R1, . . . , RP ) caching scheme with
probability of error less than ε.

Our goal is to minimize the delivery latency, which is
the time by which all the user requests can be satisfied.
Among other parameters, delivery latency also depends on
the operation of the SBSs. If each SBS transmits over an
orthogonal frequency band, the requests can be delivered in
parallel, and the delivery latency is given by Tpd = maxpRp.
If, instead, the servers transmit successively in a time-division
manner, which is suitable for user devices that are simple
and not capable of multihoming on multiple frequencies, the
normalized delivery latency will be given by Tsd =

∑P
p=1Rp.

Our goal will be to find the average worst-case delivery
latency, where the worst case refers to the fact that all the users
can correctly decode their requested files, independent of the
combination of files requested by them, and the averaging is
over all possible network topologies. Assuming that N ≥ K
(i.e., the number of files is larger than the number of users),
it is not difficult to see that all the users requesting a different
file corresponds to the worst-case scenario. We would also like
to remark that, under uniform file popularity, the probability
of experiencing this worst-case demand distribution increases
significantly with N , and approaches 1 for N values that one
expects to experience in practice.

III. CODED DISTRIBUTED STORAGE AND CACHING
SCHEME

We first note that our system model brings together aspects
of distributed storage and proactive caching/coded delivery.
To see this, consider the system without any user caches,
i.e., MU = 0, which is equivalent to a distributed storage
system with unreliable servers, where random P − ρ out of
P servers are inactive. It is known that MDS codes provide
much higher reliability and efficiency compared to replication
in this scenario [13]. On the other hand, when the servers
are reliable, i.e., ρ = P , our system is equivalent to the one
in [1], and coded delivery provides significant reductions in
the delivery latency. Accordingly, our proposed scheme brings
together benefits from coded storage and coded delivery. To
illustrate the main ingredients of the proposed scheme we
assume MS = N

ρ in this section, and extend to other server
capacities in later sections.
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(
K
t

)
segments of W1

W1,A2
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W 1
1,A2

,W 2
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, . . . ,W ρ
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Fig. 2: Segmentation, MDS coding and placement of files.

A. Server Storage Placement

We first describe how the files are stored across the SBS
servers in order to guarantee that each user request can be
satisfied from any ρ servers a user may connect to (see Fig. 2).
We define t , KMU

N , and assume initially that t is an integer,
i.e., t ∈ [0 : MU ]. The solution for non-integer t values will
be obtained through memory-sharing [1]. Each file is divided
into

(
K
t

)
equal-size non-overlapping segments. We enumerate

them according to distinct t-element subsets of [K], where
Wj,A denotes the segment of Wj that corresponds to subset
A. We have Wj =

⋃
A⊂[K]:|A|=tWj,A, j ∈ [N ].

Each segment is further divided into ρ equal-size non-
overlapping sub-segments denoted by W l

j,A, l ∈ [ρ]. The
ρ sub-segments of each segment are coded together using
a (P, ρ) linear MDS code with generator matrix G, giving
as output P coded subsegments for segment Wj,A, denoted
by Clj,A, l ∈ [P ]. Clj,A is a linear combination of the sub-
segments of the segment corresponding to subset A, of file
Wj . Clj,A will be stored in server Sl, ∀l ∈ [P ], j ∈ [N ],
and A ⊂ [K], |A| = t. Since each sub-segment is of length
F

ρ(Kt )
, every linear combination Clj,A is of the same length;

and hence, server storage capacity constraint of MSF = NF
ρ

is met with equality.

Remark 2. We assume that each user knows the generator
matrix of the MDS code to be able to reconstruct any coded
subsegment Clj,A from the uncoded segment Wj,A.

B. User Cache Placement

Using the placement scheme proposed in [1] for user caches,
each segment of a file, Wj,A, is placed into the caches of all
the users Uk for which k ∈ A, i.e., each user caches

(
K−1
t−1
)

segments of each file, or (K−1
t−1 )
(Kt )

NF = t
KN = MUF bits,

meeting the user cache capacity constraint.

C. Delivery Phase

We first make the following observation about the above
placement scheme: in the worst-case demand scenario, con-
sider any t+ 1 users. Any t out of these t+ 1 users share in
their caches one segment of the file requested by the remaining
user. Enumerate these subsets of t+1 users asHi, i ∈

[(
K
t+1

)]
.

Consider server Sp, p ∈ [P ], and one of the qp users connected
to it, say Uk. Then, for any subset Hi, that includes k, i.e.,

k ∈ Hi, the segment Wdk,Hi\{k} is needed by user Uk, but
is not available in its cache because k /∈ Hi \ {k}, while it is
available in the caches of the users in Kp

⋂Hi\{k}. The MDS
coded subsegment of Wdk,Hi\{k} stored by Sp is Cpdk,Hi\{k},
and since the users know the generator matrix G, each user
which has Wdk,Hi\{k} in its cache can reconstruct Cpdk,Hi\{k}
as well. Then, for each Hi that includes at least one user from
Kp, Sp transmits

Xp(Hi) =
⊕

k∈Kp
⋂Hi\{k}

Cpdk,Hi\{k}, (10)

where
⊕

denotes the bitwise XOR operation. Then,∣∣∣
{
i ∈
[(

K
t+1

)]
: k ∈ Hi

}∣∣∣ =
(
K−1
t

)
is the number of mes-

sages transmitted by server Sp that contain the coded version
of a segment requested by Uk, and is also equal to the number
of segments of Wdk not present in the cache of user Uk.
Overall, the message transmitted by Sp is given by

Xp =
⋃

i∈[( Kt+1)]:Kp
⋂Hi 6=φ

Xp(Hi). (11)

From the transmitted message Xp(Hi) in (10) for each set
Hi, user Uk can decode the MDS coded version Cpdk,Hi\{k}
of its requested segment Wdk,Hi\{k}. With the transmissions
from all the servers, Uk receives ρ coded versions of each
missing segment from the ρ servers it is connected to. Since
each segment is coded with a (P, ρ) MDS code, the user is
able to decode each missing segment of its request.

