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Abstract

We consider a stochastic perturbation of the classical Lorenz system in the range

of parameters for which the origin is the global attractor. We show that adding

noise in the last component causes a transition from a unique to exactly two ergodic

invariant measures. The bifurcation threshold depends on the strength of the noise:

if the noise is weak, the only invariant measure is Gaussian, while strong enough

noise causes the appearance of a second ergodic invariant measure.
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1 Introduction

The classical Lorenz system [Lor63] is a very popular prototypical toy model for

chaos / turbulence [Rue76]. The traditional way of writing this system is given by

Ẋ = σ(Y −X) , Ẏ = X(̺− Z) − Y , Ż = −βZ +XY , (1.1)

with parameter values σ = 10 and β = 8/3. Changing the value ̺ allows to

explore a variety of different behaviours [Spa82, BPV86]. In particular, for ̺ < 1,

(1.1) admits a unique fixed point at the origin which eventually attracts every single

solution, while for ̺ > 1 it admits two further ‘non-trivial’ fixed points. These

fixed points become unstable at ̺ = σ 3+β+σ
σ−β−1

≈ 24.74, after which the system

exhibits either a chaotic attractor or stable limit cycles, see for example [Tuc99].

http://arxiv.org/abs/2004.12815v1
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For very large values of ̺ (̺ & 313), the system admits a stable limit cycle which

undergoes a cascade of period-doubling bifurcations as one decreases ̺.

The vertical axis H = {(X,Y,Z) : X = Y = 0} is invariant for all parameter

values and, for β > 0, it is contained in the stable manifold of the origin. The aim

of this article is to explore how (1.1) behaves in the stable regime ̺ < 1 under the

addition of noise to the Z-component. More precisely, we consider the modified

system

Ẋ = σ(Y −X) , Ẏ = X(̺− Z) − Y , Ż = −βZ +XY + α̂ ξ , (1.2)

where α̂ > 0 and ξ denotes white noise. For all values of α̂, this system admits as

invariant measure the measure ν0 with ν0(H) = 1 under which Z ∼ N (0, α̂2/2β).

The question we consider is whether it admits other invariant measures supported

in R3 \H . Our main result is then as follows.

Theorem 1.1. For any σ, β > 0 and any ̺ < 1, there exist values 0 < α⋆ ≤ α⋆ <
∞ such that

1. For 0 ≤ α̂ < α⋆, (1.2) admits ν0 as its unique invariant measure.

2. For α̂ > α⋆, (1.2) admits a unique second ergodic invariant measure ν⋆.
Furthermore, ν⋆ has a smooth density with respect to Lebesgue measure on

R3 and there exists κ > 0 such that
∫

(x2 + y2)−κν⋆(dx, dy, dz) < ∞.

For ̺ ≥ 1, there exists α⋆ ≥ 0 such that the second statement still holds.

Proof. The fact that for α̂ > 0 (1.2) admits at most one ergodic invariant measure

besides ν0 is the content of Theorem 3.1. Theorem 4.1 links the existence of the

additional invariant measure ν⋆ to the sign of the quantity λα whose asymptotic

behaviour for both small and large values of α̂ is obtained in Theorem 5.2. It

remains to note that one always has λα > 0 (and therefore existence of ν⋆) for α̂
large enough, while its sign as α̂ → 0 is negative when ̺ < 1 and positive when

̺ > 1.

Remark 1.2. One would naturally expect to have α⋆ = α⋆, but we cannot guarantee

this at the moment. It does however follow from our analysis that, for all values of

α̂, (1.2) admits at most one ergodic invariant measure besides ν0 and that the set

of values α̂ for which ν0 is the unique invariant measure consists of finitely many

intervals. One would also expect to have α⋆ = 0 when ̺ > 1 since then H is

already linearly unstable for the deterministic system, but although our results do

indeed guarantee that in this case the system admits a unique additional invariant

measure ν⋆ for all α̂ ∈ (0, δ) for some δ > 0, we cannot rule out the existence of an

intermediate range of values for which ν0 would be the unique invariant measure.

Remark 1.3. One motivation for the study of (1.2) is that this provides a toy model

for the following situation. Consider the 2D Navier–Stokes equations on a torus with
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Figure 1: The blue trajectory shows a simulation of (1.2) in the (x, y) plane with

σ = 10, β = 8/3, ̺ = 1/2, and α̂ = 30. The red trajectory is obtained by using the

same parameters, initial condition, and realisation of the noise, except that α̂ = 10.

additive translation-invariant Gaussian forcing. It was shown in [HM06, HM08]

(see also the earlier works [EMS01, BKL01, KS02] showing similar results under

stronger non-degeneracy assumptions) that this system admits a unique invariant

measure under a very weak non-degeneracy assumption on the noise. This result

however fails to apply to the situation where the noise is itself periodic with a period

strictly smaller (say half) than that of the torus on which the system is posed. In this

case, we know by [HM06] that it admits a unique invariant measure concentrated

on functions with the same period as the noise and, by [Mat99], that this measure

is unique at small enough Reynolds number. A natural question then is whether a

bifurcation appears at high Reynolds number, as one would expect from heuristic

considerations. Our result can be viewed as a first mathematically rigorous result

pointing in the direction of a positive answer.

Remark 1.4. The behaviour observed here can be contrasted with that observed in

[HM15a, HM15b], where the authors exhibit a system with a quadratic nonlinearity

which can explode in finite time in the absence of noise but admits global solutions

(and a unique invariant measure) in the presence of noise.

Figure 1 shows a simulation of (1.2) for ̺ = 1/2 and two different values of α̂.

For α̂ > α⋆, a typical trajectory consists of relatively long stretches of time spent

in the vicinity of H , interspersed with excursions away from H . These excursions

all escape in roughly the same direction and the Z-coordinate (not depicted in the

figure) is always quite negative when this happens. When Z becomes positive, they

then spiral back in towards H . This can be understood by a linear analysis of the

two-component system for a fixed value of Z: for Z < ̺− 1 this system has one
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stable and one unstable direction, while it is stable for all other values, exhibiting

oscillations when Z > ̺+ (1−σ)2/(4̺). A good approximation of this behaviour

can be understood in terms of averaging of the eigenvalues of the first two equations

of (1.2) with respect to the Gaussian measure ν0, although this is not completely

correct (see Remark 2.1).

Remark 1.5. The recent work [BKP20] analyses a toy model very similar to ours

and with the same underlying motivation. In our notations, their toy model reads

Ẋ = −X(1−Z) , Ẏ = −Y (̺−Z) , Ż = −βZ−(X2+Y 2)+κ+α̂ ξ . (1.3)

Although this appears on the face of it to be a three-dimensional model, it is

effectively two-dimensional: if ̺ = 1, then the ratio X/Y remains constant in time.

Otherwise, one has

Y (t) =
Y0

X0

X(t)e(1−̺)t ,

so that one can reduce oneself to Y = 0 when ̺ > 1 and X = 0 when ̺ < 1. We

deduce from this simple observation a slight strengthening of [BKP20, Thm 3.6],

namely that if κ > β(1∧ ̺), then (1.3) admits exactly 3 ergodic invariant measures

when ̺ 6= 1 and uncountably many ergodic invariant measures when ̺ = 1. Note

that this does not depend on α̂, it is in particular also true for α̂ = 0 in which case

the invariant measures are concentrated on fixed points.

The structure of the remainder of this article is as follows. First, in Section 2 we

perform a simple change of variables that brings (1.2) in a slightly more canonical

form and we introduce some notation. In Section 3, we then provide a preliminary

analysis of the equation which shows that it is irreducible and strong Feller on

R3 \ H , so that in particular it can have at most one additional ergodic invariant

measure ν⋆ besides ν0. The core of our analysis is contained in the last two sections.

First, in Section 4, we construct a Lyapunov function which allows to reduce the

existence / non-existence of ν⋆ to the behaviour of the invariant measure µα for an

auxiliary problem describing the behaviour of a “linearised” version of (1.2) around

H . The construction of the Lyapunov function uses a philosophy similar to that

used in [HM09, Hai09], namely to exhibit a “fast” dynamic in the regime of interest

and to use this to build a “corrector” which then allows to turn a “naïve” Lyapunov

function for the effective “slow” dynamic into a proper Lyapunov function for the

full system. Finally, Section 5 analyses the behaviour of µα as α → ∞, which

allows us to conclude that (1.2) is indeed destabilised for any value of its parameters

provided that α is sufficiently large.

