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Abstract

Fibre composites, and especially aligned discontinuous composites (ADCs), offer enormous ver-

satility in composition, microstructure, and performance, but are difficult to optimise, due to

their inherent variability and myriad permutations of microstructural design variables. This work

combines an accurate yet efficient virtual testing framework (VTF) with a data-driven intelligent

Bayesian optimisation routine, to maximise the mechanical performance of ADCs for a number of

single- and multi-objective design cases. The use of a surrogate model helps to minimise the num-

ber of optimisation iterations, and provides a more accurate insight into the expected performance

of materials which feature significant variability. Results from the single-objective optimisation

study show that a wide range of structural properties can be achieved using ADCs, with a max-

imum stiffness of 505 GPa, maximum ultimate strain of 3.94%, or a maximum ultimate strength

of 1.92 GPa all possible. A moderate trade-off in performance can be achieved when considering

multi-objective optimisation design cases, such as an optimal ultimate strength & ultimate strain

combination of 982 MPa and 3.27%, or an optimal combination of 720 MPa yield strength & 1.91%

pseudo-ductile strain.
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1. Introduction

Composite materials are often used in the aerospace and automotive industries due to their high

specific strength and specific stiffness [1]. However, composites often feature a complex microstruc-10

ture, with many permutations of design variables (such as lay-up configurations, or constituent(s)),

and many sources of variability (such as variability in local fibre spacing or fibre strength/modulus).

These levels of variability and complexity make composites difficult to simulate, and even more

difficult to optimise. This problem becomes even more difficult when trying to optimise multiple

competing performance characteristics (e.g. strength and ductility), or when sensitivity analyses15

must be made to ensure robustness of mechanical performance.

Bayesian Optimisation provides a principled technique based on Bayes’ Theorem to direct a
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Acronyms and initialisms

ADC Aligned Discontinuous Composite
ARD Automatic Relevance Determination
CF Carbon Fibre
CoV Coefficient of Variation
NGF Nippon Graphite Fibre corporation
PAN Poly-AcroNitrile
RVE Representative Volume Element
SFPO Single Fibre Pull-Out
VTF Virtual Testing Framework

search of a global optimisation problem that is efficient and effective[2]. This method is suitable for

problems where an optimal solution needs to be determined with the minimum number of objective

function evaluations, such as selection of hyperparameters for machine learning algorithms [3],20

robot gait optimisation [4], or traffic congestion planning [5]. This routine works by building a

probabilistic model of the objective function, called the surrogate model, which is computationally

inexpensive to evaluate, and can therefore be used to efficiently estimate the objective function in

unexplored regions of the design space; these estimations are then fed into an acquisition function,

which is used to decide which are the best points to evaluate next, in order to maximise optimisation25

efficiency [6]. As the optimisation progresses, not only is the design space explored extensively, but

also more and more training data becomes available to the surrogate model, improving its accuracy

with each design iteration.

The use of surrogate models in data-driven intelligent optimisation routines (such as Bayesian

optimisation) ensures that the next sampling point(s) can be carefully selected to minimise the30

number of objective function iterations; by reducing the number of objective function evaluations,

data-driven intelligent optimisation routines run much faster than non-data-driven routines (such

as monte-carlo, particle swarm, or genetic algorithm methods), particularly when the objective

function is computationally expensive to evaluate [7]. Bayesian optimisation uses Gaussian pro-

cess regression [8, 9] to create the surrogate model ; this method fits a collection of statistical35

distributions to the input data to predict the objective function (which is also output as a distri-

bution function), thus making this method well suited to stochastic modelling (such as predicting

the mechanical performance of composites) [8]. Other methods (such as artificial neural networks)

may also be used to create a surrogate model for data-driven optimisation [10], although these

methods are traditionally deterministic, making these methods poorly suited to applications with40

significant variability. Modern Bayesian deep learning methods can be used to capture the effects

of variability using neural networks [11], although they are computationally expensive, and thus

not well-suited for most optimisation applications.

Bayesian optimisation has been used to construct reduced order models for micromechanical

analysis of composites [12], and has been used to optimise the manufacturing process for short45
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polymer fibre composite materials [13]; however, Bayesian optimisation has never been used to

perform microstructural design of composite materials. More specifically, data-driven optimisa-

tion has never been combined with efficient virtual testing methods to enable the optimal design

of aligned discontinuous composite microstructures for multiple objectives, while simultaneously

considering a large number of design parameters and the stochastic nature of such materials.50

Aligned discontinuous composites (ADCs) are a sub-class of composite material that feature

versatility in their mechanical behaviour: for example, Henry et al. [14] showed an ultimate strength

of 1.4 GPa could be achieved, due to the fibres being well aligned to the loading direction; on the

other hand, Finley et al. [15] demonstrated pseudo-ductile behaviour, with a maximum pseudo-

ductile strain (defined by Fuller and Wisnom [16]) of 1.6 %, which was achieved through controlled55

fibre fragmentation and fibre-matrix debonding within the ADC, without premature fracture of the

material. However, with added mechanical versatility comes a particularly complex microstruc-

ture: ADCs feature many different constituents, each with many stochastic properties [17]. The

myriad permutations of constituent materials (such a hybrid fibre-types and variety of compati-

ble matrices), and the variability in constituent properties (such as fibre overlap lengths, hybrid60

fibre-type arrangements, and local matrix strength variability), make it difficult to find the opti-

mum microstructure to maximise structural performance. These extreme levels of versatility and

complexity make ADCs the perfect vehicle to demonstrate the potential for data-driven intelligent

optimisation of composite materials.

An accurate, yet efficient virtual testing framework (VTF) [14, 15, 17–19] has been developed65

to predict the structural response of hybrid [15, 17–19] or non-hybrid [14] ADC material systems,

which may also feature many sources of variability and defects [17]. The VTF is significantly

faster than alternative analysis methods [20], with VTF runtimes for full ADC specimens taking

just minutes. However, while the VTF is an efficient analysis tool, the complexity of the material

system means that an unreasonably large number of virtual tests would be required to fully explore70

the design space and find optimal microstructural designs, unless a more intelligent optimisation

routine is used.

This paper combines a data-driven intelligent Bayesian optimisation routine with the efficient

VTF to explore various ADC microstructural designs and maximise a range of structural per-

formance requirements. Section 2 provides an overview of the VTF used to evaluate different75

material systems, and describes the Bayesian optimisation routine. Two separate optimisation

campaigns will be studied: firstly, a single-objective optimisation campaign will focus on individ-

ually optimising the initial stiffness, ultimate strain, pseudo-ductile strain, ultimate strength, or

yield strength; the results and discussion of the single-objective optimisation campaign are shown

in Sections 3.1 and 3.2 respectively. Next, a multi-objective optimisation campaign will focus on80

real-world material design cases, by optimising selected combinations of the above material prop-

erties (see Section 2.2.3 for details); the results and discussion for the multi-objective optimisation
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campaign are shown in Sections 4.1 and 4.2. Finally, conclusions will be drawn in Section 5.

2. Optimisation strategy

In this section, an overview of the VTF is given in Section 2.1, while the optimisation routine85

(and associated optimisable parameters, constraints, and data management structure) is described

in Section 2.2.