Note that each transmitted message Xp(Hi) by a server is
of length F/ ρ

(
K
t

)
bits. The number of messages transmitted

by Sp is
∣∣∣∣
{
i ∈
[(

K

t+ 1

)]
: Kp

⋂
Hi 6= φ

}∣∣∣∣ (12)

=

(
K

t+ 1

)
−
∣∣∣∣
{
i ∈
[(

K

t+ 1

)]
: Kp

⋂
Hi = φ

}∣∣∣∣ (13)

=

(
K

t+ 1

)
−
(
K − qp
t+ 1

)
. (14)

That is, server Sp transmits a total of Rp =
F/ρ

(K
t

) [( K
t+1

)
−
(
K−qp
t+1

)]
bits.

The delivery latency performance of this proposed coded
storage and delivery scheme with both successive and paral-
lel SBS transmissions will be studied in the following two
sections.

Remark 3. Due to the symmetry in the network across servers
and users, the delivery latency of this scheme depends only on
the q vector, not the particular network topology, i.e., what
matters is the number of users served by each server, not the
identity of the users. More specifically, all permutations of a
q vector, and the associated users, result in the same latency.
Hence, we define the “type” of a network topology as a vector
of dimension K+1, g, where gi denotes the number of servers
serving i users, for i = 0, 1, . . . ,K. We have 0 ≤ gi ≤ P ,∑K
i=0 gi = P and

∑K
i=0 igi = Kρ.
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IV. SUCCESSIVE SBS TRANSMISSIONS

In this section we assume that the SBSs share the same
communication resources, and hence, transmit successively to
avoid interference. When the SBSs transmit successively in
time, the normalized delivery latency is given by

Tsd ,
P∑

p=1

Rp =
1

ρ
(
K
t

)
P∑

p=1

[(
K

t+ 1

)
−
(
K − qp
t+ 1

)]
(15)

=
1

α

(K − t)
(t+ 1)

− 1

ρ
(
K
t

)
P∑

p=1

(
K − qp
t+ 1

)
(16)

=
1

α

(K − t)
(t+ 1)

− 1

ρ
(
K
t

)
K∑

i=0

gi

(
K − i
t+ 1

)
. (17)

To characterize the “best” and “worst” network topologies
that lead to the minimum and maximum delivery latency,
respectively, we present the following lemma without proof.

Lemma 4. For n1, n2, r ∈ Z+ satisfying r ≤ n1 and n1+2 ≤
n2, we have

(
n1
r

)
+

(
n2
r

)
≥
(
n1 + 1

r

)
+

(
n2 − 1

r

)
. (18)

The lemma above indicates the “convex” nature of the
binomial coefficients in (16); that is, the points (r,

(
r
r

)
),

(r + 1,
(
r+1
r

)
), . . . , (n1 + n2 − r,

(
n1+n2−r

r

)
) form a convex

region. From Lemma 4, it can be deduced that the second
summation term in (16) takes its minimum when maxp(qp) ≤
minp(qp) + 1, p ∈ [P ], i.e., the values of qp are as close
to each other as possible. This corresponds to the class of
topologies with the highest delivery latency (see Fig. 1(c) for
an example). The topology that requires the minimum delivery
latency of Tsd = K−t

t+1 is when qp is either 0 or K for each
server, or equivalently, when all the users are connected to the
same ρ servers (see Fig. 1(b) for an example).

Next we study the average worst-case normalized deliv-
ery latency, where the average is taken over all possible
network topologies. As we have seen above, the delivery
latency depends on the topology, and for a given topology, the
“worst-case” delivery latency refers to the worst-case demand
combination when each user requests a different file. Note that,
in the worst case, due to the symmetry in the network and the
proposed caching and delivery scheme, the latency depends
only on the type of the network topology. We further assume
that the probability of having any network of the same type
is the same.

Lemma 5. Let wi be the probability of exactly i users being
served by a server; that is, wi = Pr{qp = i}, p ∈ [P ]. We
have

E[gi] = wiP. (19)

Proof: The number of servers serving exactly i users, gi,
can be written as

gi =

P∑

p=1

1{qp=i}. (20)

Taking expectation on both sides, we have

E[gi] =
P∑

p=1

Pr{qp = i} (21)

= wiP. (22)

The following theorem presents the average normalized
worst-case delivery latency of the proposed scheme under suc-
cessive transmissions, which follows by taking the expectation
of both sides of Eq. (17) and Lemma 5.