Acknowledgements
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2 Notations

It will be convenient to write (1.2) in such a way that all of the arbitrary constants

appear in the equation for Z . This will be convenient since we will be mostly

interested in the regime where x2+y2 ≪ 1, so that Z is close to a simple Ornstein–

Uhlenbeck process. To this end, we define the constants

χ =
2

1 + σ
, η =

1 + σ

2σ
, γ = χβ , ν2 = χ5σ , α = ν

√
σα̂ .

as well as

z⋆ = 2 + χ2σ(̺− 1) .

If we then perform the change of variables

x(t) =
ν

χ
X(χt) , y(t) = νσ(Y (χt) −X(χt)) , z(t) = z⋆ − χ2σZ(χt) ,

(2.1)

the system (1.2) can be rewritten as

ẋ = y , ẏ = x(z − 2) − 2y , ż = −γ(z − z⋆) + α ξ − x(x+ ηy) . (2.2)

We also introduce “polar coordinates”

x = er sin θ , y = er(cos θ − sin θ) ,

so that one can alternatively write the equations of motion as

θ̇ = 1− z sin2(θ) , ṙ = −1 +
z

2
sin(2θ) . (2.3)

An important role will be played by the “linearisation” obtained by replacing the

last equation in (2.2) by the Ornstein–Uhlenbeck process

ż = −γ(z − z⋆) + α ξ . (2.4)

We will use the notation L for the generator of (2.2) and L1 for the generator of the

“linearised” system, namely

L = y∂x + (x(z − 2) − 2y)∂y − (x(x+ ηy) + γ(z − z⋆))∂z +
α2

2
∂2
z , (2.5a)

L1 = y∂x + (x(z − 2) − 2y)∂y − γ(z − z⋆)∂z +
α2

2
∂2
z . (2.5b)

We will also use L0 for the generator of the (θ, z)-component of the linearised

system, namely

L0 = (1− z sin2(θ))∂θ − γ(z − z⋆)∂z +
α2

2
∂2
z . (2.5c)
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We henceforth fix the values of the constants η, γ and z⋆ appearing in our dynamic,

but we will keep track on the dependence on α.

In particular, we write µα for the invariant measure on S1 ×R for the diffusion

with generator L0. Such an invariant measure clearly exists by Krylov–Bogoliubov.

It is also quite easy to see that it is unique as a consequence of the controllability

result shown in Proposition 3.3 below and the regularity result given by Proposi-

tion 3.2. (See Theorem 3.1 for a reference.)

Remark 2.1. A “naïve” heuristic for the stability of H goes as follows. Writing

λ−(z) for the smallest real part of the eigenvalues of the system (x, y) given in (2.2)

(with z frozen), one can verify that λ−(z) = −1+
√
z − 11z>1. This then suggests

that α⋆ is the smallest value such that

Eα(
√
z − 11z>1) ≥ 1 ,

where the expectation is taken over the invariant measure N (z⋆, α
2/(2γ)) for (2.4).

While this heuristic is incorrect, it is quite accurate in practice. For example, for the

parameters used in Figure 1, it suggests α⋆ ≈ 27.04 while numerical simulations

suggest α⋆ ≈ 27.7.

3 Hypoellipticity and control

The goal of this section is to analyse irreducibility and regularity properties on

R3 \H of our stochastic Lorenz system. We will prove the following result.

Theorem 3.1. For every value of its parameters, (2.2) admits at least one and at

most two ergodic invariant probability measures.

Proof of Theorem 3.1. Since the restriction of our system toH is simply an Ornstein–

Uhlenbeck process, the Gaussian with variance α2/(2γ) centred at z⋆ is the unique

ergodic invariant measure there. On R3 \H , one has at most one invariant probabil-

ity measure since Proposition 3.2 implies that the transition probabilities are strong

Feller, while Proposition 3.3, combined with the support theorem [SV72] implies

that every point of R3 \ H is accessible. We conclude by for example [Hai08,

Cor. 7.8].

The fact that the transition probabilities are strong Feller is contained in the

following proposition.

Proposition 3.2. The system (2.2) satisfies Hörmander’s condition on R3 \H .

Proof. We want to show that the C∞-module M generated by the iterated Lie

brackets of the two vector fields

X0 = y∂x + (x(z − 2) − 2y)∂y − (γ(z − z⋆) − x(x+ ηy))∂z , X1 = α∂z ,
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so that L = X0 +
1

2
X2

1 , is of maximal rank at every point of R3 \ H . A simple

calculation shows that their Lie bracket is given by

X2 = [X0,X1] = αx∂y − αγ∂z ,

and that furthermore,

X3 = [X0,X2] = αx∂x − αx(2 + γ)∂y − α(ηx2 − γ2)∂z . (3.1)

Note that span{X1,X2,X3} = R3 whenever x 6= 0, while span{X0,X1,X2} =
R3 when x = 0 and y 6= 0, and therefore Hörmander’s condition is satisfied

everywhere on R3 \H .

The next result concerns controllability properties of the Lorenz system, and,

in particular, accessibility to any point in R3 \H .

Proposition 3.3. Given any initial condition (x0, y0, z0) ∈ H , any target point

(x̄, ȳ, z̄) ∈ H and any arbitrary ε > 0, there exists T = T (|x|, |y|, |z|, ε) ≥ 0 and

a function h ∈ C1([0, T ],R) such that the unique solution to

ẋ = y , ẏ = x(z − 2) − 2y , ż = −γ(z − z⋆) − x(x+ ηy) + h . (3.2)

with initial condition (x0, y0, z0) satsifes

|(x(T ), y(T ), z(T )) − (x̄, ȳ, z̄)| < ε.

Proof. Since z in (3.2) can be completely controlled by h, the proof relies on

finding a smooth curve z so that x0 = (x0, y0) and x̄ = (x̄, ȳ) can be connected by

a solution of the first two equations in (3.2). The proof is divided in three steps.

Step 1. We first identify a non-smooth trajectory that connects x0 with x̄, as

depicted in Figure 2. Notice that for ζ ∈ R given, the first two equations of (3.2)

constitute a two-dimensional linear system, that can be written as

(
ẋ
ẏ

)
= A

(
x
y

)
, A =

(
0 1

ζ − 2 −2

)
.

The eigenvalues of A are

λ1(A) = −1−
√

ζ − 1, λ2(A) = −1 +
√

ζ − 1. (3.3)

The idea is now to alternate between the globally stable dynamics (when ζ < 1) for

which (0, 0) is attractive, and the case in which there are a stable and an unstable

manifold (when ζ > 2). We therefore choose ζ = 0, with corresponding matrix

A0, to implement the first scenario, and ζ = 5, with corresponding matrix A1, to

implement the second scenario. Notice that A1 has eigenvalues

λ1(A1) = −3, λ2(A1) = 1. (3.4)
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(x̄, ȳ)

(x0, y0)

x

y

Figure 2: The non-smooth trajectory xs constructed in (3.8). A few orbits of the

dynamic with ζ = 0 are drawn in light blue and a few orbits with ζ = 5 are drawn

in light red.

with corresponding eigenvectors

e1 = (−1, 3), e2 = (1, 1), (3.5)

so that the diagonal ℓu = {(x, y) : x = y} is the unstable manifold of the system.

Setting x̄ := (x̄, ȳ) 6= 0, define

t̄ := inf
{
t ≥ 0 : e−A0tx̄ · e⊥2 = 0

}
< ∞. (3.6)

This is the first time that the backward solution of the ODE ẋ = A0x with initial

condition x(0) = x̄ intersects ℓu. Now, given x0 = (x0, y0), consider the forward

solution to ẋ = A0x with initial condition x(0) = x0. It is clear from (3.3) that

eA0tx0 → 0 as t → ∞ and that eA0tx0 intersects ℓu infinitely many times. We

define

t0 := inf
{
t ≥ 0 : eA0tx0 · e⊥2 = 0, eA0tx0 · e−A0 t̄x̄ > 0,

∣∣eA0tx0

∣∣ ≤
∣∣∣e−A0t̄x̄

∣∣∣
}
< ∞.