2.1. The virtual testing framework

A VTF is used to simulate the stress-strain curves of various ADC material systems. The VTF

is a culmination of several years of research [14, 15, 17–19], and is based on the following features90

required for the analysis of versatile ADC material systems:

� The VTF is a multi-scale model that simulates material behaviour at the fibre-fibre in-

teraction, fibre, RVE, and complete specimen length scales, without the use of inaccurate

homogenisation techniques [14, 17].

� Hybridisation of fibre-types is supported, including hybridisation of fibre Young’s moduli,95

fibre diameters, and the Weibull parameters used to define stochastic fibre strengths [15, 17–

19]. While the VTF can consider hybrid composites with any combination of two fibre-types

(e.g. high-strength carbon and high-modulus carbon [19] or high-modulus carbon and E-glass

fibres [15, 17]), it should be noted that the two different fibre-types will be referred to as

the ‘glass’ and ‘carbon’ fibres throughout this paper, with the ‘glass’ fibre-type denoting the100

fibre-type with the lowest Young’s modulus of the two.

� The most relevant sources of variability are modelled in the ADC specimens, including vari-

ability in matrix strength, inter-fibre distance, fibre strength, fibre stiffness, and hybrid

fibre-type arrangement [14, 17, 19].

� Various sub-critical damage events are predicted to occur during the simulation, such as105

matrix softening, matrix debonding, fibre fragmentation, and fibre failure [17]. Tracking of

these damage events helps to determine which sources of damage are contributing to final

failure of the material system.

� Final failure is governed by a non-linear fracture mechanics failure criterion, which has been

proven to accurately determine final failure of a variety of ADC material system designs,110

both for ductile and brittle failure modes [17].

Each ADC microstructure is defined by the material properties shown in Table 1 and 2. Carbon

and glass fibre properties are defined by selecting one of 15 commercially available fibre-types,

details of which are shown in Table 3. Each fibre-type is characterised by its fibre diameter φf ,

expected Young’s modulus E (Ef), Weibull reference strength Xf , Weibull modulus m, and Weibull115
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reference length lw; each fibre-type also belongs to a fibre group (i.e. Pitch-CF, PAN-CF, E-glass,

or S-glass), which denotes the constituent materials and method of manufacture.

The VTF outputs a stress-strain curve of the mechanical response of each material system

that is analysed. In this work, each stress-strain curve is characterised by five key performance

characteristics that are used to establish the optimality of any material system:120

1. Initial stiffness, defined as the gradient of the stress-strain curve at the start of the simulation.

2. Ultimate strength, defined as the maximum stress achieved by the material.

3. Yield strength, defined as the 0.1% strain offset yield strength, as per Fuller et al. [16].

4. Ultimate strain, defined as the maximum strain achieved by the material.

5. Pseudo-ductile strain, defined as the difference between the ultimate strain and the elastic125

strain (the elastic strain is calculated as the ultimate strength divided by the initial stiff-

ness) [21].

In addition to these five key performance characteristics, the maximum stress drop in the stress-

strain curve simulated by the VTF is also recorded, as will be justified in Section 2.2.2. These five

key performance characteristics (and the maximum stress drop) will be the output of the VTF in130

the scope of the optimisation process, as detailed in the next section.

2.2. Bayesian optimisation algorithm

The VTF is used as the objective function for the Bayesian optimisation routine, which at-

tempts to find the best combination of optimisable input variables to maximise one (or more) of

the key performance characteristic(s). Seven optimisable variables are used to modify the ADC135

microstructure, as per Table 1; each of the continuous optimisable variables has a range defined

by typical values seen in commercially available material systems.

2.2.1. Single-objective Bayesian optimisation routine

The Bayesian optimisation routine uses a surrogate model to approximate the objective function

and hence find optimal material system designs with far fewer objective function evaluations than140

alternative methods [37–39]. The Bayesian optimisation routine follows the flowchart shown in

Figure 1 with the steps described in detail below:

1. Before the start of the optimisation process there is no surrogate model for the objective

function (as there is no observed data yet). The first step of the Bayesian optimisation

process is to define the prior, which in this case is a collection of Gaussian distributions that145

may fit the objective function within the specified ranges of the optimisable variables [8, 9].

2. If at the start of the optimisation process the observed data contains between zero and four

evaluations of the VTF, the VTF should sample random combinations of inputs to generate

observed data, until the size of the observed data is sufficiently large. Otherwise, continue

to Step 3.150
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3. The observed data consists of a matrix of sampled key performance characteristics (and

the maximum stress-drop, see Section 2.2.2) Y (X), where X is the associated inputs that

are used to achieve each observed data point Y . The observed objective function output(s)

can then be determined by extracting the relevant key performance characteristic(s) (i.e.

the sub-set of key performance characteristics to be optimised) from the matrix of sampled155

outputs.

4. Gaussian process regression [8, 9] is then used to assign probabilities that each of the Gaus-

sian distributions in the prior fits with the objective function; these probabilities are called

the marginal likelihood. The product of the prior (i.e. the collection of Gaussian distribu-

tions that may fit the objective function in the required range) and the marginal likelihood160

(i.e. the probabilities that each of the Gaussian distributions within the prior fit the ob-

jective function, given the observed data) forms the surrogate model (otherwise known as

the posterior distribution), which can be used to approximate the objective function (and

hence predict the relevant key performance characteristic(s)). Several authors [8, 9] describe

Gaussian process regression in great detail, and specific settings used for this paper can be165

found in Section 2.2.4.

5. Once the surrogate model is created, it is sampled a large number of times (in this paper,

10, 000 times per iteration) to estimate both the values of the objective function and the

levels of uncertainty in the surrogate model, over the whole design space (which is defined by

the range of the optimisable input parameters in Table 1). The surrogate model runs many170

times faster than the objective function, hence the design space can be explored rapidly.

6. An acquisition function is then used to determine the best next point to sample, so as to

maximise the efficiency of the optimisation routine. In order to find global optima, a balance

between exploitation and exploration of the sampled space must be made; for this reason

the ‘expected improvement plus’ acquisition function [40] is used, because this acquisition175

function looks for points that maximise the predicted performance, yet adds a penalty to any

prospective sampling point if it lies too close to points that have been previously sampled.

7. The best next point is then sampled via a virtual test using the more computationally expen-

sive, yet more accurate VTF; the inputs and outputs for the best estimated point are added

to the matrices of observed inputs X and observed key performance characteristics Y (X).180

8. Steps 3 to 7 are repeated using the additional observed data from the most recent virtual

test. As the optimisation routine progresses, not only are more areas of the design space ex-

plored, but also the accuracy of the surrogate model improves as more observed data becomes

available. The best observed point Y ? (X?) is determined by finding the maximum key per-

formance characteristic being optimised from the observed key performance characteristcs185

Y , where X? are the associated inputs used to achieve the best observed point. The best

estimated point Ẏ
?
(
Ẋ

?
)

is found by sampling the surrogate model using the inputs in X to

find the best point (which in this paper is defined as the highest expected key performance

7



characteristic) from the estimated key performance characteristics Ẏ , and where Ẋ
?

is the

associated inputs used to achieve the best estimated point.190

9. The optimisation routine finishes when convergence is achieved, i.e. when either (i) a set

number of iterations are achieved, or (ii) no improvement in the best estimated point(s) can

be found after a set number of iterations.

