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Abstract 

Heat accounts for approximately half of the total energy consumption and is responsible for 

over 25% of carbon emissions in the U.K. Therefore, decarbonization of the heat sector is one 

of the key challenges in achieving the 80% carbon reduction target by 2050. The utilisation of 

various low-carbon heating technologies to replace gas boilers, which currently dominate the 

UK heating sector, is crucial in facilitating the transition to a low-carbon future energy system. 

Additionally, the building thermal characteristics can also provide us an alternative perspective 

to realise the carbon target while alleviating the burden of new investment at the end-side. 

This thesis first proposes a District Heating Network (DHN) investment model by using a 

fractal-image-based algorithm. Through this model, the investment cost of DHNs driven by 

different user penetrations in different representative areas can be quantified and the DHN 

investment cost functions can be incorporated into the whole system investment model to 

optimize the penetration of DHNs. This thesis also investigates the value of pre-heating through 

inherent building thermal storage. By comparing the operational costs between the case where 

pre-heating is enabled and the case where additional TES is installed, the economic value of 

pre-heating can be evaluated while the capability of the inherent storage of buildings under 

given thermal parameters of buildings can be quantified. We then propose a novel whole-

system integrated electricity and heat system model in which, for the first time, operation and 

investment timescales are considered while covering both the local district and national level 

infrastructures. The modelling of DHN investment and pre-heating are also integrated into this 

whole-system model.  

A series of case studies are then carried out to investigate the benefits of different heating 

technologies. Electric HPs, hybrid heating technology and DHN are the main low-carbon 

heating technologies that can deliver the ambitious carbon reduction target in the UK. The 

optimal design of the heating system on a national scale to maximize the economic benefits 

regarding both investment cost and operation cost while satisfying the carbon target remains 

an open question. This thesis compares the economic advantages as well as the associated 

impacts on the electricity system under the full deployments of ASHP, hybrid HP-Bs (ASHP 

and gas boilers), DHNs and hydrogen boilers by using the whole-system integrated electricity 

and heat system model. The optimized strategy for heat sector decarbonisation is also 



demonstrated, providing an outline of the optimal deployment for different heating 

technologies in terms of their penetrations and deployed areas. The UK case study suggests the 

significant economic advantage of the hybrid HP-B over the other three heating technologies, 

while DHN may play an important role in urban areas under the optimized heat decarbonisation 

strategy. The results also clearly demonstrate the changes in the electricity side driven by the 

different decarbonisation strategies in the heating system. 

Additionally, the benefits through considering the interaction between electricity and heat 

systems at the planning stage are investigated, as the system integration will play an important 

role in facilitating the cost effective transition to a low carbon energy system with high 

penetration of renewable generation. The whole-system integrated electricity and heat system 

model is applied to optimize decarbonization strategies of the UK integrated electricity and 

heat system, while quantifying the benefits of the interactions across the whole multi-energy 

system, and revealing the trade-offs between portfolios of (a) low carbon generation 

technologies (renewable energy, nuclear, CCS) and (b) district heating systems based on heat 

networks and distributed heating based on end-use heating technologies. Overall, the proposed 

modeling demonstrates that the integration of the heat and electricity system (when compared 

with the decoupled approach) can bring significant benefits by increasing the investment in the 

heating infrastructure in order to enhance the system flexibility that in turn can deliver larger 

cost savings in the electricity system, thus meeting the carbon target at a lower whole-system 

cost. 

Last but not least, a cost-oriented representative-day-selection approach that can significantly 

reduce the computational burden of the whole-system integrated electricity and heat system 

model is proposed. Through a series of case studies, we demonstrated the superior performance 

of the proposed cost-oriented representative-day-selection approach against the widely used 

input-based approach.  
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𝜂𝑠   Storage efficiency of TES [%] 

𝜆    Maximum ratio of heat to electricity for CHP [p.u.] 

𝜍𝑊   Forecasting error of wind output [%] 



𝜍𝑃𝑉   Forecasting error of PV output [%] 

𝜍𝐷   Forecasting error of electricity demand [%] 

𝜏   Total time horizon [h] 

𝑎𝐻𝑃/𝑏𝐻𝑃 Linear coefficient [1/°C]/constant [p.u.] term of COP for ASHP 

𝑎𝐿/𝑏𝐿  Linear coefficient [p.u.]/constant [p.u.] term of LOLP function 

𝑐𝑎𝑝
𝐷𝑁

  Peak electricity load that can be accommodated without distribution network 

reinforcement [GW] 

ℎ  Heat demand [GWth] 

𝑝   Electricity demand [GW] 

𝑝𝑐ℎ𝑝/𝑝
𝑐ℎ𝑝

 Minimum/maximum electricity output of CHP units [GW] 

𝑝𝑔/𝑝
𝑔

  Minimum/ maximum electricity output of generation units [GW] 

𝑟𝑢𝑝/𝑟𝑑𝑛 Ramp-up/ramp-down limit for generators [GW/h] 

𝑣𝑟𝑒𝑎𝑓  Renewable energy availability factor [p.u.] 

𝑟𝑠𝑝
𝑔

  Maximum response generation units can provide [p.u.] 

𝑧   Conversion rate from electricity to heat for CHP [p.u.] 

𝐴𝐹   Annuity factor of different assets [p.u.] 

𝐶𝑑  Capital cost of various district heating assets [£/GW] 

𝐶𝑒  Capital cost of various end-use heating appliances [£/GW] 

𝐶𝑓  Capital cost of transmission networks [£/GW/km] 

𝐶𝑔  Capital cost of generators [£/GW] 

𝐶𝑓𝑖𝑥  Fixed O&M cost of various assets [£/GW/year] 

𝐶𝑖𝑛𝑠,𝑒  Installation cost of end-use appliances [£] 

𝐶𝐷𝑁  Reinforcement cost of representative distribution networks [£/kVA/year] 

𝐶𝐷𝑁  Capital cost of heat networks per length [£/km] 

𝐶𝑎𝑝𝐿  Capacity of the largest generator [GW] 

𝐶𝑂2   Overall carbon target [g/kWh] 

𝐶𝑂𝑃𝑎  Coefficient of performance of air source HPs [p.u.] 

𝐶𝑂𝑃𝑤   Coefficient of performance of water source HPs [p.u.] 

𝐴𝐴𝐹   Annual availability factor of generators [p.u.] 

𝐿𝑂𝐿𝐸   Reliability criterion that sum of LOLP across the year should meet [p.u.] 

𝑂𝐶𝑔𝑏   Operation cost of various types of gas boilers [£/GWh] 

𝑂𝐶𝑛𝑙   No-load cost of various generation [£/h] 



𝑂𝐶𝑠𝑡   Start-up cost of various types of generation [£] 

𝑂𝐶𝑣𝑎𝑟  Variable operation cost of various types of generation [£/GWh] 

𝑁ℎ  Number of households 

𝑁𝐷𝑁  Number of representative distribution networks 

𝑁𝐻𝑁  Number of representative heat networks 

𝑂𝑅   System operating reserve requirement [GW] 

𝐹𝑅  System frequency response requirement [GW] 

𝑇𝑎  Ambient temperature [°C] 

Variables 

𝜇  Number of synchronized generation units 

𝜔𝑑/𝜔𝑒  Penetration of district /end-use heating technologies [%] 

𝜔𝐻𝑁   Penetration of HNs in each representative district [%] 

𝑐𝑎𝑝𝑥  Capacity of plant/appliance 𝑥 [GW] 

𝑐𝑎𝑝𝐷𝑁  Expanded capacity of distribution networks due to reinforcement [GW] 

ℎ𝑐ℎ𝑝  Heat output of CHP [GWth] 

ℎ𝑑/ℎ𝑒  Heat demand of district heating/end-use heating [GWth] 

ℎ𝑑+/ℎ𝑑− Increased/reduced heat demand due to pre-heating in district heating [GWth] 

ℎ𝑒+/ℎ𝑒− Increased/reduced heat demand due to pre-heating in end-use heating [GWth] 

ℎ𝑔𝑏  Heat output of different types of gas boilers [GWth] 

ℎℎ𝑝  Heat output of different types of HPs [GWth] 

ℎ𝑃𝐻  Accumulated heat through pre-heating [GWhth] 

𝑝𝑐ℎ𝑝   Electricity output of CHP [GW] 

𝑝𝑒𝑙𝑒   Electricity load not related to heat [GW] 

𝑝𝑒𝑙𝑒+/𝑝𝑒𝑙𝑒− Increased/decreased non-heat electricity demand through DSR [GW] 

𝑝ℎ𝑒𝑎𝑡  Heat-driven electricity load [GW] 

𝑝𝑔   Electricity output of generators [GW] 

𝑣𝑟𝑒   Output of variable RES [GW] 

𝑣𝑟𝑒𝑎𝑣𝑎  RES available for generation [GW] 

𝑣𝑟𝑒𝑊/𝑣𝑟𝑒𝑃𝑉  Wind power/PV output [GW] 

𝑟𝑒𝑠ℎ𝑝,𝑒  Operating reserve provided by end-use HPs [GW] 

𝑟𝑒𝑠𝑥   Operating reserve provision from source 𝑥 [GW] 

𝑟𝑠𝑝ℎ𝑝,𝑒 Frequency response provided by end-use HPs [GW] 



𝑟𝑠𝑝𝑥  Frequency response provision from source 𝑥 [GW] 

𝑠+/𝑠−  Discharging/charging rate of different types of TES [GWth] 

𝑠𝑐𝑎𝑝  Maximum discharging/charging rate of TES [GWth] 

𝑠𝑒𝑐  Energy content of TES [GWhth] 

𝐶𝑂2   Carbon emission from various sources [t] 

𝐶𝑀  Capacity margin of generation [p.u.] 

𝐼𝐶𝐻𝑁  Investment cost of representative HNs [£] 

𝐿𝑂𝐿𝑃   Estimated Loss of Load Probability [p.u.] 

Superscripts 

𝑐ℎ𝑝   CHP related 

𝑑  District heating assets related   

𝑒   End-use heating appliances related 

𝑓  Transmission network related 

𝑔  Generator related 

𝑔𝑏   Gas boiler related 

Functions 

𝐹(∙)  DC Power flow function 

𝐹𝐿
𝐻𝑁(∙)  Heat network length function 

𝐹𝐿𝑂𝐿𝑃   LOLP function 

Sets 

𝐻𝑑/𝐻𝑒  Set of district/end-use heating technologies 

𝐷𝑥  Set of time steps in the 𝑥th day (starting at midnight) 

𝐷𝑁/𝐻𝑁 Set of representative distribution/heat networks 

𝐷𝑁𝑖    Set of components included in distribution network i 

𝐹   Set of transmission corridors 

𝐺   Set of generation types 

𝐿  Set of locations  

𝑇  Set of operating time steps 





 

Chapter 1 Introduction 

1.1 Background 

The Climate Change Act that was passed by the UK government in 2008 claims that ‘It is the 

duty of the Secretary of State to ensure that the net UK carbon account for the year 2050 is at 

least 80% lower than the 1990 baseline’[1]. To achieve this goal, it is essential to decarbonize 

the current energy system through large-scale deployment of various low-carbon energy 

sources while improving the energy efficiency of different energy sectors.   

At present, heat occupies the largest proportion of the energy consumption in the UK [2], and 

is responsible for around one third of the total carbon emission. Heat can be classified into low 

grade and high grade usage. The former includes domestic heating and commercial heating. 

The latter mainly refers to the heat for industry process. Most of the heat is consumed for 

domestic heating, which includes space heating and water heating. In order to achieve the 2050 

carbon target, substantial reductions of carbon emission in heat sectors have to be delivered. 

In the first half of the 20th century, primary energy source was dominated by coal in the UK. 

With the exploitation of the North Sea natural gas since 1960s, gas rapidly substituted coal to 

serve as the most important primary energy source, supplying the major energy demand of 

electricity production as well as for heating sectors. In the early 1970s, the UK government 

suggested that the combined heat and power (CHP) plants might be an effective option to deal 

with the oil price crisis. However, as the availability of natural gas significantly brought down 

the market price of heat, the competitiveness of CHP in the short and medium term was 

seriously damaged. At present, only around 1% of commercial and domestic heat is supplied 

by CHP while nearly 80% of heat is covered by natural gas.  In contrast, CHP is deployed on 

s large scale in many other countries, such as Denmark, in which CHP is responsible for over 

half of the total power demand. With the absence of natural gas, CHP is more attractive for 
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heat production in Denmark. Given that most of the CHP deployed in Denmark is heavily 

dependent on fossil fuels, the Danish government has proposed to build a fossil-fuel-free 

heating system by 2050, the core of which is to deploy biomass and waste-to-heat CHP in heat 

networks while generalizing the application of renewable electricity based HPs [3].    

 

Figure 1.1– The structure of energy source for domestic heating in the UK 

The structure of energy source for domestic heating in the UK is demonstrated in Figure 1.1 

[2]. It can be observed that more than 90% of the heat for space and water heating comes from 

fossil fuel energy, leaving an intense carbon level in the heat sector. The application of low-

carbon heating technologies such as district heating, HPs, and hydrogen, is still quite limited 

in UK. 

District heating, end-use HPs as well as hydrogen are prospective low-carbon heating 

technologies to decarbonize the heat sector while having the potential to directly shape the 

future electricity system [4-7]. At present, around 80% of the households in the UK are using 

natural gas boilers for residential heating including both space and water heating. As most of 

the residential natural gas boilers are still in operation, it is challenging for customers to 

decommission their natural gas boilers and reinvest in new heating equipment, especially when 

the natural gas boiler still remains to be the most economic heating technology in the UK. As 

potential alternatives for end-use natural gas boilers in low-carbon scenarios, HPs, heat 

networks and hydrogen have different advantages and disadvantages. 

1. District Heating 
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District heating networks (DHN) can provide thermal energy for space and hot water heating 

to a wide range of sectors. In DHNs, heat is produced from a central heat source and distributed 

through primary heat networks (as shown in Figure 1.2) to substations located in buildings. 

After heat exchange in the substations, heat is transferred into secondary heat networks inside 

the buildings and distributed to different rooms. Typically, heat is delivered via the medium of 

hot water (or steam which is not commonly used at present). Both the mass flow rate and 

temperature of the medium can potentially be adjusted to change the heat output of DHN. 

Different countries apply different control mode. In Europe, the control mode of variable mass 

flow rate and constant temperature is widely applied. The authors in [8] have performed case 

studies showing the advantages and disadvantages of different DHN control mode.  

 

Figure 1.2– Primary distribution heat network 

Although DHNs have been widely deployed in many countries, there are many concerns 

regarding large scale deployment of DHN within the UK. On the one hand, significant energy 

savings can be delivered through the application of DHN as it can feed on renewable energy 

sources, geothermal energy, or waste heat from industrial processes [9, 10]. Meanwhile, 

increased energy efficiency can also be achieved by using high efficiency forms of heating 

technologies (e.g. CHPs, industrial-sized HPs). Moreover, DHN can provide significant 

flexibility to the electricity system through coordinated operation of different heating 

technologies. For instance, CHP, by adjusting its power-to-heat ratio, and industrial-sized HPs, 

through temporary interruption or reduced operation, can provide balancing and ancillary 

services to the electricity system. TES (particularly referring to hot water tank) can facilitate 
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the accommodation of renewable energies, while reducing the requirement of back-up 

generation [11]. On the other hand, considerable heat losses can occur in the distribution 

networks of large centralised DH systems, impairing its competitiveness. Overall, the 

construction of DHNs is highly capital-intensive, which is the key limitation for its large scale 

deployment. However, the competitiveness of DHNs will be enhanced with the increase of heat 

density for the deployed area. More specifically, it is more economic to apply DHNs in urban 

areas rather than in rural areas, as more consumers can be supplied by per unit length of DHN 

pipelines, even though the capital cost of DHNs is higher in more populous areas due to 

congestion of existing underground utility and more serious impacts of disruption. 

Basically, DHN is widely deployed in cold regions with high population density as it can offer 

attractive prices for thermal energy provision in these regions. Due to the adaptiveness of DHN 

to a wide variety of heat sources which brings energy diversification opportunities, it can 

reduce the dependence of heat sectors on fossil fuels, potentially contributing to the 

decarbonization of the future energy system. 

2. Electrical HP 

Electric HPs can transfer heat energy, mainly from air water or ground source to buildings, for 

space and hot water heating by consuming electricity. One unit of electricity can drive the 

transfer of multiple units of heat energy from the heat source to the heat sink (buildings). Figure 

1.3 illustrates the operation of a HP. It should be stressed that HPs cannot generate, they 

actually upgrade heat which cannot be used directly.  

 

Figure 1.3– Operation of HP with COP of 3 

The efficiency of HPs can be quantified by the coefficient of performance (COP) which is 

defined as the ratio of the useful heat supplied by the HP to the work required to drive the 

operation of the HP, as formulated in (1.1), 
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𝐶𝑂𝑃𝑡 =
ℎ𝑡

𝑝𝑡
 (1.1) 

where ℎ𝑡 is the heat output of HPs at time t while 𝑝𝑡 is the electricity consumption at time t. 

COP is not a constant, it is relative to the difference between the flow temperature and heat 

source temperature. For air source HPs, COP can vary significantly in a day because it is very 

sensitive to the ambient temperature. However, for water source or ground source HPs, their 

COP is much more stable. Basically, the COP of ground-source HP is higher than that of air-

source HP, but it is also more expensive. 

Large-scale deployment of end-use HPs to substitute natural gas boilers remains to be regarded 

as one of the most effective options to fulfil the decarbonisation target of the heat sector. In 

this analysis, we only focus on the application of air-source HPs which is more suitable for 

large-scale deployment than ground-source HPs due to its improved affordability. However, 

growing concerns over high capital cost restricts the shift of heating technology from gas 

boilers to end-use HPs. Moreover, large-scale deployment of end-use HPs requires 

corresponding reinforcement of the distribution network, increasing the capital cost of HPs.  

Similar to industrial-sized HPs applied in DHNs which have been mentioned above, end-use 

HPs can also provide considerable amount of flexibility to the electricity system [12, 13], 

particularly through short term interruption of operation and coordinated operation with end-

use heat storage. 

3. Hybrid Heating 

Hybrid heating technologies allow consumers to combine different heating devices, e.g. 

electric HPs, natural gas boilers and resistance heaters. Through smart control, operation can 

be switched between these devices in accordance with their real-time operational efficiencies. 

Therefore, hybrid heating technologies, through combining new-invested HPs and existing 

natural gas boiler, can help alleviate the pressure of large investment in new heating equipment 

by allowing consumers to continue using gas boilers while spending less money on low-carbon 

heating technologies to meet the carbon target. A series of combinations of different heating 

technologies have been analysed in [13], manifesting the advantages of hybrid HP-Bs over the 
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other hybrid heating technologies. Considering the high penetration of natural gas boilers in 

the UK, it is tempting to apply hybrid HP-B on a large scale, as a solution to the concerns about 

the cost issues of ASHPs. Hybrid HP-Bs inherit all advantages from ASHP, while improving 

the cost-effectiveness of ASHPs by 1) delivering substantial savings in capital cost due to 

significant switch of investment from capital-intensive ASHPs to gas boilers while barely 

increasing the carbon emission; 2) reducing the costs of distribution networks reinforcement 

driven by large-scale deployment of ASHPs; 3) enhancing the load factor of ASHPs, 

considering that ASHPs only need to supply the base load while the peak load is covered by 

gas boilers. 

4. Hydrogen 

Hydrogen can potentially serve as a zero-carbon alternative to natural gas. Many countries are 

performing pilot schemes to investigate the economy of large-scale deployment of hydrogen 

plants as a promising measure for decarbonisation. As a gaseous fuel, hydrogen has the 

potential to adapt to most technologies that are based on natural gas while still providing a 

similar level of service. This means the transition from natural gas based technologies to 

hydrogen based technologies would barely incur hassle for customers given that very few 

appliances need to be replaced, thus driving significant savings from investment cost. 

Furthermore, hydrogen can potentially be injected into the existing gas networks and be 

delivered to consumers. At present, pure hydrogen cannot be directly transported through the 

existing gas networks due to the limitation of the material of pipelines, so only a small portion 

of hydrogen is mixed up with natural gas and injected into the gas networks, bringing limited 

benefits in terms of CO2 emission reduction. However, there are some research indicating that 

the existing distribution gas networks are suitable for the delivery of pure hydrogen [14], 

although further investigations need to be performed for a better understanding of the necessary 

conversion of networks related to the adaptation of hydrogen [15]. 

The most suitable method for industrial production of hydrogen is steam methane reforming 

(SMR), which accounts for about 95% of the world production. At high temperatures, water 

vapour reacts with methane to produce hydrogen and carbon monoxide, as presented in (1.2):  
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CH4 + H2O → CO + 3H2 (1.2) 

Extra hydrogen can be recovered through the reaction between carbon monoxide and water 

steam, with the presence of the catalyst of iron oxide, as shown in (1.3):  

CO + H2O → CO2 + H2 (1.3) 

Since SMR produces CO2 as a by-product, its application in a low-carbon scenario would be 

highly dependent on the availability of CCS. After being captured (as a procedure of CCS), 

CO2 has to be transported to suitable sites for storage which are usually far away from the load 

centre, so the issues related to the delivery of CO2 have to be handled properly. CO2 network 

is a potential solution to transport large volume of CO2, but it requires considerable investment 

of infrastructure. If SMR plants are built close to the storage sites, hydrogen transmission 

infrastructures have to be considered, because existing high pressure gas transmission networks 

are likely unsuitable for hydrogen transmission due to material issues [16]. However, coastal 

SMR plant is convenient to transport the carbon emissions and seal them under the sea. On the 

contrary, if SMR plants build closing to the load centre, existing local gas distribution systems 

are potentially compatible with hydrogen use [17], but carbon transportation needs to be 

considered in this plan. 

Another potential method for industrial bulk production of hydrogen is the electrolysis of 

water, which is more energy-intensive. Electrolysis uses surplus electricity from wind to 

produce only small fraction of hydrogen for its high capital investment costs, so they could be 

located near wind farms to provide more flexibility for electricity grid. The chemical equation 

is given as (1.4): 

2H2O → 2H2 + O2 (1.4) 

The industrial production and transmission of hydrogen are investigated in [18] and [19]. 

Reference [20] presents a future hydrogen supply chain for UK transportation demand, which 

considers the hydrogen production, distribution and storage. A wind-electricity-hydrogen 

model, which integrated with electricity network to determine the optimal design and operation 

of hydrogen and electricity systems is developed in [21]. 



8 Introduction 

 

1.2 Research Questions 

This thesis focuses on developing and proposing a multi-energy-system investment model to 

investigate the various decarbonisation strategies and the potential technology portfolio that 

can deliver a low-carbon future energy system in different scenarios. The Research Questions 

of this PhD thesis can be summarised as: 

RQ1: How to model DHNs on the national level while considering the local distinctions 

of networks across different types of areas characterised with different geographical 

features and population density? 

DHN is a potential heating method that can pave the pathway to a low-carbon future heat 

system. In order to identify the economically optimal heating technology portfolio to achieve 

the carbon reduction target, we cannot circumvent the potential contribution of DHNs. 

Therefore, it is necessary to comprehensively model the investment cost of DHNs 

infrastructure on the national level.  

A lot of previous researches have been carried out to investigate the benefits that DHNs can 

bring to the energy system, especially considering how the coordinated operation of various 

heat sources in DHNs, such as CHP, TES, gas boilers, etc., improves the operational 

performance of the electricity system. However, most of the previous work has been focused 

on the operation of DHNs, how to quantify the investment cost of DHNs driven by different 

user penetrations and incorporate the DHN investment cost model into the national level multi-

energy system investment optimisation problem remains to be an open question. 

RQ2: How to evaluate the values of pre-heating through the inherent thermal storage of 

buildings? How to quantify the capability of pre-heating while considering the comfort 

requirement of customers?  

While the advanced low-carbon technologies are crucial for decarbonising the future energy 

system, the improvement of energy management at the end-side is also an important means to 

achieve this goal. Pre-heating through the inherent thermal storage of buildings provides us the 

possibility to improve the building energy management, bringing significant economic benefits 
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to both the energy system and consumers. Therefore, it is important to model the process of 

pre-heating. 

The dynamic thermal energy balancing process of pre-heating can be simplified as a storage 

model, however, it is not clear how much storage should be used to depict the capability of pre-

heating given the thermal parameters of a building. Another concern is that the comfort 

requirement of consumers cannot be fully considered in a storage model. If we can find out the 

equivalent size of thermal storage to depict the capability of pre-heating while taken into 

account of the comfort requirement, then we can use the storage model to represent the 

functionality of pre-heating in more complex models. 

RQ3: How to address the investment planning of the integrated electricity and heat 

system, while considering both operation and investment timescales with spatial 

granularity including local and national level infrastructure? 

In order to identify the optimal decarbonisation strategy to achieve the carbon reduction target, 

it is imperative to assess the advantages and disadvantages of different heating technologies 

and identify the optimal design of the heating system on a national scale to maximize the 

economic benefits regarding both investment cost and operation cost. Additionally, as there is 

growing evidence that the interaction between electricity and heat systems will be important in 

facilitating cost effective transition to a lower carbon system by efficiently accommodating 

RES, it is necessary to quantify the benefits of the interactions across the multi-energy system. 

To achieve such, a comprehensive multi-energy system investment model would be essential. 

Previous research on the investment and operation optimization of the multi-energy systems 

mostly focused on either the national or the local level infrastructure, with few investigating 

both. However, the decarbonisation through the adoption of different low-carbon technologies 

may potentially have significant impacts on the investments across different sectors, including 

local-level distribution networks and heat networks and national-level transmission network 

and generation. In order to research the whole-energy-system implications of various heating 

pathways towards the 2050 low-carbon energy system, it will be necessary to propose a 

modeling framework for the whole-system optimization of the combined electricity and heat 



10 Introduction 

 

system while considering both operation and investment timescales with spatial granularity 

including local and national level infrastructure. 

RQ4: How to reduce the computational burden of the integrated-electricity-and-heat-

system investment-model, while ensuring that the results are near-optimal? 

The complexity of investment planning models while taking into account a large number of 

operational conditions directly leads to dramatic computational burdens. Running the proposed 

integrated-electricity-and-heat-system investment-model over a whole year with hourly 

resolution is very time-consuming, so it is crucial to simplify the calculation so that this model 

can be solved within a reasonable time. One research direction to find the solution to this 

challenge is to reduce the size of input data by selecting a set of representative periods from 

the total number of operating snapshots. The selected periods have to retain most of the 

characteristics of the original data while guaranteeing that the investment decisions made are 

near-optimal.  

Different algorithms have been investigated for the selection of representative periods. Most 

of the selection methods are performed according to the operational information in the input 

domain, which is convenient and straightforward for the implementation of the selection. 

However, since the investment decisions can be significantly non-linear to the input variables 

for the long-term investment planning problems, the input domain may not be the most 

appropriate domain to do the clustering. Additionally, few studies have considered the inter-

temporal information in the operation constraints by performing representative-period 

selection to simplify the calculation of energy system planning problems. In this context, it is 

highly meaningful to investigate a more advanced method for the selection of representative 

days to further enhance the efficiency of calculation without compromising the accuracy.   

1.3 Original Contributions 

To address the research questions presented above, this PhD thesis makes the following 

original contributions to knowledge: 
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 Proposing a novel DHN investment model, through which the investment cost of DHNs 

driven by different user penetrations in different representative areas can be quantified 

and incorporated into the national-level multi-energy system investment model. 

 Evaluating the economic value of pre-heating and quantifying the capability of the 

inherent storage of buildings under given thermal parameters of buildings.  

 Presenting a novel combined electricity and heat system modeling framework 

considering both operation and investment timescales with spatial granularity including 

local and national level infrastructure. The proposed model simultaneously optimizes, 

for the first time, the investment in electricity generation (including conventional and 

low carbon generation), heating plants/appliances, DHNs, reinforcement of electricity 

transmission and distribution networks while considering system operation cost and 

taking into account frequency regulation and operating reserve requirements.  

 Assessing the annual system cost coving multiple energy-sectors under the heating 

strategies of HP-only (electric HP is the only option of heat provision), hybrid HP-Bs 

and DHNs; analysing the impact of different heating strategies on the electricity system; 

and presenting the optimized portfolio of heating technologies to achieve the 

decarbonisation. 

 Quantifying the benefits of the integrated planning of electricity and heat systems and 

demonstrating the impact on the technology mixes in both electricity and heat sectors; 

investigating the enhanced benefits TES and pre-heating bring to the multi-energy 

system; and demonstrating the major impact of the level of balancing service 

requirements on the value of the system integration.  

 Proposing a novel cost-oriented method to select representative operating days for the 

multi-energy system investment planning problem with inter-temporal operating 

conditions considered. Performing a set of comprehensive analysis to demonstrate the 

superior performance of the proposed cost-oriented approach. 

1.4 Thesis Structure 

This thesis is constructed into seven chapters to address the proposed research questions, the 

summaries of which are presented as the following.  
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In Chapter 2, a novel linear District Heating Network (DHN) investment model is proposed by 

using the fractal-image-based algorithm. Through this model, the investment cost of DHNs 

driven by different user penetrations in different representative areas can be quantified and the 

DHN investment cost functions can be incorporated into the whole-system investment model 

proposed in Chapter 4 to optimize the penetration of DHNs. The operational principles of 

various heat sources in DHNs, including CHP plants, HPs and TESs are investigated, following 

which, the coordinated operation of these heat sources to increase the flexibility of the energy 

system is explored. 

In Chapter 3, the value of pre-heating through the inherent building thermal storage is evaluated 

by using linear programming. The utilisation of the inherent thermal storage of buildings as an 

alternative way to reduce the operational costs while taking into account the comfort conditions 

in buildings is researched in a building energy management optimisation problem. In this 

problem, pre-heating through building thermal storage is enabled by allowing temperature 

variations within a pre-defined comfort zone. Through pre-heating, energy consumption can 

be managed in an economic-benefit-oriented way. By comparing the operational costs between 

the case where pre-heating is enabled and the case where additional TES is installed, the 

economic value of pre-heating can be evaluated while the capability of the inherent storage of 

buildings under given thermal parameters of buildings can be quantified. 

In Chapter 4, a novel MILP modelling framework for the whole-system optimisation of the 

integrated heat and electricity systems, considering operation and investment timescales and 

covering both local and national level infrastructure. The proposed optimization model can 

simultaneously optimize, for the first time, the investment in electricity generation (including 

conventional and low carbon generation as well as CHP), heating devices, heat networks, 

reinforcement of electricity transmission and distribution networks while minimizing the 

system operation cost, taking into account frequency response and operating reserve 

requirements. The impact of integrated systems reducing system inertia on the frequency 

response requirement is explicitly modelled in the constraints. Carbon emission and security 

constraints are also included. 

In Chapter 5, a set of comprehensive case studies are carried out to compare the economic 

advantages as well as the associated impacts on the electricity system under the full 
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deployments of ASHP, hybrid HP-Bs (ASHP and gas boilers) DHNs and hydrogen boilers by 

using the whole-system integrated electricity and heat system model. A series of sensitivity 

studies are also performed to illustrate the robustness of the heating strategies to the cost 

uncertainty of heating technologies. The optimized strategy for heat sector decarbonisation is 

demonstrated, providing an outline of the optimal deployment for different heating 

technologies in terms of their penetrations and deployed areas. The UK case study suggests the 

significant economic advantage of the hybrid HP-B over the other three heating technologies, 

while DHN may play an important role in urban areas under the optimized heat decarbonisation 

strategy. The results also clearly demonstrate the changes in the electricity side driven by the 

different decarbonisation strategies in the heating system. 

In Chapter 6, the benefits through considering the interaction between electricity and heat 

systems at the planning stage are investigated, as the system integration will play an important 

role in facilitating the cost effective transition to a low carbon energy system with high 

penetration of renewable generation. The whole-system integrated electricity and heat system 

model is applied to optimize decarbonization strategies of the UK integrated electricity and 

heat system, while quantifying the benefits of the interactions across the whole multi-energy 

system, and revealing the trade-offs between portfolios of (a) low carbon generation 

technologies (renewable energy, nuclear, CCS) and (b) district heating systems based on heat 

networks and distributed heating based on end-use heating technologies. Overall, the proposed 

modeling demonstrates that the integration of the heat and electricity system (when compared 

with the decoupled approach) can bring significant benefits by increasing the investment in the 

heating infrastructure in order to enhance the system flexibility that in turn can deliver larger 

cost savings in the electricity system, thus meeting the carbon target at a lower whole-system 

cost. 

In Chapter 7, a cost-oriented representative-day-selection approach that can significantly 

reduce the computational burden of the whole-system integrated electricity and heat system 

model is proposed. Through a series of case studies, we demonstrated the superior performance 

of the proposed cost-oriented representative-day-selection approach against the widely used 

input-based approach. The tested case studies are characterised with increased complexity so 
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that we can demonstrate the improved advantages of the objective-based approach over the 

traditional input-based approach. 

