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The clinical management of several cardiovascular conditions,
such as pulmonary hypertension, require the assessment of the
right ventricular (RV) function. This work addresses the fully
automatic and robust access to one of the key RV biomarkers,
its ejection fraction, from the gold standard imaging modality,
MRI. The problem becomes the accurate segmentation of the
RV blood pool from cine MRI sequences. This work proposes a
solution based on Fully Convolutional Neural Networks (FCNN),
where our first contribution is the optimal combination of
three concepts (the convolution Gated Recurrent Units (GRU),
the Generative Adversarial Networks (GAN), and the L1 loss
function) that achieves an improvement of 0.05 and 3.49 mm
in Dice Index and Hausdorff Distance respectively with respect
to the baseline FCNN. This improvement is then doubled by
our second contribution, the ROI-GAN, that sets two GANs to
cooperate working at two fields of view of the image, its full
resolution and the region of interest (ROI). Our rationale here
is to better guide the FCNN learning by combining global (full
resolution) and local Region Of Interest (ROI) features. The study
is conducted in a large in-house dataset of ~ 23.000 segmented
MRI slices, and its generality is verified in a publicly available
dataset.

I. INTRODUCTION

Cardiovascular diseases (CV) remain the leading cause of
death worldwide [[1], accounting for 17.3 million total deaths
worldwide. In the management of these conditions, cardiac
magnetic resonance (CMR) is considered the gold standard
for the assessment of key biomarkers such as the volume or
ejection fraction (EF) of the ventricular chambers of the heart
[2]. The fully automatic and robust access to this important
diagnostic and prognostic information is nevertheless missing
in the clinical armamentarium.

The Left Ventricle (LV) has traditionally focused the clinical
interest for the characterization of the disease progression, but
in recent years a strong shift of attention to the Right Ventricle
(RV) has led to important findings for the management of
conditions such as pulmonary hypertension, coronary heart
disease, dysplasia and cardiomyopathies [3[], [4].

Compared to the LV, the RV is a much more challenging
anatomical structure to be characterized, mainly because of
a much larger morphological variability and the much thinner
myocardial walls [S]]. The RV biomarker of volume, EF or car-
diac output is conventionally accessed through the acquisition
of a stack of short-axis (SA) slices of the heart. The problem of
interest then becomes the automatic RV segmentation in CMR
SA slices, where the goals are the removal of the (intro- and

inter-) observer variability and the immediate access to this
information right after acquisition.

The attention on RV segmentation was initiated with a-
priori probabilistic atlases [6], [7], using both shape and
appearance information. The strength and weakness of this
approach lay on the suitability of the cohort used to build
the atlas: this solution will render a low performance in new
anatomical configurations not accounted in the training dataset.
In an attempt to alleviate this limitation, manifold learning
techniques have been applied to better capture the variability
of shape models, for example using Markov Random Field
(MRF)[8]. Image gradient algorithms[9], region-merging[10]
and graph-cut[[11]] based methods have been shown to be more
compelling. The implementation of these ideas led to popular
concepts such as active contours able to reach reasonable
performance, but with a dependence on the actual choice of
weighting factors and the optimal initialization point.

In the last few years, deep-learning (DL) methods are being
developed for extracting automatic spatial features. Particu-
larly, Fully Convolution Neural Networks (FCNN) can be
considered the state of the art or the automatic segmentation
of the RV [12], [13], [14].

In this work we want to further extend the capability
of FCNNs, exploring two main ideas: first, modeling and
exploiting the spatial redundancy between adjacent SA slices;
and second, guiding the FCNN to the useful RV features
without the need of an automatically pre-localisation of the
RV region of interest (ROI). The approach to exploit spatial
redundancy is the incorporation of a recurrent unit in the
middle of up-sampling and down-sampling path of the FCNN,
an R-FCNN, a strategy that has been shown to improve the
LV segmentation, especially at the apex [15].