Observed data

…

yes

3. Gather objective function outputs 
from observed data

5. Sample design space using 
surrogate model

6. Determine next point to sample 
using acquisition function

7. Sample best next point using VTF

8. Update current best point

9. Convergence 
reached?

Finish

no

Update observed data using newly-
observed data

1. Create prior

2. Does observed 
data contain 4 or 

more VTF 
evaluations?

Run VTF until observed data 
has four VTF evaluationsyes

4. Use GPR to create surrogate model 
to estimate the objective function

yes

3. Gather objective function outputs 
from observed data

5. Sample design space using 
surrogate model

6. Determine next point to sample 
using acquisition function

7. Sample best next point using VTF

8. Update current best point

9. Convergence 
reached?

Finish

no

Update observed data using newly-
observed data

1. Create prior

2. Does observed 
data contain 4 or 

more VTF 
evaluations?

Run VTF until observed data 
has four VTF evaluationsyes

4. Use GPR to create surrogate model 
to estimate the objective function

Key

Data store

Action

Decision

Figure 1: A flowchart showing the Bayesian optimisation routine described in Section 2.2.1, and how the Bayesian
optimisation routine can be run in parallel using a common observed data store.

2.2.2. Constraints

The stress-strain curve of an ADC is not necessarily monotonically increasing; in fact, hybrid195

ADCs may feature a significant stress-drop after the pseudo-yield point [15], which makes the

structural response of the material unstable under real-world loading conditions. In some cases,

the optimisation routine might yield a design which has one or more optimal key performance

characteristic(s), but features a sudden large stress-drop in the stress-strain curve, as per the design

shown in Figure 2f. The maximum permissible stress-drop in this study is therefore constrained200

to 50 MPa to ensure a stable stress-strain response.

In order to constrain the maximum stress-drop in the stress-strain curve, the maximum stress-

drop for each virtual test is recorded (using the output from the most recent virtual test), and

applied as a non-deterministic coupled constraint as part of the bayesopt() [41] function in Matlab.

This type of constraint uses Gaussian process regression [8, 9] (with specific settings used for205

this paper detailed in Section 2.2.4) to model the probability of feasibility (i.e. the probability

that a proposed combination of inputs will have a sufficiently small stress-drop), so that if the

8



probability of feasibility at the proposed combination of inputs is low, then a penalty is applied to

the acquisition function. This process ensures that points with a low probability of feasibility are

not evaluated by the VTF, thus avoiding expensive evaluation of points that are likely to feature210

large stress-drops.

2.2.3. Multi-objective optimisation

In many real-world structural applications there are several competing key performance char-

acteristics which need to be optimised concurrently. Therefore, three multi-objective optimisation

design cases are considered in this work; each multi-objective design case aims to maximise two ob-215

jective functions (each relating to a different key performance characteristic), inspired by real-world

requirements for applications in lightweight structures:

1. Maximum ultimate strength and initial stiffness (a conventional requirement for general

aerospace applications [42]).

2. Maximum ultimate strength and ultimate strain (for design cases that require a high work220

of fracture, e.g. under crash conditions [43]).

3. Maximum yield strength and pseudo-ductile strain (for damage tolerant design [44]).

In this work, a modified version of the ε-constraint method is developed to perform the multi-

objective optimisation campaign, in order to support the non-convex and stochastic nature of

the Pareto fronts associated with the above multi-objective design cases. This method works225

by constraining the first objective function to be larger than an imposed minimum value, while

maximising the second objective function; the minimum limit of the constrained objective function

is then incrementally increased to enable a Pareto optimal set of solutions to be found, even for

convex Pareto fronts. More details on Pareto optimality can be found in Section 4.1.1, while more

details on the modified ε-constraint method can be found in Appendix A.230

2.2.4. Optimisation details and data management structure

In this paper, categorical variables are used to define the fibre-types that are available. In

order to perform Gaussian process regression using categorical variables, a process similar to one-

hot encoding [45] is used to select the properties of the posterior distribution according to the

fibre-types.235

Another feature of this paper is that the objective function is non-deterministic, i.e. for the

same inputs, the VTF will always produce a distribution of stress-strain responses. The stochas-

tic nature of the objective function is preserved by adding an independent noise component to

the ARD Matérn 5/2 kernel function [8], and is implemented in Matlab by setting the IsObjec-

tiveDeterministic and AreCoupledConstraintsDeterministic flags to ‘false’ as part of the bayesopt240

package [41].

All settings for the Bayesian optimisation routine described in this paper are summarised in

Table 4, including a reference to the Section in which they are used.
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Table 4: Settings used for the Bayesian optimisation routine in this paper. The exploration was set to the default
value of 0.5, although the results were insensitive to changes in the exploration ratio between values of 0.2 - 0.9.
Settings in italics are for the bayesopt package in Matlab [41].

Single- and multi-objective optimisation settings
Setting name Setting value Section

Kernel function ARD Matérn 5/2 [8] 2.2.4
Acquisition function Expected improvement plus [40] 2.2.1
Exploration ratio 0.5* 2.2.4
IsObjectiveDeterministic False 2.2.4
AreCoupledConstraintsDeterministic False 2.2.4

Multi-objective optimisation settings
Setting name Setting value Section

Increment of guiding constraint 1/40
th

of secondary objective range Appendix A

Every time the VTF is used to evaluate the objective function, the input material parameters,

damage events, fracture information, and stress-strain curve (including the resulting key perfor-245

mance characteristics and stress-drop data) for each virtual test are stored in a user-defined virtual

specimen object. The virtual specimen data is collected for all design optimisation cases, post-

processed, and stored in the observed data store. The observed data can then be used as observed

data to improve the accuracy of surrogate models in future Bayesian optimisation iterations.

The advantage of this data management structure is that, if multiple Bayesian optimisation250

tasks are run concurrently, the data can be shared between the optimisations at regular intervals (as

per Figure 1), enabling faster training of the surrogate models, and hence a more efficient Bayesian

optimisation process. Sharing of the observed data is particularly powerful when combined with

the modified ε-constraint multi-objective optimisation method (see Section 2.2.3 and Appendix A),

as optimisation can be performed with different levels of constraint on the first objective function255

simultaneously, all whilst using the same observed data.

3. Single-objective optimisation

This section relates to the single-objective optimisation campaign, which focuses on optimising

the key performance characteristics (the initial stiffness, ultimate strain, pseudo-ductile strain,

ultimate strength, or yield strength) individually. All five optimisations were performed in parallel260

(using the data management structure described in Section 2.2.4), with observed data being shared

between parallel optimisation tasks every 5 virtual tests. The results and discussion of the single-

objective optimisation campaign are shown in Sections 3.1 and 3.2 respectively.