The definition of the time t0 makes sure that not only eA0t0x0 sits on the line ℓu,

but also that it is on the same ray as e−A0 t̄x̄ and that enough time as passed so

that eA0t0x0 is in fact closer to the origin compared to e−A0t̄x̄. Finally, we define

t1 ≥ 0 to be the time such that

eA1t1eA0t0x0 = e−A0 t̄x̄. (3.7)
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Therefore, defining T := t0 + t1 + t̄, we find that the piecewise continuous curve

xs(t) =





eA0tx0, t ∈ [0, t0],

eA1(t−t0)eA0t0x0, t ∈ [t0, t0 + t1],

eA0(t−t0−t1)eA1t1eA0t0x0, t ∈ [t0 + t1, T ],

(3.8)

is such that xs(0) = x0 and xs(T ) = x̄.

Step 2. We proceed with a suitable smoothing of the trajectory constructed in step 1.

For a small δ ∈ (0, 1), define a smooth function ζδ such that ζδ(0) = z0, ζδ(T ) = z̄
and

ζδ(t) =





0, t ∈ [δ, t0],

5, t ∈ [t0 + δ, t0 + t1 − δ],

0, t ∈ [t0 + t1, T − δ].

(3.9)

We now compare the dynamics of the ODEs generated by the matrices

A(t) =

[
0 1

ζδ(t) − 2 −2

]
(3.10)

and

B(t) =





A0, t ∈ [0, t0],

A1, t ∈ [t0, t0 + t1],

A0, t ∈ [t0 + t1, T ].

(3.11)

For t ≥ τ ≥ 0, we denote by ΦA
t,τ ,Φ

B
t,τ : R2 → R2 the respective solution

operators. From the definition above, it is clear that ΦB
t,0(x0) = xs(t). Moreover,

the underlying dynamics is the same for the two systems, up to a time-interval of

size 4δ. Since

sup
t∈[0,T ]

[‖A(t)‖ + ‖B(t)‖+ |xs(t)|] ≤ C, (3.12)

where C is independent of δ, we deduce that

sup
t∈[0,T ]

∣∣ΦA
t,0(x0) − xs(t)

∣∣ ≤ Cδ, (3.13)

for possibly a different C , independent of δ.

Step 3. To conclude the proof, fix ε > 0 and choose δ in (3.13) so that Cδ < ε. By

writing (xc(t), yc(t), zc(t)) = (ΦA
t,0(x0), ζδ(t)) as in the previous step, we define

h = żc + γ(zc − z⋆) + xc(xc + ηyc). (3.14)

It is then clear that (xc(t), yc(t), zc(t)) is the unique solution to (3.2) with initial

datum (x0, y0, z0). Moreover, zc(T ) = z̄ and by (3.13) and our choice of δ, the

proof is over.
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Remark 3.4. A suitable modification of the above proof implies that the time T
can be made arbitrarily small thanks to the fact that the eigenvalues of the 2 × 2
system can be completely controlled through the z variable. However, we will not

need this enhancement for our purposes.

4 Construction of a Lyapunov function

We now proceed with the analysis of the “linearised” model

θ̇ = 1− z sin2(θ) , ż = −γ(z − z⋆) + α ξ , (4.1)

obtained from (2.3)-(2.4). Here, we are taking advantage of the fact that r does not

appear in the right-hand side of (2.3)-(2.4), and it is therefore completely determined

once (θ, z) are. The averaged behaviour of the right-hand side of the r equation in

(2.3) turns out to characterise the invariant measure of the full Lorenz system (2.2),

as the following theorem shows.

Theorem 4.1. Let µα be the invariant measure for (4.1), and set

λα
def
= −1 +

1

2

∫
z sin(2θ) dµα(θ, z) .

Then, the Lorenz system (2.2) admits a nontrivial invariant measure if λα > 0 and

admits no such measure if λα < 0.

The proof of this theorem is based on the construction of a Lyapunov functional

for the Lorenz system (2.2) that blows up as |x|2 + |y|2 → 0 and at infinity. This

follows from a similar analysis of the linearised system, which we carry out in the

next section.

4.1 Lyapunov functional for the linearised system

To show the existence of a Lyapunov functional for the linearised system (4.1) we

need to analyse the regularity properties of the unique solution gα to the problem

L0gα = λα + 1− z

2
sin(2θ) . (4.2)

Notice that gα is independent of the r variable. The following result contains all

the properties needed later.

Lemma 4.2. Let gα be the unique solution to (4.2). Then, for every ε > 0, there

exists cα > 0 such that

|gα|+ |∂zgα| ≤ cαeεz
2/2 , (4.3)

holds uniformly over (θ, z).
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Proof. Note first that we can assume without loss of generality that ε is small

enough since (4.3) then holds automatically for larger values of ε. We set

G = G(θ, z) := λα + 1− z

2
sin(2θ) .

Since L0gα = G, the function

ϕ(θ, z) := gα(θ, z)e−εz2/2

satisfies

Kϕ = Φ , where Φ(θ, z) = e−εz2/2G(θ, z) (4.4)

and

K = L0 + α2εz∂z −
1

2

[
ε
(
2γ − α2ε

)
z2 − 2γεz⋆z − α2ε

]
.

This operator belongs to the class K0 as defined in [EH03, Def. 2.2], on the space

L2(S1 × R). Setting

b(θ, z) = 1− z sin2(θ) ,

integration by parts shows that

−
∫

Kϕ ϕ =
1

2

∫
∂θb|ϕ|2 +

α2

2
‖∂zϕ‖2 −

γ

2
‖ϕ‖2 + ε

2

(
2γ − α2ε

)
‖zϕ‖2

− 2γεz⋆

∫
z|ϕ| .

In particular, for any positive ε such that ε ≤ γ/α2, and using the bound |∂θb| . |z|,
we infer that

‖∂zϕ‖2 + ‖zϕ‖2 . ‖Kϕ‖2 + ‖ϕ‖2 .

By [EH03, Cor 4.2], it follows that K has compact resolvent and in particular

‖ϕ‖ . 1, which implies that

‖∂zϕ‖2 + ‖(1 + z)ϕ‖2 . 1. (4.5)

To derive similar bounds on higher derivatives, we simply take derivatives of the

equation (4.4), making sure that the corresponding commutators are well-behaved.

We have

[∂θ,K] = ∂θb ∂θ,

[∂2
θ ,K] = [∂θ, [∂θ,K]] + 2[∂θ,K]∂θ = ∂2

θ b ∂θ + 2∂θb ∂
2
θ

[∂3
θ ,K] = [∂θ, [∂θ, [∂θ,K]]] + 3[∂θ, [∂θ,K]]∂θ + 3[∂θ,K]∂2

θ

= ∂3
θ b ∂θ + 3∂2

θ b ∂
2
θ + 3∂θb ∂

3
θ .

and, noting that ∂zb is constant in z, also

[∂z,K] = ∂zb ∂θ −
(
γ − α2ε

)
∂z − ε

(
2γ − α2ε

)
z + γεz⋆,

[∂2
z ,K] = −ε

(
2γ − α2ε

)
+ 2[∂z ,K]∂z.
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In light of (4.5), we have that [∂θ,K]ϕ is in L2, hence (4.5) holds also for ∂θϕ.

Thus [∂z,K]ϕ ∈ L2 as well and the same conclusion for ∂zϕ follows. Proceeding

iteratively, we deduce that ϕ ∈ H3(S1 × R), and the conclusion follows from the

embedding W 1,∞ ⊂ H3.

The construction and properties of the Lyapunov functional for the full linearised

system (2.3)-(2.4) is contained in the following proposition.

Proposition 4.3. Let

εα =
γ

2Γ
∧ βν2σ3χ4

16α2
, Γ = α2 + 2γz2⋆ , (4.6)

and let V0 be given by

V0(r, θ, z) = e−κr
(
1− κgα(θ, z) + δeεαz

2
)

, (4.7)

for some constants κ ∈ R and δ > 0. Then, for every α ∈ R such that λα 6= 0
there exists a choice of δ, κ with sgn κ = sgn λα such that

e−κr
(
1 + δeεαz

2
)
≤ 2V0 ≤ 3e−κr

(
1 + δeεαz

2
)

, (4.8)

and such that furthermore L1V0 ≤ −d
(
1 + z2

)
V0 for some constant d > 0.