Guiding an FCNN to the correct image features is a much
more complex goal. The explicit ROI extraction is an approach
followed by RV segmentation [16] and many medical applica-
tions [[17], [18l], [19]] to facilitate the segmentation task. Mask-
RCNN [20] is an example where the segmentation obtained
from an FCNN is in close combination with an ROI-pooling
mechanism able to locally identify the bounding box of each
object. Our rationale is that there are still useful image features
outside the ROI that can guide the FCNN, and that approaches
that jointly learn detection and segmentation are desirable,
avoiding the only focus on the ROI features. Some works
explore this idea, where ROI pre-localisation becomes an
additional sequential task in an end-to-end training chain [21]],



[22], but without an explicit use for guiding the segmentation.
While a dual FCNN within local and global downsampling
pathways at two different MRI resolution was used for atrial
segmentation problem [23]. However, in this work, the local
path only helps to scan every single patch of the image in
order to classify it as negative or positive. In truth, this method
differs from the principle of FCNN (i.e uses downsampling
filters to scan the whole pixel image) and approaches more to
prior old segmentation techniques, where the adding the global
path works as a multiscale integration of global contexts.

The strategy to guide the FCNN to features within the
ROI, without losing the features outside it, is inspired in
the concept of the Coupled Generative Adversarial Networks
(CoGAN) [24]], [25]], where a pair of corresponding images in
different domains can be mapped in the same representation
within a shared parameters strategy between two Generative
Adversarial Networks (GAN). We adopt this concept by taking
two versions of the same image, one at full resolution and
another at the exact ROI around the segmentation mask, and
we call it the ROI-GAN. Note that the second image will only
be needed at the training stage.

In this work, we thus explore the use of three existing
concepts, a recurrent unit (R-FCNN) to exploit the spatial
redundancy of a stack of SA slices, the concept of adversarial
training (FCNN-GAN) to better guide the selection of features,
and the use of the L1 loss [26]], [27]]. And we propose the ROI-
GAN as a solution to maximize the performance of FCNNs
for the task of RV segmentation.

II. MATERIAL AND METHODS

In this section, we present the datasets used in this work,
and we review the concepts of the FCNN, the R-FCNN, the
L1 loss, and the GAN training strategy using either FCNN or
an R-FCNN. Finally, our ROI-GAN architecture is explained,
with 3 possible variants that will be analyzed.

A. Datasets

Two datasets are used, a large in-house Twins-UK dataset
to exhaustively develop and test the DL solution, and a
small public RV MICCALI dataset [5] to test the generality
of findings.

Twins-UK is a nation-wide voluntary registry that includes
>12,000 twins [28]]. The study was approved by the local
institutional research ethics committee (South East London
Research Ethics Committee, EC04/015), and informed con-
sent was obtained from all participants prior to scanning. In
particular, 68 consecutive female patients (mean age 62 + 9
years) were recruited from the Twins-UK cohort.

All scans were performed on a 1.5-T clinical scanner
(Achieva, Philips Healthcare, Best, The Netherlands). All
measurements were performed in the supine position using
a 5-channel cardiac surface coil. ECG-gated steady-state free-
precession (SSFP) end-expiratory breath-hold 2D CINE were
acquired. 12 to 14 equidistant and contiguous slices from the
atrioventricular (AV) ring to the apex, completely covering
both ventricles (slice thickness 8 mm; no gap mm; field of
view was 360 x 480 mm and matrix size 156 x 144), were

acquired. The imaging was performed a temporal resolution of
25-35 milliseconds at a heart rate of 60-80 beats per minute.

The RV endocardial borders were delineated in all planes
and in all cardiac phases by Dr. Miguel Silva Vieira (6 years of
CMR experience, SCMR and Euro CMR level 3 certification).
In detail, the ventricular blood pool was segmented using a
semi-automated threshold-based contouring technique, which
enables to capture details of the endocardial configuration (e.g
trabeculations). Of note, papillary muscles were excluded from
the volumetric analysis (equivalent to blood pool techniques).

The Twins-UK dataset of 23.000 slices with segmentation
ground truth was randomly divided into training, validation
and testing sets of sizes 70%, 15% and 15%, respectively.

On the other hand, the public RV MICCAI dataset was used
to refine weights (16 subjects with two-time points segmented,
250 slices) and to evaluate performance on the Test2Set blind
cohort used for benchmarking (another set of 16 subjects, a
similar number of slices). This public dataset is composed of
subjects with a variety of disease conditions, with an average
age of 55.5 + 17.5 and where 70% of them were male.