Theorem 6. The average worst-case normalized delivery
latency of the proposed scheme over all topologies under
random user-server association is given by

E[Tsd] =
1

α

(K − t)
(t+ 1)

− 1

α
(
K
t

)
K∑

i=0

wi

(
K − i
t+ 1

)
. (23)

Since we have assumed uniform random connectivity, we
have wi =

(K
i

)(P−1
ρ−1

)i(P−1
ρ

)K−i/(Pρ)K =
(
K
i

)
αi(1− α)K−i. The

average worst-case latency is given in the following corollary.

Corollary 7. The average worst-case normalized delivery
latency with successive transmissions under uniformly random
user-server association is given by

E[Tsd] =
K − t
t+ 1

[
1− (1− α)t+1

α

]
. (24)

Proof: By plugging in wi =
(
K
i

)
αi(1 − α)K−i in Eq.

(23), we obtain the above simplified expression.

A. Redundancy in Server Storage Capacity

In the analysis above, we have set the server storage capacity
to MS = N

ρ . On the other hand, for a given user cache capacity
MU , the minimum server storage capacity that would allow
the reconstruction of any demand combination is given by
MS = N−MU

ρ . In this case, we cache the same MU

N fraction of
the library in all the user caches during the placement phase,
and deliver the remaining fraction of the demands from the
servers, which is identical to the scheme in [14] when the
user and its connected servers have just enough space to store
the entire library. The worst-case delivery latency in this case
is given by Tsd = K

(
1− MU

N

)
= K − t.

Next, we consider the case when there is redundancy in
server memories; that is, Nρ < MS ≤ N . Assume that MS =
N
ρ−z for some integer z ∈ [ρ − 1]. Define α̂ , ρ−z

P . Since
α is defined as the connectivity of the network, α − α̂ is the
storage redundancy. For non-integer values of z, the solution
can be obtained by memory-sharing.

In this case, a (P, ρ−z) MDS code is used for server storage
placement, allowing each user to reconstruct any requested file
by connecting to ρ − z servers. The user cache placement is
done as in the previous section. In the delivery phase, each
user randomly connects to ρ servers. We now have a degree
of freedom thanks to the additional storage space available
at each server. Each user can obtain a segment from any
ρ − z of the ρ servers it is connected to by receiving one
coded subsegment from each of them. The choice of the
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1 1 1 0 0

1 1 1 0 1

0 1 1 1 0

0 0 1 0 1

1 0 0 1 1

1 1 0 1 0

0 0 0 1 1







S1

S2

S3

S4

S5

S6

S7

U1 U2 U3 U4 U5

Fig. 3: An example 7 × 5 incidence matrix (P = 7,K = 5)
with ρ = 4.

servers that deliver the coded subsegments to the users is made
such that the multicasting opportunities across the network are
maximized. We construct an incidence matrix A of dimensions
P × K such that aij = 1 if Si is connected to Uj , aij = 0
otherwise. Consider the (t + 1)−element subset Hi, and the
file segments Wdk,Hi\{k},∀k ∈ Hi. Consider the columns of
A corresponding to the users in Hi and the matrix Q formed
by them. Define the minimum cover of Hi as the smallest l for
which a l× (t+1) submatrix of Q has at least ρ− z non-zero
values in each column. The servers corresponding to the l rows
of this submatrix have to transmit one coded message each to
satisfy the requests for the missing segments corresponding
to Hi. Therefore, the total number of transmissions required
to deliver the segments Wdk,Hi\{k}, k ∈ Hi, is equal to the
minimum cover of Hi.

As an example, consider the incidence matrix as shown in
Fig. 3, which corresponds to a system with P = 7 servers
and K = 5 users, where each user connects to ρ = 4 servers.
Assume that the server storage capacity is MS = N

ρ−2 and
t = 1. In this setting, coded subsegments of requested files
can be delivered to t+ 1 = 2 users through multicasting, and
it is sufficient for each user to receive coded segments from
ρ − 2 = 2 servers. Then, for the user set Hi = {1, 2}, we
consider the submatrix corresponding to the columns 1 and 2
and rows 1 and 2 (marked by the blue dashed lines in Fig. 3),
which is the smallest submatrix satisfying the condition that
each column has at least ρ− z = 2 1s. Hence, the minimum
cover for Hi = {1, 2} is equal to the number of rows of this
submatrix, that is, 2. For Hi = {3, 4} (marked by the red
dashed lines in Fig. 3), the minimum cover is 3. Thus, from
(10), for segments Wdk,{3,4}\{k}, k ∈ {3, 4}, S3 transmits
the message X3({3, 4}) =

⊕
k∈{3,4} C

3
dk,{3,4}\{k}, S4 trans-

mits X4({3, 4}) = C4
d3,{4}, and S5 transmits X5({3, 4}) =

C5
d4,{3}. The total number of transmissions is 3. We can go

through all the (t + 1)− element subsets of the users and
identify for each of them the minimum cover. We note that
in the successive transmission scenario, the total latency does
not depend on the server transmitting each subsegment, since
the contribution to the total latency is the same. In the above
example servers S1 and S6 could also deliver the two coded
subsegments to users U1 and U2. The selection of the servers
matters in the case of parallel transmissions.

Pβt+1 Pβt Pβt−1 Pβt+1−u

l

Fig. 4: The ordering of servers to count the minimum cover.
The dashed line indicates the point at which enough servers
have been counted to deliver α̂ coded subsegments to all users
in H.