Proof. From (4.2) and the generators (2.5b)–(2.5c), it follows that

L0gα = λα − L1r.

A simple calculation then shows that

L1V0 = e−κr
[
(−κL1r)

(
1− κgα + δeεαz

2
)
− κL0gα

+ δ
(
α2εα + 2γεαz⋆z + 2εα

(
α2εα − γ

)
z2
)
eεαz

2
]

= e−κr
[
κ(L1r)

(
κgα − δeεαz

2
)
− κλα

+ δ
(
α2εα + 2γεαz⋆z + 2εα

(
α2εα − γ

)
z2
)
eεαz

2
]

≤ e−κr

[
κ(L1r)

(
κgα − δeεαz

2
)
− κλα + δεα

(
Γ− γz2

2

)
eεαz

2

]
,

where we used the fact that εα ≤ γ
2α2 in order to obtain the last inequality. Note

now that since the function u 7→ eu
2

(3−u2) is bounded from above by 8, we deduce

that

Γ− γz2

2
≤ 4Γe−

γz2

2Γ − 2Γ + γz2

4
≤ 4Γe−εαz2 − 2Γ + γz2

4
, (4.9)

so that

L1V0 ≤ e−κr
[
κ(L1r)

(
κgα − δeεαz

2
)
+ 4δεαΓ− κλα − δεα

4

(
2Γ + γz2

)
eεαz

2
]
.
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We now use the fact that, by Lemma 4.2, there exists a constant cα such that

|gα| ≤ cαeεαz
2

,

so that, since furthermore

|L1r| ≤ 2 + z2 ,

we have

L1V0 ≤ e−κr
[
|κ|

(
2 + z2

)
(|κ|cα + δ)eεαz

2

+ 4δεαΓ− κλα

− δεα
4

(
2Γ + γz2

)
eεαz

2
]
.

We now make the choices

δ = |κ|3/2 , |κ| ≤ λ2
α

64Γ2
∧ εα(γ ∧ Γ)

16
∧
(
εα(γ ∧ Γ)

16cα

)2

,

(as well as sgnκ = sgnλα as in the statement) so that we obtain the bound

L1V0 ≤ e−κr

(
−κλα

2
− δεα

8

(
2Γ + γz2

)
eεαz

2

)

≤ e−κr

(
−κλα

2
− δεα

8

(
2α2 + γz2

)
eεαz

2

)

≤ −
(
κλα

2
∧ γ

8

)
e−κr

(
1 + δ

(
1 + εαz

2
)
eεαz

2
)
.

If we furthermore impose |κ| ≤ 1/c4α, then it follows from (4.3) that

|κ||gα| ≤ |κ|cαeεαz
2/2 ≤ 1

2

(
1 + δeεαz

2
)

,

so that we do indeed have the bound (4.8). In particular, since δ ≤ 1 this implies

2
(
1 + δεαz

2
)
V0 ≤ 3e−κr

(
1 + δ

(
1 + 2εαz

2
)
eεαz

2
)
.

This finally leads to the bound

L1V0 ≤ −1

6

(
κλα ∧ γ

4

)(
1 + δεαz

2
)
V0 ,

as required.

4.2 Lyapunov functional for the stochastic Lorenz system

We also need the following standard result.

Lemma 4.4. Let Xt = X0 + At + Mt be a continuous semimartingale with

A0 = M0 = 0 such that there exists a constant κ for which At ≤ −κ〈M〉t. Then,

provided that limt→∞〈M〉t = ∞ almost surely, one has limt→∞Xt = −∞ almost

surely.



Construction of a Lyapunov function 14

Proof. Trivial by DDS.

We are now ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. We treat the cases λα > 0 and λα < 0 separately. In the

case λα > 0, it suffices to find a function V : (R2 \ {(0, 0)}) × R → R+ with

compact level sets and such that LV ≤ K − cV for some positive constants c and

K .

For this, we first go back to the original formulation (1.2), write U = (X,Y,Z)

and define the norm

|U |2 = X2 + Y 2 + (Z − σ − ̺)2 .

For any c̄ > 0 to be fixed, we define the functional

Ṽ1(X,Y,Z) = exp
(
c̄|U |2

)
. (4.10)

Applying the generator L̃ of (1.2), we see that Ṽ1 satisfies the identity

L̃Ṽ1 = 2c̄Ṽ1

(
α̂2

2
− σX2 − Y 2 −

(
β − c̄α̂2

)
(Z − σ − ̺)2 − β(σ + ̺)(Z − σ − ̺)

)
.

Taking

c̄ =
β

2α̂2
,

we get

L̃Ṽ1 = 2c̄Ṽ1

(
α̂2

2
− σX2 − Y 2 − β

2
(Z − σ − ̺)2 − β(σ + ̺)(Z − σ − ̺)

)

≤ 2c̄Ṽ1

(
α̂2

2
+ β(σ + ̺)2 − σX2 − Y 2 − β

4
(Z − σ − ̺)2

)
,

which implies that

L̃Ṽ1 ≤ K̃ − dα̂
(
1 + |U |2

)
Ṽ1 , (4.11)

where dα̂ ∼ α̂−2 and K̃ > 0 is independent of α̂. In the variables (x, y, z) of

system (2.2), it then follows from (4.11) that the functional

V1(x, y, z) = Ṽ1(X,Y,Z) (4.12)

satisfies

LV1 ≤ K − dα
(
1 + x2 + y2 + z2

)
V1 , (4.13)

for different constants K, dα, explicitly computable from (2.1). The bound (4.13)

suggests the natural choice

V = V0 + V1 ,



Construction of a Lyapunov function 15

leading to the identity

LV = L1V0 − x(x+ ηy)∂zV0 + LV1 . (4.14)

Combining (4.14) with Proposition 4.3 and the bound (4.13) yields the estimate

LV ≤ K − dα
(
1 + z2

)
V − x(x+ ηy)∂zV0 ,

for possibly different constants dα and K .

We then note that, as a consequence of Lemma 4.2, there exists a constant c
such that

|∂zV0| ≤ c(1 + |z|)V0 . (4.15)

It is then immediate that in the region 3x2 + η2y2 ≤ dα/(2c), we have the bound

|x(x+ ηy)∂zV0| ≤
dα
2

(
1 + z2

)
V .

On the other hand, in the region 3x2 + η2y2 ≥ dα/(2c), since λα > 0 we have that

V0 . eεαz
2

. e2εα(z−z⋆)2 .

Now, comparing the above upper bound with the definitions of V1 in (4.12) and of

Ṽ1 in (4.10) via the change of variables (2.1), it is not hard to see that if (compare

with (4.6))

εα ≤ c̄χ4σ2

4
=

βχ4σ2

8α̂2
,

then there holds

V0 .
√

V1 . (4.16)

In particular, we can find K > 0 such that

|x(x+ ηy)∂zV0| ≤ K +
dα
2
V .

Combining these bounds does indeed yield

LV ≤ K − dα
2
V ,

as required.

Regarding the case λα < 0, it suffices to show that, for any realisation of the

process, limt→∞ |x2t + y2t | = 0 almost surely, which follows in particular if we can

show that limt→∞ V0(t) = 0. (Note that in this case κ < 0 in the definition of V0!)

By Proposition 4.3, we have the bound

L logV0 =
LV0

V0

− α2

2

(
∂zV0

V0

)2

≤ −d
(
1 + z2

)
+ x(x+ ηy)

∂zV0

V0

.
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Note furthermore that since κ < 0, it follows by (4.8) that V0 is bounded below

by 1. Hence, (4.15) entails

|∂z log V0|2 ≤ c̃(1 + z2) .

It follows that there exists a constant δ such that, as long as x2t + y2t ≤ δ, one has

d log V0 ≤ −d
(
1 + z2

)
dt+

√
c̃(1 + z2) dWt ,

for some Wiener process Wt. It then follows from Lemma 4.4 that there exists some

ε0 > 0 such that, uniformly over all initial conditions with x20 + y20 = δ/2, one has

limt→∞ logV0(t) = −∞ and supt>0 (x
2
t + y2t ) ≤ δ with probability at least ε0.