B. The FCNN/R-FCNN

An FCNN is the core of the DL solution, taking a stack
of SA slices as input and returning the segmentation mask.
An FCNN extract features from the image in a first decoding
path, and these are gradually restored to the original image
size, through a decoding block used to infer the final binary
mask. One of the key features of an FCNN are the skip paths
connections between convolution and deconvolution layers for
fusing mid-height level features together. Each connection
concatenates feature maps from the encoding to the decoding
blocks.

The FCNN (Fig. (1] panel (a)) considers each slice of the
SA input independently. The extension in an R-FCNN (Fig.
[I] panel (b)) is to take the full SA stack as an input, as a
sequence of slices from base to apex where the current slice
depends on the previous observed ones [15].

The R-FCNN has the same encoding and decoding structure
of an FCNN (i.e six encoding and decoding blocks followed
by ReLLU and Batch Normalization (BN) operators) but, in the
middle of both, a Convolution Gated Recurrent Unit (C-GRU)
[29], [30] is used. The C-GRU unit presents two specific gates
designed to control the information inside: a rest gate r, and
an update gate z; defined as follow:

rs = U(Whr * hs—l + Wzr *Tg+ br)
Zs = U(th * hs—l + WJZ *Tg+ bz)

Here, o(-) is the sigmoid function and the hs_; represents
the hidden activation learned at the previous SA slice s—1. The
Wh,- and W, are the weight matrices of dimension D X 8 X 8,
with D numbers of features maps in the down-sample layer,
and b a bias vector.

In this notation, *x defines the convolution operation. The
reset gate switch (on or off) the signal coming in input to hAs;
where hAS is called the candidate activation, defined as:

hy = tanh(W), * (rs © he_1) + Wy % x4 + b)



The ©® denotes the dot product and W,. Then the final
activation is:

he = (1= 25) ® he—1 + 25 © hs.

C. The LI loss

The training of a network is guided by the metric used to
define the error, and the L1 loss [26]], [27]] has shown to be a
good addition to the total loss. The L1 distance used is given
as:

Lleé‘xi_yil (D
n

This metric measures the mean absolute value of element-
wise difference among the network output 2 and ground truth
yi, where, [ is a regularization constant parameter (set to
5e¢~6) for controlling the quantity of L1 loss used.

D. The GAN

Two neural net architectures, the generative and the discrim-
inative, compete in a GAN to perform a task. We adopt this
concept to our problem so that the FCNN or R-FCNN become
generators of binary masks (note that their input here is not a
distribution of random numbers, but the distribution of MRI
images), and we add a new CNN to act as discriminator that
will try to identify if the binary mask is “fake” (i.e. output of
the generator) or “real” (i.e. the ground truth mask). See the
top of Fig. [2] for an illustration of a GAN architecture.

The discriminator CNN network is thus trained to distin-
guish how much the ground truth deviates from that produced
by the FCNN generator. This information generated by the
discriminator is back-propagated towards the generator, which
then uses this knowledge for producing indistinguishably
masks from the corresponding ground truth. Besides, in order
to avoid deterministic generators, Gaussian Noise (GN) is
added by dropping the first three up-sampling layers of the
generator.

The adversarial process is summarized by the maximization
of the following loss:

ming maxpLean(D,G) =
= By MRI, o0 () [log(D())]+ 2)
FE oy MRI o () [[09(1 — D(G(2)))]

where D represent the discriminator, G' the discriminator
and x is the set of binary masks sampling form M RI,..q; ()
and MRy ().

This adversarial loss is also combined within the minimum
squared error MSE loss function between the generator
output and the ground truth:

1
Lyse(G) = -~ Z(Sﬁz —ui)? 3)
=1
where n is the set of training spatial sequences cases (i.e.
slices), x is the generated binary mask and y is the ground truth
segmentation. The two loss functions are combined through a

A regularization parameter (set to 5e~2) able to control the
amount of GAN loss taken into account:

Lrorar(G,D) = (Luse(G) + ALgan(D,G)) (4)

E. The ROI-GAN

The ROI-GAN model (Fig. , takes inspiration from the
concept of CoGAN [24]], [25], which is adapted to working
with the same image but at two different fields of view: one
a the global level (i.e. original full resolution MRI image),
and another at the region of interest (ROI) local level. We
will thus refer to the global (working with the full resolution)
or local (working with the cropped image) generators and
discriminators in each of the two collaborative GANS.