3.1. Single-objective optimisation results

3.1.1. Single-objective optimal designs265

The single-objective optimisation process is used to find the best estimated points Ẏ
?
(
Ẋ

?
)

for

all five key performance characteristics; the best estimated points are favoured for this optimisation
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task, as opposed to the best observed points Y ? (X?), as the best estimated points are found to

be a more accurate method for identifying optimal microstructural designs when the material

systems feature inherent variability (this will be discussed in more detail in Section 4.2.2). Figure 2270

shows the optimal stress-strain curves for the five single-objective optimisation design cases, while

Table 5 shows the associated input parameters Ẋ
?

that are used to create the optimal designs.

Figure 2f shows how the optimal stress-strain curve of the maximum pseudo-ductile strain design

case changes when the maximum stress-drop constraint (see Section 2.2.2 for details) is relaxed.

Table 5: Optimal inputs Ẋ
?

for the five single-objective optimisation design cases. Values in brackets show where
each continuous optimisable variable sits within the design range defined in Table 1 (i.e. values of 0%, 50%, and
100% mean that an optimisable variable lies at the lower bound, middle, or upper bound of the range).

Single-objective optimal design case
Optimisable variable Initial stiffness Ultimate strain Pseudo-ductile strain Ultimate strength Yield strength

Carbon Fibre, Fc (see Table 3 for details) K13D K13D K13D C124 C124
Glass fibre, Fg (see Table 3 for details) - C100 C100 - -
Carbon volume ratio, Vc 1.00 (100%) 0.46 (46%) 0.60 (60%) 1.00 (100%) 1.00 (100%)
Fibre length, lf (mm) 11.7 (97%) 4.42 (34%) 4.52 (35%) 12.0 (100%) 10.7 (89%)
Matrix shear strength, E (Sm) (MPa) 52.3 (21%) 40.7 (0%) 77.4 (62%) 47.5 (13%) 98.9 (98%)
Matrix shear modulus, Gm (GPa) 1.75 (94%) 1.11 (14%) 1.73 (91%) 1.73 (91%) 1.08 (10%)
Matrix mode-II fracture toughness, Gc

IIm

(
kJ/m2

)
0.77 (43%) 0.75 (38%) 0.84 (60%) 0.93 (83%) 0.78 (45%)

3.2. Single-objective optimisation discussion275

A large range of mechanical properties can be achieved through the use of ADCs (see Fig-

ures 2a to 2e), with a maximum stiffness of 505 GPa, maximum ultimate strain of 3.94%, max-

imum pseudo-ductile strain of 3.64%, maximum ultimate strength of 1.92 GPa, or a maximum

yield strength of 1.83 GPa; all of these optimal cases have been found using input parameters

that are representative of commercially-available fibres and matrix systems. The different inputs280

required to achieve these different mechanical properties are shown in Table 5, with the general

trends outlined below:

� Long-fibre, non-hybrid ADCs are ideal for maximising stiffness (see Table 5). This is because

longer fibres tend to feature longer fibre-fibre overlap lengths, which maximises load transfer

between the fibres. The stiffness of a fibre-fibre interaction is also maximised when the285

diameter and Young’s modulus of both fibres are the same [18], hence why maximum initial

stiffness is achieved with non-hybrid high modulus fibre reinforcement (the K13D fibre, see

Table 3). Maximising the matrix shear modulus further increases the stiffness of the fibre-fibre

interactions, which explains why this input is so close to the upper bound of the allowable

shear stiffness range (see Table 1).290

� Long-fibre non-hybrid ADCs are also useful when maximising either ultimate strength or

yield strength (see Table 5). This is because a combination of long, yet high strength fibres

(such as the C124 fibre, see Table 3) help to prevent both debonding damage and fibre

fragmentations, and hence maximise the strength of the ADC; moreover, hybrid ADCs often

fail prematurely in areas where the lower failure strain fibres are grouped together [15], hence295
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(a) Stress-strain curve for the specimen design with the
max. initial stiffness.

(b) Stress-strain curve for the specimen design with the
max. ultimate strain.

(c) Stress-strain curve for the specimen design with the
max. pseudo-ductile strain.

(d) Stress-strain curve for the specimen design with the
max. ultimate strength.

(e) Stress-strain curve for the specimen design with the
max. yield strength.

(f) Stress-strain curve for the specimen design with
the max. pseudo-ductile strain, without the maximum
stress-drop coupled constraint applied.

Figure 2: Stress-strain curves for the specimen designs that maximise the expected initial stiffness, ultimate strain,
pseudo-ductile strain, ultimate strength, and yield strength. The stress-strain curve in Figure 2f shows how the
maximum pseudo-ductility solution would look if the maximum stress-drop coupled constraint was not applied.

12



hybridisation is avoided when maximising strength alone. Trends in matrix properties tend to

diverge between high ultimate strength and yield strength designs: ultimate strength requires

low matrix strength and high mode-II fracture toughness (to maximise translaminar fracture

toughness and prevent premature final failure of the virtual specimen, see Appendix B), while

the maximum yield strength design requires a low matrix stiffness and high matrix strength300

to delay debonding and prevent yielding of the ADC for as long as possible.

� Hybrid ADCs are best suited for maximising ultimate strain and pseudo-ductile strain (see

Table 5). This is because hybridisation of fibre-types promotes debonding and fragmentation

of the high modulus, low-elongation fibres, hence promoting maximum levels of sub-critical

damage, and increasing the non-linearity of the material stress-strain response. The max-305

imum ultimate strain design again features a low matrix shear strength: this maximises

translaminar fracture toughness (see Appendix B) and hence delays final failure; a low ma-

trix shear strength also increases debonding, which further increases the non-linearity of

the stress-strain response. On the other hand, the matrix strength is much higher for the

maximum pseudo-ductility design, and this design also features a higher proportion of high310

modulus fibres and a higher matrix shear stiffness; these differences in the microstructural

design all work to increase the initial stiffness of the material, and hence maximise the pseudo-

ductile strain by minimising the proportion of elastic strain in the material response (as per

the definition of pseudo-ductile strain in Section 2.1).

It should be noted that a further increase in the maximum ultimate strain and pseudo-ductile315

strain could be achieved if the maximum stress-drop coupled constraint (see Section 2.2.2) was

relaxed (see Figure 2f). However, relaxation of the maximum stress-drop constraint results in a

significant stress-drop, which could result in premature failure if the specimen were loaded under

real-world conditions (e.g. non-uniform or load-controlled conditions, instead of under displacement

control).320

4. Multi-objective optimisation

This section relates to the multi-objective optimisation campaign, which focuses on optimis-

ing combinations of the key performance characteristics (maximum ultimate strength & initial

stiffness, maximum ultimate strength & ultimate strain, and maximum yield strength & pseudo-

ductile strain), as per Section 2.2.3. The results and discussion of the multi-objective optimisation325

campaign are shown in Sections 4.1 and 4.2 respectively.

4.1. Multi-objective optimisation results

4.1.1. Observed Pareto fronts

Multi-objective optimisation often yields multiple solutions that could be considered optimal.

The Pareto-optimal front of solutions is defined as the set of solutions that cannot improve any330
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objective without degrading one or more of the other objectives [46]. The observed Pareto fronts

(which contain all of the best observed points Y ? (X?)) were found for all three multi-objective

design cases, by following the domination algorithm [47] described below:

1. Load all of key performance characteristics from the observed data (see Section 2.2.4) and

extract the two objective function outputs that are relevant for the multi-objective design335

case in question (e.g. ultimate strength & initial stiffness). This loaded data becomes the

working data set.