It furthermore follows from Proposition 3.3 and the fact that V1 is a global

Lyapunov function for our system that, for any fixed initial condition with x2+y2 >
δ/2, the stopping time τ = inf{t > 0 : x2 + y2 = δ/2} is almost surely finite and

admits exponential moments. If we now split the trajectory into excursions between

the cylinders {x2 + y2 = δ} and {x2 + y2 = δ/2}, a simple renewal argument

shows that one has indeed limt→∞ logV0(t) = −∞ almost surely, as required.

5 Behaviour of the angular motion for small and large α

Recall that the system under consideration is given by

θ̇ = 1− z sin2(θ) , ż = −γ(z − z⋆) + α ξ , (5.1)

and write as before µα for its invariant measure (we consider γ and z⋆ as fixed).

Then, one can write λα as

λα = −1 +
1

2

∫
z sin(2θ)µα(dθ, dz) . (5.2)

Remark 5.1. Since both (5.1) and (5.2) are invariant under θ 7→ θ + π, we can

view θ as an element of RP1 ≡ [−π
2
, π
2

]/{π
2
,−π

2
}. For fixed z > 1, the equation

for θ in (5.1) then admits exactly two fixed points θ± with

sin θ± = ± 1√
z

,

∣∣∣θ± − ±1√
z

∣∣∣ ≤ 1

z3/2
. (5.3)

The fixed point θ+ is stable, while θ− is unstable with a saddle-node bifurcation at

z = 1 when θ± = π
2
.

In this section, we exhibit the precise asymptotic behaviour of λα for small and

for large values of α. Since the map α 7→ λα is smooth, this immediately yields

Theorem 1.1 when combined with Theorems 3.1 and 4.1.

Theorem 5.2. One has

lim
α→∞

α−1/2λα =
Γ(3

4
)

2γ
1

4π
1

2

, lim
α→0

λα =

{ √
z⋆ − 1− 1 if z⋆ > 1,

−1 otherwise.
.
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Remark 5.3. Our proof actually shows that

∣∣∣∣λα − α
1

2Γ(3
4
)

2γ
1

4π
1

2

∣∣∣∣ . α
1

3
+κ , as α → ∞, (5.4)

(for any κ > 0) while we have

|λα − λ0| .
{

α1/4 if z⋆ = 1,

α3/4 otherwise.
(5.5)

Heuristics suggest that (5.5) should hold with exponents 1 and 2 respectively, which

we expect to be optimal. It is however not clear to us what the optimal exponent in

(5.4) should be.

Proof. We start with the case α → ∞ since this is the harder one. Setting

F (θ, z) = −1 +
z

2
sin(2θ) , F0(θ, z) =

√
z1z>0 , (5.6)

the claim follows if we can show that

lim
α→∞

α−1/2

∫
|F − F0| dµα = 0 , (5.7)

where µα denotes the invariant measure for the system (5.1). This is because

z ∼ N (z⋆, α
2/(2γ)) under µα and, for X ∼ N (0, 1), one has

E(1X>0

√
X) =

1√
2π

∫ ∞

0

e−
X2

2

√
X dX =

1

2
3

4π
1

2

∫ ∞

0

e−tt−
1

4 dt .

In order to show that (5.7) holds, we consider the process given by (5.1) and we

define the following increasing sequence of stopping times. We set τ0 = 0 and then

inductively

τn+1 = inf{t > τn : z(t) 6∈ Z(z(τn))} , (5.8)

where the regions Z(z) ⊂ R are defined by

Z(z) =

{
[−1, 1] if |z| ≤ 1/2,

{cz : c ∈ [1/2, 2]} otherwise.

Our definitions guarantee that |z(τn+1) − z(τn)| ≥ 1/4, so that since z is a simple

Ornstein-Uhlenbeck process, the stopping times τn necessarily increase to +∞.

Writing X = RP1×R for the state space of the Markov process (5.1), we define

a space of excursions X̂ = R × C(R+,X )/ ∼, where we set

(τ, u) ∼ (τ̄ , ū) iff τ̄ = τ and u(t) = ū(t) ∀t ≤ τ ,

and we define a sequence of excursions En ∈ X̂ by

En = (τn+1 − τn, u(τn + •)) , (5.9)
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where this time u(•) = (θ(•), z(•)) is the Markov process defined by (5.1).

Given any continuous function F : X → R, we can lift it to a function F̂ : X̂ →
R by

F̂ (τ, u) =

∫ τ

0

F (u(s)) ds .

Given an excursion E, we also write τ (E) for the time τ such that E = (τ, u).

These definitions are such that

n∑

k=0

F̂ (Ek) =

∫ τn+1

0

F (u(s)) ds .

Note that the sequence En given by (5.9) is Markovian as a consequence of the

Markov property of u. Writing µ̂α for the corresponding invariant measure on X̂ ,

it then follows from Birkhoff’s ergodic theorem that, assuming that

T̄α
def
=

∫

X
τ (E) µ̂α(dE) < ∞ , (5.10)

for any F ∈ L1(µα), one has F̂ ∈ L1(µ̂α) and

∫
F (u)µα(du) = T̄−1

α

∫

X
F̂ (E) µ̂α(dE) .

Write now P̂ for the transition probabilities of the Markov chain En on X̂ and

assume that we can find a function Gα : X → R such that, uniformly over E and

over α ≥ 1,

∫
|F̂0(E′) − F̂ (E′)| P̂ (E, dE′) ≤

∫
Ĝα(E′) P̂ (E, dE′) , (5.11)

with F and F0 as in (5.6). This then immediately implies that

∫
|F0 − F | dµα = T̄−1

α

∫

X
|F̂0(E) − F̂ (E)| µ̂α(dE)

= T̄−1
α

∫

X

∫

X
|F̂0(E) − F̂ (E)| P̂ (E, dE′) µ̂α(dE)

≤ T̄−1
α

∫

X

∫

X
Ĝα(E) P̂ (E, dE′) µ̂α(dE) =

∫
Gα dµα .

If we can choose Gα in such a way that furthermore

lim
α→∞

1√
α

∫
Gα dµα = 0 , (5.12)

then our claim follows.

We claim that for every κ > 0 one can find a constant C > 0 such that, setting

Gα(z) = Cακ(Hα(z) + α−2/3|z|) ,
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Hα(z) =





(1 ∨ |z|) if |z| ≤ α2/3,

α|z|−3/4 + α1/3 + z1/3(z/α)16 if |z| ≥ α4/5,

α8/15 + α2|z|−2 otherwise,

the bounds (5.11) and (5.12) are satisfied. Since a simple calculation shows that∫
Gα dµα . ακ+1/3, it only remains to show (5.11).

This implies that (5.11) holds provided we can show that, setting τ = inf{t >
0 : z(t) 6∈ Z(z0)}, one has the bound

E

∫ τ

0

|F0(u(t)) − F (u(t))| dt ≤ Gα(z0) Eτ , (5.13)

where we write u = (θ, z) and set

Gα(z)
def
= inf

z′∈Z(z)
Gα(z′) . (5.14)

In fact, since Gα has the property that Gα(z) . Gα(z) uniformly over all z, (5.13)

is implied by the same bound with Gα replaced by Gα.

Since (5.10) holds by Lemma 5.4 below, it remains to show that (5.13) is indeed

satisfied for all initial conditions (θ0, z0). In order to show this, we consider a

number of different regimes separately.

The case |z0| ≤ α
2/3. This case is trivial since, provided that C is large enough,

one has |F0|+ |F | ≤ Gα in this region.

The case z0 ≤ −α
4/5. We first note that by Fernique’s theorem, combined with

the upper bound in Lemma 5.4 and Corollary 5.5, we can restrict ourselves to the

event

τ ≤ αδ(z0/α)2 , ‖W‖ 1

2
−δ ≤ αδ , (5.15)

where δ > 0 is any (fixed, small) exponent and ‖•‖α denotes theα-Hölder seminorm.

This is because the event on which (5.15) fails has probability bounded by Cα−p

for any p (and a fortiori by α−2/3).

Let N > 0 be such that
√

|z0|2−N ∈ (1/2, 1] and, for n ∈ {0, . . . , N − 1},

write Dn ⊂ RP1 for the region defined by

Dn = {θ : | sin(θ)| ∈ [2−n−1, 2−n]} .

We also set

DN = {θ : | sin(θ)| ≤ 2−N} .