Note that the cropped images needed for the second set of
images, the ROIs, are simply the bounding boxes containing
the ground truth segmentation, and are only needed for the
training phase of the architecture.

The idea is that the local GAN will inform and better
guide the global GAN. And this is articulated through a
mechanism of parameter sharing between the generators and
discriminators of the two GANS in an attempt to intensify the
attention on the correct subset of mid-level features.

The training process is sequential: first, the cropped MRI
images are segmented (i.e forward pass on the local generator)
with a corresponding backward propagation of the loss by
comparison to the segmentation ground truth. Second, the
updated parameters of the local generator are passed to the
global generator by using the weights-sharing connections that
are enabled on the first three up-sampling layers. Then, the
global generator repeats the forward and backward process.
The third step is the training of the discriminator and the
backpropagation of the total network gradient from the dis-
criminator to both generators.

Three different strategies (identified by the surname A, B or
C) for the discriminator third step are designed and compared
in this work. ROI-GAN-A (Fig. 2] bottom left) uses one single
discriminator fed by the images at both fields of view (full
and ROI), motivated by the idea of maximizing the interplay
between the two generators by sharing the same discriminator.
The alternative is to use two discriminators (Fig. [2] right),
one per generator, in the ROI-GAN-B. The third option is
an intermediate solution, where the two discriminators are
allowed to share weights between them, as set in the ROI-
GAN-C.

III. RESULTS

The baseline for this study is the performance of the FCNN
to fully automatically segment the RV. This section presents
the gradual improvement from this baseline by applying the
concepts of recurrence, L1 loss, GAN and finally the proposed
ROI-GAN. Results will show how these concepts do not
always complement each other. Illustrative examples of the
segmentation performance are provided in Fig. 3] and Fig. ]
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Fig. 1. FCNN and RFCNN architectures. The FCNN (panel a) is a combination of a decoder and encoder paths. The decoder path (blue trapezoid) consists
of six convolution layers (stride of 2) following by ReLU and Batch Normalization (BN). The up-convolution path (green trapezoid) consists of deconvolution
layers in combination with LeakyReLU (set to 0.2) and Batch Normalization. The R-FCNN (panel b) is similar to FCNN but a convolution-GRU (yellow
rectangle) is used in between the decoder and encoder in order to model and exploit the spatial MRI redundancy.
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Fig. 2. The three ROI-GAN architectures studied in this work. TOP: basic GAN architecture. BOTTOM LEFT: the ROI-GAN-A, where masks at two different
sizes are feeding the same discriminator CNN. BOTTOM RIGHT: the ROI-GAN-B/C architectures, where two different CNN are used as discriminators, one
for each image size, either in coordination (i.e. sharing parameters) in B configuration, or independently in C configuration.

A. Metrics

Segmentation performance is evaluated for endocardial con-
tours with two different metrics: Dice Index (DI) and Haus-
dorff Distance (HD). The DI is defined as twice intersection
over the sum of cardinalities (i.e. a number of elements) of
two binary masks A and B,

2|A - B|
Al + Bl
The HD is the greatest of all the distances from a point in
one set to the closest point in the other set. It is defined as
the max(d,, dy), where d, is the distance from the automatic
contour points to the closest point of the manual contour, and
dyp is the opposite. HD is measured in mm in this work.

DI

These metrics are provided for three anatomical regions of
the heart because of the different challenges that they face. The
middle of the right ventricle is the most stable and consistent
part, but the top (base of the ventricle) suffers from quite a bit
of variability in the shape of contours, and the bottom (apex
of the ventricle) usually renders the worst performance due to
the small size of the contour and poor contrast in the image.

B. The added value of a recurrent unit, GAN and L1 loss

Fig. [6] shows how the R-FCNN introduces a significant
improvement over the FCNN in the RV apical (low) region,
with an increase of DI of a 52% (from 0.38 to 0.58), and a
reduction of the HD in a 72% (from 13.60 to 3.82). The other
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Fig. 3. Illustrative segmentation results on our in-house Twins-UK dataset, comparing neural networks predictions (green line) to the ground truth (red line).
The ROI-GAN-A (last column) shows a good match both in an easy case (first row, a slice from the top of the RV) and in a difficult case (third row from

the apical low region or the RV).

two regions, top and mid, show a similar performance being
only slightly worse at the DI of the top region.