B. Performance analysis

In this section, we derive an analytical expression for the
expected delivery latency in the asymptotic regime, i.e., when
P →∞, while α and α̂ are fixed. Consider a particular subset
H of t+ 1 users. Define βi as the fraction of servers serving
i users in H, i = 0, 1, . . . , t+ 1. Thus, we have

βi =
1

P

P∑

p=1

1{|H∩Kp|=i}. (25)

Taking expectation on both sides of Eq. (25), we have

E[βi] =
1

P

P∑

p=1

E[1{|H∩Kp|=i}] (26)

=
1

P

P∑

p=1

Pr(|H ∩ Kp| = i) (27)

= Pr(|H ∩ Kp| = i) (28)

=

(
t+ 1

i

)
αi(1− α)(t+1−i), (29)

where (28) follows due to the symmetry across all the servers.
By the law of large numbers, βi → E[βi] for all i ∈ [K], as
P → ∞. Also, the topology becomes symmetric across all
users as P → ∞, i.e., almost all user subsets of the same
size are served by the same number of servers. We group the
servers serving the same number of users and arrange them in
the order as illustrated in Fig. 4, where the first Pβt+1 servers
serve t + 1 users in H, the next Pβt servers serve exactly t
users in H, and so on. To compute the minimum cover l, i.e.,
the minimum number of servers that are needed to deliver α̂
coded subsegments to each user in H, we start counting from
the left, until each user in H collects α̂ coded subsegments.
For some u ∈ [0 : t], we count till the (u+1)-th set of servers
which serve t+1−u users in H, as in Fig. 4. When counting
the set of servers serving t+1−u users, note that, according
to our scheme, the t+1−u users can each extract one coded
subsegment from a message transmitted by a server in that set.
Therefore, d t+1

t+1−ue servers are required to serve one coded
subsegment each to the t + 1 users in H. Define δ as the
number of coded subsegments required by a single user in H
from the set of servers serving t+1− u users. Therefore, for
P →∞, the minimum cover can be written as

l ≈ P
u−1∑

j=0

βt+1−j + δ

⌈
t+ 1

t+ 1− u

⌉
(30)

for some u ∈ [0 : t], where (30) follows thanks to the symme-
try across users. Note that the above analysis is asymptotic,
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and does not hold in general for a finite P . Since a message
transmitted by a server serving i users in H delivers i coded
subsegments in total to the i users, the total number of coded
subsegments delivered by the l servers that form the minimum
cover for the users in H must be at least (t+ 1)α̂; that is,

P

u−1∑

j=0

(t+ 1− j)βt+1−j + δ
′
⌈

t+ 1

t+ 1− u

⌉
≥ (t+ 1)Pα̂,

(31)

where δ
′
, (t + 1 − u)δ. The value of u is determined by

solving for

0 ≤ (t+ 1)Pα̂− P
u−1∑

j=0

(t+ 1− j)βt+1−j

≤(t+ 1− u)βt+1−u. (32)

From Eq. (29) and the asymptotic convergence of βi to its
expectation, we have
u−1∑

j=0

(t+ 1− j)βt+1−j

P→∞→
u−1∑

j=0

(
t+ 1

t+ 1− j

)
(t+ 1− j)α(t+1−j)(1− α)j

=αt+1(t+ 1)

u−1∑

j=0

(
t

s

)(
α

1− α

)−j
(33)

We substitute (33) into (32) to solve for u. Having first
determined u from Eq. (32), and then δ from (31), we can
find the minimum cover l from Eq. (30) for P → ∞. The
delivery latency can thus be estimated as

E[Tsd] =
1

(ρ− z)

(
K − t
t+ 1

)
l, (34)

where the factor 1
(ρ−z)

(
K−t
t+1

)
is obtained by multiplying the

normalized size of each coded subsegment, given by 1

(ρ−z)(Kt )
,

with the number of (t + 1)−user subsets, given by
(
K
t+1

)
. It

will be seen in Section VII that Eq. (34) provides a fairly
accurate estimate of the expected delivery latency when the
number of servers P is large.

V. LOWER BOUND

In this section, we derive a tight lower bound on the
minimum expected delivery latency with uncoded cache place-
ment, coded distributed storage in the servers, and successive
transmissions, which shows the optimality of the caching and
delivery scheme proposed in Section IV in certain regimes.
Following [15], we will first represent the problem as a set of
index coding problems.

In the index coding problem [17], a sender wishes to
communicate an independent message Mj , j ∈ [B], uniformly
distributed over [2nrj ], to the jth user among B users by
broadcasting a message Xn of length n. Each user j knows
a subset of the messages targeting these B users, indicated
by Bj ,Bj ⊂ {M1, . . . ,MB}, referred to as side information.

A rate tuple (r1, . . . , rB) is achievable, for large enough
n, if every user can restore its desired message with high
probability based on Xn and its side information. The index
coding problem can be represented as a directed graph G
with B nodes, where node i represents message Mi, and a
directed edge connects node i to node j if user j knows
message Mi as side information. For our problem setting,
where we have the file library {Wi}Ni=1, each file Wi, i ∈ [N ],
of size F bits is divided into 2K non-overlapping segments
denoted by Wi,A, A ∈ 2[K], where 2[K] indicates the power
set {φ, {1}, {2}, {3}, {1, 2} , . . . , [K]}. The segment Wi,A
denotes the part of file Wi cached exclusively by users in
set A. This is the most general representation of an uncoded
caching scheme at the users. For each demand vector d with
distinct requests, corresponding to the worst case scenario, we
consider an index coding problem with K2K−1 independent
messages, each of which represents a segment requested by
a particular user and cached by a different subset of the
remaining users.