Note that one has |Dn| ≈ 2−n in the sense that the ratio between these quantities

is bounded from above and below by strictly positive constants. Note that for

n ∈ {1, . . . , N − 1}, Dn = D+
n ∪ D−

n consists of a pair of intervals placed

symmetrically around θ = 0, while D0 is a single interval centred around π
2

and

DN is a single interval centred around 0.
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Using Lemma A.1, we now have everything in place to bound the contribution

in this regime (here, ‘of order’ means bounded above and below by a fixed multiple

independent of z0, α, n). The right hand side

Fn(θ, t) = 1− z(t) sin2(θ)

for (5.1) in Dn is of order 2−2nz0 while the integrand

Gn(θ, t) =
z(t)

2
sin(2θ)

is at most of order 2−nz0. As a consequence, the time tn it takes to cross one of the

intervals is of order tn ∼ 2−n/Fn ∼ 2n/z0. (This also includes the intervals D0

and DN .) Summing up these bounds shows that the time it takes to go around RP1

once is of order z
−1/2
0

.

We now apply Lemma A.1 for each of the pairs of intervals {D+
n ,D

−
n }, except

that that on D−
n we replace θ by −θ and run time backwards. We then have right

hand sides Fn, F ′
n and integrands Gn, G′

n with, as a consequence of (5.15),

d(Fn, F
′
n) . 2−2nα1+δz

− 1

2
( 1
2
−δ)

0
, d(Gn, G

′
n) . 2−nα1+δz

− 1

2
( 1
2
−δ)

0
.

The total contribution over the two intervals is therefore bounded by

2−n
(Gnd(Fn, F

′
n)

F 2
n

+
d(Gn, G

′
n)

Fn

)
. α1+δz

−1− 1

2
( 1
2
−δ)

0
.

Summing this, we get a total contribution per round of

α1+δz
−1− 1

2
( 1
2
−δ)

0
log z0 . α1+δz

δ− 5

4

0
.

By (5.15), the total number of rounds in this regime is bounded by
√
z0(z0/α)2αδ,

so by Lemma 5.4 the total contribution is at most of order

√
|z0|(|z0|/α)2αδα1+δ |z0|δ−

5

4 . α2δ−1|z0|δ+
5

4 . α2δ+1|z0|δ−
3

4 Eτ ,

which is what we wanted. There is an additional contribution coming from the

fact that, at the start and the end of the interval, we may not be able to pair these

intervals up. For each of the Dn’s, this additional contribution is at most of order

Gntn ∼ 1, so the total contribution coming from this is at most

log |z0| . |z0|δ−2α2 Eτ . |z0|δ−
3

4αEτ , (5.16)

which is again of the desired order.

The case −α
4/5 ≤ z0 ≤ −α

2/3. In this case, we only have the last contribution

of the previous case, which is indeed of order at most |z0|δ−2α2 Eτ as desired.

The case α
2/3 ≤ z0 ≤ α

4/5+κ. This is similar to the previous case with the

difference that FN is no longer bounded from below, so it is more difficult to
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control the time spent in DN . However, the integrand is bounded by
√
z0 there, so

the additional contribution coming from the time spent in DN is at most
√
z0 Eτ .

α2/5+κ/2Eτ ≤ α8/15+κ/2Eτ as required. Finally, we have a contribution from F0

in this regime, but since F0 .
√
z0 we can treat this as an error term which is of

the same order as the previous contribution.

The case z0 ≥ α
24/23. This case is trivial since one has |F0|+ |F | ≤ Gα.

The case α
4/5+κ ≤ z0 ≤ α

24/23. In this regime, we aim to show that most of

the time the dynamic is very close to tracking the stable fixed point θ+. Write

now τ⋆ ≤ τ for the first time when one has |θ − θ+| ≤ 1/(2
√
z0). It is then

straightforward to show that 2
√
z0θ(t) ∈ [1, 3] holds for all t ∈ [τ⋆, τ ].

We then rewrite (5.1) as

θ̇ = 1− z sin2(θ) = 1− a2(t)θ2 , a2(t) = z(t)
sin2(θ)

θ2
.

Setting f (t) = 1 + a(t)θ(t), we are precisely in the situation of Corollary A.4

below. By choosing α sufficiently large, we can guarantee that, for t ∈ [τ⋆, τ ], |θ|
is sufficiently small so that sin2(θ)

θ2 > 1

2
, so that the assumptions of the corollary are

satisfied with f0 = 1 and a0 =
√
z0/2. Since |θ̇| . 1 and, provided that (5.15)

holds which we can assume without loss of generality, z satisfies

|z(t) − z(s)| . α1+δ|t− s| 12−δ + |t− s|z0 ,

a straightforward calculation shows that one can take the constant K appearing in

Proposition A.3 to be some constant that is independent of both α and z0. Since,

by (5.3), one furthermore has the bound

|z sin(2θ+(z)) − 2
√
z| . 1√

z

in the region under consideration, we conclude that

|z(t) sin(2θ(t)) − 2
√

z(t)| . 1√
z
0

+ 1 +
√
z0e

−√
z0t/2 .

This yields the bound
∫ τ

0

|F0(u(t)) − F (u(t))| dt .
∫ τ⋆

0

|F0(u(t)) − F (u(t))| dt + 1 + τ .

Since

E(1 + τ ) .
(
1 +

α2

z2
0

)
Eτ ≤

(
1 +

α

z
3/4
0

)
Eτ ≤ Gα(z0)Eτ ,

as required, it remains to bound the first term.

For this, write

τ1 = inf
{
t > 0 : |θ(t) − θ−(z(t))| ≥ 1

2
√
z0

}
.
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The contribution of
∫ τ⋆
τ1

|F0(u(t)) − F (u(t))| dt is then bounded by O(log z0) in

exactly the same way as the contribution (5.16) considered in the regime z0 ≤
−α4/5. Writing similarly τ0 for the first time such that |θ − θ−| ≥ z

−2/3
0

, we can

bound the contribution from τ0 to τ1 by writing similarly to before

θ̇ = 1− a2(t)θ2 = f (t)(1 + a(t)θ) , f (t) = 1− a(t)θ(t) ,

and making use of the lower bound in Corollary A.4. Since K ≈ 1 and a0 ≈ √
z0

as before, one has z
−2/3
0

≫ K/a20 so that the assumptions of the corollary are

satisfied, which shows that |τ1 − τ0| . log z0√
z0

. The contribution of this regime is

therefore bounded by log z0 as before.

To bound the contribution up to time τ0, we make use of Lemma A.2. Our aim

is to use it in order to show that

P(τ0 > ακz
−1/2
0

) . α−2/3 , (5.17)

so that, as a consequence of Corollary 5.5, we obtain

∫ τ0

0

|F0(u(t)) − F (u(t))| dt . ακ + |z0|ακ−2/3Eτ ≤ Gα(z0) Eτ ,

as desired. As before, we can furthermore assume that we are on the event (5.15).

In particular, as long as t < ακz
−1/2
0

, we have the bound

|z(t) − z0| . αt
1

2
−δ + |z0|t . αz

−1/5
0

. (5.18)

In order to place ourselves in the framework of Lemma A.2, we set θ̃ = θ + 1/
√
z,

so that

dθ̃ = 2
√
z0θ̃ + (1− z sin2(θ̃ − 1/

√
z) − 2

√
zθ̃) dt+ 2(

√
z −√

z0)θ̃ dt

+
γ

2
√
z
dt+

3α2

8z5/2
dt− α

2z3/2
dW .

One can check that, provided that we choose δ sufficiently small and only consider

times such that |z−z0| ≤ δ|z0|, we are in the setting of Lemma A.2 with a = 2
√
z0

and b = α/(2z
3/2
0

), so that b
√
a ≈ αz

−5/4
0

.

Indeed, we note that since θ̃ . z−2/3, we have the bound

| sin2(θ̃ − 1/
√
z) − (θ̃ − 1/

√
z)2| . 1/z2 ,

so that, at least for t < ακz
−1/2
0

, one has

|1− z sin2(θ̃ − 1/
√
z) − 2

√
zθ̃| . |zθ̃2|+ 1

z
. z−1/3 . α22/23z

−5/4
0

≪ b
√
a ,

|√z −√
z0||θ̃| . αz

−41/30
0

≪ b
√
a ,
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γ

2
√
z
. α18/23z

−5/4
0

≪ b
√
a ,

3α2

8z5/2
. α1−κz

−5/4
0

≪ b
√
a .