The addition of the L1 loss to the baseline FCNN also
improves the performance at the apical region of the RV, both
in DI and HD, with a small gain in both metrics at the mid-
region, but with a drop of 0.03 in DI at the top region.

Finally, the GAN-FCNN improves the performance with
respect to the FCNN in all regions and metrics, but with a
small impact (DI jumps of 0.01-0.02, HD reduced in 0.5-1
mm) except for the large reduction of the HD in the apical
region.

The combination of L1 and R-FCNN leads to worse results
than using any of these two concepts in isolation at the apical
region but matches the best performance of the other two
concepts in the other two regions.

On the contrary, the combination of L1 and GAN leads to
better results than using any of these two concepts in isolation,
in all regions and using both metrics. The best performance
this is the one provided by the FCNN+GAN+L1 and will be
used as a baseline for the next experiments.

Fig. [8 shows how the GAN and R-FCNN combination does
not have any benefit, and that the performance of adding the
L1 loss is even worse.

C. ROI-GAN with an R-FCNN provides the best perfor-
mance

The three versions of the ROI-GAN architecture are first
evaluated with an FCNN as the generator, showing a drop in
performance with respect to the FCNN+GAN+L1, see Fig. [§]
On the contrary, the ROI-GAN using R-FCNNs as generators

improve the performance, see Fig. [7} being the ROI-GAN-A
the best in average in all regions.

In more detail, ROI-GAN-A delivers the best in all scores
but in the DI of the mid-region, where ROI-GAN-B gets the
best results, and the HD in the low apical region, where the
FCNN+GAN+L1 delivers the best score.

D. Generalization of results

To confirm the results obtained in our in-house dataset, the
performance of the baseline FCNN and of proposed ROI-
GAN-A architecture are tested in the RV MICCAI Challenge
2012. Nlustrative examples are provided in Fig. [3]

Table [] shows how the ROI-GAN-A clearly improves over
the FCNN in DI and HD, with gains of 0.05 and of 5.09 mm
respectively. This improvement in performance is of similar
magnitude than the one observed in our in-house dataset,
where an average of 0.05 and 3.49 mm was observed.

The performance of the ROI-GAN-A, a fully automatic
method, is close to the best methods of the literature, some of
them semi-automatic (see Table [), which are able to further
improve the DI in 0.03 and reduce the HD in 0.75mm).

One last test is performed to evaluate the robustness in
the extraction of clinical indexes such as volume or EF:
a linear regression analysis between manual and automated
endocardiac areas, for both ROI-GAN-A and FCNN, reveal a
R correlation coefficient of 0.9642 and 0.8899 respectively.

IV. DISCUSSION

The performance of the FCNN for the task of RV seg-
mentation has been improved by the combination of the three
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Fig. 4. Examples of the reconstructed 3D anatomies of the RV, where the model prediction (green surface) is compared to the ground truth contours (red

points).
Methods FA/SA** | DM HD
ROI-GAN-A FA 0.80 (0.22) | 8.03(4.41)
FCNN [Our baseline] FA 0.75(13.12) | 13.12(10.36)
Avendi et al. [31] FA 0.82 (0.16) | 8.03 (4.41)
Ringenberg et al 2014 [32] FA 0.83 (0.18) 8.73 (7.62)
Zuluaga et al 2013 [33] FA 0.73 (0.27) 12.50 (10.95)
Wang et al 2012 [34] FA 0.61 (0.34) | 22.20 (21.74)
Ou et al 2012 [33] FA 0.61 (0.29) 15.08 (8.91)
Maier et al 2012 SA 0.77 (0.24) | 9.79 (5.38)
Nambakhsh et al 2013 SA 0.56 (0.24) | 22.21 (9.69)
Bai et al 2013 SA 0.76 (0.23) | 9.77 (5.59)
Grosgeorge et al 2013 [9] SA 0.81 (0.16) 7.28 (3.58)

TABLE I

SEGMENTATION PERFORMANCE RESULTS ON THE RV TEST2SET MICCAI
OF PUBLIC DATASET. DI: DICE INDEX; HD: HAUSDORFF DISTANCE (MM);
FA: FULLY AUTOMATIC; SA: SEMI AUTOMATIC.

existing concepts (R-FCNN, FCNN-GAN, L1 norm) through
the ROI-GAN, a novel interpretation of the coGAN where two
GANSs are set to cooperate at two fields of view (general and
local, or full resolution and ROI-focus). The best combination
of the three existing concepts achieved an improvement of
0.05 and 3.49 mm in DI and HD respectively with respect to
the baseline FCNN and this improvement was doubled with
the ROI-GAN-A architecture.