In Chapter 8, a series of key conclusions of the thesis are summarised while the most significant 

areas for future work are identified.



 

Chapter 2 District Heating Network Modelling 

DHNs, potentially supplied by various low-carbon heat sources, can provide an alternative 

opportunity to decarbonise the heat system. There are more than 2,000 DHNs in various sizes 

in the UK, supplying heat demand for over 200,000 dwellings and 2,000 commercial and public 

buildings. Large DHNs are typically deployed in highly populated cities and university 

campuses. DHNs currently supply under 2% of the heat demand in the UK, covering 

residential, public sectors and commercial buildings. 

Considerable benefits can be achieved through DHNs, as they can feed on renewable energy 

sources, geothermal energy, or waste heat from industrial processes. Meanwhile, increased 

energy efficiency can also be achieved by using high efficiency forms of heating technologies. 

Additionally, DHNs can provide significant flexibility to the electricity system through 

coordinated operation of different heating technologies. However, the huge investment cost of 

DHNs significantly restricts its large scale deployment. 

In order to identify the optimal heating strategy to achieve the 80% carbon reduction target, it 

is important to investigate the potential role that DHNs will play in the low-carbon energy 

system. In this context, this chapter proposes a linear DHN investment model, covering 

infrastructure on both local district and national level. This linear DHN investment model will 

be integrated into a whole-system investment model of multi-energy system in Chapter 4.   

2.1 Investment Model of Heat Network  

2.1.1 Fractal Model for Network Generation 

An algorithm to generate electricity distribution networks based on the fractal image science 

has been developed by S.A Smith  and has been carried out by J.P. Green [22] and D. Melovic 
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[23]. The application of heat networks in the UK is still limited, but the design and construction 

of heat network should be very similar to that of the electricity distribution network, because 

the topology of both networks are decided by the location of consumers and the roads in the 

map which illustrate possible paths of both networks. Therefore, the fractal-based algorithm 

can also be used to generate the topology of different heat networks. There are two main steps 

for this algorithm, the first one is to locate of different consumers, the number if which is known 

in a given area. The second one is to establish the connections of all the consumers the locations 

of which have been determined in the first step. 

2.1.2 Consumer Location Determination 

According to the fractal-based algorithm, the distribution of consumers should follow the 

principles in the economic attraction model, which is drawn from the fractal image science. In 

this model, the availability of land and supply are two main factors that influence the settlement 

of consumers. In desert areas, the price of supply is very high, so new settlement is less likely 

to occur in this kind of areas. In densely populated areas, the price of land is very high, people 

don’t tend to settle down in this kind of areas neither. The areas which are neither populous nor 

deserted are more attractive to new consumer settlement. This principle is reflected in (2.1) as 

a descriptive illustration (note that it is not a specific function),  

𝑘: {
< 1, 𝑖𝑓 𝑡1 < 𝑙 < 𝑡2        
> 1, 𝑖𝑓 𝑙 < 𝑡1 𝑜𝑟 𝑙 > 𝑡2

 , 𝑙, 𝑡1, 𝑡2 > 0 (2.1) 

The variable 𝑘 is introduced here to represent the attractiveness factor of a certain area. If 𝑘 

<1, then the area is attractive to consumer settlement. If 𝑘 >1, then the area is repulsive to 

consumer settlement. 𝑘 is a function of the typical length l of a given network. Figure 2.1 

illustrates a specific example of 𝑘 function when 𝑡1=5, 𝑡2=40. The parameter 𝑡1 and 𝑡2 are 

related to the fractal dimension which is determined by the geographical characteristics (e.g., 

urban, rural) in a given area. Table 2.1 demonstrates the value of 𝑡1 and 𝑡2 for 4 typical 

consumer layout and the corresponding fractal dimensions. 
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Figure 2.1– k function 

Table 2.1 – t1 and t2 of typical consumer layout with its fractal dimensions 

Type of area t1 t2 Fractal dimension 

Urban 0.01 5 1.81-1.98 

Sub-urban 0.01 20 1.61-1.85 

Sub-rural 0.01 50 1.44-1.67 

rural 0.01 430 1.38-1.53 

 

The procedures to determine the locations of different consumers in a network have been 

elaborated in [24]. In this section, we summarize the key points as follows: 

1. Generate two initial nodes (𝑥1, 𝑦1) and (𝑥2, 𝑦2) randomly to form the primitive network 

(including 2 nodes and 1 branch). The centre of the primitive network is denoted as 

(𝑥𝑐, 𝑦𝑐). All the other nodes will be integrated into the primitive network one by one. 

2. The distance between node (𝑥1, 𝑦1) and node (𝑥2, 𝑦2) is denoted as l, which represents 

the typical length of the network. The angle between the initial branch and the 

horizontal direction is denoted as θ. 

3. Generate a third node (𝑥, 𝑦) randomly. Connect (𝑥, 𝑦) with (𝑥𝑐, 𝑦𝑐). Rotate (𝑥, 𝑦) by 

the angle of θ counter-clockwise with (𝑥𝑐, 𝑦𝑐) being the centre of the circle. (𝑥, 𝑦) then 

becomes (𝑥′, 𝑦′) after this transformation. 
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4. Calculate the attractiveness factor k basing on a chosen pair of t1 and t2. Contract or 

expand the vector (𝑥′ − 𝑥𝑐,𝑦′ − 𝑦𝑐) with (𝑥𝑐, 𝑦𝑐) fixed to get (𝑥3, 𝑦3). (𝑥3, 𝑦3) is the 

new generated node which is ready to integrate to the network. 

5. The transformation process described in step 1 to step 4 can be expressed as Equation 

(2.2) and Figure 2.2, 

[
𝑥3

𝑦3
] = [

cos 𝜃    − sin 𝜃
sin 𝜃       cos 𝜃

] [
𝑘  0
0  𝑘

] [
𝑥
𝑦] + [

𝑥𝑐

𝑦𝑐
] (2.2) 
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Figure 2.2– Transformation process of consumer location 

The new primitive network includes 3 nodes and 3 potential branches (branches between every 

2 nodes). Generate the next node randomly. Select the branch in the new primitive network 

which is closest to the new generated node, denote the centre of this branch as (𝑥𝑐, 𝑦𝑐), repeat 

the procedures from step 1 to step 4.  

Figure 2.3 shows the consumer distribution in urban areas and sub-urban areas respectively, 

based on the transformation procedures above. 

It can be observed that in urban areas nodes tend to be evenly scattered, while in sub-rural areas 

nodes are scattered in cluster. This is because the gap between 𝑡1 and 𝑡2 in sub-rural areas is 

wider than that in urban areas, which makes new generated nodes more likely to be attracted 

to the existing network in sub-rural areas than in urban areas. Once a new generated node is 

repulsed by the existing network in sub-rural areas, it will be located further away from the 
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existing networking than that in urban areas. So the consumer distribution in sub-rural areas 

shows a clustered pattern. In urban areas, the possibility of a new node being attracted and 

being repulsed are close, so it forms an relatively even distribution. 

 

Figure 2.3– Consumer distribution in urban and sub-rural areas 

2.1.3 Connection of Consumers 

Basically, there are two situations when connecting a new node to the existing network, as 

shown in Figure 2.4. In situation (a), a T junction is constructed while in situation (b) an obtuse 

angle is formed. In each situation, the basic principle of connecting a new node to the existing 

network is to ensure that the length of the new branch is minimum. The ratio of the number of 

T junctions and the number of all consumers in the network is defined as branching rate [25].  

(a) (b)
 

Figure 2.4– Situations of node connection 
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According to the fractal-based algorithm, there are two strategies to connect new consumers to 

the existing network.  

1. The next node to be connected to the existing network is selected randomly. It turns out 

that the network formed in this way has a higher branching rate.  

2. The next node to be connected to the existing network is the one which is closest to the 

last connected node. It turns out that the network generated in this way has a lower 

branching rate. 

(a) (b)
 

Figure 2.5– Consumer connection by different strategies 

By using the first strategy only, the branching rate of the network is around 60%, as shown in 

Figure 2.5 (a), while by using the second strategy only, the branching rate is about 20%, as 

shown in Figure 2.5 (b). The branching rate of realistic networks are usually between 20% and 

60%. A network with any branching rate between 20% and 60% can be generated by using 

both strategies together. By using the fractal-based algorithm, heat networks with different 

population density can be generated. 
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2.1.4 Heat Network Investment Model 

There are two factors that can impact the capital cost of DHNs, including (i) the length of the 

pipelines, which is determined by the layout of consumers, and (ii) the size of the pipelines, 

which depends on the peak heat demand. At the planning stage, it is assumed that the pipelines 

of DHNs should be designed with adequate redundancy for the sake of potential expansion in 

the future, therefore, the length of pipelines becomes the key factor that drives the capital cost 

of DHNs. When the layout of consumers in a district has been determined, the potential capital 

cost of DHN in that district is also determined and will not be influenced by the variation of 

heat demand. The fractal-based algorithm introduced in 2.1.1 can calculate the length of heat 

networks given the relative parameters. Figure 2.6 shows the process to calculate the 

investment cost of heat networks in a given area with the help of this algorithm. 

 

Figure 2.6– Flow chart of the calculation of heat network investment cost 

The required input data in Figure 2.6 can be obtained by using National Heat Map. The National 

Heat Map is a free online tool which was commissioned by Department for Business, Energy 

& Industrial Strategy (BEIS) - and created by CSE in 2010. This tool can provide heat demand 
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information and heat consuming sector information of all areas in England. The purpose of 

National Heat Map is to support the planning and deployment of local low-carbon energy 

schemes in England through open accessible data and high-resolution maps of heat demand in 

different area. The uniqueness of the National Heat Map is characterised by its detailed address-

level modelling of demand data and the tools for analysing the data. It combined a very detailed 

geographic model of energy use with a range of user-friendly visualisation and reporting tools, 

providing sophisticated GIS functionality to non-technical users via a standard web-browser 

[26]. As shown in Figure 2.7. With the help of the National Heat Map, we can access the 

statistics of the heat density (related to fractal dimension), the size of area and the number of 

consumers of a selected region, in respect with different sectors. These data can be applied as 

inputs of the heat network investment model.  

 

Figure 2.7– National Heat Map and the data involved 

Four representative districts covering urban, sub-urban, semi-rural and rural areas are selected 

on the National Heat Map and their corresponding heat networks are generated by using the 

fractal-based algorithm. Detailed parameters of these representative districts and the generated 

topology of the heat network that can be potentially deployed in these districts are given in 

Appendix A.1, based on the National Heat Map and the fractal model, respectively. Based on 

the data provided by DECC [27], the cost assumptions of the selected representative networks 

are presented in Appendix A.1. 
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The whole Great Britain (GB) can be represented by a combination of the representative areas. 

The number of each representative area are optimized to minimize the total error of area, 

population and heat demand between realistic data and calculated data, as in Equation (2.3), 

min
𝑁𝑖

𝑟𝑎
(

|∑ 𝑁𝑖
𝑟𝑎 ∙ 𝐴𝑖

𝑅
𝑖=1 − 𝐴𝑡𝑜𝑡|

𝐴𝑡𝑜𝑡
+

|∑ 𝑁𝑖
𝑟𝑎 ∙ 𝑃𝑖

𝑅
𝑖=1 − 𝑃𝑡𝑜𝑡|

𝑃𝑡𝑜𝑡
+

|∑ 𝑁𝑖
𝑟𝑎 ∙ 𝐷𝑖

ℎ𝑅
𝑖=1 − 𝐷ℎ,𝑡𝑜𝑡|

𝐷ℎ,𝑡𝑜𝑡
) (2.3) 

where 𝑁𝑟𝑎 denotes the number of each representative areas; 𝐴 denotes the area of 

representative areas; 𝐴𝑡𝑜𝑡 denotes the total geographic size of area of the GB; 𝑃 denotes the 

population of representative areas; 𝑃𝑡𝑜𝑡 denotes the total population of the GB; 𝐷ℎ is the annual 

heat demand of representative areas; 𝐷ℎ,𝑡𝑜𝑡 is the annual total heat demand of the GB; 𝑅 is the 

set of representative districts. 

In summary, the investment cost of DHNs is basically decided by the length of pipework and 

the geographic features (e.g. urban, rural areas) in the deployed district. In this chapter, a 

fractal-based algorithm is applied to calculate the length of representative heat networks thus 

to determine the investment cost. Equation (2.4) presents the function of DHN investment cost, 

𝐶𝑖𝑛𝑣,𝑖
ℎ𝑛 (∙) = 𝛼𝑖

ℎ𝑛 ∙ 𝑁𝑖
𝑟𝑎 ∙ 𝐶𝑖

𝑢𝑛𝑖𝑡 ∙ 𝑙(𝐴𝑖 , 𝑁𝑖
𝑐 , 𝐷𝑖

ℎ, 𝜏𝑖)   ∀𝑖 ∈ 𝑅 (2.4) 

Given that the investment cost of DHNs is dramatically influenced by the heat density in the 

supplied district, all GB regions are categorized into 4 different representative districts in this 

model in accordance with their heat density, including urban, sub-urban, rural and semi-rural 

areas. By using the National Heat Map, the size of area of representative districts, the number 

of consumers and annual heat demand within the representative districts can be accessed which 

are then provided as inputs into the fractal-based algorithm, thus the length of representative 

networks with different geographic features can be calculated. The whole GB area is then 

represented as a linear combination of representative areas (the coefficient of which is denoted 

as 𝑁𝑟𝑎), with the errors of total consumer numbers, annual heat demand, and size of 

geographical areas minimized. By applying this approach, we can quantify the investment cost 

of DHNs driven by different user penetrations in different representative areas (𝛼ℎ𝑛) and 
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incorporate the linear DHN investment cost functions into the whole system investment model 

to optimize the penetration of DHNs. 

2.2 Operation of District Heating   

2.2.1 Heat Sources of District Heating 

Combined Heat and Power (CHP): 

CHP, also known as cogeneration, is a technology that can generate electricity and use the 

exhaust heat for heating process such as space heating and hot water heating. It has been proved 

to be a highly efficient way to convert primary energy into useful energy. CHP can be driven 

by both traditional fossil fuels (coal, gas and oil) and low carbon sources such as biomass and 

geothermal energy. Therefore, it is also seen as a promising way to decarbonise the energy 

system to meet the 2050 carbon reduction target [28]. Basically, three types of CHP are widely 

used for DHNs. 

1. Gas-turbine-based CHP 

Gas turbines can generate exhaust gases which are at 400-500°C [29]. These exhaust gases will 

enter a heat recovery boiler to heat water which will be injected into heat networks to meet heat 

demand. Gas turbines sacrifice some efficiency of electricity generation to upgrade the heat 

contained in exhaust gases so as to increase the overall energy efficiency. The ratio of heat to 

power for gas turbines is usually fixed, as expressed in Equation (2.5), 

 ℎ𝑡
𝐶𝐻𝑃 = 𝜆 ∙ 𝑝𝑡

𝐶𝐻𝑃, ∀𝑡 ∈ 𝑇 (2.5) 

where 𝑝𝑡
𝐶𝐻𝑃 is the electricity generation at time t; ℎ𝑡

𝐶𝐻𝑃 is the heat generation at time t; 𝜆 is ratio 

of heat to electricity for gas-turbine-based CHP; 𝑇 is the set of time steps. 

2. Steam-turbine-based CHP  

Steam turbine CHP is characterised with increased suitability for the cold areas where heat 

demand accounts for the major part of the total energy consumption in winters. The amount of 
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heat generation depends on how far the steam can go through the turbine and the amount of 

steam which is extracted from turbine for heat generation [29]. 

In accordance with the operating modes, steam turbines can be categorised into back-pressure 

turbines and condensing turbines. For the latter category, a condenser is applied at the exit of 

the turbine to maximise the power output by expanding exhaust steam down to a vacuum which 

can improve the efficiency of power generation.    

Figure 2.8 illustrates the operating area (known as the iron diagram) for a steam turbine CHP 

unit [30]. The upper and lower boundaries represent the maximum and minimum boiler load 

while the right boundary represents the back pressure operation mode. In the back pressure 

mode, all heat is extracted from the extraction point to maximize the heat generation under a 

certain fuel feeding rate.  
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Figure 2.8– Operation area of a CHP unit 

Point B shows that at the maximum fuel load, the power generation can reach 250MW, with 

no useful heat output. Keeping the same rate of fuel feeding, if the heat production is increased, 
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which means more steam is extracted from the extraction point, the power output will decrease 

correspondingly, the ratio of the change of heat and electricity is denoted as 𝑧. Eventually, the 

heat output reaches a maximum level because of the capacity limit of the heat exchanger. 

Keeping heat output maximum and reducing the boiler load, the operation point will move 

along the ‘back pressure operation’ line and finally reach point D. The slope of the ‘back 

pressure operation’ line is demoted as λ. At point D, if less heat is extracted from the low 

pressure turbine, the heat output will reduce while the power output will increase. When no 

heat is extracted, the operation point reaches A. From point A to point B, more fuel is needed.  

A line paralleled with the upper and lower limit line represents the set of operating points under 

a certain fuel feeding rate, as shown in Figure 2.8. It demonstrates that in a constant fuel feeding 

rate, by adjusting the amount of heat extracted, how the operation point will move. So by 

controlling the fuel feeding rate, any point within the iron diagram can be reached [31]. 

3. Combined-cycle-gas-turbine-based CHP (CCGT CHP) 

CCGT CHP is the most widely used type of CHP, as exhaust heat in higher grade can be 

acquired at the exit of the gas turbine, which can generate steam with higher pressure in the 

heat recovery boiler. Compared to steam turbines, more fuel is used for electricity generation 

in CCGT, because no heat is generated in gas turbine cycle. Therefore, CCGT is more suitable 

for areas where electricity demand is higher than heat demand. 

Both steam turbine CHP and CCGT CHP extract heat from steam turbine, so they follow a 

similar operating principle. Their operational area is constrained by 4 boundaries, as illustrated 

in Figure 2.8, which is expressed in (2.6) and (2.7),  

 (𝑝𝐶𝐻𝑃 −
ℎ𝑡

𝐶𝐻𝑃

𝑧
) ≤ 𝑝𝑡

𝐶𝐻𝑃 ≤ (𝑝
𝐶𝐻𝑃

−
ℎ𝑡

𝐶𝐻𝑃

𝑧
) , ∀𝑡 ∈ 𝑇 (2.6) 

 0 ≤ ℎ𝑡
𝐶𝐻𝑃 ≤ 𝜆 ∙ 𝑝𝑡

𝐶𝐻𝑃, ∀𝑡 ∈ 𝑇 (2.7) 

where 𝑝
𝐶𝐻𝑃

 is the maximum electricity output; 𝑝𝐶𝐻𝑃 is the electricity generation at time t; 𝑝𝐶𝐻𝑃 

is the minimum electricity output; ℎ𝐶𝐻𝑃 is the heat generation at time t; 𝑧 is the conversion rate 

from electricity to heat for CHP plants; while 𝜆 is the maximum ratio of heat to electricity for 
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CHP plants. Note that the 𝜆 in (2.7) represents the same physical relationship between 

electricity and heat output as in (2.5). 

Heat Pump: 

The industrial-sized HP is another favourable heat source for DHNs, due to its high efficiency 

of converting electric energy into thermal energy. Additionally, HP has the potential to provide 

low carbon heat with the decarbonisation of the electricity network.  

For different district heating schemes, the temperature of supply water may vary significantly, 

as a consequence, the COP of HPs can be very different. This is because the temperature 

difference between the heat source (typically water source or ground source for industrial-sized 

HPs) and the heat sink (supply water) has a considerable impact on the COP of HPs. The lower 

the temperature of supply water is, the higher the COP of HPs becomes. In order to improve 

the energy efficiency while meeting the comfort requirement, underfloor heating system can 

be applied to work together with low temperature heat networks, due to its improve efficiency 

of thermal energy delivery. 

Thermal Energy Storage: 

Hot-water-tank is the most commonly used TES for DHNs, which can provide flexibility for 

DHNs so as to reduce the infrastructure investment cost [32, 33]. Additionally, TES has the 

potential to provide flexibility to electricity network through coordinated operation with CHPs 

and HPs [34]. The mathematical model of TES can be formulated as Equation (2.8) ─ (2.12), 

𝑠𝑡
𝑜𝑢𝑡 ≤ 𝑠, ∀𝑡 ∈ 𝑇 (2.8) 

𝑠𝑡
𝑖𝑛 ≤ 𝑠, ∀𝑡 ∈ 𝑇 (2.9) 

𝑒𝑐𝑡 ≤ 𝑠 ∙ 𝜏𝑠 , ∀𝑡 ∈ 𝑇 (2.10) 

𝑒𝑐1 ≤ 𝑒𝑐0 ∙ 𝜂𝑠 + 𝑠1
𝑖𝑛 ∙ 𝜂𝑖𝑛 −

𝑠1
𝑜𝑢𝑡

𝜂𝑜𝑢𝑡
 (2.11) 
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𝑒𝑐𝑡 ≤ 𝑒𝑐𝑡−1 ∙ 𝜂𝑠 + 𝑠𝑡
𝑖𝑛 ∙ 𝜂𝑖𝑛 −

𝑠𝑡
𝑜𝑢𝑡

𝜂𝑜𝑢𝑡
, ∀𝑡 ∈ 𝑇 (2.12) 

where 𝑠𝑜𝑢𝑡/𝑠𝑖𝑛  represents the discharging/charging rate at time t; 𝑠 represents the power rating 

of TES (for both charging and discharging); 𝑒𝑐 denotes the energy content stored in the water 

tank at time t; 𝜏𝑠 denotes the duration that storage can be fully charged/discharged from being 

empty at the rated power; 𝑒𝑐0 denotes the initial energy content stored in the tank; 𝜂𝑠 denotes 

the static efficiency of storage; while 𝜂𝑖𝑛/𝜂𝑜𝑢𝑡 denotes the efficiency of energy 

charging/discharging. 

2.2.2 Coordinated operation of CHP, HP and TES in DHN 

Large-scale deployment of DHNs will introduce remarkable interactions between the 

electricity system and the heat system. The absence of the coordination between different 

components in DHNs would lead to inefficient operation in both electricity and heat system. 

As the most important heat source in DHNs, the operation of CHP is restricted by the iron 

diagram illustrated in Figure 2.8. In the case where the penetration of variable renewable 

energy sources is high, improved flexibility of the CHP operation is required to help alleviate 

the curtailment of RES by adjusting the electricity-to-heat ratio within a wider range. This 

section investigates the potential of increased flexibility in the operation of CHP through the 

coordinated operation with HP and TES. 

HPs can generate heat by consuming electricity. When heat demand increases while electricity 

decreases, HPs can convert surplus electricity into heat, extending the lower bound and right 

bound of the iron diagram. The extended operating area of DHNs under coordinated operation 

of CHP and HP is constrained by (2.6) ─ (2.7) and (2.13) ─ (2.14),  

𝑝𝑡
𝑒𝑥𝑑 ≥ 𝑝𝑡

𝐶𝐻𝑃 − 𝑝
𝐻𝑃

, ∀𝑡 ∈ 𝑇 (2.13) 

ℎ𝑡
𝑒𝑥𝑑 = ℎ𝑡

𝐶𝐻𝑃 + 𝐶𝑂𝑃𝐻𝑃 ∙ 𝑝𝑡
𝐻𝑃 ≤ ℎ𝑡

𝐶𝐻𝑃 + 𝐶𝑂𝑃𝐻𝑃 ∙ 𝑝
𝐻𝑃

, ∀𝑡 ∈ 𝑇 (2.14) 

where 𝑝𝑒𝑥𝑑 and ℎ𝑒𝑥𝑑 denote the extended electricity and heat output through coordinated 

operation of different components in DHNs; 𝑝𝐶𝐻𝑃 and ℎ𝐶𝐻𝑃 denote electricity and heat output 
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of CHP; 𝑝𝐻𝑃 denotes electricity consumption of HPs; 𝑝
𝐻𝑃

 denotes the electric power rating of 

HPs; and 𝐶𝑂𝑃𝐻𝑃 denotes the coefficient of performance of HPs. 

Figure 2.9 illustrates the extended operating area of DHNs under coordinated operation of CHP 

and HP, compared to the original operating area of CHP (which is unified, the maximum 

electricity output of CHP is 1 p.u.). It is assumed that the electric power rating of HP is 0.1 p.u. 

and its COP is 2.5. 

 

Figure 2.9– CHP working with HP 

The TES can charge surplus heat generated by CHP and discharge heat when heat demand 

increases. Therefore, it can extend the range of heat generation for the all the operating points 

on the bound. The extended operating area of DHNs under coordinated operation of CHP and 

TES is constrained by (2.6) ─ (2.7) and (2.15) ─ (2.16), 

ℎ𝑡
𝐶𝐻𝑃 − 𝑠 ≤ ℎ𝑡

𝑒𝑥𝑑 = ℎ𝑡
𝐶𝐻𝑃 + 𝑠𝑡

𝑜𝑢𝑡 − 𝑠𝑡
𝑖𝑛 ≤ ℎ𝑡

𝐶𝐻𝑃 + 𝑠, ∀𝑡 ∈ 𝑇 (2.15) 

𝑝𝑡
𝑒𝑥𝑑 = 𝑝𝑡

𝐶𝐻𝑃, ∀𝑡 ∈ 𝑇 (2.16) 
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where 𝑠𝑖𝑛 and 𝑠𝑜𝑢𝑡 denote charging and discharging rate of TES; and 𝑠 denotes the power 

rating of TES. 

Figure 2.10 illustrates the extended operating area of DHNs under coordinated operation of 

CHP and TES, compared to the original operating area of CHP. It is assumed that the power 

rating of TES is 0.2 p.u. for both charging and discharging. 

 

Figure 2.10– CHP working with TES 

When both HP and TES support the operation of CHP, the extended operating area of DHNs, 

as constrained by (2.6) ─ (2.7) and (2.17) ─ (2.18), is enhanced by the combined contribution 

of HP and TES, 

𝑝𝑡
𝑒𝑥𝑑 = 𝑝𝑡

𝐶𝐻𝑃 − 𝑝𝑡
𝐻𝑃 ≥ 𝑝𝑡

𝐶𝐻𝑃 − 𝑝
𝐻𝑃

, ∀𝑡 ∈ 𝑇 (2.17) 

ℎ𝑡
𝐶𝐻𝑃 + 𝐶𝑂𝑃𝐻𝑃 ∙ 𝑝

𝐻𝑃
− 𝑠 ≤ ℎ𝑡

𝑒𝑥𝑑 ≤ ℎ𝑡
𝐶𝐻𝑃 + 𝐶𝑂𝑃𝐻𝑃 ∙ 𝑝

𝐻𝑃
+ 𝑠, ∀𝑡 ∈ 𝑇 (2.18) 
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Figure 2.11 illustrates the extended operating area of DHNs under coordinated operation of 

CHP, HP and TES, compared to the original operating area of CHP. The same assumptions are 

made as the cases demonstrated in Figure 2.10 and Figure 2.11. 

 

Figure 2.11– CHP working with HP and TES 

From Figure 2.9 to Figure 2.11, we can see that HP and TES can both enhance the flexibility 

of CHP operation. For HP, all operating points in the extended operating area can be 

theoretically reached unconditionally. By contrast, the reachability of the points between the 

extended operating area through TES and the original operating area of CHP depends on the 

state of charge of TES. Specifically, the boundary of the extended area can be reached only 

when the stored heat in TES is enough to enable the maximum discharging or the headroom of 

TES is enough to enable the maximum charging. 

2.3 Conclusions of the Chapter 

DHNs is a potential heating method that can pave the pathway to a low-carbon future heat 

system. In order to identify the economically optimal heating technology portfolio to achieve 

the carbon reduction target, we cannot circumvent the potential contribution of DHNs. 
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Therefore, it is necessary to comprehensively model the investment cost of DHNs 

infrastructure on the national level. 

This chapter proposes a novel linear DHN investment model by using the fractal-image-based 

algorithm, which can generate the potential topologies of DHN in different types of areas.  

The length of pipelines, which determines the cost of excavation and the installation of pipes 

is the key factor that drives the capital cost of DHNs. When the layout of consumers in a district 

has been determined, the length of pipelines can be calculated with the help of the fractal-based 

algorithm, therefore, the potential capital cost of DHN in that district is also determined and 

will not be influenced by the variation of heat demand. 

Given that the investment cost of DHNs is dramatically influenced by the heat density in the 

supplied district, all GB regions are categorized into 4 different representative districts in this 

model in accordance with their heat density, including urban, sub-urban, rural and semi-rural 

areas. By using the National Heat Map, the size of area of representative districts, the number 

of consumers and annual heat demand within the representative districts can be accessed which 

are then provided as inputs into the fractal-based algorithm, thus the length of representative 

networks with different geographic features can be calculated. The whole GB area is then 

represented as a linear combination of representative areas, with the errors of total consumer 

numbers, annual heat demand, and size of geographical areas minimized. By applying this 

approach, we can quantify the investment cost of DHNs driven by different user penetrations 

in different representative areas and incorporate the DHN investment cost functions into the 

whole system investment model to optimize the penetration of DHNs. 

The operational principles of various heat sources in DHNs, including CHP plants, HPs and 

TESs are also investigated, following which, the coordinated operation of these heat sources to 

increase the flexibility of the energy system is explored. The results demonstrate that the 

synergy effects brought by integrating various heat sources can significantly improve the 

flexibility of DHN operation.  

 



 

Chapter 3 Modeling of Flexibility through Building 

Thermal Characteristics 

The application of advanced low-carbon heating technologies is crucial for paving the pathway 

to a decarbonised future heat system. For this purpose, the electrification of heat will play an 

important role in this background. However, the transition from the existing fossil-fuel-

dominated system to a highly-electrified low-carbon system would require considerable 

investment in the assets and effective flexibility measures to support the electricity system 

operating properly. In this context, the building thermal characteristics can provide us an 

alternative perspective to alleviate the burden of new investment and provide flexibility to the 

electricity system. The improvement of the energy efficiency through the thermal 

characteristics of buildings can bring significant economic benefits to both the energy system 

and consumers [35].  

Due to the inherent storage of buildings [36, 37], pre-heating can be taken advantaged to shift 

electricity demands and provide ancillary services according to the energy price signals, thus 

providing an opportunity to improve the efficiency of energy management of buildings and 

provide flexibility of the electricity system.  

The dynamic thermal energy balancing process of pre-heating can be simplified as a storage 

model, however, it is not clear how much storage should be used to depict the capability of pre-

heating given the thermal parameters of a building. Another concern is that the comfort 

requirement of consumers cannot be fully considered in a storage model. If we can find out the 

equivalent size of thermal storage to depict the capability of pre-heating while taking into 

account of the comfort requirement, then we can use the storage model to represent the 

functionality of pre-heating in more complex models. 

This chapter investigates the utilisation of the inherent thermal storage of buildings as an 

alternative way to reduce the operational costs while taking into account the comfort conditions 
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in buildings. Pre-heating through building thermal storage is enabled by allowing temperature 

variations within a pre-defined comfort zone [38, 39]. Through pre-heating, energy 

consumption can be managed in an economic-benefit-oriented way [37, 40, 41]. By comparing 

the operational costs between the case where pre-heating is enabled and the case where 

additional TES is installed, we can evaluate the economic value of pre-heating and quantify 

the capability of the inherent storage of buildings under given thermal parameters of buildings. 

Linear programming is utilised to analyse the dynamic process of pre-heating and TES 

operation.  

3.1 Thermal Dynamic Model of Buildings 

As thermal energy can be stored in the air and the building structures, buildings are 

characterised with inherent thermal energy storage, thereby reducing the operational costs 

without the requirement of additional hot water tanks as TES. 

The process of heat transfer is time dependent, the rate of thermal energy transferring into the 

building through the surface (e.g., walls, windows and roofs, etc.) equals the increase rate of 

the thermal energy inside the building. Figure 3.1 illustrates an equivalent electrical circuit to 

extract the key thermal characteristics of buildings. The air mass inside the building is 

equivalent to a thermal capacity 𝐶 due to its intrinsic thermal energy storage, while the building 

envelop is seen as a quick response thermal conductance 𝐾 to consider the heat exchange 

between the inside and outside of the building. The dynamic variation of the internal 

temperature 𝑇𝑖 is determined by the thermal energy gains 𝑄 and the outside temperature 𝑇𝑜, as 

formulated in Equation (3.1) - (3.3),  

𝐶
𝑑𝑇𝑖

𝑑𝑡
+ (𝑇𝑖 − 𝑇𝑜)𝐾 − 𝑄 = 0 (3.1) 

𝐶 = 𝜌 · 𝐶𝑝 ∙ 𝑉 (3.2) 

𝐾 = 𝑈 ∙ 𝐴 (3.3) 
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where 𝜌 denotes the density of the air in the building (kg/m3), 𝐶𝑝 denotes the specific heat of 

the air (J/kg∙K), 𝑉 represents the volume of the building (m3), 𝑄 represents the heat supply 

(W), 𝑈 is the heat transfer coefficient (U-value) of the building envelop (W/m2∙K), 𝐴 is the 

surface area of the building envelope (m2). Note that the time constant in this equivalent 

electrical circuit is 𝜏 =
𝐶

𝐾
=

𝜌𝐶𝑝𝑉

ℎ𝐴
. 