2. Find the optimal data point that maximises the first objective function in the working data

set (e.g. maximum initial stiffness) and add it to the observed Pareto-optimal front.

3. Delete any data points from the working data set that have a lower value for the second340

objective function (e.g. ultimate strength) than the optimal data point in Step 2, and also

delete the optimal data point from the working data set.

4. Repeat Steps 2 and 3 until there are no data points left in the working data set. The observed

Pareto front Y ? (X?) is now complete for this multi-objective design case.

5. Repeat Steps 1 to 4 for all three multi-objective design cases to create the three observed345

Pareto fronts .

The observed Pareto fronts are plotted in Figures 3a, 3c, and 3e.

4.1.2. Variability analysis and estimated Pareto fronts

The output of the VTF is non-deterministic, and therefore will produce different results every

time it is run with the same inputs. In order to establish the influence of variability on the observed350

Pareto fronts, all points in the observed Pareto front Y ? (X?) are re-run 25 times using the VTF

and the associated inputs to the observed Pareto front X?; the results of this study are plotted

next to the observed Pareto front, as shown by the ‘variability study’ in Figures 3b, 3d, and 3f.

Next, the Pareto front process from Section 4.1.1 is used again, except that for Step 1 the

surrogate models (created during the Bayesian optimisation routine, see Section 2.2) of the relevant355

objective functions (e.g. maximum ultimate strength & initial stiffness) are sampled at the same

inputs as the observed data X, to give the estimated working set. The domination algorithm from

Section 4.1.1 is used again, except with the estimated working set instead of the observed working set

to give the estimated Pareto front Ẏ
?
(
Ẋ

?
)

at the observed input points (from here-on described

as the estimated Pareto front). The estimated Pareto fronts for the three multi-objective design360

cases are shown in Figures 3b, 3d, and 3f.

4.1.3. Optimal inputs for Pareto fronts

The sub-plots in Figures 4 to 6 collectively show the combination of input parameters Ẋ
?

that are required to generate each Pareto-optimal solution on the corresponding estimated Pareto

front Ẏ
?
(
Ẋ

?
)

for all three multi-objective design cases. The categorical inputs for the fibre-365

types are arranged by their fibre group (defined in Table 3) in an effort to simplify the plots in
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(a) Observed Pareto front for the ultimate strength &
initial stiffness design case.

(b) Variability study of the observed Pareto front , for
the ultimate strength & initial stiffness design case. The
estimated Pareto front is also shown.

(c) Observed Pareto front for the ultimate strength &
ultimate strain design case.

(d) Variability study of the observed Pareto front , for
the ultimate strength & ultimate strain design case.
The estimated Pareto front is also shown.

(e) Observed Pareto front for the yield strength &
pseudo-ductile strain design case.

(f) Variability study of the observed Pareto front , for
the yield strength & pseudo-ductile strain design case.
The estimated Pareto front is also shown.

Figure 3: Observed Pareto fronts (see Section 4.1.1), variability studies, and estimated Pareto fronts (see Sec-
tion 4.1.2) for the three multi-objective design cases considered.
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Figures 4a, 5a. and 6a, as the properties of the different fibre-types within the same fibre group

are generally similar.

4.1.4. Sensitivity analysis

A sensitivity analysis is performed on the optimal designs from all three estimated Pareto fronts370

Ẏ
?
(
Ẋ

?
)

, in order to determine the robustness of each of the design solutions to small changes

(or uncertainty) in the associated input parameters Ẋ
?
. Direct calculation of many evaluations

of the VTF with small differences in input parameters would be intractable, therefore the authors

propose an alternative approach that exploits an intrinsic advantage of the Bayesian optimisation

approach: as well as being able to estimate the mean Pareto front for the multi-objective design375

cases, the surrogate model can also be used to perform a local sensitivity analysis without the

need to further evaluate the objective function(s). A proposed method for the sensitivity analysis

is shown out for all three multi-objective design cases, taking the maximum initial stiffness &

maximum ultimate strength multi-objective design case as an example:

1. Load the associated inputs Ẋ
?

that are used to create the estimated Pareto front Ẏ
?
(
Ẋ

?
)

380

for the maximum initial stiffness & maximum ultimate strength multi-objective design case.

2. Modify the input data Ẋ
?

to individually change each of the continuous optimisable variables

(i.e carbon fibre volume ratio, fibre length, expected matrix shear strength, shear modulus, or

mode-II interlaminar fracture toughness) by ±10%, thus producing the sensitivity input data

set (which, since there are 5 continuous optimisable variables which experience a positive385

and negative modification, contains 10 times the original number of input data points).

3. Use the surrogate models to predict the expected ultimate strength and initial stiffness of the

sensitivity input data set ; this creates the sensitivity working data set.

4. Multiply the sensitivity working data set by −1 and apply the same domination algorithm

as in Section 4.1.1, to calculate the worst-case set of solutions from the sensitivity analysis.390

5. Multiply the resulting Pareto-optimal set by −1. This will determine the sensitivity analysis

Pareto front, i.e. the front of points that are most detrimentally affected by the sensitivity

analysis.

6. Repeat Steps 1 to 5 for all three multi-objective design cases.

The sensitivity analysis is shown in Figures 7a, 7c, and 7e, whereby the sensitivity working395

data set is plotted for each estimated Pareto front to show how individual modifications to the

input parameters affects each point on the estimated Pareto front. Figures 7b, 7d, and 7f show

the sensitivity analysis Pareto fronts, i.e. the least optimal solutions that might arise after the

sensitivity analysis is performed.

The sensitivity analysis for the maximum ultimate strength & initial stiffness design case indi-400

cates a significant reduction in both ultimate strength and initial stiffness in the lower-right portion

of the Pareto front (see Figure 7a); this region of the Pareto front features a significant number
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(a) Material system. (b) Carbon volume ratio.

(c) Fibre length. (d) Expected matrix strength.

(e) Matrix shear modulus. (f) Mode-II interlaminar fracture toughness.

Figure 4: The estimated Pareto front for the maximum ultimate strength & initial stiffness design case, with each
point coloured according to the values of specific inputs.
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(a) Material system. (b) Carbon volume ratio.

(c) Fibre length. (d) Expected matrix strength.

(e) Matrix shear modulus. (f) Mode-II interlaminar fracture toughness.

Figure 5: The estimated Pareto front for the maximum ultimate strength & ultimate strain design case, with each
point coloured according to the values of specific inputs.
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(a) Material system. (b) Carbon volume ratio.

(c) Fibre length. (d) Expected matrix strength.

(e) Matrix shear modulus. (f) Mode-II interlaminar fracture toughness.