The combination of local and global features through an
ROI-GAN has thus provided a benefit. The rationale sought
was to enable the global FCNN to learn the useful features
through the help of the local FCNN, coordinating their training
with a generative adversarial game and sharing parameters
(i.e. a CoGAN). CoGANs were proposed to avoid the need

for paired datasets during the learning stage and reported
excellent performance in the problem of Unsupervised Domain
Adaptation [24]). The problem of image segmentation at two
different fields of views in this work do share many more
features than images from very different modalities (i.e. depth
and color image, as in [24]), and we interpret this to be
the main reason why sharing parameters was actually only
beneficial at the generator, and not at the discriminator of
the GANs (performance of ROI-GAN-A being superior to the
ROI-GAN-C).

An interesting experimental finding was that the ROI-GAN-
A architecture achieved the constructive coordination of the
R-FCNN and GAN, which otherwise would result in a drop
in segmentation performance (see Table [I). The GANs have
been proved to be strategical for enhancing the learning
generalization (i.e. a better loss regularisation) [26], [27],
and an R-FCNN models the spatial coherence as a set of
connections to the previous slices (data input prepared with
image slices from top to bottom of the heart) - these two
concepts are not in apparent conflict, and the reason why these
to concepts did not work together in a single FCNN, remains
elusive to us. A possible explanation is the strong penalty that
the GAN term imposes on MSE loss, that will be detrimental
for a proper back-propagation through the C-GRU unit.

In this work, we illustrate that the problem of RV segmen-
tation is, in fact, the combination of 3 problems, each of the
3 sections of the RV presents different challenges. While the
top basal slices present a minor difficulty in localization but
a great anatomical variability, the bottom apical slices present
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Fig. 5. Examples of automatic segmentation results in images from the RV MICCAI dataset. These are instances where ROI-GAN-A showed superior

segmentation results in comparison with the baseline FCNN.

TOP TOP MID MID LOW LOW
METHODS FA/SA** | DM HD DM HD DM HD
FCNN FA 0.87(0.20) | 3.19(6.20) | 0.73(0.28) | 5.01(12.98) | 0.38(0.37) 13.60(22.79)
R-FCNN FA 0.86(0.21) | 2.79(3.03) | 0.73(0.28) | 4.50(10.76) | 0.58(0.30) 3.82(10.83)
FCNN+L1 FA 0.84(0.25) | 3.33(6.12) | 0.74(0.26) | 3.33(8.78) 0.47(0.36) 4.12(10.30)
R-FCNN+L1 FA 0.86(0.24) | 2.90(2.79) | 0.74(0.27) | 5.00(12.66) | 0.45(0.36) 8.38(17.44)
FCNN+GAN FA 0.88(0.17) | 2.87(4.65) | 0.75(0.27) | 3.92(10.03) | 0.40(0.36) 4.63(9.06)
R-FCNN+GAN FA 0.87(0.20) | 2.86(5.57) | 0.72(0.28) | 4.61(12.33) | 0.43(0.36) 9.17(18.50)
FCNN+GAN+L1 FA 0.88(0.18) | 2.68(3.99) | 0.76(0.25) | 3.81(10.44) | 0.42(0.38) 2.68(3.99)
R-FCNN+GAN+L1 FA 0.87(0.20) | 3.31(7.63) | 0.72(0.27) | 5.10(13.55) | 0.41(0.33) 14.46(25.01)
ROI-GAN-A-FCNN FA 0.85(0.22) | 3.30(6.61) | 0.75(0.27) | 3.35(8.64) 0.46(0.35) 3.30(6.61)
ROI-GAN-A-R-FCNN | FA 0.89(0.18) | 2.43(2.21) | 0.77(0.22) | 2.67(6.67) 0.49(0.33) 6.03(14.49)
ROI-GAN-B-FCNN FA 0.87(0.21) | 2.72(3.41) | 0.75(0.27) | 3.77(9.76) 0.37(0.37) 9.07(17.23)
ROI-GAN-B-R-FCNN | FA 0.87(0.22) | 2.84(4.60) | 0.78(0.22) | 2.64(6.42) 0.47(0.35) 4.29(9.89)
ROI-GAN-C-FCNN FA 0.86(0.23) | 2.75(2.75) | 0.71(0.29) | 5.70(14.49) | 0.37(0.37) 11.56(20.51)
ROI-GAN-C-R-FCNN FA 0.85(0.25) | 3.33(7.24) | 0.76(0.25) | 3.88(10.93) | 0.47(0.364) | 7.29(16.56)