It should be stressed that the internal temperature of the building is considered to be spatially 

uniform during the transient process, the temperature gradients inside the building are assumed 

to be negligible. 

K

C

ToTi Q

structure

air

 

Figure 3.1– Equivalent electrical circuit of building thermal features 

The thermal dynamic model of buildings shown in Figure 3.1 is simplified as a first-order 

model, which only considers the inherent storage of the internal air. Actually, the building 

structure (e.g., walls, floors) can also store thermal energy, therefore, a second-order model 

considering both the equivalent thermal capacity of air and building structure would be more 

precise. Considering the simplicity of the first-order thermal dynamic model and the fact that 

it has already been widely used in the past works (e.g., [42-44]) and proved to be accurate 

enough, we also adopt this simplified model to solve the energy management optimization 

problem in this section. 

In order to integrate the thermal dynamic model into the energy management optimisation 

model under finite-length time intervals, the discretisation of the thermal energy balance 
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equation is imperative. By substituting 𝑑𝑇𝑖/𝑑𝑡 with ∆𝑇𝑖 ∆𝑡⁄ , Equation (3.1) can be re-written 

as the finite difference equation (3.4), 

𝐶
∆𝑇𝑖

∆𝑡
+ (𝑇𝑖 − 𝑇𝑜)𝐾 − 𝑄 = 0 (3.4) 

According to [45], three basic approaches are commonly used to discretise differential 

equations into finite difference equations, namely Forward Euler, Backward Euler and Crank-

Nicolson approach. In this section, we adopt the Forward Euler approach, considering its good 

performance for the first-order thermal dynamic model, the transformed finite difference 

equation is shown in (3.5),  

𝐶 ∙ (𝑇𝑖,𝑡+1 − 𝑇𝑖,𝑡) + ∆𝑡 ∙ [(𝑇𝑖,𝑡 − 𝑇𝑜,𝑡)𝐾 − 𝑄] = 0, 𝑡, 𝑡 + 1 ∈ 𝑇 (3.5) 

where 𝑇 is the set of the whole time horizon. For second-order thermal dynamic model, the 

Crank-Nicolson approach is more suitable to obtain a higher accuracy, as demonstrated in [46]. 

3.2 Optimization of Energy Management in Buildings 

3.2.1 Approach to Quantifying the Inherent Storage of Buildings 

In this section, we adopt the thermal dynamic model of buildings in an energy management 

problem to evaluate the values of the inherent storage of buildings. As illustrated in Figure 3.2, 

the considered building is equipped with HVAC appliances supplying thermal energy (e.g., 

heat or cold) to keep the internal temperature within a desired zone. PV panels are deployed on 

the roof of the building to supply electricity load (i.e., HVAC-irrelevant load and HVAC-based 

load) within the building, or sell electricity to the grid. In this energy management problem, we 

consider the consumer can simultaneously provide multiple categories of demand response 

services. In the following, we consider two distinct categories of services [47]. The first 

category of service is energy arbitrage, which enables the consumers to arrange their energy 

consumption in response to the fluctuations of energy price for different time steps within a 

day. The second category of service is frequency response services. For the latter, we merely 
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take into account the frequency support for severe events, which do not occur on a frequent 

basis, in contrast to real-time frequency response services. Four types of frequency response 

services are considered in this section, namely primary response service, secondary response 

service, high-frequency response service, and flexible response service. According to the 

National Grid practice, primary and high-frequency response services require a decrease and 

increase in electricity consumption for a duration up to 30 seconds, respectively, while the 

secondary response service requires a constant consumption decrease for up to 30 minutes. The 

flexible response service is almost the same as the secondary response service, expect that it 

can only be called upon during specific pre-defined time. 

 

Figure 3.2– Quantifying the potential of pre-heating by comparing with hot water tanks  

In order to quantify the values of pre-heating through the inherent thermal storage of the 

building, two cases are investigated.  

In Case 1, pre-heating is enabled in the building by allowing a comfort zone of the indoor 

temperature, as shown in Figure 3.2. Through pre-heating, demand shift and the provision of 
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ancillary services can be delivered, thus reducing the total operational costs. The objective of 

this case is to calculate the minimum net energy cost 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 under given operational 

conditions. The obtained 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 then serves as an input in Case 2. 

Case 2, the comfort zone of the indoor temperature is not allowed, in other words, the indoor 

temperature has to strictly follow the pre-defined comfortable temperature (set point). 

Meanwhile, hot-water-tank-based TES is installed in the building to provide flexibility to the 

electricity system, enabling demand shift and ancillary services. Given the net energy cost 

𝑀𝑖𝑛𝐶𝑜𝑠𝑡 [£], the objective of this case is to calculate the minimum size of TES [kWh], which 

is regarded as the equivalent size of TES of the inherent storage of the building.  

3.2.2 Model of the Energy Management Optimization Problem in Buildings 

3.2.2.1 Formulation of Case 1 

This case is formulated as a linear programming problem. The objective function is to minimise 

the total operation cost, specifically, the net cost of electricity consumption (the cost of 

imported electricity minus the revenue of exported electricity) minus the revenue from 

balancing service provision. As describe in 3.2.1, primary response (𝑃𝑃𝑅), high-frequency 

response (𝑃ℎ), secondary response (𝑃𝑆𝑅) and flexible response (𝑃𝑓) are available for provision. 

Two pre-defined temporal windows 𝑤1 and 𝑤2 are considered to provide flexible response 

service, as formulated in Equation (3.6), 

𝑀𝑖𝑛𝐶𝑜𝑠𝑡 =  min ∑ {

(𝐶𝑡
𝑖𝑚 ∙ 𝑃𝑡

𝑖𝑚 − 𝐶𝑡
𝑒𝑥 ∙ 𝑃𝑡

𝑒𝑥) −

(
𝐶𝑃𝑅 ∙ 𝑃𝑃𝑅 + 𝐶ℎ ∙ 𝑃ℎ + 𝐶𝑆𝑅 ∙ 𝑃𝑆𝑅

+𝐶𝑓 ∙ 𝑤1 ∙ 𝑃𝑓1 + 𝐶𝑓 ∙ 𝑤2 ∙ 𝑃𝑓2 )
}

𝑇

𝑡=1

∙ ∆𝑡 (3.6) 

Power balance is formulated in (3.7). In this model, PV is considered to provide electricity to 

buildings, when the electricity provided by PV (𝑃𝑃𝑉) cannot satisfy the total demand, which 

includes HVAC-irrelevant electricity demand (𝑃𝑒𝑙) and HVAC-driven electricity demand 

(𝑃𝐻𝑉𝐴𝐶), extra electricity has to be purchased from the grid (𝑃𝑖𝑚). When PV-provided 

electricity is more than needed, the surplus part can be sold to the grid (𝑃𝑒𝑥). 
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𝑃𝑡
𝑖𝑚 + 𝑃𝑡

𝑃𝑉 − 𝑃𝑡
𝑒𝑥 = 𝑃𝑡

𝑒𝑙 + 𝑃𝑡
𝐻𝑉𝐴𝐶  , ∀𝑡 ∈ 𝑇 (3.7) 

Equation (3.8) converts electric power 𝑃𝐻𝑉𝐴𝐶  (kWel) to thermal power 𝑄𝐻𝑉𝐴𝐶 (kWth). The 

conversion rate from electricity to heat/cold for HVAC appliances is denoted as 𝜂𝐻𝑉𝐴𝐶 . 

Specifically for ASHP, which is adopted in this study, 𝜂𝐻𝑉𝐴𝐶  is the same with COP. The COP 

of ASHPs is formulated as a linear function of the ambient temperature (𝑇𝑡
𝑎𝑚) in this model, 

as shown in Equation (3.9), 

𝑄𝑡
𝐻𝑉𝐴𝐶 = 𝜂𝑡

𝐻𝑉𝐴𝐶 ∙ 𝑃𝑡
𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 (3.8) 

𝜂𝑡
𝐻𝑉𝐴𝐶 = 𝑎 ∙ 𝑇𝑡

𝑎𝑚 + 𝑏, ∀𝑡 ∈ 𝑇 (3.9) 

Constraint (3.10) limits the maximum output of HVAC appliances,  

𝑃𝑚𝑖𝑛
𝐻𝑉𝐴𝐶 ≤ 𝑃𝑡

𝐻𝑉𝐴𝐶 ≤ 𝑃𝑚𝑎𝑥
𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 (3.10) 

where 𝑃𝑚𝑎𝑥
𝐻𝑉𝐴𝐶  represents the corresponding power rating of HVAC appliances. 

The first-order thermal dynamic model of buildings presented 3.1 is re-formulated as (3.11). 

The heat gains/losses come from heat transfer through walls and windows, the contribution of 

solar radiation through walls and windows, the internal heat gains (e.g., from people, 

appliances and lighting), and the output of HVAC appliance,  

∆𝑡 [∑ 𝑈𝑤𝑎𝑙𝑙 ∙ 𝐴𝑗
𝑤𝑎𝑙𝑙

𝑗∈𝐽

∙ (𝑇𝑡
𝑎𝑚 − 𝑇𝑡) + ∑ 𝑈𝑤𝑖𝑛 ∙ 𝐴𝑗

𝑤𝑖𝑛

𝑗∈𝐽

∙ (𝑇𝑡
𝑎𝑚 − 𝑇𝑡) + ∑ 𝛼𝑤 ∙ 𝑅𝑗

𝑠𝑒

𝑗∈𝐽

∙ 𝑈𝑤𝑎𝑙𝑙 ∙ 𝐴𝑗
𝑤𝑎𝑙𝑙 ∙ 𝐼𝑗,𝑡

𝑇 + ∑ 𝜏𝑤𝑖𝑛 ∙ 𝑆𝐶

𝑗∈𝐽

∙ 𝐴𝑗
𝑤𝑖𝑛 ∙ 𝐼𝑗,𝑡

𝑇 + 𝑄𝑡
𝑖𝑛 + 𝑄𝑡

𝐻𝑉𝐴𝐶]

=  𝜌 ∙ 𝐶 ∙ 𝑉 ∙ (𝑇𝑡+1 − 𝑇𝑡), ∀𝑡 ∈ 𝑇 − {𝑁𝑇} 

(3.11) 

where 𝑈𝑤𝑎𝑙𝑙 and 𝑈𝑤𝑖𝑛 denote the heat transfer coefficient of the walls and windows 

[W/(m2∙K)]; 𝐴𝑤𝑎𝑙𝑙 and 𝐴𝑤𝑖𝑛 denote the area of walls and windows surface [m2]; 𝛼𝑤 is the 

absorbance coefficient of the external surface of the wall [p.u.]; 𝑅𝑠𝑒 is the external surface heat 
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resistance for convection and radiation [m2·K/W]; 𝐼𝑇 represents the total solar radiation on the 

walls/windows surface [kW/m2]; 𝜏𝑤𝑖𝑛 represents the glass transmission coefficient of the 

windows [p.u.]; 𝑆𝐶 is the shading coefficient of the windows [p.u.]; 𝑄𝑖𝑛 is the internal heat 

gains [kW]; 𝑄𝐻𝑉𝐴𝐶 is the output of HVAC appliances [kW]; 𝑇𝑎𝑚 is the ambient temperature 

[°C]; 𝑇 is the internal temperature [°C]; ∆𝑡 is time intervals [h]. 𝑗 ∈ 𝐽, which is the set of 

orientations; 𝑡 ∈ 𝑇, which is the set of time horizon. Note that ∆𝑡 is set 15 min (0.25 h) in the 

following studies of this chapter based on the time constant 𝜏 of the thermal dynamic process, 

as described in 3.1. 

Constraint (3.12) defines the comfort zone of temperature [𝑇, 𝑇]that the consumers can tolerate. 

Pre-heating can be performed based on this zone of temperature to minimise the operational 

costs while considering the delivery of comfort. 

𝑇 ≤ 𝑇𝑡 ≤ 𝑇, ∀𝑡 ∈ 𝑇 (3.12) 

In order to avoid the situation where the indoor temperature keeps following the upper or lower 

bound to minimise the operational cost at the cost of sacrificing the comfort, we enforce the 

average indoor temperature to be the same as the average temperature set points, as 

demonstrated in (3.13), 

1

𝑁𝑇
∑ 𝑇𝑡

𝑁𝑇

𝑡=1

=
1

𝑁𝑇
∑ 𝑇𝑡

𝑠𝑒𝑡

𝑁𝑇

𝑡=1

 (3.13) 

where NT is the number of time steps in 𝑇. 

The allocation of various types of frequency response services is restricted in (3.14) ─ (3.20). 

Note that it is assumed the allocated response of all types should keep constant across the 

considered time horizon (i.e., 24 hours). 

The primary and high frequency response services are limited as (3.14) and (3.15), where 

𝑃𝑚𝑖𝑛
𝐻𝑉𝐴𝐶  and 𝑃𝑚𝑎𝑥

𝐻𝑉𝐴𝐶  denote the minimum and maximum output of HVAC appliances. It is worth 

noticing that we only consider the power balancing constraint for the primary and high-
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frequency response service. Since their delivery time of these two types of services is no more 

than 30 seconds, so we assume that their impacts on energy levels in the building is negligible.  

0 ≤ 𝑃𝑃𝑅 ≤ 𝑃𝑡
𝐻𝑉𝐴𝐶 − 𝑃𝑚𝑖𝑛

𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 (3.14) 

0 ≤ 𝑃ℎ ≤ 𝑃𝑚𝑎𝑥
𝐻𝑉𝐴𝐶 − 𝑃𝑡

𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 (3.15) 

The power restriction in terms of the provision of secondary and flexible response service 

inside and outside the two pre-defined temporal windows 𝑤1 (for the delivery of 𝑃𝑓1) and 𝑤2 

(for the delivery of 𝑃𝑓2) is restricted in (3.16) ─ (3.18). The indicator 𝕝𝐴 returns 1 if Statement 

A is true, while returns 0 if A is false. Since the secondary or flexible response service can be 

called at any time during a time interval, and the service delivery must be committed for 30 

minutes from that moment it is called onward, therefore, we have to make sure that the level 

of response delivery agreed for time interval 𝑡 can also cover time interval 𝑡 + 1, resulting in 

(3.18). 

0 ≤ 𝑃𝑆𝑅 ≤ 𝑃𝑡
𝐻𝑉𝐴𝐶 − 𝑃𝑚𝑖𝑛

𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 (3.16) 

𝑃𝑆𝑅 + 𝑃𝑓1 ∙ 𝕝𝑡∈𝑤1
+ 𝑃𝑓2 ∙ 𝕝𝑡∈𝑤2

≤ 𝑃𝑡
𝐻𝑉𝐴𝐶 − 𝑃𝑚𝑖𝑛

𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 (3.17) 

𝑃𝑆𝑅 + 𝑃𝑓1 ∙ 𝕝𝑡∈𝑤1
+ 𝑃𝑓2 ∙ 𝕝𝑡∈𝑤2

≤ 𝑃𝑡+1
𝐻𝑉𝐴𝐶 − 𝑃𝑚𝑖𝑛

𝐻𝑉𝐴𝐶 , ∀𝑡 ∈ 𝑇 − {𝑁𝑇} (3.18) 

In contrast to the primary and high-frequency response services, the provision of secondary 

and flexible response services would significantly influence the energy level inside the building 

due to 30 minutes’ duration of the delivery. In order to make sure that calling the 

secondary/flexible response services will not conflict with the temperature limit in (3.12), the 

energy consumed by the delivery of these services should not exceed the maximum stored 

energy to maintain the internal temperature within the comfort zone, as shown in (3.19). Similar 

to the power restriction (3.18), the energy restriction has to satisfy the subsequent time interval 

𝑡 + 1 as well, as presented in (3.20), 

𝜌 ∙ 𝐶 ∙ 𝑉 ∙ (𝑇 − 𝑇𝑡) ≥ ∆𝑡 ∙ (𝑃𝑆𝑅 + 𝑃𝑓1 ∙ 𝕝𝑡∈𝑤1
+ 𝑃𝑓2 ∙ 𝕝𝑡∈𝑤2

), ∀𝑡 ∈ 𝑇 (3.19) 
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𝜌 ∙ 𝐶 ∙ 𝑉 ∙ [(𝑇 − 𝑇𝑡+1) + (𝑇 − 𝑇𝑡)] ≥ 

2 ∙ ∆𝑡 ∙ (𝑃𝑆𝑅 + 𝑃𝑓1 ∙ 𝕝𝑡∈𝑤1
+ 𝑃𝑓2 ∙ 𝕝𝑡∈𝑤2

), ∀𝑡 ∈ 𝑇 − {𝑁𝑇} 

(3.20) 

3.2.2.2 Formulation of Case 2 

By solving Case 1 as formulated in (3.6) ─ (3.20), the optimised operational cost 𝑀𝑖𝑛𝐶𝑜𝑠𝑡 

considering pre-heating through the inherent storage of the building can be obtained. In Case 

2, we will calculate of equivalent size of TES of the inherent storage of the building based on 

𝑀𝑖𝑛𝐶𝑜𝑠𝑡 by using linear programming. 

The objective (3.21) of Case 2 is to calculate the minimum size of additional TES that drives 

the same operational costs as in the case where the inherent storage of the building replace the 

functionality of TES. The result of (3.21), denoted as 𝐸𝑞𝑆𝑡𝑜, is defined as the equivalent size 

of TES for the inherent storage of buildings,  

𝐸𝑞𝑆𝑡𝑜 = min max
𝑡∈𝑇

𝑠𝑡
𝑒𝑐 (3.21) 

where 𝑠𝑒𝑐 represents the energy content in the TES at time step 𝑡, thereby max(𝑠𝑡
𝑒𝑐) can be 

perceived as the effective size of TES [kWh]. 

Equation (3.22) enforces the operational cost in Case 2 to be the equal to 𝑀𝑖𝑛𝐶𝑜𝑠𝑡. The 

meaning of relevant symbols are the same as those in (3.6), except that the ancillary services 

are provided through the TES-based flexibility, instead of the building-inherent-storage-based 

flexibility.  

(𝐶𝑡
𝑖𝑚 ∙ 𝑃𝑡

𝑖𝑚 − 𝐶𝑡
𝑒𝑥 ∙ 𝑃𝑡

𝑒𝑥) − (𝐶𝑃𝑅 ∙ 𝑃𝑃𝑅 + 𝐶𝑆𝑅 ∙ 𝑃𝑆𝑅 + 𝐶ℎ ∙ 𝑃ℎ) 

−𝐶𝑓 ∙ (𝑤1 ∙ 𝑃𝑓1 − 𝑤2 ∙ 𝑃𝑓2) = 𝑀𝑖𝑛𝐶𝑜𝑠𝑡, ∀𝑡 ∈ 𝑇 

(3.22) 

As additional TES (hot water tank) is applied in Case 2 to replace the functionality of the 

intrinsic thermal storage of the building, the comfortable temperature zone is gone, leaving the 

indoor temperature to strictly follow the temperature set point, as shown in (3.23),  
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𝑇𝑡 = 𝑇𝑡
𝑠𝑒𝑡, ∀𝑡 ∈ 𝑇 (3.23) 

Constraint (3.24) and (3.25) limits the discharging rate 𝑠𝑜𝑢𝑡 [kW] and charging rate 𝑠𝑖𝑛 [kW] 

of the TES, while (3.26) shows the energy balance of TES. 𝜀𝑠 is defined as the minimum fully 

charged time of TES [hour], which is equal to the ratio of the energy capacity [kWh] to power 

rating of TES [kW]; 𝜂𝑠 denotes the static efficiency of TES. To avoid the situation where both 

charging and discharging occur simultaneously, we consider the charging and discharging 

efficiency of TES which are denoted as 𝜂𝑖𝑛 and 𝜂𝑜𝑢𝑡, respectively. 

𝑠𝑡
𝑖𝑛 ≤

max(𝑠𝑡
𝑒𝑐)

𝜀𝑠
, ∀𝑡 ∈ 𝑇 (3.24) 

𝑠𝑡
𝑜𝑢𝑡 ≤

max(𝑠𝑡
𝑒𝑐)

𝜀𝑠
, ∀𝑡 ∈ 𝑇 (3.25) 

𝑠𝑡
𝑒𝑐 = 𝑠𝑡−1

𝑒𝑐 ∙ 𝜂𝑠 + 𝑠𝑡
𝑖𝑛 ∙ 𝜂𝑖𝑛 − 𝑠𝑡

𝑜𝑢𝑡 𝜂𝑜𝑢𝑡⁄ , ∀𝑡 ∈ 𝑇 (3.26) 

The first-order thermal dynamic model of buildings formulated in (3.11) is re-written as (3.27) 

to include the contribution of TES charging and discharging,  

∆𝑡[∑ 𝑈𝑤𝑎𝑙𝑙 ∙ 𝐴𝑗
𝑤𝑎𝑙𝑙

𝑗∈𝐽

∙ (𝑇𝑡
𝑎𝑚 − 𝑇𝑡) + ∑ 𝑈𝑤𝑖𝑛 ∙ 𝐴𝑗

𝑤𝑖𝑛

𝑗∈𝐽

∙ (𝑇𝑡
𝑎𝑚 − 𝑇𝑡) + ∑ 𝛼𝑤 ∙ 𝑅𝑗

𝑠𝑒

𝑗∈𝐽

∙ 𝑈𝑤𝑎𝑙𝑙 ∙ 𝐴𝑗
𝑤𝑎𝑙𝑙 ∙ 𝐼𝑗,𝑡

𝑇 + ∑ 𝜏𝑤𝑖𝑛 ∙ 𝑆𝐶

𝑗∈𝐽

∙ 𝐴𝑗
𝑤𝑖𝑛 ∙ 𝐼𝑗,𝑡

𝑇 + 𝑄𝑡
𝑖𝑛 + 𝑄𝑡

𝐻𝑉𝐴𝐶 − 𝑠𝑡
𝑖𝑛

+ 𝑠𝑡
𝑜𝑢𝑡] =  𝜌 ∙ 𝐶 ∙ 𝑉 ∙ (𝑇𝑡+1 − 𝑇𝑡), ∀𝑡 ∈ 𝑇 − {𝑁𝑇} 

(3.27) 

Since ancillary services are provided through TES in Case 2, in order to ensure that there is 

enough energy in the TES to support the constant delivery of secondary/flexible response 

services in the calling period, the energy consumed by the delivery of these services should not 

exceed the maximum stored energy in TES, for both time interval 𝑡, as shown in (3.28), and 

𝑡 + 1, as shown in (3.29), 
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𝑠𝑡
𝑒𝑐 ≥ ∆𝑡 ∙ (𝑃𝑆𝑅 + 𝑃𝑓1 ∙ 𝕝𝑡∈𝑤1

+ 𝑃𝑓2 ∙ 𝕝𝑡∈𝑤2
), ∀𝑡 ∈ 𝑇 (3.28) 

𝑠𝑡
𝑒𝑐 + 𝑠𝑡+1

𝑒𝑐 ≥ 2 ∙ ∆𝑡 ∙ (𝑃𝑆𝑅 + 𝑃𝑓1 ∙ 𝕝𝑡∈𝑤1
+ 𝑃𝑓2 ∙ 𝕝𝑡∈𝑤2

), ∀𝑡 ∈ 𝑇 − {𝑁𝑇} (3.29) 

To summarise, Case 2 is formulated as (3.7) ─ (3.10), (3.14) ─ (3.18), (3.21) ─ (3.29), where 

(3.21) is the objective function while the others are the constraints. By solving this optimisation 

problem, we can obtain the equivalent size of TES for the inherent storage of buildings 

considered in Case 1. 

3.3 Case Studies 

In this section, a series of studies are performed based on Case 1 and Case 2 to investigate the 

values of the inherent thermal storage of buildings. A medium-sized residential house is 

selected as the baseline to illustrate the similarities and differences of operational patterns 

between the building thermal storage and hot-water-tank-based TES. Sensitivity studies are 

then carried out to explore the relationship between the value of building inherent storage and 

various factors. 

3.3.1 Data Assumptions 

Table 3.1 shows the parameters of a medium-sized residential house, which is investigated as 

the baseline in this section.  

Table 3.1 – Building parameters of the baseline 

heat transfer 

coefficient of the walls 

Total area 

of walls 

heat transfer coefficient 

of the windows 

Window to 

wall ratio 

Long 

side 

Short 

side 

Height 

[W/(m2∙K)] (m2) [W/(m2∙K)] (%) (m) (m) (m) 

0.908 156 2.750 75 6 10 5 
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A winter day is selected to optimise the operational costs of the residential house in the baseline 

to investigate the impacts of building thermal storage on the pattern of heating. The ambient 

temperature is assumed as the yellow curve in Figure 3.3. For indoor temperature, the green 

dash curve demonstrates the temperature set points while the red and blue curves represent the 

upper and lower bound of the comfort zone. 𝑇𝑢𝑝 and 𝑇𝑑𝑛 are defined as the temperature up 

and down deviation allowance, which in the base case are both set as 2 °C. A 5kW ASHP is 

assumed to be available in the house to provide heat, the linear coefficient term 𝑎 and constant 

term 𝑏 of COP formulated in (3.9) are assumed to be 0.07 and 2.07, respectively. 

 

Figure 3.3– Indoor temperature requirement and ambient temperature assumption 

The assumptions electricity price and HVAC-irrelevant electricity demand are illustrated in 

Figure 3.4. The green curve shows the price of importing electricity from the grid (C_im) while 

the purple curve shows the price of exporting electricity to the grid (C_ex).  
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Figure 3.4– Price of importing/exporting electricity from/to the grid and HVAC-irrelevant demand  

The power rating of the PV system is assumed to be 5kW. The internal heat gains and the solar 

radiation of the selected day are illustrated in Figure 3.5. 

 

Figure 3.5– Internal heat gain and solar radiation  
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3.3.2 Quantification of Building Storage 

Table 3.2 shows the results of the optimisation of Case 1 and Case 2. For Case 1, we investigate 

2 scenarios to evaluate the benefits of pre-heating. In the first scenario, pre-heating is disabled 

by setting temperature deviation allowance (𝑇𝑢𝑝/𝑇𝑑𝑛) 0, while in the second scenario, pre-

heating is allowed by tuning 𝑇𝑢𝑝/𝑇𝑑𝑛 up to 2 °C. 

Table 3.2 – Operational costs and the corresponding size of storage in 2 Cases  

Case 1 

Energy cost (£) Revenue (£) Net cost (£) 𝑇𝑢𝑝/𝑇𝑑𝑛 (°C) 

8.41 0.31 8.10 0 

Energy cost (£) Revenue (£) Net cost (£) 𝑇𝑢𝑝/𝑇𝑑𝑛 (°C) 

8.06 0.44 7.63 2 

Case 2 
Energy cost (£) Revenue (£) Net cost (£) TES (kWh) 

8.21 0.59 7.63 7.29 

 

In Case 1, when 𝑇𝑢𝑝/𝑇𝑑𝑛 is increased from 0 °C to 2 °C, 5.8% of net cost saving is driven by 

pre-heating. Through pre-heating, energy cost is reduced from 8.41£ to 8.06£ while the revenue 

from various response services is increased from 0.31£ to 0.44£. It can be inferred that the 

higher 𝑇𝑢𝑝/𝑇𝑑𝑛 is set, the more benefits can be driven. 

In Case 2, the net cost of Case 1 with pre-heating enabled is given as an input to minimise the 

size of TES. The result shows that when 𝑇𝑢𝑝/𝑇𝑑𝑛 is set 2 °C, the equivalent size of TES for 

the inherent storage of the house is 7.29 kWh. Note that we assume that it takes the TES 3 

hours to be fully charged from being empty by its rated power.  

Further detailed results for Case 1 and Case 2 are given as follows to illustrate the similarities 

and differences of operational patterns between the building thermal storage and hot-water-

tank-based TES. 

Optimisation results for Case 1: 
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As described in 3.2.1, pre-heating is taken into account by allowing an indoor-temperature 

comfort zone. Through pre-heating, demand shift and the provision of ancillary services can 

be delivered, thus reducing the total operational costs. 

 

Figure 3.6– Indoor temperature variation in Case 1 

The variation of indoor temperature is demonstrated in Figure 3.6. Based on the assumptions, 

the high-electricity-rate period covers time step 60 to 78. During this period, the indoor 

temperature virtually sticks to the lower bound of the temperature comfort zone to minimize 

the electricity consumption. During time steps 38 to 60, pre-heating is triggered, even though 

the heat demand over this period is lowest within the day (because the ambient temperature is 

high while the indoor temperature set point is low). Pre-heating also occurs between time step 

1 to time step 25, to avoid high energy consumption during the next period characterised by 

relatively high electricity rate. In the night time, as the electricity rate is low, the indoor 

temperature tends to keep close to the upper bound, to fulfil the requirement in (3.13) that the 

average indoor temperature has to be the same as the average temperature set points (green 

dash curve). 

Figure 3.7 illustrates the scheduled electricity consumption of HVAC appliance (i.e., HP) and 

the provision of various types of response services in Case 1. It can be observed that the lowest 

load factor of the HP (i.e., 40%) occurs between time step 38 to 60, which is higher than needed 

to satisfy the lowest temperature requirement due to the low heat demand in that period. The 
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surplus thermal energy is stored in the building and released gradually during the next few 

hours when the electricity price rises to keep the temperature sticking to the lower bound, thus 

avoiding high energy consumption during the peak-time of electricity price. Moreover, the 

increase of the lowest electricity consumption of HP allows additional primary response service 

in this case, driving more benefits.      

 

Figure 3.7– Electricity consumption and various response service of HP in Case 1 

Optimisation results for Case 2: 

As assumed in 3.2.1, the indoor temperature in this case has to stick to the pre-defined 

temperature set point. Meanwhile, hot water tank is deployed to shift demand and provide 

response services. The size of hot water tank drives the same net energy cost as in Case 1. 

Figure 3.8 demonstrates the thermal energy variation in the hot-water-tank-based TES. As can 

be observed, TES keeps charging in two periods: time step 1 to 25 and time step 38 to 60, and 

discharges heat in the following periods until time step 38 and time step 78, respectively. The 

pattern of TES operation is very similar to the pattern of pre-heating demonstrated in Figure 

3.6, if we consider the indoor temperature coinciding with the lower bound as TES discharging 

and otherwise as TES charging. This result indicates that the mechanisms of TES operation 

and pre-heating are basically the same, thus justifying the value of the quantifying pre-heating.    
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Figure 3.8– Operation dynamics of hot water tank in Case 2 

Figure 3.9 illustrates the scheduled electricity consumption of HVAC appliance and the 

provision of various types of response services in Case 2. As can be seen, the overall variation 

trend of HP electricity consumption is similar to that in Case 1. However, there are two distinct 

differences that can be observed. The first difference is that in Case 2, the variation of HP 

electricity consumption is very steep while in Case 1, the consumption changes gradually. This 

reflects a slower response of pre-heating, as thermal energy stored in the building has to be 

released gradually, while TES can quickly discharge within the power rating. The second 

difference is that in Case 1, HP consistently operates at the lowest load factor between time 

step 38 to 60, and gradually tunes up its output in the following hours, while in Case 2, the 

output of HP fluctuates throughout the whole time. This indicates that the inherent storage of 

buildings cannot operate as flexibly as TES, because pre-heating can only shift demand to a 

few hours ago (fundamentally due to its high energy loss rate) while TES can shift demand 

over a wider range with a small amount of energy loss. Additionally, more response services 

is provided in Case 2, due to the increased flexibility of TES. 

On the one hand, the analysis over Figure 3.8 and Figure 3.9 indicates that TES is characterised 

by improved operational performance compared to the inherent storage of buildings. On the 

other hand, the results demonstrate that the inherent storage of buildings alone can achieve the 

same economic benefits as TES, thus driving significant savings in the investment cost of TES.  
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Figure 3.9– Electricity consumption and various response service of HP in Case 2 

3.3.3 Sensitivity studies 

The impact of building insulation condition on the equivalent size of its inherent storage  

Figure 3.10 shows the relationship between the equivalent size of building storage and the 

building insulation condition. “1” on Axis x represents the insulation condition assumed in the 

baseline, as given in Table 3.1. For the other points on Axis x, the insulation parameters 𝑈𝑤𝑎𝑙𝑙 

and 𝑈𝑤𝑖𝑛 are multiplied by the corresponding values based on the baseline. The higher the 

value, the worse the insulation.  