Applying Lemma A.2 with K ≈ z
13/12
0

/α, we conclude that there exists a constant

C such that

P
(
τ0 >

C log z0√
z0

)
≤ α−2/3 ,

which indeed implies the required bound (5.17).

The case α small and z⋆ < 1. We now proceed to the proof of the second limit in

in our statement. The methodology is the same as above, but with different choices

of Gα and τn, and the different terms are much easier to estimate. This time, we set

Z(z) =

{
[−2α3/4, 2α3/4] if |z − z⋆| ≤ α3/4,

{z⋆ + c(z − z⋆) : c ∈ [1/2, 2]} otherwise,

and we write

τn+1 = (τn + α−2) ∧ inf{t > τn : z(t) 6∈ Z(z(τn))} .

Finally, we set

Gα(z) =

{
Cα3/4 if |z − z⋆| < α3/4/2,

1 + |z| otherwise.
(5.19)

It is immediate that, if we define Gα as in (5.14), then
∫
Gα dµα . α3/4, so that the

required bound follows if we can show (5.13). Furthermore, (5.13) clearly holds

for |z0 − z⋆| ≥ α3/4 since in that regime one has |F (θ, z)| ≤ |z| ≤ Gα(z0) for all

z ∈ Z(z0).

For |z0 − z⋆| ≤ α3/4, we note first that P(τ < α−2) decays like exp(−c/
√
α)

as a consequence of standard Gaussian estimates, so we can assume that τ = α−2.

We also write t⋆ for the period of the ODE

˙̂
θ = 1− z⋆ sin2(θ̂) , (5.20)

which is finite since z⋆ < 1. By symmetry, we have

∫ t⋆

0

F (θ̂(t), z⋆) dt = 0 ,

independently of the initial condition θ̂(0). We then break the interval [0, τ ] into

chunks [tk, tk+1] of length t⋆ and note that, by setting θ̂n to be the solution to (5.20)

with θ̂n(tn) = θ(tn), one has

∣∣∣
∫ tk+1

tk

F (θ(t), z(t)) dt
∣∣∣ ≤

∫ tk+1

tk

|F (θ(t), z(t)) − F (θ̂(t), z⋆)| dt . α3/4 ,
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except possibly for the last chunk which yields at most a contribution of order 1. It

follows that we have

∣∣∣
∫ τ

0

F (θ(t), z(t)) dt
∣∣∣ . 1 + α

3

4
−2 . α3/4Eτ . Gα(z0)Eτ ,

as required.

The case α small and z⋆ > 1. We use the same definitions as in the previous

case and note again that we only need to consider the case |z0 − z⋆| ≤ α3/4 and

τ = α−2. This time we note that as before the reference dynamic (5.20) admits two

fixed points θ⋆± such that sin θ⋆± = ±1/z⋆, so that

√
z⋆ − 1− 1 = F (θ⋆+, z⋆) .

The claim therefore follows if we can show that, for τ = α−2,
∫ τ

0

|F (θ(s), z(s)) − F (θ⋆+, z⋆)| ds . α
3

4
−2 . (5.21)

The proof of this bound follows the same lines as the proof of the case α4/5+κ ≤
z0 ≤ α24/23 given above, except that the various regimes are much easier to

treat. Since |θ+(z(t)) − θ⋆+| . α3/4 and since this is a stable fixed point (at

least for α sufficiently small depending on z⋆), it follows immediately that once

|θ(t) − θ⋆+| ≤ Cα3/4 for a suitable C , this bounds holds for all subsequent times.

Since F is Lipschitz continuous, it follows that the bound (5.21) holds if we replace

the lower bound in the integral by τ1 = inf{t > 0 : |θ(t) − θ⋆+| ≤ Cα3/4}. Since

the integrand is bounded by O(1), it remains to show that

P(τ1 > α3/4−2) . α3/4 . (5.22)

Setting as before τ0 = inf{t > 0 : |θ(t) − θ⋆−| ≥ Cα3/4}, a very brutal bound

shows that τ1 − τ0 . α−3/4. This is simply because the right hand side of the

equation for θ is of size at least α3/4 during that time so that it takes time at most

O(α−3/4) to move by an order 1 distance. It therefore remains to show that a bound

of the form (5.22) holds for τ0, for which we would like to apply Lemma A.2 again.

If we set similarly to before θ̃(t) = θ(t) − θ−(z(t)), then we see that it satisfies

an equation of the form

dθ̃ = aθ̃ dt− γ(z − z⋆)

2z⋆
√
z⋆ − 1

dt+G1(θ̃, z) dt+ bG2(z) dW ,

where

a = −2z⋆ sin θ⋆− cos θ⋆− = 2
√
z⋆ − 1 , b =

α

2z⋆
√
z⋆ − 1

,

and where the nonlinearities G1,2 satisfy the bounds

|G1(θ̃, z)| . α2 + α3/4|θ̃| , |G2(z) − 1| . α3/4 . (5.23)



Behaviour of the angular motion for small and large α 25

Unfortunately, the second term appearing in the right hand side is of order α3/4,

which is much larger than b
√
a = α/z⋆ so it appears that Lemma A.2 doesn’t apply.

The trick is to look for a constant c such that if we set

θ̂(t) = θ̃(t) − c(z − z⋆) ,

this term cancels out. A simple calculation shows that this is the case if we choose

c =
γ

2z⋆
√
z⋆ − 1(γ + a)

.

With this choice, θ̂ then satisfies

dθ̂ = âθ̂ dt+ Ĝ1(θ̂, z) dt + b̂ Ĝ2(z) dW ,

with â = a,

b̂ =
α

z⋆(2
√
z⋆ − 1 + γ)

,

and Ĝ1,2 satisfying the same bounds (5.23) as G1,2. We are now in the setting of

Lemma A.2. Since there exists a constant Ĉ such that |θ̃| > Ĉα3/4 implies that

|θ − θ⋆−| > Cα3/4, the required bound on τ0 follows at once.

The case α small and z⋆ = 1. This is the case where the two fixed points θ⋆± are

merged into one. We proceed again in the same way as above with Gα as in (5.19),

but this time equal to Cα1/4 for |z − z⋆| ≤ α3/4/2. Again, it suffices to consider

the case τ = α−2 and |z0 − z⋆| ≤ α3/4. Define the two intervals

D0 = {θ : |θ − θ⋆±| ≤ Cα3/8} , D1 = {θ : |θ − θ⋆±| ≤ α1/8} ,

and write Dc
1 for the complement of D1. The trajectory t 7→ θ(t) can then be

partitioned into intervals according to whether θ(t) ∈ D1 (called ‘slow intervals’)

or θ(t) ∈ Dc
1 (‘fast intervals’). A simple comparison with scaled translates of the

ODE u̇ = u2 shows that it takes at most a time of orderα− 1

8 to traverse a fast interval

and at least a time of order α− 3

8 to go from the boundary of D1 to that of D0 (and

therefore a fortiori also to traverse a slow interval). Since one has |F (θ, z)| . 1

in Dc
1 and |F (θ, z)| . |θ − θ⋆±|2 . α

1

4 in D1, we conclude that the average of F

over any time interval of size at least α− 3

8 is bounded by Cα
1

4 +Cα
3

8
− 1

8 . α
1

4 as

claimed.

We complete this section with a bound on the stopping time τ given as in (5.8)

by

τ = inf{t > 0 : z(t) 6∈ Z(z0)} ,

where z denotes the solution to (2.4) with initial condition z0.

Lemma 5.4. For every k ≥ 1 there exists a constant c such that, for all |z0| ≥ 1
and all α ≥ 1, one has Eτ ≥ c(1 ∧ (z0/α)2) and (Eτk)1/k ≤ c−1(1 ∧ (z0/α)2).
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Proof. We first show the lower bound. One has

|z0|
2

≤ |z(τ ) − z0| =
∣∣∣
∫ τ

0

z(s) ds + αW (τ )

∣∣∣ ≤ 2|z0|τ + α|W (τ )| .

It follows that either τ > 1

8
or |W (τ )| ≥ |z0|/(4α), so that τ ≥ 1∧ (z0/α)2σ, where

the random variable σ is equal in law to

σ = inf{s ≥ 0 : |W (s)| = 1/4} .