We generate a directed graph with K2K−1 nodes cor-
responding to these messages, such that, for i 6= j and
Ai ⊂ [K] \ {i} and Aj ⊂ [K] \ {j}, there is a directed
edge from node Wdi,Ai to Wdj ,Aj , i 6= j, if user Uj caches
the segment Wdi,Ai ; that is, if j ∈ Ai. In the single server
centralized setting, we get a lower bound using the index
coding bound [16]. Multi-server index coding has been studied
as the distributed index coding problem in [18], [19]. In
the distributed index coding problem, the servers are con-
sidered to store a subset of the messages in uncoded form,
and each user is connected to all the servers, whereas in
our problem each user can connect to ρ out of P servers
randomly. Therefore, for the user to be able to retrieve any
requested file from the servers it connects to, the files must
be stored using a distributed storage scheme in the servers.
Therefore, we analyse the case where the files are stored
using erasure codes in the servers. In that, we encode the
segment Wdi,A into P distinct coded subsegments, denoted by
(C1

di,A, . . . , C
P
di,A) ∈

∏
p∈[P ]

[
2
npr

p
di,A
]
, where np = FRp

is the length of message in bits transmitted by server Sp,
such that any ρ coded subsegments can be used to reconstruct
the original segment. rpdi,A is the rate at which server Sp
transmits the coded subsegment Cpdi,A corresponding to user
U ′is request, and we have

∑ρ
j=1 nπ(j)r

π(j)
di,A ≥ |Wdi,A| as a

necessary condition to ensure that the segment |Wdi,A| can be
reconstructed by receiving any ρ distinct coded subsegments,
where π(j), j ∈ [ρ], are the ρ servers in set Zi. Recall that Zi
is the set of ρ servers that serve user Ui. Also note that we
do not code across files, but encode each file separately.

For the multi-server scenario, we consider P index cod-
ing problems, each represented as a distinct directed graph
Gp, p ∈ [P ]. Each node in Gp corresponds to a distinct
coded subsegment Cpdi,A, which is requested by user Ui and
available in server Sp. By distinct coded subsegments we
mean that H(Wdi,A|Cpdi,A, C

q
di,A) < H(Wdi,A|Cpdi,A) for all

p, q ∈ [P ], p 6= q. Gp has the same structure as G, with
the subsegments requested by users not served by server Sp
removed. Let the set of nodes in the index coding problem
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represented by graph Gp be denoted by Ip.
We have the following multi-server index coding bound

applying the result in [16] separately on each of the P index
coding problems.

Theorem 8. If the rate tuple
{r11,A, . . . , r1K,A, . . . , rp1,A, . . . , rpK,A, . . . , rP1,A, . . . , rPK,A}A⊆[K]

is achievable for the multi-server index coding problem
represented by the set of directed graphs Gp, p = 1, . . . , P ,
under the constraint

∑ρ
j=1 nπ(j)r

π(j)
di,A ≥ |Wdi,A|, and

inter-file coding is not allowed, then rpj,A = 0 if server Sp
does not serve user Uj , and

P∑

p=1

∑

Jp
rpj,A ≤ 1 (35)

for all Jp ⊆ Ip where the subgraph of Gp over Jp does not
contain a directed cycle.

Remark 9. Theorem 8 holds when the nodes in the P index
coding problems correspond to distinct coded subsegments,
that is, there are no repeating nodes in any two index cod-
ing problems. Distributed storage schemes which concatenate
repetition codes with other storage codes may not satisfy the
bound in Theorem 8 (for example, see [22]). References [18]
and [19] may indicate how to compute the capacity under such
distributed storage schemes, but they are outside the scope of
this paper.

Remark 10. There are non-MDS distributed storage codes,
called regenerating codes, that utilize increased storage ca-
pacity on the servers to reduce the repair bandwidth [13].
Theorem 8 holds for them unless some repetition code is
used, because the problem can still be represented as P
independent index coding problems. For example, Theorem 8
holds if a product matrix code [21] is used for distributed
storage. However, a sub-optimal delivery latency is achieved,
because each server stores a larger number of packets that
have to be transmitted to the connected users for successful
file reconstruction.

To identify the acyclic sets Jp in the subgraph Gp, consider
the permutations u = (u1, . . . , uK) of [K]. To determine the
tightest bound, we may only consider the largest such sets
without a directed cycle. For a given u, the largest set of
nodes not containing a directed cycle is

{
Cpdui ,Ai

: Ai ⊆ [1 : K] \ {u1, . . . , ui}, i = 1, . . . ,K
}
.

Each permutation u gives a unique acyclic set of nodes of the
graph. The subsegment Cpdi,φ is not cached in any user, so
there is no outgoing edge from Cpdi,φ to any other nodes in
any sub-index coding problem. Therefore Cpdi,φ is always in
the set Jp.