 

Figure 3.10– Relationship between equivalent size of building storage and building insulation condition 
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It can be observed that the equivalent size of building storage increases with the deterioration 

of the insulation condition linearly, which is a bit counter-intuitive. It should be stress that the 

benefits of building inherent storage is realised through pre-heating, in order to evaluate the 

values of pre-heating, we compare the economic benefits delivered through pre-heating and 

additional TES, when both cases achieve the same benefit, we quantify the value of pre-heating 

as the value of the corresponding size of TES. The core criteria in this quantification is 

economic benefits, instead of the physical capability of storage. When the insulation condition 

is improved, the decrease of indoor temperature will become slower, therefore, less heat 

supplement is required from the HPs, compressing the space of operational savings through 

pre-heating. Figure 3.10 also shows the impact of building insulation condition on the heat 

demand. As can be observed, heat demand increases linearly with the decrease of the building 

insulation level. For the extreme scenario where both 𝑈𝑤𝑎𝑙𝑙 and 𝑈𝑤𝑖𝑛 are 0, there will be no 

heat exchange between the inside and outside of the building (when the curtain is off), pre-

heating would be meaningless because no heat provision is needed. Therefore, pre-heating 

delivers more operational savings in buildings with a lower insulation level. However, when 

considering investment costs of different assets (e.g., HPs, generation), improved building 

insulation can significantly enhance the benefits of pre-heating, as reduced energy losses can 

introduce extra flexibility to pre-heating, making pre-heating more effective to shift peak load. 

This will be further demonstrated in 5.5. 

The impact of building volume on the equivalent size of its inherent storage  

Figure 3.11 demonstrates the relationship between the equivalent size of building storage and 

the building volume. As described in Equation (3.2), the thermal capacity of the building, 

which determines the capability of the building storage, is proportional to the building volume, 

therefore, the larger the building is, the more storage it can provide, as a result, the more 

benefits can be obtained from the inherent storage.  
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Figure 3.11– Electricity consumption and various response service of HP in Case 2 

The impact of temperature deviation allowance on the equivalent size of its inherent storage 

Figure 3.12 illustrates the relationship between the equivalent size of building inherent storage 

and the temperature deviation allowance. It can be observed that the equivalent size of building 

storage highly depends on the width of the temperature comfort zone. However, there is a cap 

of the benefits through increasing the size of TES in Case 2. 

 

Figure 3.12– Relationship between the equivalent size of storage and the temperature deviation allowance 

The result of the simulation indicates that when the size of TES is higher than 23.2 kWh, the 

net operational cost in Case 2 will not change with the increase of TES size. On the other hand, 

the increase of temperature deviation allowance in Case 1 will keep bringing added benefits 
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until the indoor temperature can freely drift without the need of any heat provision. It should 

be emphasised that the temperature deviation allowance depends on the customers’ acceptance, 

it can vary significantly across different households. This case provides a conclusion of how 

the value of building inherent storage corresponds to the temperature deviation allowance. 

3.4 Conclusions of the Chapter 

The benefits of the intrinsic storage of buildings can be realised through pre-heating. Pre-

heating offers a cost-effective way to alleviate the burden of additional investment at the end-

side and provide flexibility to the electricity system. Additionally, it can shift electricity 

demands in response to the energy price signals and offer various ancillary services for extra 

revenue, thus providing an alternative opportunity to improve the efficiency of energy 

management of buildings.  

The dynamic thermal energy balancing process of pre-heating can be simplified as a storage 

model, however, it is not clear how much storage should be used to depict the capability of pre-

heating given the thermal parameters of a building. Another concern is that the comfort 

requirement of consumers cannot be fully considered in a storage model.  

In this chapter, the first-order building thermal dynamic model is integrated into an energy 

management problem to investigate the utilisation of pre-heating as an alternative way to 

reduce the operational costs while taking into account the comfort conditions in buildings. Pre-

heating through building thermal storage is enabled by allowing temperature variations within 

a pre-defined comfort zone. Through pre-heating, energy consumption can be managed in an 

economic-benefit-oriented way. By using linear programming, we are able to compare the 

operational costs between the case where pre-heating is enabled and the case where additional 

TES is installed, and thus evaluate the economic value of pre-heating and quantify the 

capability of the inherent storage of buildings under given thermal parameters of buildings.  

The results show that the mechanisms of TES operation and pre-heating are basically the same, 

except that pre-heating is characterised with higher heat loss rate, thus justifying the 

simplification of the pre-heating process as a TES model. 
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A series of sensitivity studies are performed to investigate the limiting factors of the value of 

building inherent storage. Results show that (i) the equivalent storage of preheating is almost 

proportional to the volume of buildings and the insulation level of buildings; (ii) When the 

insulation condition is improved, the heat demand decreases accordingly, compressing the 

space of operational savings through pre-heating. Therefore, pre-heating can deliver more 

operational savings in buildings with a lower insulation level. However, when considering 

investment costs of different assets (e.g., HPs, generation), improved building insulation can 

significantly enhance the benefits of pre-heating, as reduced energy losses can introduce extra 

flexibility to pre-heating, making pre-heating more effective to shift peak load; (iii) 

Additionally, the equivalent size of building storage highly depends on the width of the 

temperature comfort zone. However, there is a cap of the benefits through increasing the size 

of TES. The result indicates that when the size of TES is higher than a certain amount, the net 

operational cost in Case 2 will not change with the increase of TES size. On the other hand, the 

increase of temperature deviation allowance in Case 1 will keep bringing added benefits until 

the indoor temperature can freely drift without the need of any heat provision. It should be 

emphasised that the temperature deviation allowance depends on the customers’ acceptance, it 

can vary significantly across different households. This case provides a conclusion of how the 

value of building inherent storage corresponds to the temperature deviation allowance. 





 

Chapter 4 Integrated Electricity and Heat System 

Investment Model 

Decarbonisation of energy sectors is one of the key challenges in achieving the 80% carbon 

reduction target by 2050. There is growing evidence that the interaction between heat and 

electricity systems will be critical in facilitating cost effective transition to lower carbon 

system. In this context, this chapter proposes a novel modelling framework for the whole 

system optimisation of the integrated heat and electricity systems, considering operation and 

investment timescales and covering both local and national level infrastructure. This approach 

can be applied to optimize the heating technology portfolio to decarbonise the integrated heat 

and electricity systems. Main heating strategies considered in this chapter include (i) 

electrification of heat sector through the application of heat networks, supplied by CHP plant, 

industrial size HPs as well as gas boilers, and (ii) electrified heat at the consumer end through 

the application of hybrid HPs.  

The proposed optimization model can simultaneously optimize, for the first time, the 

investment in electricity generation (including conventional and low carbon generation as well 

as CHP), heating devices, heat networks, reinforcement of electricity transmission and 

distribution networks while minimizing the system operation cost, taking into account 

frequency response and operating reserve requirements. The impact of integrated systems 

reducing system inertia on the frequency response requirement is explicitly modelled in the 

constraints. Carbon emission and security constraints are also included. 

Previous works or similar tools can consider the integrated electricity and heat system on a 

local level or just optimize the integrated operation without investment planning. Some recent 

work studied the integrated operation and investment planning of the integrated energy system, 

but cannot consider the information of local districts. The proposed integrated electricity and 

heat system model applies a fractal-based algorithm which can create representative local 

networks that capture statistical properties of typical network topologies that range from high-
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load density city/town networks to low-density rural networks. The national system is 

represented by a combination of the representative local networks so that the local district and 

national level infrastructure can be considered together. 

4.1 The Framework of the Integrated Electricity and Heat Model 

Various interactions exist between electricity and heat systems, as illustrated in Figure 4.1. 

Specifically, CHP can generate electricity and heat simultaneously. Through adjusting its 

power-to-heat ratio, it can convert surplus electricity into storable heat, and increase the 

generation of electricity during peak time by reducing heat output. As analysed in 2.2.2, the 

physical interaction bridged by CHP between electricity and heat systems can be further 

strengthened through the coordinated operation of CHP, HP and TES. For distributed heating, 

end-use HP also links electricity and heat systems by converting electricity into heat. This link 

is improved with the existence of end-use TES, since electricity cannot be cost-effectively 

stored at the end-use side, the coordination of TES and HP can indirectly achieve so. 
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Figure 4.1– Interactions between the integrated electricity and heat system 
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Due to these operational links between electricity and heat systems, significant benefits can 

potentially be achieved through adequately considering the services that the heat system can 

provide to the electricity system. It is important to emphasize that the impact of cooling system 

on the whole system operation and investment can also investigated by using the model 

presented in Chapter. However, due to a lack of cooling demand data on the national level, the 

cooling system is not analyzed in this thesis. The role cooling system can potentially play in 

the multi-energy system will be investigated in the future work as mentioned in Chapter 8. 

The proposed integrated electricity and heat system investment model is formulated as a mixed 

integer linear programming problem (MILP) with hourly time resolution across a whole year, 

while also considering sub-hourly frequency regulation and reserve constraints. The 

framework of this model is illustrated in Figure 4.2. 

 

Figure 4.2– Framework of the integrated heat and electricity system investment model 
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The objective function (4.1) is to minimize the whole system cost which includes the annual 

operation costs and the annuitized investment costs related to different types of generation, 

heating plants/appliances, energy storage as well as electricity and heat networks: 

The constraints associated with the electricity system are based on the whole-system analysis 

of the electricity system planning presented in [48], including: (i) generator operating 

constraints (specifically, the CHP operating constraints are categorized into generator 

operating constraints while the approach of CHP modelling presented in [22] is applied to 

determine the operating boundary of CHP in this model), (ii) Demand-side response 

constraints, (iii) power flow constraints, (iv) distribution network reinforcement constraints and 

(v) DC power flow constraints (used for the expansion of the transmission system).  

4.2 Formulation of the Integrated Electricity and Heat Model 

4.2.1 Objective Function 

The objective function (4.1) is to minimize the whole system cost, comprising annual operation 

costs of both electricity and heat sectors and annuitized investment costs associated with 

different assets. The operation cost includes electricity generation cost and fuel cost for gas 

boilers. The investment cost includes capital cost of generators, heating assets, district heating 

networks, and reinforcement cost of transmission and distribution networks, 

min𝜑 = ∑ ∑ ∑ 𝐶𝑜𝑝
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where T, G, L, B, 𝐻𝑑, 𝐻𝑒, DHN, F and DN are sets of operating time steps, generation types, 

locations (nodes), boiler types, district heating assets, end-use heating assets, district heating 

networks, transmission networks and distribution networks, respectively; 𝐶𝑜𝑝
𝑔

 represents the 

function of generation operation cost, which is associated with generation output 𝑝𝑔 and 

synchronised units 𝜇; 𝐶𝑜𝑝
𝑏  represents the function of boiler operation cost, which is associated 

with boiler output ℎ𝑏; 𝐶𝑖𝑛𝑣
𝑔

 represents the function of generation investment cost, which is 

determined by the capacity of different generation 𝑐𝑎𝑝𝑔; 𝐶𝑖𝑛𝑣
ℎ  represents the function of heating 

asset investment, which is determined by the capacity of different heating assets 𝑐𝑎𝑝ℎ; 𝐶𝑖𝑛𝑣
ℎ𝑛  is 

the function of heat network investment cost, which is associated with the penetration of heat 

networks in different types of areas 𝛼ℎ𝑛; 𝐶𝑖𝑛𝑣
𝑓

 represents the reinforcement cost of electricity 

transmission lines, which is determined by the expanded capacity of transmission line 𝑐𝑎𝑝𝑓; 

and 𝐶𝑖𝑛𝑣
𝑑𝑛  is the function of electricity distribution network reinforcement cost, which is 

associated with the expended capacity of distribution network capacity 𝑐𝑎𝑝𝐷𝑁. 

Details about the formulation of operation costs are given as following (note that Carbon price 

is included in the fuel cost): 

1) The operation costs of generators/CHPs consist of variable cost, no-load cost and start-up 

cost. The piecewise linear approximation of the generation operation cost proposed in [49] is 

applied in this model. The operation cost of generators is approximated as the summation of 

(i) variable cost which is a function of generation output (𝑝𝑔), (ii) no-load cost which is 

determined by the number of online units (𝜇) and (iii) start-up cost which is determined by the 

number of starting-up units (𝜇𝑠𝑡). Equation (4.2) ─ (4.4) gives the single-segment linear 

approximation of the generation cost, 
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𝜇𝑡,𝑖,𝑗
𝑠𝑡 ≥ 𝜇𝑡,𝑖,𝑗 − 𝜇𝑡−1,𝑖,𝑗 (4.3) 

𝜇𝑡,𝑖,𝑗
𝑠𝑡 ≥ 0 (4.4) 
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where 𝑂𝐶𝑣𝑎𝑟 is the incremental fuel cost; 𝑂𝐶𝑛𝑙 is the no-load operation cost of generators; 𝜇𝑠𝑡 

is the number of units started up; while 𝑂𝐶𝑠𝑡 is the start-up cost.  

2) Gas boilers serve as supplementary heating devices that are used to reduce the capacity of 

electrification-based heating plants/appliances (e.g. CHPs and HPs) and electricity 

infrastructure reinforcement. In this model, both industrial size gas boilers (applied in district 

heating) and end-use gas boilers (working as a part of hybrid HP-Bs) are taken into 

consideration, as formulated in (4.5), 
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 (4.5) 

where ℎ𝑔𝑏,𝑑 and 𝑂𝐶𝑔𝑏,𝑑 represent the heat output and variable operation cost of industrial size 

gas boilers applied in district heating networks, while ℎ𝑔𝑏,𝑒 and 𝑂𝐶𝑔𝑏,𝑑 represent the heat 

output and variable operation cost of end-use gas boilers. 

The annuitized infrastructure investment costs (Annuity factors for different assets are 

considered given corresponding discount rates and life spans) include: 

1) Capital costs of different types of generators.  

The capital cost of generation is formulated in (4.6), 
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 (4.6) 

where 𝐶𝑔 is the capital cost of various generation; 𝐴𝐹𝑔 is the annuity factor of generators; 

𝐶𝑓𝑖𝑥,𝑔 is the fixed O&M cost of generation; 

2) Capital costs of different district heating plants/devices (superscripted by 𝑑), which may 

include CHPs, industrial size HPs, industrial size TESs and industrial size gas boilers,  
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4.2 Formulation of the Integrated Electricity and Heat Model 63 

 

where 𝐶𝑑 is the capital cost of various district heating plants/devices (subject to the set of 𝐻𝑑); 

𝐴𝐹𝑑 is the corresponding annuity factor; 𝐶𝑓𝑖𝑥,𝑑 is the fixed O&M cost of district heating 

plants/devices, while 𝑐𝑎𝑝𝑑 is the capacity of different district heating plants/devices. 

3) Capital costs of end-use heating appliances (superscripted by 𝑒), which may potentially 

include hybrid HP-Bs and end-use TESs,  
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where 𝐶𝑒 is the capital cost of various end-use heating appliances (subject to the set of 𝐻𝑒); 

𝐴𝐹𝑒 is the annuity factor; 𝐶𝑓𝑖𝑥,𝑒 is the fixed O&M cost; 𝑐𝑎𝑝𝑒 is the capacity of different heat 

appliances; 𝑁ℎ is the number of households; 𝜔𝑒 is the percentage of households using end-use 

heating technologies; and 𝐶𝑖𝑛𝑠,𝑒 is the installation cost of different end-use heating appliances. 

4) Heat network investment cost 

The investment costs for the reinforcement of distribution network is shown in (4.9), 
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 (4.9) 

where 𝜔𝐻𝑁 is the penetration of heat networks in each representative areas; 𝑁𝐻𝑁 is the number 

of representative heat networks; 𝐼𝐶𝐻𝑁 is the investment cost of representative heat networks. 

Note that when 𝐻𝑁 appears as a superscript, it is just used to characterize a symbol, not an 

index. It is the same for the superscript of 𝐷𝑁 in (4.11). 

5) Electricity transmission line reinforcement 

The investment costs for the reinforcement of transmission network is shown in (4.10), 
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 (4.10) 

where 𝐶𝑓 is the capital cost of transmission networks; 𝐴𝐹𝑓 is the annuity factor of electricity 

transmission lines. 
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6) Electricity distribution network reinforcement. A schematic function of the distribution 

network reinforcement cost has been illustrated in Figure 4.3, while a linear approximation of 

this function is applied in this model as formulated in (4.11), 

 

Figure 4.3– Distribution network reinforcement function 
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 (4.11) 

where 𝐶𝐷𝑁 is the reinforcement cost of different types of representative distribution networks. 

This model takes account of a variety of operation constraints while minimizing the whole 

system cost as well as meeting the carbon target. All these constraints are applied on hourly 

time resolution (∀𝑡 ∈ 𝑇) across all locations (∀𝑗 ∈ 𝐿). 

4.2.2 Various Constraints 

4.2.2.1 Energy Balance  

1) Electricity balance 

Constraint (4.12) ensures that electricity supply (𝑝𝑔) and demand (𝑝) are balanced in each time 

interval within the entire electricity system. Different types of electricity generation including 

nuclear power, CCGT, gas CCS, OCGT, GGCT CHP, wind and PV are considered, 



4.2 Formulation of the Integrated Electricity and Heat Model 65 

 

∑ ∑ 𝑝𝑡,𝑖,𝑗
𝑔

𝐿

𝑗=1

𝐺

𝑖=1

= ∑ 𝑝𝑡,𝑗

𝐿

𝑗=1

 (4.12) 

Electricity demand consists of non-heat based demand (𝑝𝑒𝑙𝑒), which can be redistributed 

through DSR (𝑝𝑒𝑙𝑒+ and 𝑝𝑒𝑙𝑒−), and heat-driven electricity demand (𝑝ℎ𝑒𝑎𝑡), which particularly 

refers to the demand of end-use HPs (ℎℎ𝑝,𝑒) and industrial size HPs (ℎℎ𝑝,𝑑), as shown in (4.13) 

and (4.14). 𝐶𝑂𝑃𝑎 and 𝐶𝑂𝑃𝑤 denote the COP of air source HPs and water source HPs, 

respectively, 

𝑝𝑡,𝑗 = (𝑝𝑡,𝑗
𝑒𝑙𝑒 + 𝑝𝑡,𝑗

𝑒𝑙𝑒+ − 𝑝𝑡,𝑗
𝑒𝑙𝑒−) + 𝑝𝑡,𝑗

ℎ𝑒𝑎𝑡 (4.13) 

𝑝𝑡,𝑗
ℎ𝑒𝑎𝑡 = ℎ𝑡,𝑗

ℎ𝑝,𝑒 𝐶𝑂𝑃𝑡
𝑎⁄ + ℎ𝑡,𝑗

ℎ𝑝,𝑑 𝐶𝑂𝑃𝑤⁄  (4.14) 

In this modelling, air source HPs (ASHP) are applied for end-use heating. For district heating 

systems, water source HPs (WSHP) are applied due to their high efficiency. As the ambient 

temperature varies significantly, the COP of ASHPs will change accordingly. The COP of 

ASHPs is formulated as a linear function of the ambient temperature (𝑇𝑎) in this model, as 

given in (4.15),  

𝐶𝑂𝑃𝑡
𝑎 = 𝑎𝐻𝑃 ∙ 𝑇𝑡

𝑎 + 𝑏𝐻𝑃 (4.15) 

The industrial-size HP (for DHN) is typically sourced from temperature-stable heat sources, so 

its COP is much more stable than that of ASHPs, for the sake of simplification, we assume that 

the COP of industrial HPs is constant in this model. 

2) Heat balance 

Constraint (4.16) shows the energy balance for the heat system. On the supply side, both district 

and end-use heating systems are considered. Due to the inherent thermal storage in heat 

networks and buildings, heat demand can be shifted through preheating for both district heating 

and end-use heating, which is considered in (4.16),  
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∑ ℎ𝑡,𝑖,𝑗
𝑑

𝐻𝑑

𝑖=1

− ℎ𝑡,𝑗
𝑑+ + ℎ𝑡,𝑗

𝑑− + ∑ ℎ𝑡,𝑖,𝑗
𝑒

𝐻𝑒

𝑖=1

− ℎ𝑡,𝑗
𝑒+ + ℎ𝑡,𝑗

𝑒− = ℎ𝑡,𝑗 (4.16) 

∑ ℎ𝑡,𝑖,𝑗
𝑑

𝐻𝑑

𝑖=1

= ℎ𝑡,𝑗
𝑐ℎ𝑝 + ℎ𝑡,𝑗

ℎ𝑝,𝑑 + ℎ𝑡,𝑗
𝑔𝑏,𝑑

+ 𝑠𝑡,𝑗
+,𝑑 − 𝑠𝑡,𝑗

−,𝑑
 (4.17) 

∑ ℎ𝑡,𝑖,𝑗
𝑒

𝐻𝑒

𝑖=1

= ℎ𝑡,𝑗
ℎ𝑝,𝑒 + ℎ𝑡,𝑗

𝑔𝑏,𝑒
+ 𝑠𝑡,𝑗

+,𝑒 − 𝑠𝑡,𝑗
−,𝑒

 (4.18) 

where ℎ represents the total heat demand. ℎ𝑑 denotes the heat provided by district heating 

which is supplied by CHPs (ℎ𝑐ℎ𝑝), industrial-sized HPs (ℎℎ𝑝,𝑑), TES (𝑠+,𝑑 and 𝑠−,𝑑) and gas 

boilers (ℎ𝑔𝑏,𝑑), while ℎ𝑒 denotes the heat provided by end-use heating appliances including 

end-use HPs (ℎℎ𝑝,𝑒), gas boilers (ℎ𝑔𝑏,𝑒), end-use heat storage (𝑠+,𝑒 and 𝑠−,𝑒). ℎ𝑑+ and ℎ𝑑− 

denote the district heat shifted through preheating while ℎ𝑒+ and  ℎ𝑒− denote the end-use heat 

shifted through preheating. Note that we assume in this model that end-use heating 

technologies are only used to supply a single household. 

3) Power flow constraint 

For the sake of decarbonization, it is essential to electrify the heat sector which may require 

the reinforcement of the transmission network. In this modeling, DCOPF is performed to 

optimize the capacity and the location of reinforcement of transmission networks. Constraint 

(4.19) is applied for all transmission lines (∀𝑚 ∈ 𝐹), where G, D and θ represent electricity 

generation, electricity demand and voltage angle at each location, 

−𝑐𝑎𝑝𝑚
𝑓

≤ 𝐹(𝐺, 𝐷, 𝜃)𝑡,𝑚 ≤ 𝑐𝑎𝑝𝑚
𝑓

 (4.19) 

Equation (4.20) ─ (4.22) gives the explicit form of Equation (4.19). The DCOPF here is crucial 

to determine the additional size of the transmission lines, 
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𝑔𝑡,𝑖 − 𝑑𝑡,𝑖 = ∑ 𝐵𝑖,𝑗

𝐷

𝑗=1

∙ 𝜃𝑡,𝑗  , 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐷 (4.20) 

𝑝𝑡,𝑚 =
𝜃𝑡,𝑁𝑚

𝑠𝑡 − 𝜃𝑡,𝑁𝑚
𝑒𝑛

𝑋𝑚
, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝐹 (4.21) 

−(𝑓𝑚
𝑒𝑥 + 𝑓𝑚

𝑎𝑑) ≤ 𝑝𝑡,𝑚 ≤ (𝑓𝑚
𝑒𝑥 + 𝑓𝑚

𝑎𝑑),   𝑡 ∈ 𝑇, 𝑚 ∈ 𝐹 (4.22) 

where 𝑔 is the electricity generation; 𝑑 is the electricity demand; 𝑝 is the power flow in 

transmission lines; 𝑓𝑒𝑥 is the existing capacity of transmission lines; 𝑓𝑎𝑑 is the additional 

capacity (reinforcement) of transmission lines; T is the set of operating steps; D is the set of 

nodes; F is the set of transmission lines; 𝑁𝑠𝑡  and 𝑁𝑒𝑛 denote the number of the start node and 

end node of the mth transmission corridor.  

4) Heating technology mix constraints 

Both district heating and end-use heating are considered in this model. For a single household, 

it is assumed that heat demand is supplied by either district heating system or end-use system. 

The percentage of households supplied by district heating system (𝜔𝑑) and end-use system 

(𝜔𝑒) are to be optimized. 

The heat demand supplied by district heating technologies and end-use heating technologies 

are as stated in constraint (4.23) and (4.24), while (4.25) ensures that all heat demand is 

satisfied, 

∑ ℎ𝑡,𝑖,𝑗
𝑑

𝐻𝑑

𝑖=1

− ℎ𝑡,𝑗
𝑑+ + ℎ𝑡,𝑗

𝑑− = 𝜔𝑗
𝑑 ∙ ℎ𝑡,𝑗, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.23) 

∑ ℎ𝑡,𝑖,𝑗
𝑒

𝐻𝑒

𝑖=1

− ℎ𝑡,𝑗
𝑒+ + ℎ𝑡,𝑗

𝑒− = 𝜔𝑗
𝑒 ∙ ℎ𝑡,𝑗, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.24) 

𝜔𝑗
𝑑 + 𝜔𝑗

𝑒 = 1, ∀𝑗 ∈ 𝐿 (4.25) 
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Different heat plants/devices can be utilised in both district heating and end-use heating. To be 

more specific, CHP, industrial-size HP, gas boiler and hot water tank (TES) can potentially 

supply district heat demand, while HP, gas boiler and TES are considered to as options to 

supply end-use heating. This model can determine the investment portfolio of different heating 

technologies in district heating and end-use heating. The size of each heating plant/device is 

optimized subject to the cost trade-off and carbon limit, based on a series of cost assumptions 

as following. 

In this model, we take into account the installation costs and O&M costs of HPs. Gas boilers 

are already present in most of the households so only O&M costs of gas boilers are considered 

(these are the assumptions in particular study of the UK case, although this model can consider 

investment and installation cost of gas boilers and other technologies as appropriate). Costs of 

smart control devices that are required to switch the operation of hybrid HP-B between ASHPs 

and gas boilers according to their real-time energy efficiency are also considered. The 

operational cost of the HP is temperature-dependant (as shown in Equation (4.15), the hourly 

temperature data is given as input) instead of a constant cost function, which means the HP 

may not be able to supply the heat load in cold days. Also, the operational cost of the HP may 

be higher than that of the gas boiler due to reduced COP. Furthermore, operation of HP with 

reduced COP may drive network reinforcement and increased investment in peaking generation 

capacity, which is the core advantage of hybrid HP-B in scenarios with low carbon emissions. 

4.2.2.2 Energy Shifting 

1) Thermal Energy Storage 

TES is an important component in the integrated electricity and heat system as it can store the 

thermal energy that is converted from electricity via HPs or CHP, thus provide a series of 

balancing services for the electricity system. TES can be potentially applied in both district 

heating and end-use heating. In this model, TES specifically refers to the hot water tank. The 

maximum discharging and charging rate is restricted by (4.26) and (4.27),  

𝑠𝑡,𝑗
+ ≤ 𝑠𝑗

𝑐𝑎𝑝
, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.26) 
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𝑠𝑡,𝑗
− ≤ 𝑠𝑗

𝑐𝑎𝑝, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.27) 

where 𝑠+ and 𝑠− denote the charging rate (in kWh) of TES while 𝑠𝑐𝑎𝑝 represents the power 

capacity of TES. Both the charging rate and discharging rate are limited by the power capacity. 

Energy capacity of TES (𝑠𝑒𝑐) is limited by (4.28), where 𝜀𝑠 is defined as the ratio of the energy 

capacity to the power rating of TES, as formulated in (4.29). To be more specific, 𝜀𝑠 is the time 

hot water tank (TES) consumes to be fully charged from being empty with the maximum 

charging rate (or fully discharged from being full charged with the maximum discharging rate). 

Typically, the size of TES is measured by the maximum energy content (kWh) and there is a 

limit of the charging/discharging rate (power rating, kW). For convenience, we use 𝜀𝑠 to 

measure the size of TES, 

𝑠𝑡,𝑗
𝑒𝑐 ≤ 𝑠𝑗

𝑐𝑎𝑝 ∙ 𝜀𝑠, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.28) 

𝜀𝑠(ℎ) =
Energy capacity (𝑘𝑊ℎ)

Power rating (𝑘𝑊)
 (4.29) 

The energy balance constraint is presented as (4.30), where 𝜂𝑠 is the static efficiency of TES. 

There might also be a tiny portion of heat loss in the process of charging and discharging, for 

simplicity, we omit it here, 

𝑠𝑡,𝑗
𝑒𝑐 = 𝑠𝑡−1

𝑒𝑐 ∙ 𝜂𝑠 + 𝑠𝑡,𝑗
− − 𝑠𝑡,𝑗

+ , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.30) 

Constraints (4.26) ─ (4.30) are applied for both industrial size TES and end-use TES. 

2) DSR constraints 

The flexibility provided by flexible electricity load and ancillary service provision through 

short-term interruption of operation of end-use HPs are included in the model. Based on the 

DSR model presented in in Reference [48], (4.31) limits the amount of shiftable load,  

𝑝𝑡,𝑗
𝑒𝑙𝑒− ≤ 𝛼𝑑𝑠𝑟 ∙ 𝑝𝑡,𝑗

𝑒𝑙𝑒 , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.31) 
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In this model, only some specific types of flexible loads are considered to provide domestic 

DSR, including electric vehicles, smart appliances (e.g. smart dishwashers, smart fridge) and 

peak reduction from industry and commercial sectors, which have broad consumer acceptance 

of DSR [50].  

The use of demand response in this modelling is limited by 𝛼𝑑𝑠𝑟 which is the Ratio of the 

flexible electricity demand to the total demand. Note that 𝛼𝑑𝑠𝑟 depends on the consumers’ 

willingness to shift load, which can change with time. For simplicity, we assumed that it is not 

time-dependent. 

It should be stressed that in the proposed model, no additional cost is incurred due to the 

provision of demand response. However, the constraints on consumer flexibility are based on 

the data in [51], which gives the proportion of different smart appliance users that are willing 

to provide demand response (𝛼𝑑𝑠𝑟), so there is barely compromise on services delivered to 

consumers.. Based on [51], it is assumed that 80% of the EV can be charged flexibly and 41% 

of the smart appliances are flexible, while respecting the constraints related to the service 

delivery. The rest of demand, including industrial and commercial sectors can provide 10% 

peak reduction and load shifting within the same day.  

Constraint (4.32) gives the demand balance of DSR, where 𝐷𝑥 denotes the set of time steps in 

the 𝑥th day. In this model, it is assumed that most of the residential flexible demand can be 

shifted within a day,  

∑ 𝑝𝑡,𝑗
𝑒𝑙𝑒−

𝑡∈𝐷𝑥

≤ ∑ 𝑝𝑡,𝑗
𝑒𝑙𝑒+

𝑡∈𝐷𝑥

, ∀𝑗 ∈ 𝐿 (4.32) 

Note that Equation (4.32) does not fit all types load. In this section, we assume that the load 

decrease has to be lower than the increase over the day only for the flexible loads considered 

in this model. This model can also consider load shifting in longer time, but we made a 

simplification by assuming that most of residential demand can be shifted within a day or only 

in a few hours, based on [51]. Take smart dishwasher as an example, we can optimise its 

operation over night, but it should finish washing up by the following morning; the same 

argument is applied for charging of EVs. 
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The contribution of end-use HPs in providing frequency response service and operating reserve 

service for the electricity system is shown in (4.33) and (4.34), 

𝑟𝑠𝑝𝑡,𝑗
ℎ𝑝,𝑒 ≤ ℎ𝑡,𝑗

ℎ𝑝,𝑒 𝐶𝑂𝑃𝑡
𝑎⁄ , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.33) 

𝑟𝑒𝑠𝑡,𝑗
ℎ𝑝,𝑒 ≤ 𝛼𝑗

ℎ𝑝,𝑟𝑒𝑠 ∙ ℎ𝑡,𝑗
ℎ𝑝,𝑒 𝐶𝑂𝑃𝑡

𝑎 ⁄ , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.34) 

where 𝑟𝑠𝑝ℎ𝑝,𝑒 and 𝑟𝑒𝑠ℎ𝑝,𝑒 denote the response and reserve that end-use HP can provide. More 

specifically, the operation of HPs can be interrupted for a short term to provide primary 

response, while the temperature comfort compromise can be neglect due to the thermal inertia 

in buildings [52]. Additionally, the operation of HPs can be turned down by a maximum 

percentage of 𝛼ℎ𝑝,𝑟𝑒𝑠 for the required period to provide RES. 

3) Pre-heating constraints:  

Pre-heating can be applied in both district heating (through the inherent storage in DHN 

pipelines [53]) and end-use heating systems (through the thermal insulation of buildings). 