Figure 6: The estimated Pareto front for the maximum yield strength & pseudo-ductile strain design case, with
each point coloured according to the values of specific inputs.
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of designs which feature hybridisation of fibre-types with the Pitch-CF fibre-group, with a carbon

volume ratio of greater than 95% (this is discussed further in Section 4.2.1). It can be argued that

such tight control over the carbon ratio cannot be consistently achieved in real-life processes, and405

it may be prudent to avoid these design cases. To tackle this, all specimen designs on the estimated

Pareto fronts that feature a carbon ratio of greater than 95% had their carbon ratios changed to

100%, making these specimen designs non-hybrid. The sensitivity analysis was then repeated for

these modified optimal sets, and the resulting Pareto fronts (labelled the robust Pareto fronts)

plotted in Figure 7b, 7d and 7f.410

It should be noted that the carbon and glass fibre-types (which are categorical variables in

the scope of this work) were not subject to the sensitivity analysis, as it would be difficult to

mix-up different fibre types during a typical ADC manufacturing process (such as the HiPerDiF

method [15, 25, 26, 48–50]), and variability in the fibre strength and Young’s modulus are already

captured directly within the VTF [17].415

4.2. Multi-objective optimisation discussion

4.2.1. Optimal designs and trade-offs

All three observed Pareto fronts are convex (see Figure 3), indicating that there is a limited

trade-off between each of the multi-objective design cases; this Pareto front convexity also confirms

the need for the modified ε-constraint multi-objective optimisation method proposed in this paper420

(as per Appendix A). Despite the convexity of the Pareto fronts, there are some regions in which

useful combinations of material properties can be found; for example, an optimal ultimate strength

& ultimate strain combination of 1127 MPa and 2.48% was achieved (see Figure 3c), or an optimal

combination of 760 MPa yield strength and 1.84% pseudo-ductile strain (see Figure 3e).

The Pareto front for the maximum ultimate strength & initial stiffness multi-objective design425

case is far less convex than the other two multi-objective design cases (see Figure 3a); this re-

duced convexity indicates that less of a trade-off between these two competing key performance

characteristics has to be made when selecting an optimal design. However, the Pareto fronts for

the remaining two multi-objective design cases do feature a stepped shape; Engineers may have

a preference towards the peak(s) of these stepped regions of the Pareto front, because while all430

points on the Pareto front can be considered optimal, the stepped regions represent areas where a

severe sacrifice in one key performance characteristic must be made to enable a marginal increase

in the other key performance characteristic.

Maximum ultimate strength & initial stiffness.

From the analysis of Figure 4, two trade-off strategies can be identified to create a balance between435

optimal ultimate strength & initial stiffness:

1. To maintain a near-optimal initial stiffness while increasing ultimate strength, one should (a)

reduce the fibre length (which reduces the number of co-planar fibre fragmentations, hence
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(a) Estimated Pareto front sensitivity analysis (maxi-
mum ultimate strength & initial stiffness design case).
The grey dashed line represents the estimated Pareto
front.

(b) The sensitivity analysis Pareto front and the ro-
bust Pareto front for the ultimate strength & initial
stiffness design case.

(c) Estimated Pareto front sensitivity analysis (maxi-
mum ultimate strength & ultimate strain design case).
The grey dashed line represents the estimated Pareto
front.

(d) The sensitivity analysis Pareto front and the ro-
bust Pareto front for the ultimate strength & ultimate
strain design case.

(e) Estimated Pareto front sensitivity analysis (maxi-
mum yield strength & pseudo-ductile design case). The
grey dashed line represents the estimated Pareto front.

(f) The sensitivity analysis Pareto front and the robust
Pareto front for the yield strength & pseudo-ductile
strain design case.

Figure 7: Sensitivity analyses for all three multi-objective design cases are shown on the left; plotted points that are
far away from the estimated Pareto front and towards the bottom-left corner of the plot indicate optimal solutions
that are most detrimentally sensitive to the inputs, with the colour and shape of the point indicating which sensitivity
case produces each result. The sensitivity analysis Pareto fronts and robust Pareto fronts (see Section 4.2.3 for
details on the robust Pareto fronts) are shown in the right.
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reducing the strain energy release rate associated with broken clusters of fibres and delaying

final fracture), while (b) hybridising the Pitch-CF carbon fibre with a small volume (i.e. less440

than 5% volume) of E-glass or PAN-CF fibres (which prevents the formation of large clusters

of fibre breaks, hence delaying final fracture of the virtual specimen).

2. To achieve a further increase in ultimate strength while maintaining a reasonable initial

stiffness, one should (a) hybridise the Pitch-CF fibres with PAN-CF fibres (which reduces

the number of fibre fragmentations and delays final fracture); further increases in ultimate445

strength can be achieved by reducing the Pitch-CF volume ratio further from strategy 2(a)

above (which increases the number of high-strength PAN-CF fibres, hence preventing the

formation of large clusters of fragmented Pitch-CF fibres and further delaying fracture of the

virtual specimen).

Maximum ultimate strength & ultimate strain.450

From the analysis of Figure 5, three trade-off strategies can be identified to create a balance

between optimal ultimate strength & ultimate strain:

1. To improve the ultimate strength and maintain a nearly-optimal ultimate strain, one should

(a) maintain hybridisation between Pitch-CF and E-glass fibres (which promotes a non-

linear, pseudo-ductile response, as per Section 3.2), while (b) increasing the fibre length455

(which improves the stress-transfer between neighbouring fibres, and hence increases ultimate

strength), and (c) decrease the carbon volume ratio (which reduces the number of carbon-

fibre fragmentations, and hence delays final failure).

2. To create a material that features a near-optimal ultimate strength and a relatively low

ultimate strain, a Pitch-CF / PAN-CF hybrid ADC should be used (which combines two460

relatively high-strength fibre-groups to maximise strength).

3. To achieve a balanced level of ultimate strength and ultimate strain, moving from a nearly-

optimal ultimate strain (as per Point 1) to a nearly-optimal ultimate strength (as per Point 2),

one should (a) switch the Pitch-CF fibres with PAN-CF fibres to make a PAN-CF / E-

glass hybrid ADC (which reduces the number of carbon-fibre fragmentations, thus delaying465

final fracture), while (b) increasing the carbon volume ratio (which progressively reduces

the number of carbon-fibre fragmentations and further increases strength at the expense of

ultimate strain).

Maximum yield strength & pseudo-ductile strain.

From the analysis of Figure 6, three trade-off strategies can be identified to create a balance470

between optimal yield strength & pseudo-ductile strain:

1. To improve the yield strength and maintain a large amount of pseudo-ductility, one should

reduce the matrix shear strength (which increases the amount of debonding and reduces the
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amount of fragmentation, simultaneously leading to both an increase in translaminar fracture

toughness, as per Appendix B, and a reduction in pseudo-ductility).475

2. To create a material that features a near-optimal yield strength and a relatively low pseudo-

ductile strain, one should (a) use a PAN-CF non-hybrid fibre-group (which minimises the

number of fibre fragmentations and delays final fracture), while (b) selecting a high matrix

strength (which prevents matrix debonding and softening damage events from occurring,

thus preventing non-linear stress-strain behaviour for as long as possible).480

3. To achieve a balanced level of yield strength and pseudo-ductile strain, moving from a nearly-

optimal pseudo-ductile strain (as per Point 1) to a nearly-optimal yield strength (as per

Point 2), one should (a) hybridise fibre-types using PAN-CF and E-glass fibres (which reduces

the number of carbon-fibre fragmentations, thus delaying final fracture), while (b) increasing

the fibre length (to maximise the number of fibre fragmentations, hence promoting pseudo-485

ductility).