Consider first MS = N
ρ . In that case,

∑ρ
j=1 nπ(j)r

π(j)
di,A =

∑ρ
j=1 |C

π(j)
di,A| = |Wdi,A|. Following Theorem 8, in order to

recover all the desired segments for each user, the deliver

latency, Tsd must satisfy

FTsd ≥
P∑

p=1


 ∑

A⊆[1:K]\{u1}
|Cpdu1 ,A|

+ · · ·+
∑

A⊆[1:K]\({ui}∩Kp)
|Cpdui ,A|+ · · ·+

∑

A⊆[1:K]\({uK}∩Kp)
|CpduK ,A|


 (36)

s.t.
∑

p∈Zj
|Cpduj ,A| = |Wduj ,A| j ∈ [K], (37)

for every permutation u, and for every network topology.
We have |Cpd,A| =

|Wd,A|
ρ for MS = N

ρ , due to (P, ρ) MDS
coded storage. In Eq. (36), in the summation for a fixed value
of p, the number of terms with |A| = i is

(
K
i+1

)
−
(
K−qp
i+1

)
.

Thus we have

FTsd ≥
P∑

p=1

K−1∑

i=0

((
K
i+1

)
−
(
K−qp
i+1

))

(
K
i

) xpi (38)

=

P∑

p=1

K−1∑

i=0

((
K
i+1

)
−
(
K−qp
i+1

))

ρ
(
K
i

) xi (39)

=

K−1∑

i=0




P∑

p=1

((
K
i+1

)
−
(
K−qp
i+1

))

ρ
(
K
i

)


xi (40)

while x0 + x1 + · · ·+ xK ≥ F, (41)

and x1 + 2x2 + · · ·+KxK ≤
KMU

N
F (42)

where xi ,
∑
A⊂[K]:|A|=i|Wj,A| =

(
K
i

)
|Wj,A| =

ρ
(
K
i

)
|Cpj,A| is the total normalized size of all segments of file

j cached by i users; or equivalently, xpi ,
(
K
i

)
|Cpj,A| = 1

ρxi is
the total normalized size of all subsegments of file j cached by
i users and stored in server Sp. We minimize the lower bound
in Eq. (40) over all segment sizes xi, which is a linear program
with two linear constraints (41) and (42), where the former
follows from the sum of all fractions of the files being one,
while the latter follows from the user cache memory constraint.
The solution of a linear program lies on one of the corner
points of the feasible region. The feasible region defined by
the constraints has only one corner point characterized by

xi =

{
F i = t, t = KMU

N
0 otherwise

.

Therefore, Eq. (40) simplifies to

Tsd ≥
P∑

p=1

((
K
t+1

)
−
(
K−qp
t+1

))

ρ
(
K
t

) , (43)

which is achieved by our delivery scheme. This proves the
optimality of the delivery scheme for successive transmission
proposed in Section IV under the assumption of MDS coded
storage at the servers and uncoded caching at the users.

A. Redundancy in server storage

When there is redundant server storage capacity, i.e., server
storage capacity is MS = N

ρ−z , consider the constraint
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∑ρ
j=1 nπ(j)r

π(j)
di,A ≥ |Wdi,A| in Theorem 8. Since the bound in

Theorem 8 is a linear program of the rates of transmission of
the coded subsegments from the servers, the optimal solution
lies on one of the corner points of the feasible region defined
by the constraint. The corner points for MS = N

ρ−z , z ∈ [ρ−2],
are those where nπ(j)r

π(j)
di,A =

|Wdi,A|
ρ−z for all j ∈ R,R ⊂

Zi, |R| = ρ − z, and equal to 0 for all j ∈ Zi \ R. The
optimal solution should lie on the corner point which chooses
R such that the servers in R have the most multicasting
opportunities, and can thus deliver ρ−z coded subsegments of
the requested segments to the users in the minimum number
of transmissions. This is equivalent to finding the minimum
cover for each multicast group as described in Section IV-A.

When fractional repetition (FR) codes are used for server
storage [20], the minimum cover scheme may not be optimal.
However, since FR codes have a maximum code rate of 1

2 ,
we cannot have distributed storage schemes where MS ≤ 2N

P .
Thus the minimum cover scheme is optimal for server storage
capacities MS ≤ 2N

P . We illustrate with a toy example that
the bound in Theorem 8 does not hold when FR codes are
used.

Example 11. Consider the simple scenario with P = 2
servers, K = 3 users illustrated in Fig. 5, where we assume
each server can store all the N = 3 files, i.e., MS = 3,
and each user has cache capacity MU = 1. Let the cache
contents of U1, U2, U3 be W2,W3,W1, respectively, and the
demand vector d = {W1,W2,W3}. In this example, the
demands can be satisfied by S1 transmitting W1⊕W2, and S2

transmitting W1⊕W3, that is, the delivery latency of Tsd = 2
is achievable. However, Theorem 8 gives the bound on delivery
latency as Tsd ≥ 3. U2 receives its requested file W2 with
added interference of W1 from S1, which it cannot remove
using its cache contents. However, U2 adds the messages from
S1 and S2 to align the interference on W2 with W3, which
it can remove by using its cache contents, thus doing a sort
of interference alignment. In contrast, if MDS coded storage
were used, the interference alignment type of scheme would
not be possible due to distinct coded subsegments transmitted
by both servers.

S1 S2

U1 U2 U3

W2 W3 W1

Fig. 5: Toy example with P = 2,K = N =MS = 3,MU = 1

The polymatroidal capacity region for multi-server index
coding has been characterized in [18] for full user-server
connectivity and uncoded server storage. Characterizing the
capacity region for partial user-server connectivity, and con-
structing an optimal joint server storage and caching scheme
for FR coded distributed storage is an interesting open problem
for future work.