Constraints (4.35) ─ (4.37) present a generic pre-heating model for both district and end-use 

heating systems. Constraint (4.35) presents the amount of heat demand that can be shifted, 

which depends on the flexibility of heat systems. In district heating systems, the flexibility is 

driven by the capacity of the inherent storage of DHN pipelines as the proportion of heat 

demand can be redistributed (𝛼𝑃𝐻,𝑑). It is worth noticing that the storable energy in DHN 

pipelines is typically limited (one or two hours’ worth of heat content) due to the constant flow 

of heat in the pipelines. In end-use heating systems, the flexibility is measured by the 

percentage of residential buildings (𝛼𝑃𝐻,𝑒) that have the potential to participate in pre-heating 

(with good insulation and a large mass of envelope which can provide a meaningful amount of 

storage). Constraint (4.36) ensures that the increased load for pre-heating is limited by the 

capacity of the heating devices. The energy balancing process of pre-heating is simplified as a 

storage model (4.37),  

ℎ𝑡,𝑗
𝑥− ≤ 𝛼𝑃𝐻,𝑥 ∙ ∑ ℎ𝑡,𝑖,𝑗

𝑥

𝐻𝑥

𝑖=1

, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿, 𝑥 ∈ {𝑑, 𝑒} (4.35) 
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ℎ𝑡,𝑗
𝑥+ ≤ 𝛼𝑃𝐻,𝑥 ∙ ∑ 𝑐𝑎𝑝𝑖,𝑗

𝑥

𝐻𝑥

𝑖=1

, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿, 𝑥 ∈ {𝑑, 𝑒} (4.36) 

ℎ𝑡,𝑗
𝑃𝐻,𝑥 = ℎ𝑡−1

𝑃𝐻,𝑥 ∙ 𝜂𝑃𝐻,𝑥 + ℎ𝑡,𝑗
𝑥+ − ℎ𝑡,𝑗

𝑥−, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿, 𝑥 ∈ {𝑑, 𝑒} (4.37) 

In this modeling it is assumed that the average heat loss rate is proportional to the stored heat. 

Given that the ‘pre-heating’ in district heating pipelines is simplified as a storage model as 

given in Equation (4.37), which means that the thermal energy in the pipelines can be kept as 

long as needed while considering heat losses. It should be emphasised that this may lead to 

inaccuracy compared to realistic cases. As the water in the pipelines keep flowing all the time, 

it can be pre-heated, but it cannot be stored indefinitely. In any case the storable energy in the 

pipelines is not considerable, about one or two hours’ worth of heat consumption. On the other 

hand, the district heating connected buildings also have a thermal storage in their envelopes 

just like ‘end-use heating systems’.  In both cases, only houses with a large mass have a 

meaningful amount of storage (without a dedicated thermal storage). In this model, we use 

“The share of participating houses” (𝛼𝑃𝐻,𝑥) to represent the houses that have the potential to 

do pre-heating, or with good insulation and a large mass of envelope which can provide a 

meaningful amount of storage. By doing sensitivity studies, we can investigate the impact of 

preheating with different contribution on the investment and operation of the integrated 

electricity and heat system. 

The storage loss is actually not in relation to amount of stored heat in buildings. It is a function 

of the temperature difference between the building and the ambient. The higher the temperature 

difference, the faster the pre-heated thermal energy will dissipate from the building envelope. 

This is of course a bit rough, since buildings have a complicated envelope and the heat loss is 

also affected by the ground temperature, solar gains and wind speed, etc. In this thesis, we 

make the simplification that the average heat loss of the considered buildings (with good 

insulation to do pre-heating) is proportional to the stored heat. Since there are significant 

uncertainties about the average heat loss rate, we have performed sensitivity studies to 

investigate the benefits through pre-heating under different heat loss rate, which are presented 

in the later sections. 
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4.2.2.3 Energy Production 

1) Generation unit constraints:  

The constraints associated with generation unit operation are based on the whole-system 

analysis of the electricity system planning presented in [48], as presented as following: 

Minimum stable generation and maximum output. As formulated in (4.38), generation plant of 

different categories are modelled individually, with identical thermal plants being clustered 

into groups. This model requires one set of integer variables (𝜇) for each group of plants, 

𝜇𝑡,𝑖,𝑗 ∙ 𝑝𝑗
𝑔

≤ 𝑝𝑡,𝑖,𝑗
𝑔

≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑝
𝑗

𝑔
, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.38) 

where 𝜇 denotes the number of synchronized generation units; 𝑝𝑔 denotes the electricity output 

of generators; 𝑝𝑔 and 𝑝
𝑔

 represent the minimum stable and maximum generation, respectively.  

Ramp-up and ramp-down constraint. As formulated in (4.39) and (4.40), this model considers 

the restriction of ramping rate of generation units,  

𝑝𝑡,𝑖,𝑗
𝑔

− 𝑝𝑡−1,𝑖,𝑗
𝑔

≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑟𝑖
𝑢𝑝, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.39) 

𝑝𝑡−1,𝑖,𝑗
𝑔

− 𝑝𝑡,𝑖,𝑗
𝑔

≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑟𝑖
𝑑𝑛, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.40) 

where 𝑟𝑢𝑝 denotes the limit of ramp-up rate while 𝑟𝑑𝑛 denotes the limit of ramp-down rate. 

Start-up and shut down constraints. The number of starting-up and shutting-down units are 

determined by (4.41) ─ (4.44), 

𝜇𝑡,𝑖,𝑗
𝑠𝑡 ≥ 𝜇𝑡,𝑖,𝑗 − 𝜇𝑡−1,𝑖,𝑗 , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.41) 

𝜇𝑡,𝑖,𝑗
𝑠𝑡 ≥ 0 , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.42) 

𝜇𝑡,𝑖,𝑗
𝑑𝑛 ≥ 𝜇𝑡−1,𝑖,𝑗 − 𝜇𝑡,𝑖,𝑗 , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.43) 
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𝜇𝑡,𝑖,𝑗
𝑑𝑛 ≥ 0, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.44) 

where 𝜇𝑠𝑡 and 𝜇𝑑𝑛 denote the number of starting-up and shutting down generation units, 

respectively. 

Minimum on-line and off-line time. As presented in (4.45) ─ (4.47), the minimum on-line and 

off-line time of generation units are restricted into a given length of time, 

∑ 𝜇𝑘,𝑖,𝑗
𝑠𝑡

𝑡−1

𝑘=𝑡−𝑈𝑝𝑖

≤ 𝜇𝑡,𝑖,𝑗 , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.45) 

𝜇𝑡,𝑖,𝑗 ≤ 𝜇
𝑡,𝑖,𝑗

− ∑ 𝜇𝑘,𝑖,𝑗
𝑑𝑛

𝑡−1

𝑘=𝑡−𝐷𝑛𝑖

, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.46) 

𝜇𝑡,𝑖,𝑗 ≤ 𝜇
𝑡,𝑖,𝑗

, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.47) 

where 𝑈𝑝 denotes the minimum on-line time; 𝐷𝑛 denotes the minimum off-line time; while 𝜇 

represents the total number of the ith type of generation units, which is determined by 

Constraint (4.47). 

The availability of ancillary service. Constraint (4.48) ensures that generation units leave some 

room for the provision of frequency response and operating reserve, 

𝜇𝑡,𝑖,𝑗 ∙ 𝑝𝑗
𝑔

≤ 𝑝𝑡,𝑖,𝑗
𝑔

+ 𝑟𝑠𝑝𝑡,𝑖,𝑗
𝑔

+ 𝑟𝑒𝑠𝑡,𝑖,𝑗
𝑔

≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑝
𝑗

𝑔
, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.48) 

where 𝑟𝑠𝑝𝑔 and 𝑟𝑒𝑠𝑔 denote the frequency response and operating reserve that can be provided 

by the generation units.  

Maximum reserve and response provided by each generation technology. Constraints (4.49) 

and (4.50) limit of the availability of reserve and response service, which may significant vary 

with the type of generation, 
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𝑟𝑒𝑠𝑡,𝑖,𝑗
𝑔

≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑟𝑒𝑠𝑖,𝑗
𝑔

, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.49) 

𝑟𝑠𝑝𝑡,𝑖,𝑗
𝑔

≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑟𝑠𝑝
𝑖,𝑗

𝑔
, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.50) 

where 𝑟𝑒𝑠
𝑔

 and 𝑟𝑠𝑝
𝑔

 are given as a percentage of the maximum output of generation units, 

representing the upper limit of the provision of reserve and response service.   

Annual energy production of generation limits. As formulated in (4.51), we take into account 

the annual availability of thermal generation associated with scheduled inspection and 

maintenance,  

∑ 𝑝𝑡,𝑖,𝑗
𝑔

𝑇

𝑡=1

≤ 𝐴𝐴𝐹𝑖 ∙ 𝜏 ∙ 𝑐𝑎𝑝𝑖,𝑗
𝑔

, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.51) 

where 𝐴𝐴𝐹𝑖 denotes the annual availability factor of different generation, given as a percentage 

of the maximum operating hours 𝜏. 

Total capacity of different generation technologies. Constraint (4.52) determines the total 

capacity of different generation (𝑐𝑎𝑝𝑔), 

𝜇𝑡,𝑖,𝑗 ∙ 𝑝
𝑗

𝑔
≤ 𝑐𝑎𝑝𝑖,𝑗

𝑔
, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.52) 

2) CHP operating constraints:  

The operating area of CHP is illustrated in Figure 4.4, which is modelled by (4.53) and (4.54). 

CHP can change its heat and electricity ratio by adjusting the amount of steam extracted from 

the turbine, the slope of the upper bound (equal to −1 𝑧⁄ ) gives the ratio of the change of 

electricity output to the corresponding change of heat output. For a given fuel feeding rate, if 

the steam extraction changes, operating points will move along the lines which are parallel with 

the upper bound. For any point (A) within the operating area, there is a corresponding point 

(A’) on the y-axis which is characterized by the same fuel feeding rate as A (AA’̅̅ ̅̅ ̅̅  is parallel 

with the upper bound) [30]. In order to apply the generation model which is formulated in 
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(4.38) ─ (4.52) to CHP, all the operating points of CHP are converted into the corresponding 

points on the y-axis (electricity-only mode), as shown in (4.55), 

 

Figure 4.4– Operating area of CHP 

𝜇𝑡,𝑖,𝑗 ∙ 𝑝𝑗
𝑐ℎ𝑝 ≤ 𝑝𝑡,𝑗

𝑐ℎ𝑝 + ℎ𝑡,𝑗
𝑐ℎ𝑝 𝑧𝑗⁄ ≤ 𝜇𝑡,𝑖,𝑗 ∙ 𝑝

𝑗

𝑐ℎ𝑝
, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐺, ∀𝑗 ∈ 𝐿 (4.53) 

ℎ𝑡,𝑗
𝑐ℎ𝑝 ≤ 𝜆𝑗 ∙ 𝑝𝑡,𝑗

𝑐ℎ𝑝, ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.54) 

𝑝𝑡,𝑖=𝐶𝐻𝑃,𝑗
𝑔

= 𝑝′
𝑡,𝑗
𝑐ℎ𝑝

= 𝑝𝑡,𝑗
𝑐ℎ𝑝 + ℎ𝑡,𝑗

𝑐ℎ𝑝 𝑧⁄ , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 (4.55) 

1. RES curtailment:  

The deployment of variable renewable energy sources is crucial for decarbonizing the energy 

system. In this study, wind and PV generation are taken into consideration. Due to the 

mismatch between the energy demand and the availability of RES, curtailment will constantly 

occur without the support of various ancillary services, leading to significant energy losses. 

The curtailment of RES is formulated as the difference between the available RES power 

(𝑣𝑟𝑒𝑎𝑣𝑎) in (4.56) and the actual output of RES (𝑣𝑟𝑒) in (4.57),  

𝑣𝑟𝑒𝑡,𝑖,𝑗
𝑎𝑣𝑎 = 𝑣𝑟𝑒𝑡,𝑖,𝑗

𝑎𝑓
∙ 𝑐𝑎𝑝𝑖,𝑗

𝑔
  , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿, 𝑖 ∈ {𝑤𝑖𝑛𝑑, 𝑠𝑜𝑙𝑎𝑟} (4.56) 

𝑣𝑟𝑒𝑡,𝑖,𝑗 ≤ 𝑣𝑟𝑒𝑡,𝑖,𝑗
𝑎𝑣𝑎 , ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐿 , 𝑖 ∈ {𝑤𝑖𝑛𝑑, 𝑠𝑜𝑙𝑎𝑟} (4.57) 
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4.2.2.4 Ancillary Service 

This model takes into account the requirement of frequency response for the electricity system, 

which is typically driven by the effect of reduced system inertia with high penetrations of RES. 

To be more specific, the expected trend that intermittent renewable energy will gradually 

substitute conventional generation will lead to a decrease in the inertia of the electricity system 

provided by rotating synchronous units. As a consequence, more frequency response will be 

required to maintain the frequency within the regulatory bounds, driving an increase in the part-

load rate of generators, leading to reduced efficiencies of generation. In this context, the 

supplementary frequency response provided by the heat system will significantly enhance the 

operational performance of conventional generation, reducing the integration cost of RES. The 

requirement of frequency response which covers delivery time frame from secondly to hourly 

scale for different levels of electricity load and RES output in the UK system is determined 

exogenously in [54] and applied as input. 

 

Figure 4.5– Requirement of frequency response for different levels of electricity load and RES output in the UK 

system 

Two key categories of balancing services are considered in this model, including frequency 

response, which is delivered in a few minutes to half an hour; and operating reserve, which is 

typically sub-categorized into spinning and standing reserve, with the delivery time of half an 
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hour to several hours [48]. Multiple sources of uncertainty (including renewables output and 

generation outage) need to be considered in order to adequately capture the challenges on the 

operation of future low carbon power system, which has been investigated in our previous work 

regarding the electricity system [48]. In this model, we follow the frequency response 

modelling in our previous work [54] which tackles sudden generation or transmission loss. As 

presented in [54], the frequency response is required to limit the frequency nadir above the 

limits (49.2Hz in this case) after sudden generation outage, which is becoming harder to fulfil 

due to declining system inertia and reduced responsive generating units. The increasing 

operating reserve driven by the forecasting error of renewable and load as well as the 

replacement of primary response is also incorporated as constraint for each time interval.  

The frequency response constraint and operating reserve constraint are formulated as (4.58) 

and (4.59), respectively. Hence technologies in district heating (through CHPs and HPs) as 

well as end-use heating systems could provide ancillary services for the electricity system 

based on these constraints, 

∑ ∑ 𝑟𝑠𝑝𝑡,𝑖,𝑗
𝑔

𝐿

𝑗=1

𝐺

𝑖=1

+ ∑ ∑ 𝑟𝑠𝑝𝑡,𝑖,𝑗
𝑑

𝐿

𝑗=1

𝐻𝑑

𝑖=1

+ ∑ ∑ 𝑟𝑠𝑝𝑡,𝑖,𝑗
𝑒

𝐿

𝑗=1

𝐻𝑒

𝑖=1

≥ 𝐹𝑅𝑡, ∀𝑡 ∈ 𝑇 (4.58) 

∑ ∑ 𝑟𝑒𝑠𝑡,𝑖,𝑗
𝑔

𝐿

𝑗=1

𝐺

𝑖=1

+ ∑ ∑ 𝑟𝑒𝑠𝑡,𝑖,𝑗
𝑑

𝐿

𝑗=1

𝐻𝑑

𝑖=1

+ ∑ ∑ 𝑟𝑒𝑠𝑡,𝑖,𝑗
𝑒

𝐿

𝑗=1

𝐻𝑒

𝑖=1

≥ 𝑂𝑅𝑡, ∀𝑡 ∈ 𝑇 (4.59) 

The frequency response requirement is directly linked with the level of system inertia in each 

time interval, which is critical in the future low inertia system. This requirement is derived 

based on our previous work in [54]. Although a complete MILP formulation (4.60) was 

proposed in [55], which uses a piecewise linear version of the constraint to reduce the 

computational burden of the proposed large-scale model,   

𝑅 ≥
∆𝑃𝐿 ∙ ∆𝑃𝐿 ∙ 𝑇𝑑

4 ∙ ∆𝑓𝑚𝑎𝑥 ∙ 𝐻
 (4.60) 
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where H is the system inertia from thermal plants, ∆𝑃𝐿 is the largest generation loss, 𝑇𝑑 is 

delivery time of response, ∆𝑓𝑚𝑎𝑥 is the maximum frequency deviation at nadir. The online 

capacity of synchronous generators is linear to the level of system inertia. The piecewise 

function of frequency response is demonstrated in Figure 4.6. 

 

Figure 4.6– Piecewise linear function of frequency requirement of the system 

 

Operating reserve requirement (𝑂𝑅) is determined by forecasting errors of wind output, PV 

output, electricity load and the capacity of the largest generator, as formulated in (4.61), 

𝑂𝑅𝑡 = 𝜍𝑊 ∙ 𝑣𝑟𝑒𝑡
𝑊 + 𝜍𝑃𝑉 ∙ 𝑣𝑟𝑒𝑡

𝑃𝑉 + 𝜍𝐷 ∙ 𝑝𝑡 + 𝐶𝑎𝑝𝐿 , ∀𝑡 ∈ 𝑇  (4.61) 

where 𝜍𝑊,  𝜍𝑃𝑉 and 𝜍𝐷 denote the forecasting errors of wind output, PV output and electricity 

load; 𝑣𝑟𝑒𝑊, 𝑣𝑟𝑒𝑃𝑉 and 𝑝 denote wind output, PV output and electricity load, 𝐶𝑎𝑝𝐿 denotes the 

capacity of the largest generator. Note that, in this model, we take into account the availability 

of operating reserve to cover the worst case of generation shortage, but the delivery of reserve 

is not modelled. Therefore, forecasting errors cannot be mitigated by the reserve in our model. 

A two stage model considering realization is more suitable for the consideration of reserves 

addressing forecasting errors. However, limited by the complexity of our model, we only 

consider the reserves required to deal with the uncertainty of the system generation. Similar 

simplification is commonly made in previous research (e.g., [48] and [56]). 
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It should be noted that there is no direct constraint on the share of non-synchronous generation, 

but this is actually considered by the inertia-dependant frequency response requirement. 

According to [54], the more non-synchronous generators are online, the lower inertia the 

system has. Meanwhile, only synchronous generators can provide inertia to the system. 

Therefore, there must be adequate synchronous generators to provide enough inertia to keep 

the system operation stable. Constraint (4.58) exactly ensures that adequate amount of 

synchronous generation is scheduled to operate in order to provide sufficient level of inertia. 

4.2.2.5 Network Investment Constraints 

1) Distribution network reinforcement constraint:  

Based on the distribution network reinforcement model presented in [48], the cost of 

reinforcing distribution networks is formulated as a function of the expanded capacity of the 

distribution network (𝑐𝑎𝑝𝐷𝑁). A schematic function of the distribution network reinforcement 

cost has been illustrated in [48], while a linear approximation of this function is applied in this 

section as shown in (4.2). 𝑐𝑎𝑝𝐷𝑁is determined by the net increase of peak demand within the 

distribution network, as shown in (4.62), 

−𝑐𝑎𝑝𝑖
𝐷𝑁 ≤ 𝛼𝑖

𝑝 ∙ 𝑝𝑡 − ∑ 𝑝𝑡,𝑗
𝑔

𝑗∈𝐷𝑁𝑖

− 𝑐𝑎𝑝
𝑖

𝐷𝑁
≤ 𝑐𝑎𝑝𝑖

𝐷𝑁, ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐷𝑁 (4.62) 

It is assumed that CHP and PV are deployed in the distribution network. The cost coefficient 

(𝐶𝐷𝑁 in the objective function) is derived through the analysis of the network reinforcement 

cost driven by the increase in peak demand by applying the fractal-based algorithm proposed 

by [22]. The created representative distribution networks based on this algorithm have been 

calibrated by the analysis of the corresponding real distribution networks. Although the 

parameters of real networks are very case-specific and vary significantly, the analysis of the 

large regions characterised by the representative networks provides an estimate of the real 

network reinforcement cost. The design parameters of the representative networks represent 

those of real distribution networks of similar topologies, for instance with regards to the number 

and type of consumers and load density (e.g. high-load density city/town networks to low-

density rural networks), associated network lengths and costs, etc. As described in [57], key 
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typical representative distribution networks, covering urban, sub-urban, semi-rural, or rural 

areas, are created by using the fractal-based algorithm and are incorporated into this model. 

Figure 4.7 gives examples of the distribution networks created by using the fractal-based 

algorithm. 

 

Figure 4.7– Representative networks of (a) urban area and (b) rural area 

 

2) Heat network investment cost:  

As the key indicator of DHN investment cost, heat density is used to compartmentalize the 

whole GB area into different district types covering urban, suburban, semirural and rural areas. 

By using the fractal-based algorithm proposed in [22], generic heat networks are created 

covering representative districts with different heat densities. The number of consumers and 

heat demand in representative districts are obtained from the National Heat Map [26] and 

applied as inputs into the fractal-based algorithm to establish the topologies and further 

calculate the length of the representative heat networks which drives their investment costs. 

Equation (4.63) determines the capital cost of representative HNs,  

𝐼𝐶𝑖
𝐻𝑁 = 𝐶𝑖

𝐷𝑁 ∙ 𝐹𝐿
𝐻𝑁 (𝐴𝑖, 𝑁𝑖

ℎ , ∑ ℎ𝑡,𝑖

𝑡∈𝑇

)  , ∀𝑖 ∈ 𝐻𝑁 (4.63) 
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where 𝐶𝐷𝑁 denotes the capital cost (per unit length) of HNs while 𝐹𝐿
𝐻𝑁(∙) calculates the length 

of representative HNs based on the fractal-based algorithm, given the size of area, number of 

consumers and heat demand in the representative districts. Appendix Table A.5 demonstrates 

the length of different representative HNs.     

By applying the approach proposed in [57, 58], the whole GB area is represented by a 

combination of different types of representative districts, while minimizing the errors of the 

total heat demand, the number of households and the size of geographical areas between the 

calculated data and the realistic data. The number of different representative HNs, denoted as 

𝑁𝐻𝑁in (4.9), has been optimized exogenously, as given in Table A.5. By applying this concept, 

the investment cost associated with different penetrations of DHN (𝜔𝐻𝑁 in (4.9)) in each 

representative district can be quantified and then incorporated into the whole system 

investment model to optimize the share of DHN. 

In summary, there are three steps to calculate the DHN cost, the first two steps are carried out 

exogenously while the third step is a part of the optimization. 

Step 1: We choose four representative districts, characterised by urban, suburban, semirural 

and rural areas. DHN is a potential heating technology for these representative districts. If DHN 

is deployed in a district (the whole district uses DHN), then the length of pipelines can be 

calculated based on the fractal-based algorithm proposed in [22] (a more detailed description 

about this algorithm is demonstrated in Section 2.1). This algorithm can generate the topology 

of a network given the size of areas (𝐴 in km2), number of consumers (𝑁ℎ) and heat demand 

(∑ ℎ𝑡,𝑗𝑡∈𝑇 ). 𝐴,  𝑁ℎ and ∑ ℎ𝑡,𝑗𝑡∈𝑇  can be acquired by National Heat Map (a free online tool, as 

shown in the left figure). An example of the topology of an urban district is illustrated in the 

right figure.   

The investment cost that is incurred if DHN is deployed in a district can be calculated based 

on (4.64). Thus, the investment cost for deploying DHN in a representative district is 

determined. 

Step 2: The whole GB area is represented by a combination of these four representative 

districts, in other words, each representative district is replicated by a number (combination 

coefficient) to represent all the districts with the same characteristics. The number of each 
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representative district (𝑁𝐻𝑁) is optimized by minimizing the errors of the total heat demand, 

the number of households and the size of geographical areas between the calculated data and 

the realistic data. 

Step 3: Equation (4.23) ─ (4.25) optimize the total penetration of DHNs covering all types of 

representative districts. The investment cost associated with different penetrations of DHN in 

each representative district can be then incorporated into the whole system investment model 

to optimize the share of DHN in each representative district. In (4.9), the total investment cost 

of DHNs is determined by (4.64), 

∑ 𝜔𝑖
𝐻𝑁 ∙ 𝑁𝑖

𝐻𝑁 ∙ 𝐼𝐶𝑖
𝐻𝑁

𝐻𝑁

𝑖=1

 (4.64) 

4.2.2.6 Other Constraints:  

1) Security requirement 

Constraint (4.65) ensures that the model will propose a sufficient generating capacity to achieve 

a given level of security specified by LOLE. To achieve this, LOLP is estimated as a function 

of the capacity margin (which is defined as the ratio of the surplus generating capacity to the 

peak demand, as formulated in (4.66) and is built exogenously through the standard reliability 

approach by applying generation availability data [48],  

∑ 𝐹𝐿𝑂𝐿𝑃(𝐶𝑀𝑡)

𝑇

𝑡=1

≤ 𝐿𝑂𝐿𝐸 (4.65) 

𝐶𝑀𝑡 =
∑ ∑ (𝜇𝑡,𝑖,𝑗 ∙ 𝑝

𝑗

𝑔
− 𝑝𝑗

𝑔
)𝐿

𝑗
𝐺
𝑖

𝑚𝑎𝑥
𝑡∈𝑇

(∑ 𝑝𝑡,𝑗
𝐿
𝑗=1 )  

, ∀𝑡 ∈ 𝑇 (4.66) 

A piecewise linear approximation of the LOLP function was presented in [48], as shown in 

Figure 4.8. In this model, we apply the linear approximation of the LOLP function as security 

requirement to optimize the capacity of generation, as formulated in (4.67), 
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𝐹𝐿𝑂𝐿𝑃(𝐶𝑀𝑡) ≥ 𝛼𝐿,1 ∙ 𝐶𝑀𝑡 + 𝛽𝐿,1 

⋮ 

𝐹𝐿𝑂𝐿𝑃(𝐶𝑀𝑡) ≥ 𝛼𝐿,𝑛 ∙ 𝐶𝑀𝑡 + 𝛽𝐿,𝑛 

(4.67) 

where 𝑎𝐿 denotes the linear coefficient term while 𝑏𝐿 denote the constant term of the LOLP 

function. 

 

Figure 4.8– Piecewise linear approximation of LOLP function 

2) Carbon limit:  

The total carbon emission (t/year) is defined as the product of the given overall carbon target 

(g/kWh) and the annual energy consumption (GWh/year), covering both electricity and heat 

sectors. In this model, CO2 mainly comes from the conventional generation (CCGT, OCGT) 

on the electricity side and by CHP and gas boilers on the heat side. In order to meet given 

carbon targets, low-carbon generations (including nuclear, wind, PV and gas CCS) have to be 

invested in to alleviate the carbon emission, although these low-carbon generations are 

characterised by higher capital cost. Constraint (4.68) ensures that the total carbon emissions 

do not exceed the regulated amount of carbon emissions, 
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ℎ𝑒𝑎𝑡)

𝐿

𝑗=1
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where 𝐶𝑂2𝑔 denotes the CO2 emission from various generation; 𝐶𝑂2𝑔𝑏 denotes the CO2 

emission from gas boilers; 𝐶𝑂2 denotes the overall carbon target. 

4.3 Conclusions of the Chapter 

This chapter proposes a novel modelling framework for the whole system optimisation of the 

integrated heat and electricity systems, considering operation and investment timescales and 

covering both local and national level infrastructure.  

The proposed MILP optimization model can simultaneously optimize, for the first time, the 

investment in electricity generation (including conventional and low carbon generation as well 

as CHP), heating devices, heat networks, reinforcement of electricity transmission and 

distribution networks while minimizing the system operation cost, taking into account 

frequency response and operating reserve requirements. The impact of integrated systems 

reducing system inertia on the frequency response requirement is explicitly modelled in the 

constraints. Carbon emission and security constraints are also included. 

A variety of operation constraints are taken into account, including: electricity and heat balance 

constraints, heating technology mix constraints, power flow constraint, DSR constraints, TES 

operating constraints, pre-heating constraints, generation unit constraints, RES curtailment 

constraints, ancillary service constraints, CHP operating constraints, distribution network 

reinforcement constraint, heat network investment cost constraints, system security constraints, 

and carbon constraint. Specifically for ancillary service constraints, this model takes into 

account the requirement of frequency response for the electricity system, which has been 

modelled exogenously and applied as input in this model. 

This proposed integrated heat and electricity system investment model can be applied to 

optimize the heating technology portfolio to decarbonise the integrated heat and electricity 

systems, and assess the values of the integration of electricity and heat system and revealing 

trade-offs between electrification of heat sector through HNs and through electrified heat at the 

consumer end side. 

 





 

Chapter 5 Evaluation of Alternative Heating 

Decarbonisation Strategies 

To achieve the goal of Climate Change Act 2008, almost all the heat for domestic usage should 

be decarbonised by 2050, as a result, the low-carbon technologies for heating must be adopted 

in the future heating system. Attractive low-carbon heating technologies including district 

heating, HP, and thermal storage are not applied in the UK on a large scale. What the benefits 

and problems they may bring about to the system; how the heat network can interact with the 

electricity network; what heating technology mix can maximize the economic and operational 

benefits of the system are the main points of this chapter. 

The heat sector accounts for approximately half of the total energy consumption in the UK. In 

order to meet the target of 80% carbon reduction by 2050, alternative heating technologies are 

required to replace gas boilers that currently predominate in the UK. Electric HPs, hybrid 

heating technologies, DHNs and hydrogen boilers are promising low-carbon heating 

technologies that can potentially deliver the carbon target [9, 59-61], whereas the comparison 

of their economic competitiveness, which is crucial for their large-scale deployment, remains 

unknown. Due to the interactions between heat system and electricity system, the investment 

strategy of various heating technologies can bring significant impacts to electricity sectors. 

This leads to the need of the joint optimisation of heat and electricity system investment. Given 

that the lack of flexibility in the electricity system is a key factor that limits the integration of 

RES [62-64], heat systems can potentially deliver substantial amount of flexibility by providing 

various balancing services and support peak demand management [65]. As presented in [33] 

and [56], district heating can alleviate the curtailment of RES through coordinated operation of 

multiple components in heat networks (e.g. CHP, TES, electric boilers, etc.). Reference [66] 

demonstrates an operating model of multiple heat plants feeding heat to DHNs, while the 

advantages of the deployment of industrial-sized HPs in DHNs are presented in [67-69]. In 

regard to end-use heating technologies with low-carbon potentials, research [70-74] are 
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focused on the analysis of hybrid heating technologies on the consumer side, with the potential 

to connect HPs, gas boilers and resistive heating devices through smart control. The economic 

and operational performances of different hybrid heating technologies are elaborated in [71], 

manifesting significant economic advantages through the deployment of hybrid electric HPs 

and gas boilers (Hybrid HP-B). The authors in [75] demonstrate the potential benefits of 

hydrogen for the operation of the electricity system. Due to the thermal inertia of pipework, 

DHNs can provide flexibility to the electricity system [76]. Moreover, supported by TES which 

is characterized with significantly lower capital cost than electricity storage, the value of DHNs 

can be further enhanced through coordinated operation with electricity systems [77]. Similarly, 

the performance of TES supporting end-use heating appliances is discussed in [71]. Previous 

research regarding the planning of DHNs is mainly focused on the local level [78-80], while 

the national level infrastructure is barely considered. A whole-system approach is presented in 

[48] to optimize the investment of the electricity system where only electric HP is considered 

for decarbonizing the heat sector. In this context, this chapter applies the integrated electricity 

and heat system investment model proposed in Chapter 4 for assessing the economic 

performance of various heat decarbonisation strategies. Compared to the previous developed 

model for multi-energy system planning (e.g., Balmoral model), this model can cover both 

local district and national level infrastructures while taking account of the impact of reduced 

electricity system inertia on the frequency response requirements. Moreover, carbon emission 

restrictions can also be considered to investigate the economic performance of alternative 

heating strategies under specific carbon scenarios.  

This chapter firstly describes the testing system and relative assumptions, and then applies the 

proposed integrated electricity and heat system investment model to assess the economic 

characteristics of different heating technologies for decarbonizing the heat sector and the 

consequential impacts on the investment and operation of the electricity system. Specifically, 

a set of comprehensive case studies are carried out to 1) compare the annual system cost coving 

multiple sectors under the heating strategies of HP-only (electric HP is the only option of heat 

provision), hybrid HP-Bs, DHNs and hydrogen boilers; 2) analyse the impact of different 

heating strategies on the electricity system; 3) present the optimized portfolio of heating 

technologies to achieve the decarbonisation; and 4) demonstrate the impact of building energy 

efficiency on the economic performance of the optimal heating strategy. 
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5.1 System Description and Assumptions 

5.1.1 Simplified Topology of the GB System 

In this chapter, the impacts of different heating technologies on the whole system is evaluated 

on a simplified GB system in which the transmission system is represented by five key regions, 

including 1) Scotland, 2) North England and Wales, 3) Middle England and Wales, 4) South 

England and Wales and 5) London (embedded within the South England and Wales region), 

characterised by a dramatic north to south power flow. Figure 5.1 illustrates the topology of 

the simplified network together with the length and existing capacity of the transmission 

corridors connecting the key regions. In each of the regions, appropriate combinations of 

representative networks characterised by different load density are taken into account to 

represent the aggregated DHNs and electricity distribution networks, following the approach 

proposed in [57]. 

350km

7GW

350km

11GW

Scot

EW-S

EW-N

EW-M

350km

11GW

 

Figure 5.1– Schematic topology and the existing capacity of the GB transmission links between the key regions  

The investment cost of electricity distribution and heat networks are represented as functions 

of electricity and heat demand (these functions are created through exogenous modelling) and 
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incorporated into the system optimization model. The penetration of different heating 

technologies (e.g., heat networks, end-use HPs) can be optimized for each region. Distribution 

networks in different voltage levels are considered. The impact of CHP and industrial HP on 

the reinforcement of HV distribution networks is also taken into account. 