TABLE I

SEGMENTATION PERFORMANCE RESULTS ON THE TWINS-UK DATASET. DI: DICE INDEX; HD: HAUSDORFF DISTANCE (MM); FA: FULLY AUTOMATIC;
SA: SEMI AUTOMATIC.

a great difficulty in localization but a much simpler shape
(i.e RV collapses towards a circular structure), and mid slices
will be an intermediate problem. As a consequence, there is
not a single architecture being the optimal solution for all
these 3 problems. In the top and middle slices, an ROI-GAN
solution outperforms the rest (A or B configurations for top
or mid slices), but the best solution to capture the apex of the
RV is the R-FCNN. Further research is needed to design the
architecture that adapts to the anatomical region present in the
image.

Redundancy across space, or time [38]], is clearly a use-
ful resource in the segmentation task. Exploiting the spatial
redundancy is the rationale of the R-FCNN, and our results
confirm the initial findings at the apex of the Left Ventricle
(LV), where the main gain was observed compared to the rest
of the anatomy [15]. The RV has a much greater anatomical
variability, but this did not prevent a recurrent unit to better

constrain the segmentation in the challenging apical slices.
Nevertheless, the use of recurrent unit may not be an optimal
solution, since is continuously limited by the problem of
vanishing gradient that may decrease the overall performances
[39]. Further research is needed to study alternatives such
as 3D FCNNs, where 3D convolution capture all the spatial
coherence/redundancy [40].

The evaluation methodology followed in this work was
designed to examine the concepts proposed while minimizing
possible confounding factors regarding the learning rate. All
FCNNs had the same number of convolution layers, up-
convolutions, ReLU and BN units. Besides, the number of
epochs and the learning rate were equal in the two datasets
used, where at every batch size each network take as input
a sequence of consecutive SA images (or the corresponding
number of stack images in an R-FCNN). Nevertheless, we
cannot claim an independence of all confounding factors (i.e.
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Fig. 6. Evaluation of the added value of a recurrent unit (R-FCNN), the adversarial training (FCNN+GAN), and their combination with the L1 loss. Note
that the HD bars in the LOW region for FCNN and R-FCNN+L1 reach larger values than the ones displayed in the plot.
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Fig. 7. Benefit of the ROI-GAN over the baselines FCNN and FCNN+GAN+L1. Note how the gain from an FCNN to an FCNN+GAN+L1 is doubled with
an ROI-GAN-A with an R-FCNN in all metrics but the HD of the low apical region.
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Fig. 8. Strategies that do not improve the FCNN+GAN+L1 performance: the addition of the recurrent unit, or the ROI-GAN without a recurrent unit.

the characteristics of the datasets used).

Initial evidence of the generality of our findings was pro-
vided by testing the final proposed solution in the best public
dataset available to our knowledge, where a distinct improve-
ment in comparison with the baseline FCNN was found (i.e.
0.80 (0.22) vs 0.75 (13.12) in DI and HD respectively).
This experiment also showed that another solution, based
on classical and simple concepts such as thresholding, still
achieves better results [32]], motivating the hypothesis that a
combination of classical and deep learning approaches is an
interesting direction of further research.

Future works could also explore the use of 3D convolutions
within the ROI-GAN, where the 3D generators (i.e global and
local) should extract the spatial information in the better way
without any R-FCNN vanishing gradient problem [39], or the
idea of multiple generators able to see different cropping scales
of the input MRI sequences.
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