VI. PARALLEL SBS TRANSMISSIONS

When SBSs can deliver in parallel without interfering with
each other, the normalized delivery latency is dictated by the
SBS that has to deliver the maximum number of bits:

Tpd , max
qp

1

ρ
(
K
t

)
[(

K

t+ 1

)
−
(
K − qp
t+ 1

)]
. (44)

The “best” and “worst” network topologies in the parallel
transmission scenario are different from those in the successive
transmission scenario. The most balanced topology, i.e., the
one with the minimum value of the maximum qp has the
“best” (lowest) delivery latency, contrary to the successive
transmission scenario, in which this would be the “worst”
topology. The corresponding delivery latency can be obtained
by substituting qp = dKρP e in (44). The topology with the
maximum possible qp, i.e., any topology with at least one
server connected to all K users, is the “worst” topology since
it has the highest delivery latency.

A. Redundant server storage capacity

The minimum server storage capacity that would allow the
reconstruction of any demand combination is given by MS =
N−MU

ρ . In this case, we cache the same MU

N fraction of the
library in all the user caches during the placement phase, and
deliver the remaining fraction of the demands from the servers
without multicasting. The worst-case delivery latency in this
case is Tpd = K

ρ

(
1− MU

N

)
.

Next, we consider the case when there is redundancy in
server memories; that is, N

ρ < MS ≤ N . Assume that
MS = N

ρ−z for some integer z ∈ [ρ−1]. For non-integer values
of z, the solution can be obtained by memory-sharing. Notice
that, as for successive transmissions, users can select the
servers from which to receive coded subsegments. A greedy
server allocation algorithm is used. The algorithm assigns the
multicast messages to the servers trying to keep the number
of messages delivered by each server as evenly distributed
as possible. At any point in time, if a server has delivered a
higher number of messages than all the other servers, even if a
better multicasting opportunity is available to this server, that
server is not assigned a multicast message in order to balance
the number of messages delivered by each server in a greedy
manner. Instead, the server with the next best multicasting
opportunity and a smaller count of transmissions is assigned
to transmit a particular coded subsegment to a multicast group.
Compare this with the algorithm for successive transmission,
where a multicast message is always assigned to the server
with the maximum multicasting opportunity. It is easy to see
that the delivery latency achieved depends on the order in
which the algorithm assigns multicast messages to the servers.
Thus the proposed algorithm is suboptimal. Numerical results
illustrating the performance of the proposed delivery algorithm
will be presented in the next section.

VII. RESULTS AND DISCUSSIONS

In Fig. 6 we plot the achievable trade-off between the user
cache capacity and the normalized delivery latency, Tsd, for
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Fig. 6: Average normalized delivery latency vs. user cache capacity
MU , for P = 7, N = K = 5, ρ = 4, and for server storage capacities
of MS = 5
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Fig. 7: Average normalized delivery latency vs. server storage
capacity MS , for P = 7, N = K = 5,MU = 1 for successive
SBS transmissions.

the best and worst topologies, and the average normalized de-
livery latency over all topologies, for successive transmission.
The trade-off curves are plotted for different server storage
capacities. We observe that the gap between the worst and the
best topologies can be significant. From (17) and (23) we can
deduce that, for successive transmission the worst topology
delivery latency; and hence, the average delivery latency of the
proposed scheme are both within a multiplicative factor of 1

α
of the best topology delivery latency. We observe from Fig. 6
that the delivery latency decreases significantly, particularly for
low MU values, as the redundancy in server storage increases.

In Fig. 7 the average delivery latency for successive trans-
mission is plotted as a function of the server storage capacity
for server storage capacities MS ∈ [N−MU

ρ , N ]. The figure is
obtained by performing Monte Carlo simulations with uniform
random realizations of the topology and averaging the delivery
latency over them. We observe from Fig. 7 that the average
delivery latency decreases rapidly for an initial increase in
the server storage capacity, which is more significant for high
ρ values. This is because, thanks to MDS-coded storage at
the servers, the number of available multicasting opportunities

increases with the redundancy across servers. Fig. 7 highlights
the fact that, for successive delivery and sufficient network
connectivity, increasing the server storage beyond a certain
value has little or no impact on the delivery latency.

In Fig. 8, it is shown that Eq. (34) in Section IV-B gives
a fairly accurate estimate of the expected delivery latency
for successive transmissions with redundant server storage
capacity, especially for small server storage capacities. The
theoretical estimate diverges a little from the expected rate for
large server storage capacity, before again converging where
the delivery latency saturates at the minimum. Also, comparing
the plot for ρ = 9, P = 21 in Fig. 8 with the plot for
ρ = 3, P = 7 in Fig. 7, where the connectivity α is the same,
we observe that the average delivery latency decreases faster
for ρ = 9, P = 21; that is, for larger values of P .
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Fig. 8: Comparing the simulation with the theoretical, Average
normalized delivery latency vs. server storage capacity, for P =
21, N = K = 5,MU = 1 for successive SBS transmissions.