For electricity generation, conventional technologies (including CCGT and OCGT) and low-

carbon technologies (potentially including wind, PV, nuclear and CCS) are considered in the 

investment optimization. The availability factor of wind and solar generation are illustrated in 

Fig. A.1 and Fig. A.2. Generation plant of different categories are modelled individually, with 

identical thermal plants being clustered into groups. The proposed model requires one set of 

integer variables for each group of plants. Since a large amount of existing fossil fuel based 

generators have to be decommissioned to achieve the significant progression to a low-carbon 

system, it would not be straightforward to compare the generation mix across different 

scenarios based on the existing generation system. Therefore, we applied a simplified 

electricity system model without taking account of the existing generation capacity in the UK. 

The key point of this work is to provide general comparisons among different types of heating 

strategies, which can be potentially applied in different countries. For heat generation, the 

comparisons of economic performance across DHN, HP-only and hybrid heating are the focus 

of this chapter. 

5.1.2 Energy Demand Assumptions 

Heat demand has a key influence on the investment of assets in terms of supply, delivery and 

end-use appliance. However, there is a lack of national-level heat demand profile on an hourly 

basis. This chapter applies the heat demand model constructed in [59], which is derived from 

actual heat profiles covering different types of properties and adjusted by the temperature and 

daily gas consumptions with the diversity of load considered. Heat profiles under three 

temperature scenarios (mild, normal and cold) in different future years are created. In this 

chapter, we select the “normal” scenario in 2030 to simulate the annual operation cost. Since 

the life span of generation and heating assets is usually more than 20 years, the investment 

planning has to guarantee that the size of all assets is always adequate to cover the peak demand 

over their life span. As the peak demand is a key driver of the investment cost, we add 3 extreme 
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days (where the demand is 20% higher than the 3 days with the highest demand in the “cold” 

scenario) at the end of the time series of the “normal” scenario) to achieve the redundancy of 

the planning. Additionally, it is assumed that 77% of annual heat demand is for space heating 

while 23% for water heating [71]. The final peak heat demand is estimated at 247 GW and the 

minimum demand is 4GW, with total annual heat energy consumption of 371 TWh, as shown 

in Figure 5.2. 

The electricity demand is divided into non-heat electricity demand and heat-driven electricity 

demand. The maximum non-heat electricity demand is estimated at 72GW while the minimum 

demand at 19GW, with annual energy of 325TWh, as shown in Figure 5.2. The heat-driven 

electricity demand depends on the optimized electrification rate of heat demand. 

  

Figure 5.2– UK heat and electricity demand 

5.1.3 Economic and Operational Parameters of Different Technologies  

Cost and operation data for different types of generation are listed in Appendix Table. A.7 [81, 

82], Table. A.8 [62, 81] and Table. A.9 [62], while the data for heating technologies are given 

in Table. A.10 [71, 83]. It is worth noticing that: (i) the efficiency of ASHP is temperature-

dependant, a linear cost model for ASHP is applied as shown in Figure 5.3, considering a 

constant instalation cost for any size of ASHP; (ii) the capital cost of industrial HP includes 
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both equipment and installation (more details about the technical and economic data of 

industrial HP can be accessed in [84]); (iii) as gas boilers have already been installed in most 

residential houses in the UK, we assume that the deployment of hybrid HP-B does not incur 

investment cost of gas boilers. On the other hand, the cost of the smart control device that is 

required to optimize the operation of hybrid HP-B between ASHPs and gas boilers is 

considered (80£/household according to [71]). 

 

Figure 5.3– Capital cost of HPs 

In terms of the deployment of hydrogen, the capital cost of electrolysis is 586£/kW while the 

hydrogen storage 15£/kW [17]. It is also assumed that the present NG boilers can be upgraded 

to fit hydrogen with a cost of 80£. 

TES can be deployed for both end-use heating and district heating, the prices of which are 

estimated at 2.4£/litre and 80£/m3, respectively [84] (installation, O&M costs, etc., are 

included), with the same stationary loss rate of 1% per hour [71]. It is also assumed that the 

ratio of the energy capacity to the power rating of TES (𝜀𝑠) is 3 hours for end-use TES and 6 

hours for industrial-sized TES, as given in Table. A.11. Relative parameters of representative 

heat networks and distributed networks are estimated in Table. A.5 [27] and Table. A.12 [57]. 

Since the annual energy consumption of circulation pumps in DHN is much lower than the 

annual heat losses under the variable flow operating mode [8], it is considered as additional 

heat losses. The total heat loss in DHN is thus estimated at around 5% of the total heat 

distribution [85, 86]. It should be stressed that different results can be obtained based on 

different cost assumptions, but the model can be applied in different scenarios. 
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Two carbon scenarios, 100g/kWh and 50g/kWh, are analysed in which the total carbon 

emission is quantified from all generation sources covering both electricity and heat sector. It 

is assumed that the gas price is projected at 68p/therm in the 2030 scenario while a carbon price 

of 78£/t is added to the fuel price of generation for the sake of facilitating the deployment of 

low-carbon technologies.  

5.2 Economic Performance of Different Heating Technologies 

This section quantifies the economic performance of different heating strategies (as listed in 

Table 5.1) under the given carbon scenarios by analysing the decoupled whole system costs of 

full deployment of each technology, demonstrating their unique characteristics and giving the 

optimal portfolio of heating technologies [87, 88].  

Table 5.1 – Description of different heating strategies 

Case of Heating strategy Description 

Hybrid HP-B 

All residential heat demand is supplied by hybrid HP-B. The size 

of HP and gas boiler is optimized by the methodology presented 

in Chapter 4. 

HP-only 

All residential heat demand is supplied exclusively by ASHP. The 

size of a single ASHP can cover the peak demand of individual 

households. 

DHN 

All residential heat demand is supplied by DHN. The size of each 

heat plant applied in DHN is optimized by the methodology 

presented in Chapter 4. 

Hydrogen Boiler 

All residential heat demand is supplied by hydrogen Boilers. The 

size of a single hydrogen Boiler can cover the peak demand of 

individual households. 

Optimal portfolio 

Residential heat demand can be potentially supplied by hybrid 

HP-B, ASHP and DHN, the penetrations of which are optimized 

by the methodology presented in Chapter 4. 
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In order to avoid the confusion caused by the comparison across multiple heating strategies, 

we choose hybrid HP-B as the baseline due to its significant economic advantage [71] and 

compare the other cases with the baseline.    

5.2.1 Full Deployment of Different Heating Technologies 

Comparison of economic performance between hybrid HP-B and HP-only 

Figure 5.4 demonstrates the decoupled annual system costs under full deployment of hybrid 

HP-B and HP-only in the two given carbon scenarios. Overall, the annual system cost for the 

deployment of hybrid HP-Bs is about 20.1% lower than for the deployment of HP-only under 

the carbon target of 100g/kWh and 19.1% lower under the carbon target of 50g/kWh.  

To be more specific, the application of hybrid HP-B leads to higher OPEX (represented by red 

blocks, potentially covering CCGT, OCGT, CHP, gas boilers and gas CCS) against HP-only, 

due to a significant investment switch from ASHPs to EGB. Since gas boilers require no further 

investment cost, significant savings are achieved when the hybrid HP-B is fully deployed. A 

decreased investment in ETES is delivered in the case of hybrid-HP-Bs as the improved 

flexibility provided by gas boilers weakens the system dependence on ETES. It is worth 

noticing that most of the benefits through the deployment of hybrid HP-Bs against HP-only is 

driven by the reduced investment in end-use heating appliance (indicated by blue blocks), while 

further savings are achieved in 1) distribution networks reinforcement (DN CAPEX) due to 

significant reduction in peak electricity demand which is compensated by gas-based heat, and 

2) OCGT CAPEX, which is also driven by the reduced peak electricity demand. A noticeable 

increase in LG CAPEX (represented by green blocks) can be observed in the case of hybrid 

HP-Bs, as a compensation for the extra consumption of fossil fuels (increase in OPEX) in order 

to meet the carbon limit. Carbon target has a crucial influence on the investment in low carbon 

generation, consequently impacting the system OPEX.  

When improving the carbon intensity target from 100g/kWh to 50g/kWh, it can be observed 

that the CAPEX of low carbon generation significantly rises while the OPEX remarkably 

reduces, leading to a minor net increase in the total system cost. 
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Figure 5.4– Annual decoupled system cost of full deployment of Hybrid HP-B and HP-only 

Comparison of economic benefits between hybrid HP-B and DHN 

In spite of a low penetration in the present UK system, district heating is a potential alternative 

of end-use heating (represented by hybrid HP-B) to deliver the ambitious carbon target.  Figure 

5.5 compares the annual system costs under full deployment of hybrid HP-Bs and DHN in the 

two given carbon scenarios. Overall, the annual system cost for the deployment of hybrid HP-

Bs is about 16.8% (16%) lower than for the deployment of DHN under the carbon target of 

100g/kWh (50g/kWh). 

It can be further observed that large savings are achieved in OPEX for the case of DHN due to 

the improved efficiency of district heating plants/devices; A relatively slight reduction in DN 

CAPEX is achieved when DHN is deployed, as a consequence of the electricity consumption 
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shift from low voltage distribution network (driven by EHP) to high voltage distribution 

network (driven by IHP). It is also demonstrated that the application of DHN reduces the 

investment in CCGT due to the deployment of CHP. Further savings are achieved in LG 

CAPEX, indicating that the DHN has a higher carbon efficiency which can alleviate the 

requirement of decarbonizing electricity sectors. In spite of the multiple benefits brought by 

DHN as analysed above, the huge investment in DHN CAPEX which accounts for 

approximately 80% of the investment of district heating (represented by brown blocks) 

dramatically jeopardizes the competitiveness of large-scale deployment of DHNs against 

hybrid HP-Bs. 

 

Figure 5.5– Annual decoupled system cost of full deployment of Hybrid HP-B and DHN 

However, unlike hybrid HP-Bs whose economical characteristics are virtually geographically 

independent, the competitiveness of DHN highly depends on the heat density of the deployed 
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area. Figure 5.5 indicates that it is not advantageous to deploy DHN on the whole scale, but 

DHN can be more economic than hybrid HP-B in highly populous areas. Therefore, it is 

essential to give an optimal portfolio of heating technologies while indicating their penetration 

in different geographical type of areas (e.g. urban and rural). 

Comparison of economic benefits between hybrid HP-B and hydrogen boiler 

Hydrogen boiler is another potential low-carbon heating technology that can effectively 

decarbonise the heat sector. SMR and electrolysis of water are regarded as two main methods 

for industrial bulk production of hydrogen. This section is focused on the investigation of the 

economic potential of using electrolysis to produce hydrogen, due to its major interactions with 

the electricity system. 

Figure 5.6 demonstrates the decoupled annual system costs under full deployment of hybrid 

HP-B and hydrogen boilers in the two given carbon scenarios. Overall, the annual system cost 

for the deployment of hybrid HP-Bs is about 30.4% lower than for the deployment of hydrogen 

boilers under the carbon target of 100g/kWh and 28.4% lower under the carbon target of 

50g/kWh. Therefore, full deployment of hydrogen boilers is the least economic heating strategy 

to decarbonise the heat sector compared to the other three investigated strategies. Specifically, 

dramatic increase in the investment of generation can be observed in the case of hydrogen 

boiler than the other cases, due to increased electricity demand driven by the production of 

hydrogen and reduced heat efficiency of hydrogen boilers (compared to HPs). Additionally, 

extra investment in the infrastructure of hydrogen production (i.e., electrolysis plants and 

hydrogen storage) and end-use appliances (i.e., the upgrade of natural gas boilers to fit 

hydrogen) are required, further jeopardising the competitiveness of hydrogen boilers. 

Moreover, it should be emphasised that the cost of upgrading the current gas network to fit the 

delivery of hydrogen or the investment of new hydrogen network is not taken into account, 

which can potentially be a major limiting factor of large-scale application of hydrogen. All 

these results indicate that the application of hydrogen boilers is highly capital-intensive 

compared to the other heating technologies. 

However, it can be noticed that considerable amounts of RES is deployed together with the 

application of hydrogen boilers, which significantly increases the requirement of OCGT to 
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serve as back-up capacities. Meanwhile, nuclear and CCS are no longer needed. This is because 

the coordinated operation of the electrolysis and hydrogen storage can provide remarkable 

flexibility to the electricity system, thus boosting the integration of RES. This result 

demonstrates the environmental advantage of electrolysis-based hydrogen in decarbonising the 

energy system.   

 

Figure 5.6– Annual decoupled system cost of full deployment of Hybrid HP-B and DHN 

5.2.2 The Optimal Portfolio of Heating Technologies 

This section optimizes heating technology mix by considering geographic factors that can 

influence the economic characteristics of DHN and compares the whole system costs of full 

deployment of hybrid HP-Bs against the economically optimal portfolio of different heating 

technologies in given carbon targets, as demonstrated in Figure 5.7.  
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Figure 5.7– Annual decoupled system cost of optimal portfolio and full deployment of Hybrid HP-B 

Overall, there is only a minor difference (about 0.4% for both carbon targets) between the total 

system costs of hybrid HP-B and the optimal portfolio, indicating that limited benefits can be 

brought in through optimized deployment of DHN and hybrid HP-B based on the assumptions 

for the UK case. 

It is further observed in Figure 5.8 that 16% (21%) of total heat demand is supplied by DHN 

under the carbon target of 100g/kWh (50g/kWh), where all DHN are deployed in urban areas. 

DHN covers 41% and 54% of heat provision in urban areas in two given carbon scenarios, 

manifesting the improved competitiveness of DHN in populous regions. It is worth noticing 

that the competitiveness of DHN is further enhanced in a more demanding carbon scenario, 

due to its better performance in decarbonisation. 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Hybrid HP-B Optimal
Portfolio

100g/kWh

A
n

n
u

al
 d

e
co

m
p

o
se

d
 c

o
st

 (
£

b
n

/y
r)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Hybrid HP-B Optimal
Portfolio

50g/kWh

A
n

n
u

al
 d

e
co

m
p

o
se

d
 c

o
st

 (
£

b
n

/y
r)

OPEX-other

OPEX-CCS

ITES CAPEX

IGB CAPEX

DHN CAPEX

IHP CAPEX

CHP CAPEX

ETES CAPEX

EGB CAPEX

ASHP CAPEX

DN CAPEX

OCGT CAPEX

CCGT CAPEX

LG CAPEX-CCS

LG CAPEX-RES

LG CAPEX-Nuclear



100 Evaluation of Alternative Heating Decarbonisation Strategies 

 

 

Figure 5.8– Heating technology distribution in each type of areas for the optimal portfolio 

HP-only and hydrogen boilers are not used in the optimal portfolio due to their diseconomy 

under the assumptions in this chapter. However, further simulations show that if the carbon 

target is tightened to 10g/kWh, 3.22% of heat demand will be supplied by electrolysis-based 

hydrogen, due to its environmental advantage of boosting the integration of RES. 

5.2.3 Sensitivity Studies 

The conclusions on the economic performance of different heating strategies drawn from 

Section 5.2.1 and 5.2.2 are based on the cost assumptions from existing references. However 

there are significant uncertainties in the cost for these heating technologies which may 

fundamentally change their competitiveness. This section conducts sensitivity analyses on the 

cost of ASHP and heat networks which have crucial impacts on the economic performance of 

different heating strategies.    

5.2.3.1 Sensitivity analysis on ASHP cost 

Figure 5.9 (a) illustrates the annual whole system cost of different heating strategies in a series 

of ASHP capital cost scenarios under the carbon target of 100g/kWh (the conclusions are 

similar for 50g/kWh).   

As the system cost of DHN is not related to the cost of ASHP, it keeps stable in the whole cost 

range. It can be seen that the competitiveness of HP-only is highly sensitive to the variation of 

ASHP capital cost while the economic performance of hybrid HP-B and the optimal portfolio 

are much more robust. Figure 5.9 (b) demonstrates the impact of ASHP installation cost on the 



5.2 Economic Performance of Different Heating Technologies 101 

 

annual whole system cost of different heating strategies under the carbon target of 100g/kWh, 

indicating HP-only and hybrid HP-B have similar sensitivity to the installation cost of ASHP. 

 

 

Figure 5.9– Sensitivity study on ASHP capital cost 

5.2.3.2 Sensitivity analysis on heat network capital cost 

The capital cost of heat networks can be influenced by many factors, e.g. the geological 

condition of the excavation, the level of existing utility congestion, etc., leading to a significant 

uncertainty. Figure 5.10 (a) illustrates the sensitivity of different heating strategies to the 

variation of heat network capital cost. As can be seen, the whole system cost of DHN is 

dramatically sensitive to the variation of heat network capital cost. When the cost is increased 

by 15%, the economic advantage for the full deployment of DHN over HP-only is gone. It can 

be further observed from Figure 5.10 (b) that the optimal penetration of DHN drops rapidly 

with the increase of heat network capital cost. When the cost climbs by 30%, only 1% of heat 

demand is supplied by DHN, leaving hybrid HP-B virtually the optimal heating strategy.  
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Figure 5.10– Sensitivity study on the capital cost of heat network 

5.3 The Impact of Heating Strategy on Electricity System 

As a crucial way to fulfil the decarbonisation target, the electrification of heat sectors builds a 

strong connection between electricity and heat systems. As a result, the investment and 

operation of electricity system will highly depend on the prospective heating strategies. This 

section compares how different heating technologies shape the electricity system and gives the 

generation mix where optimal heating strategy is applied.   

5.3.1 Full Deployment of Different Heating Technologies 

Comparison of electricity systems under full deployment of hybrid HP-B and HP-only 

By using gas boiler as a supplementary heat source during peak time, hybrid HP-B requires 

less expansion of electricity system than HP-only. Figure 5.11 compares the generation mix 

and decomposed annual electricity production between cases where hybrid HP-B and HP-only 

are fully deployed under given carbon targets.  
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Figure 5.11– Generation mix and annual electricity production under full deployment of hybrid HP-B and HP-

only under different carbon targets 

From Figure 5.11 (a), it can be observed that part of RES (wind and PV) is replaced by nuclear 

power in the case of hybrid HP-B (compared to the case of HP-only), due to a decrease in the 

flexibility provided by heat sector, driven by reduced investment in ETES and ASHP (which 

can provide ancillary services through interrupted operation). Substantial amount of OCGT 

that serves as back-up capacity is saved in the case of hybrid HP-B, on account of a significant 

reduction in peak electricity demand through gas supplying the peak heat demand. In terms of 

annual electricity generation, it can be seen from Figure 5.11 (b) that 42TWh of annual 

electricity generation is saved when heating technology is switched from HP-only to hybrid 

HP-B, mainly due to the shift of electricity-based heat generation to gas-based heat generation 

and reduced heat losses in ETES. The difference in annual generation is further reflected on 

the decreased operation efficiency of CCGT where the annual generation of CCGT in the case 
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of hybrid HP-B is notably lower than in the case of HP-only while the installed capacities in 

both cases are almost the same. 

When the carbon target is set at 50g/kWh (compared to 100g/kWh), as shown in Figure 5.11 

(c) and Figure 5.11 (d), less RES and more nuclear is invested, as a result of increased 

integration costs of RES in more demanding carbon scenarios. NG CCS is also required to 

assist in accommodating RES while keeping the carbon emission within limits. Since hybrid 

HP-B can provide less flexibility for the electricity system compared with HP-only, more NG 

CCS is invested for the sake of RES integration. 

Comparison of electricity systems under full deployment of hybrid HP-B and DHN 

The deployment of DHN enables the application of CHP which can potentially reshape the 

electricity system. Figure 5.12 compares the generation mix and annual electricity production 

between cases where hybrid HP-B and DHN are applied.  

It can be seen from Figure 5.12 (a) that almost all CCGT in the case of hybrid HP-B is replaced 

by CHP in the case of DHN as CHP can provide similar services to the electricity system with 

a higher overall energy efficiency. A considerable difference in nuclear generation can be 

observed from Figure 5.12 (b), indicating that the system with hybrid HP-B is less flexible than 

that with DHN. Given that the investment cost of industrial-sized TES is significantly lower 

than that of end-use TES, it is more economic to deploy TES in DHN, granting DHN the 

advantage of providing more flexibility to the electricity system. As a consequence, more RES 

is accommodated in the case of DHN. A gap of 39.4TWh in the annual generation between 

these 2 cases (100g/kWh) is noteworthy, which manifests the high energy efficiency of DHN 

due to the high COP of industrial-sized HP (3.8) over ASHP (3) and the high overall efficiency 

of CHP. When carbon target is tightened to 50g/kWh, a remarkable decrease in CHP capacity 

is observed due to its carbon intensity. As a consequence, less RES can be accommodated while 

more nuclear is installed. It is interesting to notice that no NG CCS is invested in the case of 

DHN in contrast to the case of hybrid HP-B, as sufficient flexibility can be provided from DHN 

so that CCS, as the most expensive source of flexibility in this model, is not necessary. 
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Figure 5.12– Generation mix and annual electricity production under full deployment of hybrid HP-B and DHN 

under different carbon targets 

Comparison of electricity systems under full deployment of hybrid HP-B and hydrogen boiler 

The application of hydrogen boilers requires mass deployment of electrolysis and hydrogen 

storage. The coordinated operation of the electrolysis and hydrogen storage can potentially 

provide huge flexibility to the electricity system. For example, electrolysis can use surplus RES 

which will otherwise be curtailed to produce hydrogen. This hydrogen is then stored for later 

use; additionally, ancillary services can be delivered by reducing the production of electrolysis 

without compromising the energy requirement due to the existence of hydrogen storage, thus 

boosting the integration of RES. Therefore, environmental benefits driven by the shift from 

nuclear to RES for the decarbonisation of the energy system can be potentially delivered by 

electrolysis-based hydrogen.    
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Figure 5.13 compares the generation mix and decomposed annual electricity production 

between cases where hybrid HP-B and hydrogen boilers are fully deployed under given carbon 

targets. It can be observed that full deployment of hydrogen requires a dramatic increase in the 

generation capacity compared to the other cases. As all the heat demand is supplied by 

electrolysis-based hydrogen, the energy covered by natural gas in the case of Hybrid HP-B and 

DHN is shifted to electricity, thus increasing the requirement of generation capacity. 

Additionally, the reduced heat efficiency of hydrogen boilers compared to HPs further enhance 

the electricity demand. 

 

 

Figure 5.13– Annual decoupled system cost of full deployment of Hybrid HP-B and DHN 

A dramatic boost of RES and OCGT can be further observed with the application of hydrogen 

boilers. Meanwhile, nuclear and CCS are not seen economic in this case. This results indicate 

the boosting effect of electrolysis-based hydrogen on the integration of RES. 
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5.3.2 Optimal Heating Technology Portfolio 

The generation mix and decomposed annual electricity production in the scenario where 

heating technologies are fully optimized are given in Figure 5.14.  

 

 

Figure 5.14– Generation mix and annual electricity production under optimal portfolio and full deployment of 

hybrid HP-B 

As can be seen, the most distinct difference between the cases of optimal portfolio and hybrid 

HP-B is the role CHP plays in the electricity system. About half of the CCGT in the case of 

hybrid HP-B is substituted by CHP in the case of optimal portfolio under the carbon target of 

100g/kWh while a large portion of both NG CCS and CCGT are switched to CHP when the 

carbon target is tightened to 50g/kWh. It can be further observed that 13.19TWh and 7.29TWh 

of annual generation is saved under carbon target of 100g/kWh and 50g/kWh, due to the 

improved efficiency of the heat sources deployed in DHN. However, a higher penetration of 
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DHN is deployed in the carbon scenario of 50g/kWh (21%) than that in the carbon scenario of 

100g/kWh (16%), as analysed in 5.2.1, indicating that the overall energy efficiency of DHN is 

reduced with the tightening of carbon restriction. This is because increased capacity of 

industrial-sized HPs is installed in DHNs as a compensation for diminished scale deployment 

of CHP when the carbon target is tightened, lowering the overall efficiency of DHN. 

5.4 The Impact of Heating Strategy on Heat System 

As different heating strategies source from different heat plants/appliances, it is necessary to 

find out the optimized technology combination of each heating strategy. 

 

Figure 5.15– Heating technology mix of different heating strategies under different carbon targets 

Figure 5.15 demonstrates the heating technology mix when different heating strategies are 

deployed, where green blocks represent district heating technologies, red blocks represent end-

use ASHP and NG boilers, while blue blocks represent hydrogen boilers. 
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Compared to the case of HP-only, 82.2% (100g/kWh) and 81.2% (50g/kWh) of ASHP is saved 

while gas boilers are used to fill the gap of heat supply in the case of hybrid HP-B. A surplus 

of total capacity can be observed in “hybrid HP-B” and “optimal portfolio” (peak heat demand 

is 247GW), which is because the COP of ASHP is sensitive to the ambient temperature, as a 

result of which the efficiency of EGB is higher than that of ASHP in extremely cold days, 

therefore, only a part of ASHP is in operation while the rest of demand is covered by EGB in 

these days, leading to a deployment of over-sized EGB. Basically, the optimized capacity of 

EGB in “hybrid HP-B” is a balance between reduced energy efficiency due to temperature 

variation and the increased investment cost of EGB (O&M cost). 

 

Figure 5.16– Annual heat production of different heating strategies 

In the case of DHN, CHP and IHP supply the base load while IGB covers the peak load. Since 

the COP of IHP is not dependant on the ambient temperature, investment of over-sized heat 

plants is not incurred. When carbon target is tightened from 100g/kWh to 50g/kWh, a switch 

of heat plants from CHP to HP occurs. Meanwhile the load factor of CHP decreases from 

55.0% to 44.3% while the load factor of HP increases from 68.1% to 70.6%, indicating that 
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CHP operates in part-load more frequently due to an increased requirement in ancillary services 

in a more demanding carbon scenario. 

The annual heat production from different heat sources in each heating strategy is given in 

Figure 5.16. From the bar of “Hybrid HP-B”, it can be observed that ASHP, which accounts 

for 16.2% (100g/kWh) and 17.0% (50g/kWh) of heat appliances in capacity, covers 76.0% 

(100g/kWh) and 79.9% (50g/kWh) of annual heat production. 

Table 5.2 gives the aggregated size (in GWh) of TES for each heating strategy. As can be seen, 

“DHN” has the largest size of TES due to reduced investment cost of ITES while “Hybrid HP-

B” has the lowest requirement of TES, thanks to the flexibility of gas. Comparing the three 

individual heating technologies, “DHN” incurs the highest heat generation, followed by “HP-

only”, with “Hybrid HP-B” producing the least thermal energy. The difference in heat 

generation is mainly attributed to the difference in the penetration of TES in which heat loss 

(1% per hour for both ITES and ETES) constantly occurs. Another reason accounting for the 

increased heat production for “DHN” is that heat loss also occurs in heat networks which is 

associated with the insulation level of pipework. In the case of tighter carbon target, more TES 

is installed to provide flexibility to the system, leading to increased heat losses (reflected in 

Figure 5.16 as increased heat production).  

Table 5.2 – Aggregated size of TES for each heating strategy 

Carbon scenario Size of TES Optimal Hybrid HP-B HP-only DHN 

100g/kWh 
ITES (GWh) 73.2 NA NA 431.1 

ETES (GWh) 71.3 86.1 346.4 NA 

50g/kWh 
ITES (GWh) 133.1 NA NA 484.9 

ETES (GWh) 91.1 111.2 350.0 NA 
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5.5 The impact of building energy efficiency on the performance 

of the optimal heating strategy 

5.5.1 The impact of building energy efficiency on whole system costs  

The building energy efficiency has a significant impact on the heat demand level. The 

improvement of building energy efficiency provides an alternative perspective to decarbonise 

the energy system in a cost-effective way. As investigated in Section 3.3.3, when the building 

insulation is improved, thermal energy consumption for space heating decreases linearly, which 

may drive savings across different sectors. 

 

Figure 5.17– Impact of building energy efficiency on the system cost under different carbon targets 
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Figure 5.17 demonstrates the relationship between the level of building energy efficiency and 

decomposed system costs in the case of the optimal heating technology portfolio under 

different carbon targets. For each carbon target, three scenarios with improved building energy 

efficiency (e.g., Low, Medium and High) are tested. The “Low” scenario is the baseline which 

has been described in 5.1. For the scenarios of “Medium” and “High”, it is assumed that 25% 

and 50% reduction in heat consumption per household is achieved, respectively. It can be 

observed that when the building energy efficiency improves, the total system cost decreases. 

Specifically, the investment in district-heating technologies (brown blocks) is gradually shifted 

to distributed-heating technologies (blue blocks), meanwhile, large savings are achieved in the 

total investment of heat sectors (e.g., both district heating and distributed heating).  

It is interesting to observe that significant decrease in the investment of district heating occurs 

with the improvement of building energy efficiency, while the increase in the investment of 

distributed heating is minor. This is because DHN CAPEX mainly depends on the length of 

the pipeline. When the layout of consumers in a district has been determined, the potential 

capital cost of DHN in that district is also determined and will not be influenced by the variation 

of heat demand. Therefore, the lower the heat demand (kW), the higher the unit investment 

(£/kW) of DHN. As a consequence, the penetration of DHNs decreases with the improvement 

of building energy efficiency. In contrast, the investment of distributed-heating technologies 

(i.e., Hybrid HP-B) is influenced by two factors, the first factor is its penetration, which is 

increased to compensate the decrease in DHNs; the second one is the heat demand (kW) per 

household, which is decreased with the improvement of building energy efficiency. Therefore, 

the change of investment in distributed-heating technologies is minor across different building 

energy efficiency scenarios, due to two opposite contributors. This result indicates that the 

competitiveness of DHNs reduces when building energy efficiency improves. 

Additionally, it is noticeable that the investment of RES decreases with improved building 

energy efficiency. There are limiting factors: firstly, reduced heat demand requires less 

generation; secondly, decreased availability of flexibility from heat sectors (due to reduced 

investment) limits the integration of RES. The first factor also leads to investment savings in 

the other types of generation, but the second factor will boost the investment in nuclear or CCS 
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to deliver the carbon target. As a consequence, the variation in nuclear and CCS is not 

consistent in different scenarios. 

 

Figure 5.18– Savings through improved energy efficiency under different carbon targets 

Moreover, the impact of carbon target on the value of building energy efficiency improvement 

is demonstrated in Figure 5.18. It can be observed that the more demanding the carbon target 

is required, the more savings can be achieved through the improved building energy efficiency. 

This result is more apparent in the “High” scenario. 

5.5.2 The impact of building energy efficiency on the value of pre-heating 

In Section 3.2.2.2, pre-heating was investigated in the context of building energy management, 

the results indicate that when the building energy efficiency is increased, less benefits can be 

achieved through pre-heating, since the reduction of heat demand will compress the space of 

operational savings.  

However, when considering the investment cost of different assets, the benefits of pre-heating 

can be significantly enhanced through the improvement of the building insulation condition. 

Figure 5.19 demonstrates the savings through pre-heating under different building energy 

efficiency and carbon targets, the results are obtained by comparing the case when pre-heating 

0

1

2

3

4

5

6

7

8

Medium High Medium High Medium High

100g/kWh 50g/kWh 25g/kWh

A
n

n
u

al
 c

o
st

 s
av

in
gs

 (
£

b
n

/y
e

ar
)

Scenarios of building energy efficiency and carbon targets



114 Evaluation of Alternative Heating Decarbonisation Strategies 

 

is enabled in all the households and the case where pre-heating is not allowed. It can be 

observed that the system savings consistently increase with the improvement of the building 

energy efficiency in different carbon scenarios. Additionally, the more demanding the carbon 

target is required, the more savings can be achieved. This is because reduced building energy 

losses driven by the improvement of energy efficiency can introduce extra flexibility to pre-

heating, thus driving savings in the investment costs. The value of this flexibility is increased 

in more demanding carbon scenarios.   

 

Figure 5.19– Savings through pre-heating under different building energy efficiency and carbon targets 

5.6 Conclusions of the Chapter 

This chapter applies a whole-system approach to assess the economic performance of various 

heating strategies in the decarbonisation of the heat sector through coordinated operation with 

the electricity system. A set of comprehensive case studies are carried out to compare the 

economic performance of different heating strategies from multiple perspectives and analyse 

the associated impacts on the electricity system.  
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The case studies on the full deployment of individual heating technologies suggest that hybrid 

HP-B has a significant overall economic advantage over HP-only, DHN and the hydrogen 

boiler, mainly due to investment savings from the presence of residential gas boilers. To be 

more specific, the comparison of hybrid HP-B over HP-only indicates that hybrid HP-B can 

drive savings over HP-only through the reduced requirement of distribution network 

reinforcement and OCGT as back-ups, due to the significant reduction of peak electricity 

demand which is compensated by gas-based heat, however, the operation cost increases as a 

result of reduced level of electrification in the heat sector, while more low-carbon generation 

is invested to compensate for the extra carbon emission from the gas consumption. The 

comparison of hybrid HP-B over DHN indicates that the main advantage of hybrid HP-B is the 

saved investment in the construction of the pipework. However, the investment cost of DHN 

highly depends on the heat density of the deployed area and hence grants DHN the economic 

advantages to be deployed in highly populous areas. Among all the investigated heating 

technologies, hydrogen boilers is the most capital-intensive, making it not suitable for large-

scale deployment yet. However, since it can boost the integration of RES, its competitiveness 

can be improved under a more demanding carbon scenario. 