4.2.2. The influence of variability on the Pareto front

The observed Pareto fronts Y ? (X?) in Figures 3b, 3d, and 3f often lie at the upper tail-end

of the distribution of results from the variability study; this is because the observed Pareto front

takes the best observed points during the optimisation, without considering whether the observed490

point is a true representation of the mean performance (for that specific set of inputs) or not.

In some cases the observed Pareto front may consist of designs that have a sub-optimal mean

performance, but have sufficient variability such that the upper tail-end of the distribution of the

design performance may indicate it is one of the best observed points. These results therefore

indicate that the observed Pareto front is a poor representation of the expected performance of495

the optimal designs (and perhaps even a poor representation of which designs may be optimal

themselves).

The estimated Pareto front Ẏ
?
(
Ẋ

?
)

(generated as per Section 4.1.2, and shown in Fig-

ures 3b, 3d, and 3f) gives a much better representation of the true expected Pareto front, as

the estimated points lie close to the mean value of the variability analysis points. Designs with500

sub-optimal mean performance, but high levels of variability are not mistakenly considered optimal

in this case. It should be noted that the surrogate model is capable of outputting the standard devi-

ation of the predicted material performance, thus enabling confidence intervals for the mechanical

performance of various material systems to be predicted (if so desired).

4.2.3. Testing and improving the robustness of optimal designs505

For all three sensitivity analyses in Figures 7a, 7c, and 7e, most points lie very close to the

estimated Pareto front, indicating that the estimated Pareto fronts generally offer a robust set of

optimal solutions. However, there are three cases where the sensitivity analyses indicate that the

robustness of the solutions could be improved:

23



1. On the bottom-right of the maximum ultimate strength & initial stiffness sensitivity analysis510

Pareto chart in Figure 7a there is a significant decrease in performance when the carbon

ratio is decreased by 10%, with both the ultimate strength and initial stiffness reducing

by up to 16%. Most designs in this region feature non-hybrid material systems (which are

insensitive to changes in carbon ratio), although several designs feature hybridisation with

a small number of other fibre-types and a carbon ratio of over 95%, and are thus sensitive515

to changes in carbon volume ratio, despite being ‘almost non-hybrid’ (see Section 4.2.1 for

details on the associated inputs Ẋ
?

used to achieve these points on the estimated Pareto

front). While the ‘almost non-hybrid’ material designs generate a strong and stiff response,

there is a significant reduction in their ultimate strength and initial stiffness as a result of a

10% change in carbon ratio. As a result, the robustness of these particular solutions is poor520

(suggestions for improving the robustness of these solutions will be discussed in Section 4.2.3).

2. A small decrease in performance can be found if the fibre length is decreased in the central

region of the maximum ultimate strength & ultimate strain sensitivity analysis Pareto front

in Figure 7c. In this region, a combination of high strength ductility is achieved via careful

balance of all of the input parameters, so as to produce a large amount of sub-critical damage525

events (so as to maximise ductility), whilst also preventing premature fracture of the virtual

specimen. Consequently, small changes to the input parameters can result in a large loss of

strength or ductility.

3. A significant departure from the estimated Pareto front can be seen in the middle of the

maximum yield strength & pseudo-ductile strain sensitivity Pareto chart (see Figure 7e).530

For the optimal designs in this region, PAN-CF fibres are combined with E-glass, with an

intermediate value of the carbon ratio selected to maximise the pseudo-ductility of the re-

sponse. However, a small increase to the carbon ratio causes the once ductile stress-strain

curve to become brittle, resulting in a result with poor robustness; this lack of robustness

can also be seen in Figure 3f, whereby there is a large variability in the pseudo-ductility of535

the optimal solutions in the middle of the Pareto front.

By changing the ‘almost non-hybrid’ ADC specimen designs that feature over 95% volume of

one fibre-type into non-hybrid ADCs (as per Section 4.1.4), a clear improvement in robustness can

be achieved, as shown by the robust Pareto front, which is never further way from the estimated

Pareto front than the previous sensitivity analysis Pareto front, and is in some cases closer (see540

Figures 7b, 7d, and 7f). This robustness improvement is most apparent for the maximum ultimate

strength & initial stiffness multi-objective optimisation case (see Figure 7b), where the region

which previously was shown to be very sensitive to changes in inputs now only features a reduction

of ultimate strength and initial stiffness of up to 1% and 2% respectively.

These improvements in robustness were determined only through interrogation of the surrogate545

model, and as the surrogate model can analyse thousands of designs in a few minutes (compared
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to around 30 minutes runtime to analyse one design using the VTF), the proposed method can

be used to accurately improve the robustness of a Pareto optimal set of solutions many times

faster than alternative techniques. Changing the continuous optimisable variables by ±10% is a

common way to investigate sensitivity in many Engineering applications, and this ±10% change550

is useful to demonstrate the applicability of the new proposed sensitivity analysis method. This

sensitivity analysis method could be made even more powerful if uncertainty in the individual

inputs is characterised more accurately with individual measures of confidence, before coupling

this data with the proposed sensitivity analysis technique.

5. Conclusion555

This paper combines an efficient virtual testing framework (VTF) with a data-driven intelligent

Bayesian optimisation routine to maximise the mechanical performance of aligned discontinuous

composites (ADCs) for a variety of real-world design cases. Several novel features of this optimi-

sation routine have been developed as part of this work:

� For the first time in the literature, an optimisation routine is used to maximise the mi-560

cromechanical performance of composite materials which feature significant levels of both

complexity and variability.

� A modified version of the ε-constraint method is created, which enables easier multi-objective

optimisation of systems with high levels of variability at a lower computational cost.

� Variability analysis shows that composite materials which feature significant variability are565

difficult to optimise when using the observed data directly from analysis tools (such as the

VTF used in this work). Instead, the use of a surrogate model (created using Gaussian

process regression) more accurately captures the expected performance of variable composite

materials.

� The advantages of the surrogate model are exploited further as it was used to improve the570

robustness of optimal ADC designs with minimal added computational cost.

These novel features enable several conclusions to be drawn about optimisation of ADCs:

� Single-objective optimisation shows that a wide range of structural properties can be achieved

using ADCs, with a maximum stiffness of 505 GPa, maximum ultimate strain of 3.94%,

maximum pseudo-ductile strain of 3.64%, maximum ultimate strength of 1.92 GPa, or a575

maximum yield strength of 1.83 GPa all possible when using this type of versatile composite

material system.

� Multi-objective optimisation studies are performed for three design cases: maximum ultimate

strength & initial stiffness, maximum ultimate strength & ultimate strain, or maximum yield
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strength & pseudo-ductile strain. A moderate trade-off in performance can be achieved when580

considering multi-objective optimisation design cases, with an optimal ultimate strength &

ultimate strain combination of 982 MPa and 3.27%, or an optimal combination of 720 MPa

yield strength & 1.91% pseudo-ductile strain all possible.

� Scrutiny of the inputs required to create the estimated Pareto fronts show how careful control

of the fibre-type combinations, fibre length, carbon volume ratio, or matrix shear strength585

(or combinations thereof, depending on the design case) enable a controlled trade-off between

required mechanical performance.