The average delivery latency for parallel transmissions is
plotted with respect to the user cache capacity in Fig. 9, using
(44). We observe as before that increasing the server storage
capacity gives significant gains in the average delivery latency,
especially for low values of MU . Unlike the case for successive
transmissions, the average delivery latency for MU = 0 also
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Fig. 10: Average normalized delivery latency vs. server storage
capacity MS , for P = 7, N = K = 5,MU = 1 for parallel
transmissions.

reduces as the server storage capacity is increased.
The average delivery latency for parallel transmissions is

plotted with respect to the server storage capacity, MS , in Fig.
10. Unlike the delivery latency for successive transmissions,
we can see that the delivery latency does not saturate, and
keeps decreasing until all the files are stored at each of the
servers. We also observe as before that the increase in network
connectivity α helps reduce the delivery latency significantly,
especially for low server storage capacity MS .

VIII. CONCLUSIONS AND FUTURE WORK

We have studied a multi-server coded caching and delivery
network, in which cache-equipped users connect randomly
to a subset of the available servers, each with its own lim-
ited storage capacity. While this allows each server to have
only a limited amount of storage capacity, it requires coded
storage across servers to account for the random topology.
We proposed a joint coded storage, caching and delivery
scheme that jointly applies MDS-coded storage at the servers,
and uncoded caching and coded delivery to the users. The
achievable delivery latency of this scheme for both successive
and parallel transmissions from the SBSs are presented, with
increasing user cache memory as well as increasing server
storage capacity, and their averages over random network
topologies are plotted. The analysis shows that when the
server storage capacity is increased, the delivery latency can
be reduced significantly, for both successive transmissions as
well as parallel transmissions. However, it is also observed that
for sufficient network connectivity, increasing server storage
beyond a certain value provides little benefit. Increasing server
storage has a more significant impact when there is low
connectivity, and when user cache capacities are small.

An interesting open problem for future work is finding a
lower bound and an optimal scheme when FR codes are used
for distributed storage. A toy example 11 is given in this
paper which illustrates the potential benefits of such codes.
The toy example also presents an asymmetry in the user
connections to the servers, where users 1 and 3 connect to one
server each, while user 2 connects to 2 servers. An interesting

problem is constructing a general scheme for heterogeneous
network topologies and extracting gains from such topologies
as demonstrated in the toy example. Another question relates
to gains from heterogeneous distributed storage. For instance,
if there is knowledge of user dynamics and non-uniform
probabilities of the user-server connections, can a hetero-
geneous distributed storage scheme be designed to extract
higher average gains? An extreme case of this scenario would
mimic the combination network model where the user-server
connections are completely fixed and known, which achieves
higher gains. Such open problems present ripe material for
future research.
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Deniz Gündüz [S03-M08-SM13] received the B.S.
degree in electrical and electronics engineering from
METU, Turkey in 2002, and the M.S. and Ph.D.
degrees in electrical engineering from NYU Tan-
don School of Engineering (formerly Polytechnic
University) in 2004 and 2007, respectively. After
his PhD, he served as a postdoctoral research as-
sociate at Princeton University, and as a consulting
assistant professor at Stanford University. He was
a research associate at CTTC in Barcelona, Spain
until September 2012, when he joined the Electrical

and Electronic Engineering Department of Imperial College London, UK,
where he is currently a Reader (Associate Professor) in information theory and
communications, is the deputy head of the Intelligent Systems and Networks
Group, and leads the Information Processing and Communications Laboratory
(IPC-Lab).

His research interests lie in the areas of communications and information
theory, machine learning, and privacy. Dr. Gndz is the Area Editor (for
Machine Learning and Communications) for the IEEE Transactions on Com-
munications, and also serves as an Editor of the IEEE Transactions on Wireless
Communications and IEEE Transactions on Green Communications and
Networking. He is a Distinguished Lecturer for the IEEE Information Theory
Society (2020-21). He is the recipient of the IEEE Communications Society
- Communication Theory Technical Committee (CTTC) Early Achievement
Award in 2017, a Starting Grant of the European Research Council (ERC) in
2016, IEEE Communications Society Best Young Researcher Award for the
Europe, Middle East, and Africa Region in 2014, Best Paper Award at the 2019
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
and the 2016 IEEE Wireless Communications and Networking Conference
(WCNC), and the Best Student Paper Awards at the 2018 IEEE Wireless
Communications and Networking Conference (WCNC) and the 2007 IEEE
International Symposium on Information Theory (ISIT).

Cong Ling is currently a Reader (equivalent to
Professor/Associate Professor) in the Electrical and
Electronic Engineering Department at Imperial Col-
lege London. He is a member of the Academic
Centre of Excellence in Cyber Security Research
at Imperial College and an affiliated member of
the Institute of Security Science and Technology of
Imperial College.

He received the Bachelor and Master degrees from
Nanjing Institute of Communications Engineering,
China in 1995 and 1997 respectively, and the Ph.D.

degree from Nanyang Technological University, Singapore in 2005. Before
joining Imperial College, he had been on the faculties of Nanjing Institute
of Communications Engineering and Kings College. He visited Hong Kong
University of Science and Technology as a Hong Kong Telecom Institute of
Information Technology (HKTIIT) Fellow in 2009.

Dr. Ling has been an Associate Editor (in multiterminal communications
and lattice coding) of IEEE Transactions on Communications, and an As-
sociate Editor of IEEE Transactions on Vehicular Technology and on the
program committees of several international conferences including IEEE
Information Theory Workshop, Globecom, and ICC. He is a member of IEEE.