The economic assessment for the optimal portfolio of heating technologies is performed given 

the cost assumptions, demonstrating that under the carbon target of 100g/kWh, 16% of the total 

heat demand is covered by DHN (all deployed in urban areas) while the rest supplied by hybrid 

HP-B. When the carbon target is tightened to 50g/kWh, a 5% increase in the penetration of 

DHN is deployed (21% in total), manifesting its enhanced competitiveness in a more 

demanding carbon scenario. 

A series of sensitivity studies are performed to illustrate the robustness of the heating strategies 

to the cost uncertainty of heating technologies. The results also clearly demonstrate the changes 

on the electricity side driven by the different decarbonisation strategies in the heating system.  

The building energy efficiency has a significant impact on the whole system cost. When the 

building energy efficiency improves, the investment in district-heating technologies is 

gradually shifted to distributed-heating technologies, meanwhile, large savings are achieved in 

the total investment of heat sectors.  
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The capital cost of DHN mainly depends on the length of the pipeline. When the layout of 

consumers in a district has been determined, the potential capital cost of DHN in that district 

is also determined and will not be influenced by the variation of heat demand. Therefore, the 

lower the heat demand (kW), the higher the unit investment (£/kW) of DHN. As a consequence, 

the competitiveness of DHNs reduces when building energy efficiency improves. Additionally, 

the investment of RES decreases with improved building energy efficiency due to reduced heat 

demand and decreased availability of flexibility from heat sectors. 

The value of building energy efficiency improvement is also impacted by carbon targets, the 

more demanding the carbon target is required, the more savings can be achieved through the 

improved building energy efficiency. Additionally, the whole system benefits through pre-

heating increase with the improvement of the building energy efficiency in different carbon 

scenarios. The more demanding the carbon target is required, the more savings can be achieved. 

This is because reduced building energy losses driven by the improvement of energy efficiency 

can introduce extra flexibility to pre-heating, thus driving savings in the investment costs. The 

value of this flexibility is increased in more demanding carbon scenarios.   

The conclusions in this section can provide guidance of future heating strategy planning for the 

transition to a decarbonised energy system. 



 

Chapter 6 Assessment of Benefits of Integrated 

Heat and Electricity Systems 

The interaction between electricity and heat systems will play an important role in facilitating 

the cost effective transition to a low carbon energy system with high penetration of renewable 

generation. This section presents a novel integrated electricity and heat system model in which, 

for the first time, operation and investment timescales are considered while covering both the 

local district and national level infrastructures. This model is applied to optimize 

decarbonization strategies of the UK integrated electricity and heat system, while quantifying 

the benefits of the interactions across the whole multi-energy system, and revealing the trade-

offs between portfolios of (a) low carbon generation technologies (renewable energy, nuclear, 

CCS) and (b) district heating systems based on heat networks and distributed heating based on 

end-use heating technologies. Overall, the proposed modeling demonstrates that the integration 

of the heat and electricity system (when compared with the decoupled approach) can bring 

significant benefits by increasing the investment in the heating infrastructure in order to 

enhance the system flexibility that in turn can deliver larger cost savings in the electricity 

system, thus meeting the carbon target at a lower whole-system cost. 

Heating accounts for approximately half of the total energy consumption and is responsible for 

over 25% of carbon emissions in the UK. Therefore, decarbonization of the heat sector is one 

of the key challenges in achieving the 80% carbon reduction target by 2050 [59]. There is 

growing evidence that the interaction between electricity and heat systems will be important in 

facilitating cost effective transition to a lower carbon system by efficiently accommodating 

RES. The lack of flexibility in the electricity system is a key limiting factor for effectively 

integrating RES [62, 89-91], whereas the heat system and the electrified transport sector can 

potentially provide considerable amount of flexibility by delivering a range of balancing 

services and support the management of peak demand [33, 65, 92]. Both district (DHNs) and 
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end-use heating technologies (e.g. end-use HPs) are potential options for the decarbonization 

of the heat sector. As presented in [33] and [56], HNs can alleviate wind curtailment through 

coordinated operation of CHP with thermal energy storage (TES). The potential role of DHNs 

in a 100% renewable energy sources based energy system is investigated in [93]. CHP 

generation supplying heat to DHNs is modelled in [30, 33, 94, 95], while the benefits of the 

application of industrial size HPs in DHNs are outlined in [68, 69, 96]. In terms of end-use 

heating, the impacts of HPs on wind power integration have been investigated in [97, 98] while 

[70-72, 99] focuses on the analysis of hybrid heating technologies at consumer premises, which 

can potentially link electrical HPs, gas boilers and resistive heating devices. The economic and 

operational advantages of different combinations of end-use heating technologies are analyzed 

in [71, 99], demonstrating the cost-effectiveness of hybrid electrical HPs and gas boilers 

(Hybrid HP-B). The authors in [100] proposed a decomposed algorithm to calculate the 

combined heat and electricity system based on a real system. Integrated heat and electricity 

dispatch considering thermal inertia of buildings has been analyzed in [36]. DHNs can also 

improve the efficiency of energy supply through pre-heating [53, 101]. TES, characterized with 

significantly lower capital cost than electricity storage, can further enhance the value of DHNs 

in integrated electricity and heat systems [77, 102]. Similarly, benefits of end-use TES 

supporting hybrid HP-B are demonstrated in [71]. 

Previous research on the investment and operation optimization of DHNs mostly focuses on 

the local level infrastructure [78-80]. The authors in [48] proposed a whole-system investment 

model for the electricity system where HPs are assumed to be the only option for the 

decarbonization of the heat sector. In this context, a novel modeling framework for the whole 

system optimization of the combined electricity and heat system is proposed in this section. In 

the context of the previous work, the proposed model for the first time considers operation and 

investment timescales while covering both local and national level of heat and electricity 

infrastructures. Furthermore, the impact of reduced system inertia on the frequency response 

requirements is explicitly modelled while security constraints and carbon emission targets are 

also included in the proposed framework. This approach is applied to optimize the 

decarbonization strategy of the combined electricity and heat system, selecting the cost 

effective portfolio of heating technologies, including DHNs (supplied by CHP plants, industrial 

size HPs, gas boilers as well as TES), and consumer end hybrid HP-Bs. The proposed model 
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simultaneously optimizes, for the first time, the investment in electricity generation (including 

conventional and low carbon generation), heating plants/appliances, DHNs, reinforcement of 

electricity transmission and distribution networks while considering system operation cost and 

taking into account frequency regulation and operating reserve requirements.  

Through several case studies, we demonstrate the interaction between electricity and heat 

systems across operation and investment timescale while simultaneously managing conflicts 

and synergies between local and national level objectives. Key contributions of this section can 

be summarized as: 

1) Presenting a novel combined electricity and heat system modeling framework considering 

both operation and investment timescales with spatial granularity including local and national 

level infrastructure. 

2) Quantifying the benefits of the integrated planning of electricity and heat systems and 

demonstrating the impact on the technology mixes in both electricity and heat sectors. 

6.1 Interactions between Electricity and Heat Systems 

As shown in Figure 6.1, the electricity and heat systems are coupled through end-use hybrid 

HP-Bs as well as district based CHPs and HPs. The absence of coordination would drive 

inefficient investments in both electricity and heat systems (at both local and national level). 

On the other hand, inherent flexibility in the heat system can be used to alleviate these 

challenges through coordinated operation and investment with the electricity system. For 

instance, inherent storage in DHN (the pipework) enhanced by TES and the CHP that adjusts 

power-to-heat ratio, can provide balancing service needed to support efficient integration of 

RES, while reducing peak demand and the investment in back-up generation [103]. 

Furthermore, if demand side response (DSR) is enabled, flexible end-use hybrid HP-Bs could 

bring benefits across all sectors of the electricity system. The developed model considers all 

these potential interactions so that the whole system benefits of the integrated electricity and 

heat system can be quantified. 
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Figure 6.1– Interaction and energy balance of integrated electricity and heat system 

The heat system can potentially provide substantial flexibility for the electricity system. Given 

that there are different understandings in the concept of flexibility in different reseach, it is 

worth stressing that the flexibility in this chapter particularly refers to 3 aspects: 1) the ability 

to shift demand, 2) the ability to provide frequency response service and 3) the ability to 

provide operating reserve. To be more specific, the coordinated operation of CHP, HP and TES 

can shift heat-driven electricity demand and provide frequencey response as well as operating 

reserve; End-use HPs, through temporarily turning down their output (which will not 

compromise the comfort due to the thermal inertia of buildings), can achieve the same purpose 

with the support of end-use TES. Moreover, preheating can further enhance the flexibility of 

the electricity system by shifting demand. All these heat system based flexibility measures have 

been modelled in Chapter 4 explicitly.  
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6.2 Analysis of Benefits through System Integration 

In this section, the integrated electricity and heat system model proposed in Chapter 4 is applied 

to two GB 2030 scenarios, with different carbon targets, involving different mixes of low 

carbon generation, as shown in Table 6.1. In both scenarios, CCS plants are allowed to be 

added to the mix if the carbon targets cannot otherwise be satisfied. In the integrated electricity 

and heat system, the overall carbon emissions are quantified from all sources involved in 

meeting both electrical and thermal demand [104]. 

Table 6.1 – GB 2030 scenarios of low carbon generation 

Tested scenarios Wind (GW) PV (GW) Nuclear (GW) 

100g/kWh 50 20 8 

50g/kWh 80 35 10 

 

Regarding decarbonization of heat sector, it is assumed that HNs and hybrid HP-Bs are two 

main technologies delivering low-carbon heat in 2030, based on the conclusions of Chapter 5. 

The tested system and relative parameters are same as described in 5.1. 

6.2.1 Overall Benefits of Integrated Electricity and Heat System 

In order to quantify the benefits through the integration of electricity and heat systems, the 

whole system costs of the integrated and decoupled systems are compared. Figure 6.2 presents 

the annual savings in different system segments enabled by the integration of electricity and 

heat systems in two carbon scenarios considered.  

As shown in Figure 6.2, the integration of electricity and heat systems delivers significant 

savings in operation costs (OPEX), represented by red blocks, comprising operation costs of 

NG CCS, NG CHP, CCGT, OCGT and gas boilers, driven by significantly enhanced flexibility 

and efficiency of system operation through application of more efficient CHP and reduced 

renewable curtailment; Blue blocks indicate savings in capital costs (CAPEX) related to end-

use heating technologies, including ASHP, end-use gas boilers (EGB), as a proportion of heat 
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demand is supplied by HNs; Relatively minor investment savings are achieved in reducing 

capital expenditure associated with conventional generation (including CCGT and OCGT) and 

distribution networks (DN), as change in peak demand is not significant given that end-use 

heating is supplied by hybrid HPs (i.e. gas boilers are used to supply heat demand during 

peaks). Significant system integration driven savings are made by reducing the capacity of low-

carbon generation (LG CAPEX), particularly referring to NG CCS (shown in green), as 

renewable generation is curtailed much less (particularly in 50g/kWh carbon scenario), so the 

carbon targets can be met by reducing NG CCS capacity. Brown blocks present additional 

integration driven capital expenditure (negative savings) in district heating, including heat 

network pipelines (DHN), NG CHP plants, industrial HPs (IHP), industrial gas boilers (IGB), 

and industrial thermal energy storage (ITES). Additional investment in end-use thermal energy 

storage (ETES) is also driven by the system integration.  

 

Figure 6.2– Savings from the integration of electricity and heat systems 

The objective of the model proposed in Chapter 4 is to minimise combined system investment 

costs and operation costs while meeting the given carbon targets. Hence the interactions 

between electricity systems and heat systems are crucial for both investment and operation 
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cost. According to Figure 6.2, there are indeed significant savings in both investment and 

operation costs.  

As shown in Table 6.1, this case study is performed with fixed amount of nuclear, wind and 

PV, while additional CCS will be added if the carbon target cannot be met by the given amount 

of low-carbon generation, and the capacity of CCS is determined by the optimization. 

Through Figure 6.2, we demonstrated that when the infrastructure is determined by the 

investment planning without considering the operational interaction between electricity and 

heat systems, the carbon target cannot be fulfilled and hence more CCS is needed, driving large 

extra cost in both investment and operation. 

The total annual saving through the system integration (denoted as “Total”) is influenced by 

the carbon target. Figure 6.2 shows that the annual saving is about £2.3bn/year (3.53% of the 

total annual system cost of the decoupled system) under the overall carbon target of 100g/kWh 

while the saving increases to £6bn/year (8.69% of the total annual system cost of the decoupled 

system) under the overall carbon target of 50g/kWh. Further simulations have been performed 

to investigate the relationship between the annual saving through the system integration and 

the intensity of the carbon target. When the carbon constraint is above 266g/kWh, the total 

system cost of both integrated and decoupled case is no longer influenced by the carbon 

constraint.  

There is inherent interaction between electricity and heat system, both in operation and 

investment context, e.g. application of CHP will provide heat to heat networks but also 

electricity to the electricity system; similarly, HPs use electricity to provide heat. This 

interaction is indeed taken into account, but the key point of the integrated investment planning 

and operation in this section, is that we take into account the balancing services that the heat 

system can provide to the electricity system which can enhance the ability of the system to 

accommodate variable renewables and significantly reduce the total investment and operation 

cost in electricity system compared to the decoupled, in which the balancing services that the 

heat system can potentially provide for the electricity system are not considered, while still 

meeting the specified carbon targets. Fundamentally, the benefits of the integrated investment 

planning come from the flexibility that the heat system provides to the electricity system which 
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significantly reduces both investment and operation cost of electricity system, while increasing 

investment in heat system. To be more specific, CHP and industrial size HPs and thermal 

energy storage, typically deployed in heat networks, can provide ancillary services for the 

electricity system. End-use HPs, through temporarily turning down their output (which will not 

compromise the comfort due to the thermal inertia of buildings), can also provide ancillary 

services. In the planning stage, if we consider the flexibility which heat systems can potentially 

provide for the electricity systems, significant savings can be achieved in the electricity side 

on the cost of increasing the investment on the heat side, but the overall system costs are 

reduced significantly. If the heat system and electricity system are planned separately, the 

requirement of flexibility in the electricity system has to be met by the components within the 

electricity system, incurring dramatic flexibility associated cost, which will otherwise incur 

little extra costs with the flexibility provision from the heat systems.  

It should be emphasised that when the electricity system itself is flexible enough, or in other 

words, other sources of flexibility are already available in the electricity system, (e.g. thermal 

generators with higher flexibility and efficiency, electrical energy storage and demand side 

response, etc.) the value of the integrated planning of the electricity and heat systems would be 

significantly reduced. The impact of the flexibility of electricity system on the value of the 

system integration will be further investigated in Section 6.2.7. 

6.2.2 Impact of Integration on Electricity System 

Figure 6.3 presents the generation mix and annual electricity production in different scenarios. 

It is important to note that the total amount of generation capacity is very similar in integrated 

and decoupled scenarios (as peak demands are broadly the same in both scenarios). We can 

also observe that the reduction in CCGT and NG CCS capacity, which is driven by the 

enhanced flexibility and reduced RES curtailment (as presented in Figure 6.3 (b) and Table 

6.2) through the system integration, requires increase in firm generation capacity to meet the 

security supply, which is achieved by NG CHP and OCGT plant. It is worth stressing that the 

model selects the economically optimal portfolio of electricity generation. In other words, 

given the cost assumptions, large-scale deployment of other types of generation (e.g. biogas-
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based, biomass-based, etc.) is not seen to be economic compared to the generation types 

selected by the model, from the whole-system point of view. 

It should be stressed that the case study illustrated in Figure 6.3 is performed under the given 

GB 2030 scenarios proposed by the UK government with fixed amount of nuclear, wind and 

PV (as in Table 6.1). If the carbon targets cannot be met by the given amount of low-carbon 

generation, additional NG CCS would be added to deliver the carbon target. 

 

Figure 6.3– (a) Generation mix and (b) annual electricity generation of integrated and decoupled cases under 

different carbon scenarios 

Table 6.2 – Annual Curtailment of RES in Different Scenarios 

Carbon target 

(g/kWh) 
System 

Wind curtailment 

(TWh/year) 

Solar curtailment 

(TWh/year) 

100 
Integrated 0.62 0.00 

Decoupled 10.55 0.05 

50 
Integrated 10.07 1.13 

Decoupled 53.72 10.42 
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Figure 6.4– Cost optimal generation mix for different scenarios 

Figure 6.3 demonstrates the impact of the system integration on the curtailment of RES. Due 

to the lack of flexibility in the decoupled system, significant amount of RES is curtailed, and 

hence additional capacity of NG CCS is required to deliver the carbon target, which 

significantly increases the cost. To further reveal the impact of system integration on the overall 

electricity generation mix, we perform the case study (presented in Figure 6.4) in which the 

capacities of all types of low carbon generation are optimized while meeting the same carbon 

targets. Instead of demonstrating the impact of the system integration on the curtailment of 

RES, Figure 6.4 focuses on the optimal generation portfolios. 

It can be observed in Figure 6.4 that considerable capacity of wind and PV generation is 

installed in the integrated system while in the decoupled scenarios more nuclear and NG CCS 

is required due to the inability of the system to effectively utilize RES. This is because the 

additional costs that are incurred due to the integration of RES (e.g. increased balancing cost) 

can be significantly reduced by the increased flexibility provided by the integration of the 

electricity and heat system. This case study indicates that coupling the energy sectors can 

significantly increase the utilization of RES.  
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It is important to emphasise that we assume RES cannot provide frequency response in this 

section, although our previous work [105] has clearly shown the potential value of RES 

providing inertia and frequency response for the electricity system. However, on the 

technology side, the measurement of rate of change of frequency and coordination among large 

number of wind turbines still need to be resolved. On the economy side, the recovery effect of 

inertia provision and curtailment of RES for frequency response provision may prevent its 

large-scale deployment. Of course, as the technology development goes ahead, all these issues 

may be resolved and RES can efficiently provide inertia and frequency response, leading to 

less benefit from energy system integration.  

6.2.3 Impact of Integration on Heat System 

The heating technology mix and annual thermal energy production in different scenarios are 

shown in Figure 6.5. Blue blocks represent end-use heating technologies (hybrid HP-Bs) while 

red blocks represent district heating technologies (HNs). It is interesting to observe that all HNs 

are deployed in urban areas (the penetration of which is given in Table 6.3) while only hybrid 

HP-B are applied in suburban, semirural and rural areas, demonstrating that heat density is the 

key driving/limiting factor for the application of HNs.  

Table 6.3 – Penetration of HNs in Urban Area 

Carbon target (g/kWh) System Penetration of HNs in urban areas (%) 

100 
Integrated 61.4% 

Decoupled 15.4% 

50 
Integrated 64.0% 

Decoupled 0% 

 

As shown in Figure 6.5 (a), when integration is enabled, heating technology is shifted from 

hybrid HP-Bs to HNs. This drives larger investment in the heat sector as can be derived from 

Figure 6.2; capital investment in the heat sector under the integrated scenario are £3.54bn and 

£4.12bn larger under 100g/kWh and 50g/kWh respectively when compared with decoupled 
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scenarios, due to the higher capital cost associated with district heating infrastructure 

(dominated by investments in HNs). On the other hand, large reduction in system operation 

costs and investment in NG CCS capacity, driven by enhanced system flexibility, drives 

considerable overall net savings. Overall, this analysis demonstrates that the integration of 

electricity and heat systems will drive increase in investment in heat infrastructure in order to 

reduce significantly operation and investment cost of the electricity system and ensure that the 

carbon target are met at the minimum whole-system cost. 

 

Figure 6.5– (a) Heating technology mix and (b) annual heat production of integrated and decoupled cases under 

different carbon scenarios 

In the light of Figure 6.5 (b), the system integration also has a notable impact on the 

composition of annual heat production from different heating technologies. It can be observed 

that the integration increases heat production of NG CHP from 5% to 21%, under the carbon 

target of 100g/kWh. When the carbon target is 50g/kWh, increase in heat production of NG 

CHP is lower (from 0% to 7%), which is driven by the relatively high carbon intensity of NG 

CHP (CHP CCS is a potential low-carbon heat source, but according to the results of the 
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simulation, it is not economic to deploy CHP CCS on a large scale based on the proposed 

carbon scenarios and the cost assumptions taken). Therefore, heat provided by IHPs increases 

from 0% to 21%, demonstrating that this technology may potentially play a significant role in 

decarbonizing heat (given its high COP) in the longer term. 

6.2.4 Impact of Integration on Carbon Emissions  

The integration of the electricity and heat system can influence the decarbonization strategies 

in different sectors. Table 6.4 presents the optimized carbon intensities in electricity and heat 

sectors under given overall carbon targets. The carbon intensity of the heat sector represents 

CO2 emissions associated with total heat production (including electrified heat). Basically, the 

carbon emissions are driven by the conventional generation (e.g. CCGT, OCGT) on the 

electricity side and NG CHP together with gas boilers on the heat side.   

As shown in Table 6.4, the system integration increases the carbon intensity in the electricity 

sector and reduces the carbon emissions in the heat sector, while achieving the same overall 

carbon target. For the electricity sector, we observe from Figure 6.3 (b) that when the 

integration is enabled, more electricity is generated by NG CHP, causing an overall increase in 

carbon emissions in the electricity sector. For the heat sector on the other hand, Figure 6.5 (b) 

demonstrates that less gas-boiler-based heat and more electrified heat from HPs and NG CHPs 

(CHP is considered as a virtual HP [106]) is produced, thus reducing the carbon emissions in 

the heat sector.  

Table 6.4 – Carbon intensity in electricity and heat sector  

Overall carbon 

target  (g/kWh) 
System 

Carbon intensity in 

electricity sector 

(g/kWhel) 

Carbon intensity in 

heat sector 

 (g/kWhth) 

100 
Integrated 124.6 77.9 

Decoupled 105.6 95.3 

50 
Integrated 55.8 43.4 

Decoupled 38.8 60.3 
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As assumed in Table 6.1, capacities of nuclear, wind and PV are specified, while NG CCS can 

be further added to the generation mix if the carbon targets cannot be satisfied. Therefore, the 

curtailment of RES in the decoupled system is much higher than that in the integrated system, 

and hence more NG CCS is deployed to compensate the curtailment and meet the carbon target. 

On the one hand, although the curtailment of RES is significantly alleviated through the system 

integration, the overall carbon intensity on the electricity side is still increased due to the 

significant reduction in generation from NG CCS. On the other hand, the system integration 

drives the electrification of the heat sector, thus reducing the carbon intensity on the heat side. 

The overall carbon intensities of both integrated system and decoupled system are the same. 

To summarize, higher carbon emissions in electricity sectors are allowed given lower carbon 

emissions in heat sectors, as the total carbon emissions are constant (meeting the same carbon 

target). This will lead to higher costs in heat sectors and lower costs in electricity sectors, but 

the overall system costs are reduced significantly. 

This study indicates that the system integration can deliver the shift in carbon emissions from 

the heat sector to the electricity sector, driven by the shift in heat production from gas-boilers 

to NG CHPs while facilitating the electrification of the heat sector, which leads to significant 

cost savings in the electricity sector through the replacement of some NG CCS capacity by NG 

CHP (fundamentally enabled by the flexibility that significantly reduces RES curtailment).    

6.2.5 Value of TES 

As TES plays an important role in facilitating the interaction between the electricity and the 

heat system, we specifically calculate the potential savings through the application of TES in 

the integrated electricity and heat system. In order to quantify the value of TES, we compare 

the costs of the integrated electricity and heat system with (main case) and without 

(counterfactual) TES. Table 6.5 summaries the annual savings in OPEX and CAPEX of the 

electricity sector and CAPEX of the heat sector through the application of TES under given 

carbon scenarios. Note that the CAPEX of TES for the main case is £0.78bn/year and 

£1.21bn/year under the carbon target of 100g/kWh and 50g/kWh respectively, while no TES 

is installed in the counterfactual. 
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Table 6.5 – Savings from TES in integrated electricity and heat system 

Carbon 

target 
OPEX 

CAPEX of 

electricity Sector 

CAPEX of 

heat sector 
Total 

(g/kWh) (£bn/yr) (£bn/yr) (£bn/yr) (£bn/yr) 

100 1.84 0.78 -1.81 0.81 

50 2.73 2.41 -3.10 2.05 

 

It can be seen that TES plays an important role in reducing the whole system operation and 

investment costs in the electricity sector at the cost of increasing the investment in the heat 

sector. Specifically, TES enables: a) delivery of operation savings through alleviating the 

curtailment of RES, b) reduction of NG CCS capacity by supporting provision of ancillary 

services leading to an increase in RES production and c) the shift in heat delivery from end-

use to district based technologies, driven by the flexibility requirements (supported by the 

relatively low capital cost of industrial size TES).  

6.2.6 Benefits from Pre-heating 

Due to the improved insulation of buildings, pre-heating through heat-driven electricity devices 

can enable further reduction in the operation cost of the integrated system although overall 

energy consumption increases.  

Figure 6.6 illustrates the impact of preheating on the operation of hybrid HP-Bs spanning 3 

days in winter. To highlight the impact of pre-heating, it is assumed in this case that all hybrid 

HP-B users participate in pre-heating. The results demonstrate that the level of pre-heating will 

be influenced by the amount of RES production. Savings in the operation cost is achieved by 

shifting heat-load to the hours when RES production is significant, which reduces RES 

curtailment. On the other hand, during the hours when the availability of RES is low, pre-

heating is not extensively used. It should be noted that this analysis has been simplified by 

assuming that the flexibility enabled by preheating would not compromise the consumer 

comfort. 
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Figure 6.6– Operating patterns of hybrid HP-Bs without (b) preheating 

 

 

Figure 6.7– Annual Savings of the Whole System through preheating 

The insulation levels of buildings as well as the percentage of households contributing to pre-

heating are potential factors that may influence the value of pre-heating. In this context, Figure 

6.7 shows the annual savings associated with pre-heating considering (i) different insulation 

levels of buildings and (ii) different percentage of households participating in pre-heating. In 

addition to the savings in operation cost (driven by increased utilization of RES), the 
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application of pre-heating can also substitute a considerable amount of TES, driving further 

savings. From the results, it can be concluded that a) the value of pre-heating is intensely 

affected by the buildings insulation levels (energy efficiency); b) as expected, the marginal 

value of pre-heating declines with the increase of percentage of households providing this 

service. 

It is worth noticing that the improvement of building insulation level can effectively reduce 

heat demand, thus compressing the space of operational savings through pre-heating, as 

demonstrated in Section 3.3.3. However, when considering investment costs of different assets, 

improved building insulation can introduce extra flexibility to pre-heating, as thermal energy 

can be stored for a longer time. Therefore, pre-heating can shift peak load in a more flexible 

way, thus increasing investments savings. 

6.2.7 Impact of Electricity Based Flexibility Measures 

Considerable potential savings can be achieved through the integration of the heat and 

electricity system according to Section 6.2.1. However, the value of the integrated electricity 

and heat system may be significantly influenced by the availability of flexibility options in the 

electricity system. This section investigates the benefits through the integration of the heat 

system with a more flexible electricity system, compared to Section 6.2.1, revealing the impact 

of the electricity-based flexibility measures on the value of the integration. For the illustrative 

purpose, this case study is carried out by enhancing the flexibility of the electricity system 

through: 

1) Applying more efficient and more flexible thermal generation. The comparison of the 

operating parameters between generators with low and high flexibility and efficiency are 

presented in Table. A.13.  

2) Assuming that 15GW of electrical energy storage have already deployed in the electricity 

system and can provide all ancillary services.  

3) Assuming that 20% of the non-heat driven electricity load is flexible to provide demand side 

response. 
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The aggregated OPEX savings and CAPEX savings in electricity and heat sectors through the 

integration of the heat system and the electricity system with increased flexibility are given in 

Table 6.6, while more detailed information is demonstrated in Figure 6.8.  

Table 6.6 – Savings from the system integration with increased flexibility 

Carbon 

target 
OPEX 

CAPEX of 

electricity sector 

CAPEX 

of heat 

Sector 

Total 

(g/kWh) (£bn/yr) (£bn/yr) (£bn/yr) (£bn/yr) 

100 1.24 0.66 -1.44 0.46 

50 1.21 1.29 -1.34 1.15 

 

 

Figure 6.8– Savings from the integration of electricity and heat systems when different flexibility measures are 

available in the electricity system 

Compared with Section 6.2.1, the total saving of the integrated electricity and heat system in 

this case reduces significantly, from £2.3bn/year to £0.46bn/year under the carbon target of 

100g/kWh, and from £6bn/year to £1.15bn/year under the carbon target of 50g/kWh. This 

demonstrates that the benefits driven by the integration of the electricity and heat system may 
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reduce accordingly if the flexibility within the electricity system increases. It is however 

important to note that the additional cost associated with enhancing the flexibility of the 

electricity system is not taken into account. To be specific, it is assumed that flexible thermal 

generators, electrical storage are already deployed in the electricity system while DSR can be 

dispatched without incurring miscellaneous costs. In fact, it can be very capital-intensive to 

improve the flexibility of thermal generation and deploy electrical energy storage on a large 

scale. The potential cost that DSR can incur depends on consumers’ willingness and behaviour, 

which have significant uncertainty. Meanwhile, the heat system can provide substantial 

flexibility for the electricity system through system integration which otherwise will not be put 

into any use. If we consider the additional cost associated with flexible generators, electrical 

storage and DSR, the model will choose the system integration as the prioritised flexibility 

source.   

To summarise, flexibility (particularly referring to energy arbitrage, response and reserve 

provision) is crucial for the integration of renewable sources so that facilitating the transition 

to a low-carbon energy system. There are many ways to improve the flexibility of the electricity 

system, system integration is a very cost-effective one. 

6.2.8 Impact of Balancing Service Requirements on the Value of System 

Integration 

The level of balancing services required has a significant impact on the value of system 

integration. The average and maximum amounts of reserve and response services in different 

scenarios are presented in Table 6.7, that correspond to the generation scenarios presented in 

Figure 6.3 (a). It can be observed that reduction in carbon emissions significantly increases the 

amount of balancing services.   

 

Table 6.8 presents the cost savings associated with system integration under two carbon targets 

in two cases. In the first case, the volumes of reserve and response required are modelled as 

described in Section 4.2.2.4, while in the second case, the assumption is made that no balancing 

services would be required. It can be observed that the benefits of system integration 
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significantly decrease when there is no need for the provision of balancing services. Moreover, 

as expected, the benefits of system integration are larger under the lower carbon target. 

Table 6.7 – Savings from System Integration in Different Scenarios 

 
100g/kWh 50g/kWh 

Reserve (GW) Response (GW) Reserve (GW) Response (GW) 

Maximum 9.8 5.9 14.9 9.3 

Average 4.9 2.7 7.0 5.1 

 

Table 6.8 – Level of Ancillary Service Requirement in Different Scenarios 

  100g/kWh 50g/kWh 

Savings from system 

integration (£billion/year) 

Reserve and response 

considered 
2.3 6 

No reserve and 

response requirement 
0.8 2.2 

 

6.3 Conclusions of the Chapter 

This chapter investigates the potential benefits of taking advantage of the interactions between 

the electricity system and heat system at the planning stage.  

A series of case studies are carried out to quantify the benefits driven by the integration of the 

electricity and heat systems based on the cost assumptions. Results show that the annual saving 

by considering the system integration is up to 3.53% of the total annual system cost in the case 

where system integration is disregarded under the overall carbon target of 100g/kWh, while 

that saving can increase to 8.69% under the overall carbon target of 50g/kWh. Decomposed 

savings across different sectors through considering the system integration are also 

demonstrated. The analysis shows that increased investment in district heating infrastructure 

will enhance system flexibility that will in turn deliver larger cost savings in the operation and 
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investment of the electricity system, ensuring that the carbon target is met at the minimum 

whole-system cost.  

Additionally, system integration can deliver the shift in carbon emissions from the heat sector 

to the electricity sector, driven by the shift in heat production from gas-boilers to NG CHPs, 

while facilitating the electrification of the heat sector, which leads to significant cost savings 

in the electricity sector through the replacement of some NG CCS capacity by NG CHP 

(fundamentally enabled by the flexibility that significantly reduces RES curtailment). 

TES also plays an important role in reducing the whole system operation and investment costs 

in the electricity sector at the cost of increasing the investment in the heat sector. Specifically, 

TES enables: a) delivery of operation savings through alleviating the curtailment of RES, b) 

reduction of NG CCS capacity by supporting provision of ancillary services leading to an 

increase in RES production and c) the shift in heat delivery from end-use to district based 

technologies, driven by the flexibility requirements (supported by the relatively low capital 

cost of industrial size TES). 