� A sensitivity analysis shows that the use of hybrid ADCs with carbon volume ratios over 95%

were not sufficiently robust to changes in the carbon volume ratio, with both their ultimate

strength and initial stiffness being reduced by up to a 16%. By limiting designs to ensure590

that small proportions of one fibre-type are avoided, this sensitivity deficit is reduced to 1%

initial stiffness loss and 2% ultimate strength loss.

The combination of this VTF and a Bayesian optimisation routine is proven to be a robust

and complete tool for the optimisation and design of composite materials with significant levels of

complexity and variability; the authors welcome other researchers to use this VTF to design new595

materials or explore other avenues of research. A live GitHub repository of the working code can be

found here: https://github.com/meComposites/Aligned-Discontinuous-Composites/releases/tag/

Data-driven intelligent optimisation of discontinuous composites.
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Appendices

Appendix A Modified ε-constraint method for multi-objective optimisation

The optimisation campaigns in this paper are carried out using bayesopt function in Matlab [41];

this function optimises a single objective function, meaning the it must be modified to support the720

multi-objective optimisation campaign. Several methods for optimising a multi-objective function

are available, each with their own disadvantages:

� The most well-known multi-objective optimisation routine for this situation is the weighted-

sum approach [46, 51], which combines linear combinations of two or more objective functions

to find a global optimum. However, a trial optimisation study showed that the Pareto fronts725

for all three design cases included in this paper were non-convex, indicating that the weighted-

sum approach was unsuitable for this optimisation campaign, as the weighted-sum approach

is unable to generate large portions of a non-convex Pareto front due to its mathematical

formulation [46, 51].

� The ε-constraint method [46, 51, 52] is an alternative to the weighted-sum approach which730

is able to generate all Pareto optima on a generalised Pareto front [46]. The first set of

Pareto optimal solutions are found by optimising one primary objective function f1 (x), while

constraining the output of a secondary objective function f2 (x) between upper- and lower-

bounded constraints (ε1 and ε2, respectively, from now on referred to as guiding constraints,

thus ensuring that secondary objective value is greater than the lower guiding constraint, and735
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lower than the upper guiding constraint), as shown in Figure 8b. All Pareto optimal solutions

can be found by moving both of the guiding constraint bounds to cover the achievable range

of values of f2 (x) (which in this case were determined via the single-objective optimisation

campaign), as per Figure 8c. The ε-constraint method is well-suited to this optimisation

campaign, as both objective functions are calculated using the same VTF model, and the740

Bayesian optimisation routine can treat the upper and lower guiding constraints as coupled

constraints, and hence create Gaussian process regression models to ensure only feasible

solutions are evaluated (as per Section 2.2.2). However, optimisation of a non-deterministic

system using Bayesian optimisation and the ε-constraint method is extremely difficult if the

range between the upper and lower guiding constraints is close to the level of variability in745

the system, as the optimiser will often predict a low probability of feasibility (due to the

relatively large degree of uncertainty) and may in some cases be unable to find any feasible

points.

A modified version of the ε-constraint method is proposed in this paper, which tackles the

issue of combining a non-deterministic objective function with upper and lower guiding constraints750

as part of the ε-constraint method. The process follows the conventional ε-constraint method as

described above, but in this case the upper guiding constraint is removed (as shown in Figure 9b).

The removal of the upper constraint increases the predicted probability of feasibility (found by

the acquisition function), as the non-deterministic system no longer has to lie within two guiding

constraints. Secondly, the acquisition function guides the optimiser to the feasible region that755

has the highest expected value for the primary objective function f1 (x), without the need for the

upper guiding constraint (as shown in Figure 9b). The value of the lower guiding constraint can be

incrementally increased (as per the conventional ε-constraint method) to find the complete Pareto

front, as shown in Figure 9c (in this paper the guiding constraint is incremented by 1/40
th

of the

range of the secondary objective function, to ensure the Pareto front has a high resolution). This760

process above is for the situation where both objective functions are to be maximised, however

it can be adapted for when both objectives are to be minimised simply by removing the lower

constraint instead of the upper constraint.
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(a) At the start of the multi-objective optimisation, no
optimal points are discovered yet (and are hence dis-
played in grey).

Lower 
guiding 

constraint

Single-objective 
optimisation

Upper 
guiding 

constraint

(b) Single-objective optimisation is performed within
the first guiding constraint range.

Lower 
guiding 

constraint

Single-objective 
optimisation

Upper 
guiding 

constraint

(c) Single-objective optimisation is performed within
the second guiding constraint range.

Lower 
guiding 

constraint

Single-objective 
optimisation

Upper 
guiding 

constraint

(d) Single-objective optimisation is performed within
the third guiding constraint range.

Figure 8: The ε-constraint method optimises the primary objective function (in this case the ultimate strength),
while constraining the secondary objective function (in this case the initial stiffness) between a upper and lower
guiding constraints. The whole Pareto front is found by moving the range of the guiding constraints across the
range of achievable values for the secondary objective function (as shown in Figures 8b to 8d). In this case, the
range of the guiding constraints is incremented by 1/3rd of the total secondary objective range, although in practice
this range is reduced to 1/40th of the secondary objective function range to increase the Pareto front resolution.
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(a) At the start of the multi-objective optimisation, no
optimal points are discovered yet (and are hence dis-
played in grey).

(Upper guiding constraint removed)
Lower 

guiding 
constraint

Acquisition 
function guides 
optimiser here

(b) The upper guiding constraint is removed, and single-
objective Bayesian optimisation is performed within the
first range specified by the lower guiding constraint.

Lower 
guiding 

constraint

Acquisition 
function guides 
optimiser here

(c) Single-objective Bayesian optimisation is performed
within the second range specified by the lower guiding
constraint.

Lower 
guiding 

constraint

Acquisition 
function guides 
optimiser here

(d) Single-objective Bayesian optimisation is performed
within the third range specified by the lower guiding
constraint.

Figure 9: The modified ε-constraint method is implemented the same way as the ε-constraint method, but the upper
guiding constraint is removed. This technique works when implementing Bayesian optimisation, as the acquisition
function guides the optimiser to the top-left corner of the feasible region (highlighted in colour), without the need of
the upper guiding constraint. In this case, the range of the guiding constraints is incremented by 1/3rd of the total
secondary objective range, although in practice this range is reduced to 1/40th of the secondary objective function
range to increase the Pareto front resolution.
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Appendix B The influence of matrix shear strength on translaminar fracture tough-

ness765

The matrix shear strength may have a significant influence on the translaminar fracture tough-

ness of some ADC designs. To investigate this, the translaminar fracture toughness is calculated

using the method proposed by Henry et al. [14] for the designs which maximised each of the single-

objective design cases; next, the matrix shear strength is adjusted within the range of possible

values to show how the matrix strength influences the toughness for each of the design cases. Fig-770

ure 10 shows that the translaminar fracture toughness increases as the matrix strength is reduced.

Figure 10: The influence of matrix shear strength on the translaminar fracture toughness of the five designs that
maximise each of the single-objective design cases. Crosses indicate the actual translaminar toughness values for
each of the five optimal single-objective designs.
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