If |z0| ≥ α, we then have

Eτ ≥ 1

8
P
(

sup
s≤1/8

|W (s)| ≤ 1/4
)
≥ c ,

for some c > 0 as required. In the regime α ≥ |z0|, we have

Eτ ≥ (z0/α)2E(σ ∧ (α/z0)2) ≥ (z0/α)2E(σ ∧ 1) ≥ c(z0/α)2 ,

for some (possibly different) strictly positive constant c as required.

To show the upper bound, note first that we can assume without loss of generality

that z0 > 0. For every stopping time t ≤ τ we then have, similarly to before,

z0 ≥ |z(t) − z0| =
∣∣∣
∫ t

0

z(s) ds + αW (t)
∣∣∣ ≥ α|W (t)| − 2|z0|t ,

so that, setting ε = |z0|/α, one has

|W (t)| ≤ ε(1 + 2t) . (5.24)

It follows from the standard small ball estimates for Brownian motion [Chu48, LS01]

that, for all t ≤ 1, one has the bound

P(τ ≥ t) ≤ C exp
(
−c

t

ε2

)
,

for some constants c, C > 0. On the other hand, for every t ≤ τ , we also have

z0
2

≤ z(t) ≤ z0(1− t
2
) + αW (t) ,

which, by [Hal97, Eq. 3], implies that

P(τ ≥ t) ≤ P
(
W (t) ≥ ε

2
(t− 1)

)
− eε

2/2P
(
W (t) ≥ ε

2
(t+ 1)

)
,

so that in particular, for all t ≥ 2,

P(τ ≥ t) . (1 ∧ ε2) exp(−ε2t/8) .
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For ε ≤ 1/2 it follows that, for a suitable c > 0,

Eτk = k

∫ ∞

0

tk−1P(τ ≥ t) dt

.

∫
1

0

tk−1e−ct/ε2 dt+ e−c/ε2
∫ ε−4

1

tk−1 dt+ ε2
∫ ∞

ε−4

tk−1e−cε2t dt

. ε2k + ε−4ke−c/ε2 + ε2−2ke−c/ε2 . ε2k ,

as claimed. For ε ≥ 1/2, we have

Eτk ≤ 2 + k

∫ ∞

2

tk−1P(τ ≥ t) dt . 1 +

∫ ∞

2

tk−1e−cε2t dt

. 1 + ε−ke−2cε2 . 1 ,

as claimed.

Corollary 5.5. Let Aα be a collection of events such that P(Aα) ≤ α−2/3. Then,

for every κ > 0 there exists a constant C such that

E
(

1Aα

∫ τ

0

|F0 − F | dt
)
≤ C|z0|ακ−2/3 Eτ .

Proof. We have

E
(

1Aα

∫ τ

0

|F0 − F | dt
)
. |z0|E(1Aατ) ≤ |z0|P(Aα)(k−1)/k(Eτk)1/k

. |z0|P(Aα)(k−1)/kEτ ,

where we used Lemma 5.4 to get the last bound. The claim now follows at once by

choosing k sufficiently large.

Appendix A Useful bounds

Lemma A.1. Let θ1, θ2 be solutions to

θ̇i = Fi(θi, t) , θi(0) = a .

for Lipschitz functions Fi such that Fi(θ, t) > 0. Write τi = inf{t > 0 : θi(t) = b}.

Then, for any two bounded continuous functions Gi one has the bound

∣∣∣
∫ τ1

0

G1(θ1, t) dt−
∫ τ2

0

G2(θ2, t) dt
∣∣∣ ≤ |b− a|d(G1, G2)F 2 +G2d(F1, F2)

F 1F 2

,

where F (resp. F ) denote the minimum (resp. maximum) of F and d(H1,H2) =
supt1,t2,θ |H1(θ, t1) −H2(θ, t2)|.

Proof. Trivial.
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Lemma A.2. There exists a universal constant ε > 0 such that the following holds.

Let W be a standard Wiener process, let E and C be continuous processes adapted

to the filtration generated by W , and let x solve

dx = ax dt+ E(t) dt+ bC(t) dW (t) ,

for some constants a, b > 0. Assume that, almost surely, one has |C(t) − 1| ≤ ε
and |E(t)| ≤ εb

√
a for all t > 0 and write τK for the first time when |x| ≥ Kb/

√
a.

Then, the bound

P
(
τK >

N

a
log

K ∨ 1

ε

)
. 2−N

holds uniformly over x0 ∈ R, K > 0 and every integer N > 0.

Proof. By considering x̂(t) =
√
a
b x(t/a) we can reduce ourselves to the case

a = b = 1, which we assume from now on. We write

x(t) = x0e
t + Z(t) + Ê(t) ,

where

Z(t) =

∫ t

0

et−sdW (s) , Ê(t) =

∫ t

0

et−s(E(s) ds + (C(s) − 1) dW (s)) .

It follows that for any deterministic time t > (log 2)/2 we can write

x(t) = et(x0 + η + εζ) , (A.1)

where η is a Gaussian random variable with variance in [1
4
, 1
2
] and, by Bernstein’s

inequality [RY94, Ex. IV.3.16], ζ is a random variable (correlated with η in general)

with the property that P(|ζ| > 1 +M ) ≤ 2 exp(−M2).

Set now t = log(K ∨ 1) − log ε so that et ≥ K/ε. Provided that ε < 1/
√
2,

this yields the bound

P
(
τK > log

K ∨ 1

ε

)
≤ P(|x(t)| < K) ≤ P(|x0 + η + εζ| < ε)

≤ P(|x0 + η| < Mε) + P(|ζ| > M − 1)

≤ 4Mε√
2π

+ P(|ζ| > M − 1) .

It immediately follows that, by first choosing M large enough so that P(|ζ| >
M − 1) < 1/4 and then choosing ε small enough so that 4Mε√

2π
< 1/4, we can

guarantee that P(τK > log ((1 ∨K)/ε)) < 1/2.

Using the same argument, combined with the fact that E and C are adapted, we

obtain the almost sure bound

P(τK > t+ log ((1 ∨K)/ε) | Ft) < 1/2 .

Iterating this bound then yields the claim.
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Proposition A.3. Let x and y be solutions to

ẋ = 1− a(t)x , ẏ = 1 + a(t) y ,

for a function a such that a(t) ≥ a0 > 0 for all t > 0 and such that |a(t)−a(s)| ≤ K
whenever |t − s| ≤ 1/a0. There exists a universal constant C such that, setting

x⋆(t) = 1/a(t), one has

|x(t) − x⋆(t)| ≤ |x(0) − x⋆(0)|e−a0t +
CK

a2
0

, (A.2)

for all t ≥ 0. Setting y⋆(t) = −1/a(t), there exists a constant C such that, provided

that |y(0) − y⋆(0)| ≥ CK/a20 and that a(t) ∈ [a0, 2a0] for all t > 0, one has

|y(t) − y⋆(t)| ≥ |y(0) − y⋆(0)|ea0t/2/2 . (A.3)

Proof. Writing x̃(t) = x(t) − x⋆(0), we have

˙̃x = −a(t)x̃+ (a(0) − a(t))x⋆(0) ,

so that, for t ≤ 1/a0,

|x̃(t)| ≤ e−a0t|x̃(0)| +K|x⋆(0)|/a0 .

On the other hand, one has

|x⋆(t) − x⋆(0)| = |a(t) − a(0)|
a(0)a(t)

≤ K

a2
0

.

Since |x⋆(0)| ≤ 1/a0, we conclude that (A.2) holds for t ≤ a0 with C = 2. It then

suffices to iterate this bound.

Regarding the lower bound on y, a similar calculation shows that, for t ≤ 1/a0,

|ỹ(t)| ≥ ea0t|ỹ(0)| −K|y⋆(0)|
∫ t

0

e2a0s ds ≥ ea0t|ỹ(0)| − (e2 − 1)
K

a2
0

.

Choosing C sufficiently large and iterating this bound proves the claim.

Corollary A.4. Let x and y be the solutions to

ẋ = f (t)(1− a(t)x) , ẏ = f (t)(1 + a(t) y) ,

with a as in Proposition A.3 and f ≥ f0. Then, the conclusions still holds, but with

e−a0t and ea0t/2 replaced by e−a0f0t and ea0f0t/2 respectively.

Proof. It suffices to perform a time change to eliminate f .
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