Moreover, the application of pre-heating can substitute a considerable amount of TES, driving 

further savings. Based on the results, the value of pre-heating is intensely affected by the 

building insulation levels (energy efficiency); and the marginal value of pre-heating declines 

with the increase of percentage of households providing this service. It is worth noticing that 

the improvement of building insulation level can effectively reduce heat demand, thus 

compressing the space of operational savings through pre-heating. However, when considering 

investment costs of different assets, improved building insulation can introduce extra flexibility 

to pre-heating, thus increasing investments savings. 

In the end, this chapter also demonstrates that the level of balancing service requirements would 

have a major impact on the value of the system integration. In this context, provision of 

balancing services by different technologies, including the contribution of RES, nuclear 

generation, emerging flexibility technologies, etc., would potentially have a considerable 

impact on the value of the system integration. 





 

Chapter 7 Computational Complexity Reduction 

7.1 Computational Complexity of the Integrated Heat and 

Electricity System Model 

As introduced in Section in 4.1, the integrated electricity and heat system model is formulated 

as an MILP with hourly time resolution across a whole year, while also considering sub-hourly 

frequency regulation and reserve constraints. This model simultaneously optimizes the 

operation and investment costs of the integrated energy system while covering both the local 

district and national level infrastructures. The whole GB transmission network is represented 

by four regions, including 1) Scotland, 2) North England and Wales, 3) Middle England and 

Wales, and 4) South England and Wales. In each region, the penetration of different heating 

technologies (e.g. district heating, supplied by CHP, HP, hot water tank based TES and gas 

boilers, as well as end-use heating, supplied by HPs, TES and gas boilers) is to be determined. 

The reinforcement of four categories of electricity distribution networks and the investment of 

four categories of heat networks characterised by different load density are also to be optimized 

in each region. The investment cost functions of electricity distribution and heat networks are 

established exogenously incorporated into the whole system optimization model. Distribution 

networks in different voltage levels are considered. The impact of CHP and industrial HP on 

the reinforcement of HV distribution networks is taken into account. Different types of 

generation plants are modelled individually, with identical categories of thermal plants being 

clustered into groups. The proposed model requires one set of integer variables for each group 

of plants. Moreover, the start-up & shut-down constraints as well as the minimum online & 

offline constraints of generators introduce more integer variables, further increase the 

complexity to solve this model. 

The complexity of investment planning models while taking into account a large number of 

operational conditions directly leads to dramatic computational burdens. The proposed 

integrated electricity and heat model is implemented by using FICO® Xpress as a solver on a 
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computer with two 2.7GHz processors and 512GB RAM. FICO Xpress optimizer is a 

commercial optimization solver which can be used to solve linear programming, mixed integer 

linear programming, and a series of non-linear programming problems (e.g., QP, QCQP, 

SOCP, etc.). It uses the modelling language Xpress Mosel and works under the integrated 

development environment Xpress Workbench. In FICO Xpress, linear programming can be 

solved through the primal simplex method, the dual simplex method or the barrier interior point 

method, while mixed integer programming are solved by a combination of the branch and 

bound method and the cutting-plane method. It takes approximately 7.32×105 s (8.47 days) to 

solve the full-size model. 

As running the proposed model over a whole year with hourly resolution is very time-

consuming, it is crucial to simplify the calculation so that this model can be solved within a 

reasonable time. One research direction to find the solution to this challenge is to reduce the 

size of input data by selecting a set of representative periods from the total number of operating 

snapshots. The selected periods have to retain most of the characteristics of the original data 

while ensuring that the investment decisions made based on them are near-optimal [107-109]. 

7.2 Previous Work of Data Selection  

Different algorithms have been investigated for the selection of representative periods. In the 

early research, heuristic approaches was applied by experts to manually select the 

representative operating scenarios that can best describe the statistical characteristics of the 

input data, particularly based on the variations of electricity or heat demand and RES 

availability. For instance, in [110], 17 time snapshots are selected from the data covering a 2-

year period (i.e., 16 time snapshots representing different seasons and one snapshot capturing 

the summer super-peak moment) to describe the diurnal and seasonal fluctuation in electricity 

demand and generation output. However, approaches based on heuristic selection lack the 

criteria of systematic selection. Additionally, the increased deployment of renewables may give 

rise to improved diversity in the patterns of operating conditions, leading to the inadequacy of 

performing the heuristic selection approaches manually.  
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Lately, a couple of clustering-based algorithms have been presented to fully describe the 

statistical characteristics and correlations between the electricity demand and RES data. In 

[111], a k-means-based clustering approach was applied to capture the inter-spatial correlation 

between the electricity demand and wind generation in an investment planning problem. The 

authors in [112] also use the k-means clustering approach to implement the selection of 

representative operating snapshots for wind generation investment.  

However, only using the selected representative operating snapshots to solve the energy-system 

investment problem will miss out the inter-temporal information of system operation due to 

the break in the chronological data sequences. As the ignorance of inter-temporal information 

may lead to unreasonable results, it is crucial to select representative periods (e.g., days) instead 

of representative time snapshots, which can simultaneously describe (i) the correlation among 

different input vectors, such as energy demand and RES availability, (ii) the inter-spatial 

correlations among various regions, and (iii) the temporal auto-correlation of each variable. To 

this end, reference [108] proposed an optimization-oriented approach of representative day 

selection to investigate the impacts of the integration of variable and intermittent renewables 

on electricity system investment problems, and presented the metrics of representativeness 

evaluation. Meanwhile, two hierarchical-clustering-based selection approaches was proposed 

in [113] electricity system expansion in the long run, taking into consideration the inter-

temporal operational restrictions. Additionally, critical statistical characteristics of the 

operational information included in the input data (i.e., temporal autocorrelations and spatial 

correlations) can be captured through this approach.  

The aforementioned selection methods are all performed according to the operational 

information in the input domain (e.g. load profile, wind availability factor, etc.), which is 

convenient and straightforward for the implementation of the selection. However, since the 

investment decisions can be significantly non-linear to the input variables for the long-term 

investment planning problems, the input domain may not be the most appropriate domain to 

do the clustering. To this end, the work presented in [114] applied a moment-matching based 

approach to cluster operating snapshots according to the optimal power flow (OPF) patterns, 

pointing out that power flow patterns are crucial drivers for the reinforcement of the 

transmission networks. Many other researches also indicated that the OPF-based approach 
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could lead to a reduction in the number of selected scenarios required to optimize the 

transmission network expansion problems, while improving the accuracy of the selection. 

Furthermore, authors in [115] proposed an operating-state-aggregation algorithm to select 

representative scenarios based on the benefit of transmission lines, while the work presented 

in [116] considered the expected electricity transmission corridors as the clustering variables, 

and particularly investigated the crucial operating conditions that may lead to the compromise 

in the system security. Additionally, scenario reduction is performed in the context of risk-

averse electricity trading in [117], based on the distance between two scenarios using an 

auxiliary variable, which captures the Conditional Value at Risk (CVaR) of profits. 

Particularly, there are some other references that cluster scenarios based on the objective 

domain, which can effectively address the nonlinear relationship between the investment 

decisions and the input variables. An objective-domain-based scenario selection framework 

was recently proposed in [109], taking account of the investment decisions of transmission 

network expansion, clustering every single scenario. In [118], an objective-function-based 

algorithm was proposed to reduce scenarios for electricity trading decision making in a 

stochastic programming model. The clustering of scenarios considers the distance between the 

optimal objective function values of the corresponding single-scenario optimisation problems 

when fixing the first-stage decisions.  

   Although various clustering domains have already been explored to effectively perform the 

operational snapshots selection, few studies have considered the inter-temporal information in 

the operation constraints by performing representative periods (e.g., day) selection to simplify 

the calculation of energy system planning problems. In this context, it is highly meaningful to 

investigate a more advanced method for the selection of representative days to further enhance 

the efficiency of calculation without compromising the accuracy.   

7.3 Representative-day Selection Based on a Cost-oriented 

Approach 

In this section, a data selection framework is investigated to select a couple of days that can 

accurately represent the original data, according to the investment decisions that are determined 
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by every single day. While this framework conducts data clustering in the objective domain, it 

is not only based on the optimal value of the objective function, as the case in [118]. Instead, 

the scenario reduction is performed by clustering the values of all the decision variables, which 

can capture more information than the value of objective function. Moreover, this framework 

can take into account the inter-temporal characteristics of different scenarios by grouping time 

snapshots in a period (24 time snapshots grouped as a day in this section), and further reduce 

the dimension of the period-based vectors (decision variables), thus keeping the intra-period 

information.   

7.3.1 Problem Statement 

Given the multi-dimensional input dataset 𝑋 = {�⃗�𝑑
1 , �⃗�𝑑

2, … �⃗�𝑑
𝑁|𝑑 = 1, … 𝐷}, including N 

chronological sequences covering D time steps that represent the given operational conditions 

(e.g. electricity and heat demand, RES availability factor), the target of the integrated-

electricity-and-heat-system investment model is to find the optimal set of investment decisions 

Γ∗ (e.g., capacity of different generation, heating plants/appliances, etc.) that can minimize the 

whole-system cost 𝐶𝑡𝑜𝑡, while simultaneously considering both the investment cost 𝐶𝑖𝑛𝑣, which 

is merely determined by Γ∗, and the operation cost 𝐶𝑜𝑝, which is jointly driven by Γ∗ and 𝑋. 

Thus, the minimum system cost can be express as Equation (7.1), 

𝐶∗ = 𝐶𝑡𝑜𝑡(𝑋, 𝛤∗) = 𝐶𝑖𝑛𝑣(𝛤∗) + 𝐶𝑜𝑝(𝑋, 𝛤∗) (7.1) 

Considering the complexity of the proposed integrated-electricity-and-heat-system investment 

model, it is intractable to run the optimization program with the full-size of the input dataset X 

(across the whole time horizon). Therefore, selecting a subset 𝑋𝔣 from X as representative data 

while calculating their probabilities of occurrence 𝛹𝔣, and using 𝑋𝔣 and 𝛹𝔣 to simulate the 

optimization problem, can be a potential solution to the challenge of the computational burden 

regarding the original problem driven by the full-size input data. However, how to effectively 

choose 𝑋𝔣 that can lead to a near-optimal result, as demonstrated in (7.2), need to be addressed, 

𝐶𝑖𝑛𝑣(𝛤𝔣) + 𝐶𝑜𝑝(𝑋, 𝛤𝔣) = 𝐶𝑡𝑜𝑡(𝑋, 𝛤𝔣) ≈ 𝐶∗ (7.2) 
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where Γ𝔣 represents the investment decisions obtained by solving the optimization problem 

based on 𝑋𝔣 and 𝛹𝔣.  

Given that the clustering-based approach has already been validated to be effective for the 

selection of representative subset 𝑋𝔣 from the original dataset X, we will also apply this 

approach as the basis. As the proposed model comprises a series of inter-temporal constraints, 

such as generator ramping, minimum online-offline time, etc. it is essential to select sets of 

consecutive snapshots (e.g. days) as representative periods to make sure that inter-temporal 

information is captured, thus introducing further challenges: 

(i) Dimension increase of the clustering domain: Representative snapshots selection is 

implemented in a dataset with two dimensions, comprising d1 (Dimension 1) - sets of variables 

and d2 – sets of time steps. In contrast, representative period selection needs to be performed 

based on a three-dimensional dataset, consisting of d1 - sets of variables, d2 - sets of time steps 

included in an operational period and d3 – sets of operational periods. Therefore, it increases 

the dimension of the clustering domain, thus makes it more challenging for the calculation.  

(ii) Nonlinearity between the operational conditions and the investment decisions: Increased 

nonlinearity will be introduced between the input data and output results, with the rise of the 

complexity of the optimization problem. Therefore, it is inadequate just to capture the crucial 

statistical features, such as variability, distribution and correlation, of the input dataset.   

(iii) Curse of dimensionality: The more time steps an operational period includes, the higher 

dimensional the clustered data will be regarding d2. Moreover, the considerable size of d1 in a 

large-scale system, as modelled in Chapter 4, can also result in significant challenges in 

clustering. These aspects will lead to the curse of dimensionality.  

It is worth noticing that, in terms of the operational periods, this section will be dedicated to 

representative day selection in the context of the energy system investment problem. However, 

this approach can be further extended to the selection of periods in any length (e.g. several 

hours or a month) by changing the size of d2, to meet the requirement in different contexts. 
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7.3.2 Cost-oriented Representative Day Selection Framework 

In order to handle to challenges described in 7.3.1, this section presents a cost-oriented 

representative-day-selection framework under the collaboration with Mingyang Sun, Fei Teng, 

etc., as published in [119], which includes four steps: 

1) Clustering Domain Transformation 

Perform simulation for each individual day to acquire the results of the investment decisions 

(e.g. the capacity of different generation), which are used as clustering variables in the next 

steps. 

2) Dimensionality Reduction 

As the clustering variables include all the decision variables that drive the investment cost, 

which can incur the curse of dimensionality, it is essential to perform dimensionality reduction 

of the clustering variables to extract the main statistical characteristics. 

3) Cluster Assignment 

Cluster the lower-dimensional variables based on the extracted statistical characteristics. 

4) Representative Day Selection  

Select one representative day from each cluster. The chronologically corresponding data in the 

input domain is then selected to perform the simulation of the optimization problem. 

A detailed description of this approach, which elaborates the implementation of these steps is 

presented as following: 

Step 1: Clustering Domain Transformation 

Traditionally, the representative scenario clustering is performed in the input domain, which is 

straightforward and effective in many situations. However, to deal with the increased 

nonlinearity between the input data and the output brought by the complexity rise in the 

proposed multi-energy system investment model, it will be imperative to consider clustering in 

other domains. This problem can be defined as the mathematical form as below: 



146 Computational Complexity Reduction 

 

Let Set 𝑋 denotes the multivariate input data in chronological sequences (specifically including 

the availability profile RES, the demand profile of electricity & heat, and ambient temperature 

in different locations), as formulated in Equation (7.3),    

𝑋 = {�⃗�𝑑
1, �⃗�𝑑

2, … �⃗�𝑑
𝑁𝐿×(𝑁𝑅𝐸𝑆+𝑁𝐷𝐸+𝑁𝐴𝑇)

|𝑑 = 1, … 𝐷} ∈ ℝ𝐷×[𝑁𝐿×(𝑁𝑅𝐸𝑆+𝑁𝐷𝐸+𝑁𝐴𝑇)]×𝑁𝑑 (7.3) 

where 𝐷 represents the number of days in the studied time horizon; 𝑁𝐿 represents the number 

of locations; 𝑁𝑅𝐸𝑆 represents the number of RES generation types; 𝑁𝐷𝐸 represents the number 

of demand; 𝑁𝑑 represents the number of time steps in a day; and 𝑁𝐴𝑇 represents the number of 

ambient temperature.  

As introduced earlier, there are concerns related to (i) the dimension increase of the clustering 

domain when selecting representative days, and (ii) the nonlinearity between the operational 

conditions and the investment decisions. The key challenge to address these concerns is to find 

a nonlinear mapping function 𝑓: 𝑋 → 𝑍 that transforms the dataset 𝑋 in the input domain into 

a dataset 𝑍 in an effective domain, while ensuring that the clusters [𝑋1, 𝑋2, … , 𝑋𝐾] ⊆ 𝑋 

established according to the cluster index 𝑦 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑍) eventually leads to near-optimal 

investment decisions Γ𝔣, based on the representative periods 𝑋𝔣 = [𝑥1
𝔣 , 𝑥2

𝔣 , … , 𝑥𝐾
𝔣 ] (where 𝑥1

𝔣 ∈

𝑋1, 𝑥2
𝔣 ∈ 𝑋2, … , 𝑥𝐾

𝔣 ∈ 𝑋𝐾) and their corresponding probability of occurrence Ψ𝔣 = {𝜓𝑘
𝔣 , 𝑘 =

1,2, … , 𝐾}. Note that 𝐾 is the number of clusters while 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(∙) denotes the function of 

clustering method. 

Most of the previous research determines cluster index 𝑦 according to the dataset 𝑋 in the input 

domain while ensuring that the selected periods 𝑋𝔣 can capture most of the important statistical 

information associated with 𝑋, thus resulting in a similar outcome to the case in which the 

results are obtained based on the original input data 𝑋 (e.g., [108], [113]). However, the input-

based clustering approach can sometimes be off the track, leading to an inappropriate scenario 

reduction due to the following reasons: (i) Operating periods with completely different 

statistical patterns in the input domain can result in similar or even identical investment 

decisions; (ii) Meanwhile, operating periods with similar statistical patterns in the input domain 

can sometimes lead to highly different results; (iii) Since the capacities of RES generation are 

to be optimized, it is impossible to pre-define the impact of RES output in the process of 
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clustering; iv) The statistical features related to the ancillary service requirements cannot be  

effectively captured in the input domain. 

To address the aforementioned drawbacks, we propose a cost-oriented algorithm in this section 

to map the clustering domain from the input dataset 𝑋 to decomposed investment costs (Set 𝑍), 

by running the optimization problem for each individual day and further performing the 

clustering according to the cluster index determined through grouping the investment costs. 

The input dataset is given as 𝑋 = [𝑋𝑊, 𝑋𝑃𝑉 , 𝑋𝐸 , 𝑋𝐻, 𝑋𝑇] = {�⃗�𝑑
𝑊, �⃗�𝑑

𝑃𝑉 , �⃗�𝑑
𝐸 , �⃗�𝑑

𝐻 , �⃗�𝑑
𝑇|𝑑 =

1, … 𝐷}  ∈ ℝ𝐷×[𝑁𝐿×(𝑁𝑅𝐸𝑆+𝑁𝐷𝐸+𝑁𝐴𝑇)]×𝑁𝑑, where 𝑋𝑊 and 𝑋𝑃𝑉 denote the availability factor of 

wind and PV output, 𝑋𝐸 and 𝑋𝐻represent electricity and heat load, while 𝑋𝑇 is the ambient 

temperature. In the first step of the cost-oriented representative day selection framework, the 

investment optimization problem is simulated based on the input data of each individual day 

𝑑. Note that the input data of day 𝑑 is repeated across the whole year to ensure that all 

simulations are performed under the same time horizon. The output data in this step is the 

investment cost of each technology at each location, which can be expressed as Γ =

[Γ1, Γ2, … , Γ𝐷] ∈ ℝ𝐷×[𝑁𝐿×𝑁𝑇], Γ𝑑 = {𝛾𝑑
𝑙,𝑡𝑒𝑐ℎ, 𝑏 = 1,2, … , 𝑁𝐿 , 𝑡𝑒𝑐ℎ = 1,2, … , 𝑁𝑇 , 𝑑 ∈ 𝐷}, where 

𝛾𝑑
𝑙,𝑡𝑒𝑐ℎ

denotes the investment costs of technology type 𝑡𝑒𝑐ℎ at location 𝑙, driven by the input 

data of day 𝑑. 

Step 2: Dimensionality Reduction 

As introduced in Section 7.3.1, there are two crucial challenges associated with dimensionality 

when selecting representative days. The first challenge is that representative day selection will 

switch the input data from a two-dimensional dataset (d1: 𝑁𝐿 × (𝑁𝑅𝐸𝑆 + 𝑁𝐷𝐸 + 𝑁𝐴𝑇) variables 

and d2: 𝑁𝑑 × 𝐷 time snapshots) to three-dimensional dataset (d1: 𝑁𝐿 × (𝑁𝑅𝐸𝑆 + 𝑁𝐷𝐸 + 𝑁𝐴𝑇) 

variables, d2 - 𝑁𝑑 time steps included in a day and d3 – 𝐷 days).  The second challenge is that 

the number of operating days for clustering is very limited. In terms of the first challenge, the 

first step has provided a solution by mapping the clustering domain from input dataset 𝑋 ∈

ℝ𝐷×[𝑁𝐿×(𝑁𝑅𝐸𝑆+𝑁𝐷𝐸+𝑁𝐴𝑇)]×𝑁𝑑 to investment cost dataset Γ ∈ ℝ𝐷×[𝑁𝐿×𝑁𝑇], thus reducing the 

dimension of d2. However, regarding the second challenge, the consideration of various 

technology types and different location for deployment in the national-level system will 
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introduce the curse of dimensionality, which refers to the problem that linear increase in 

dimensions will lead to exponential increase in volume, in the Euclidean space [120]. 

Therefore, it is necessary to further reduce the dimension of the investment cost domain, even 

though its dimension has already been lowered through the clustering domain transformation 

in the first step. 

Basically, two approaches, namely feature extraction and feature selection, are commonly used 

to realize dimensionality reduction. In the cost-oriented representative-day-selection 

framework, the investment costs of each technology deployed at each location are taken as the 

clustering variables, making it more suitable to capture key characteristics of clustering 

variables through an automatic way or quasi-automatic way, as it is difficult to manually 

determine which variables exert higher impacts on the optimal results merely according to sets 

of investment costs.  

Classical linear dimensionality reduction such as linear discriminant analysis and principle 

component analysis have been widely applied but with a limited performance in many cases. 

A bunch of nonlinear dimensionality reduction algorithms have been investigated to improve 

the performance, (e.g., kernel principal component analysis, and Laplacian Eigenmaps [121], 

etc.. Since the size of the clustering data in our study is very limited (there are only 365 days), 

those algorithms that require a huge number of clustering statistics (e.g., neural-network-based 

approaches and data-driven high-dimensional scaling) are not suitable. Therefore, we apply 

Laplacian Eigenmaps, which is a geometry-based algorithm characterized by locality-

preserving and natural connection for data grouping. The inherent geometric features of the 

manifold based on the clustering data can be reflected by the dimension-reduced data.  

The procedures of LEM to reduce the dimension of the investment cost dataset Γ can be 

expressed as following mathematical problem.  

Given that Γ = {Γ𝑑}𝑑=1
𝐷 ∈ ℝ𝐷×[𝑁𝐿×𝑁𝑇] is the investment cost driven by each individual day, 

while 𝛾 denotes the target dimension after being reduced, we firstly establish an adjacency 

graph, denoted as 𝑄 = (𝑁, 𝐸), in which 𝑁 is the set of nodes while 𝐸 is the set of edges in this 

graph. Note that nodes in 𝑁 (𝑛𝑖 ∈ 𝑁) are linked to sets of investment costs Γ𝑖, 𝑖 ∈ [1,2, … , 𝐷], 

thus the number of nodes in 𝑁 is equal to the number of days 𝐷. If the statistical distance of a 
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pair set of investment cost (Γ𝑖, Γ𝑗) is close enough, according to the measurement through the 

k-nearest neighbour (KNN) approach, their corresponding pair of nodes 𝑛𝑖 and 𝑛𝑗  will be 

connected by an edge 𝐸𝑖,𝑗 ∈ 𝐸. 

Secondly, the weights 𝑊 = {𝑤𝑖,𝑗, 𝑖, 𝑗 = 1,2, … , 𝐷} of each edge 𝐸 = {𝐸𝑖,𝑗, 𝑖, 𝑗 = 1,2, … , 𝐷} are 

determined through the approach presented in Equation (7.4), 

𝑤𝑖,𝑗 = {
1, if 𝑛𝑖 and 𝑛𝑗  are connected via edge 𝐸𝑖,𝑗

0, if 𝑛𝑖  and 𝑛𝑗  are not connected                 
 (7.4) 

Next, we will find the solution to the eigenvector problem: 𝐿𝛼 = 𝜆𝐷𝛼. Note that 𝐷 in this 

equation denotes the diagonal weight matrix, which is calculated as 𝐷 = {𝐷𝑖,𝑖 =

∑ 𝑤𝑖,𝑗, ∀𝑖, 𝑗 ∈ 1,2, … , 𝐷𝑗 }, while 𝐿 = 𝐷 − 𝑊 represents the Laplacian matrix. Then, the 

solution 𝐴 = [𝛼0, 𝛼1, … , 𝛼𝛾−1] ∈ ℝ𝐷×𝛾 is calculated based on the target dimension 𝛾, the order 

of which is consistent with the order of their eigenvalues 0 = 𝜆0 ≤ 𝜆1 ≤ ⋯ ≤ 𝜆𝛾−1. Finally, 

the investment cost dataset after dimensionality reduction can be expressed as 𝛤𝐷𝑅 =

{Γ̃𝑖, ∀𝑖 ∈ 1,2, … , 𝐷} ∈ ℝ𝐷×𝛾, where Γ̃𝑖 = (𝛼0(𝑖), 𝛼1(𝑖), … , 𝛼𝛾(𝑖)) ∈ ℝ𝛾. 

Step 3: Cluster Assignment 

In this step, we will group the data of the dimension-reduced investment cost dataset Γ̃ into K 

clusters, namely Γ̃𝑘 ⊂ Γ̃, 𝑘 = 1,2, … , 𝐾. The main point is to differentiate various investment 

costs. The objective of the clustering is to obtain the index of each cluster 𝑦 ∈ ℝ𝐷, which will 

then be used to distribute the input data �⃗�𝑑. 𝑑 = 1,2, … , 𝐷 into different clusters, as shown in 

Equation (7.5),  

𝑋𝑐𝑙𝑠 = {𝑋𝑘}𝑘=1
𝐾 , 𝑋𝑘 ∈ ℝ𝑁𝑘×[𝑁𝐿×(𝑁𝑅𝐸𝑆+𝑁𝐷𝐸+𝑁𝐴𝑇)]×𝑁𝑑 (7.5) 

Hierarchical clustering is a commonly used approach to establish a series of hierarchical 

clusters based on the similarity of the data in different clusters [122]. In this framework, both 

agglomerative hierarchical clustering and Ward’s linkage are applied to construct clusters of 
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investment costs and select the final operating days from each individual group as 

representatives. The advantages of this approach include:  

1) Regarding the geometry of established clusters, the applied hierarchical clustering approach 

can deal with non-spherical cases. 

2) Clusters established through hierarchical clustering are independent of the original 

assignment of data, so they are characterized with a deterministic instinct to avoid repeatability.  

3) Hierarchical clustering does not require prior information about the cluster number, so the 

agglomeration can be finalised with any required number of clusters.  

4) Ward’s minimum variance criterion [123] has an advantage over the other types of linkages 

(e.g., single-linkage, complete-linkage, etc.) for the minimization of the overall inner-cluster 

variance. For the day selection approach proposed here, it is significant to make sure the 

variance of clustered investment costs of different groups is minimum for corresponding to the 

input dataset that lead to close investment costs.  

Basically, hierarchical clustering could be carried out through the following procedures 

according to the clustering variables Γ̃ ∈ ℝ𝐷×𝛾 . Firstly, each individual point in Γ̃ is allocated 

to its own singleton group. Through the measurement of Euclidean distance, the similarity 

matrix can be established for Γ̃, as in Equation (7.6), 

𝑆 = {𝑠𝑖,𝑗 , ∀𝑖, 𝑗 ∈ 1,2, … , 𝐷} ∈ ℝ𝐷×𝐷 (7.6) 

In this way, any two clusters with the shortest distance will be combined into one based on 

their similarity. It is worth noticing that, the similarities across different clusters are measured 

according to the Ward’s linkage criterion. For any two clusters 𝑘1 and 𝑘2, their distance 𝑑𝑘1,𝑘2
 

is obtained according to Equation (7.7), 

𝑑𝑘1,𝑘2
= ‖Γ̃𝑐

𝑘1Γ̃𝑐
𝑘2‖

2√
𝑛𝑘1

𝑛𝑘2

𝑛𝑘1
+ 𝑛𝑘2

 (7.7) 
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where ‖∙‖2 represents Euclidean distance, Γ̃𝑐
𝑘1

 and Γ̃𝑐
𝑘2

 denote the centroids of clusters 𝑘1 and 

𝑘2, while 𝑛𝑘1
 and 𝑛𝑘2

 denote the operating day counts of cluster 𝑘1 and 𝑘2. 

Step 4: Representative Day Selection  

In the last step, we will choose one typical day from each individual cluster as the representative 

of all days in the same cluster, and determine their weights.  

Representative day identification: The mean point or the medoid point is commonly adopted 

to represent the overall statistical information of the cluster. However, the mean point is not 

suitable to play as the representative in this case because it may not be able to correspond back 

to any real operating day in the input domain. Therefore, we use the medoid point �⃗�𝑘
𝔣 ∈ ℝ|𝐿|×|𝑇| 

of cluster 𝑘 in the investment cost domain Γ̃ as the representative and then correspond it back 

to the operating day with the same day label in the input domain of 𝑋, which is the selected 

representative day. The data in the representative day is denoted as �⃗�𝑘
𝔣 ∈ ℝ|𝐿|×(|𝑅𝐸𝑆|+|𝐷𝐸|+|𝐴𝑇|).  

Determination of the weight for each representative day: As all the operating days in have 

identical probability of occurrence, it is rational to adopt the day count in a cluster as the weight 

of the representative day selected from that cluster. The outputs of the representative day 

selection framework include the data in the selected days, denoted as 𝑋𝔣 = {�⃗�𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾}, 

and their weight of occurrence, denoted as Ψ𝔣 = {𝜓𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾}. 

7.3.3 Evaluation of the Proposed Representative Day Selection Approach 

In this section, we will evaluate the performance of the proposed cost-oriented representative-

day-selection approach by comparing it with the state-of-the-art input-based approach, which 

has been widely used for scenario reduction.  

The summary of these two tested approaches are presented as following. Note that as the input-

based approach is not the focus in our work, we just described it briefly. More details about 

this approach has been elaborated in a recent paper [113]. 
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Tested Approach 1: Cost-oriented Representative Day Selection Approach 

Input:  

1. Multidimensional dataset of wind and PV availability factor, and electricity and heat load 

and ambient temperature across the whole time horizon 𝑋 = [𝑋𝑊, 𝑋𝑃𝑉 , 𝑋𝐸 , 𝑋𝐻, 𝑋𝑇]; 

2. Target dimension after dimensionality reduction 𝛾;  

3. Target number of representative days 𝐾;  

Mathematical model of the energy system planning problem 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(∙). 

Procedures: 

Step 1: Group the input data by days (7.8). Run the model for each individual day, obtaining 

the decomposed investment costs driven by each day, as formulated in (7.9).  

𝑋 = [𝑋𝑊, 𝑋𝑃𝑉 , 𝑋𝐸 , 𝑋𝐻, 𝑋𝑇] = {�⃗�𝑑
𝑊, �⃗�𝑑

𝑃𝑉 , �⃗�𝑑
𝐸 , �⃗�𝑑

𝐻, �⃗�𝑑
𝑇|𝑑 = 1, … 𝐷} (7.8) 

Γ𝑑 = 𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔(�⃗�𝑑), 𝑑 = 1,2, … , 𝐷 (7.9) 

Step 2: Perform dimensionality reduction by using the method of LEM, as shown in (7.10). 

After this step, the dimension of Γ̃ becomes 𝛾. 

Γ̃ = 𝐿𝐸𝑀(Γ) (7.10) 

Step 3: Cluster Γ̃ into 𝐾 groups by using hierarchical clustering, as given in (7.11). Then 

correspond each individual cluster from the investment cost domain Γ̃𝑘to the input domain 𝑋𝑘, 

as shown in (7.12). 

[Γ̃𝑘|𝑘=1
𝐾 , Λ𝐷,𝑘|𝑘=1

𝐾 ] = 𝐻𝑖𝑒𝑟𝑎𝑐ℎ𝑖𝑐𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(Γ̃, 𝐾) (7.11) 

𝑋𝑘 = {�⃗�𝑑, ∀𝑑 ∈ Λ𝐷,𝑘}, 𝑘 = 1,2, … , 𝐾 (7.12) 
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Step 4: Adopt the index of the medoid point of each cluster as the index of representative days 

(7.13) and (7.14). Select representative days (7.15) based on the adopted day index and 

calculate the probability of occurrence of each representative day based on (7.16). It is worth 

noticing that 𝑖𝑑𝑥𝑘
𝑚𝑒𝑑 denotes the day index that corresponds to the medoid point of a cluster. 

𝑖𝑑𝑥𝑘
𝑚𝑒𝑑 = 𝑚𝑒𝑑𝑜𝑖𝑑(Γ̃𝑘), 𝑘 = 1,2, … , 𝐾 (7.13) 

�⃗�𝑘
𝔣 = 𝑋𝑘(𝑖𝑑𝑥𝑘

𝑚𝑒𝑑), 𝑘 = 1,2, … , 𝐾 (7.14) 

𝑋𝔣 = {�⃗�𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾} (7.15) 

Ψ𝔣 = {𝜓𝑘
𝔣 = |Λ𝐷,𝑘| Λ𝐷⁄ , 𝑘 = 1,2, … , 𝐾} (7.16) 

Output:  

1. Set of input data of representative days: 𝑋𝔣 = {�⃗�𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾};  

2. Set of probabilities of representative days: Ψ𝔣 = {𝜓𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾}. 

 

Tested Approach 2: Input-based Representative Day Selection Approach 

Input:  

1. Multidimensional dataset of wind and PV availability factor, and electricity load across the 

whole time horizon 𝑋 = [𝑋𝑊, 𝑋𝑃𝑉 , 𝑋𝐸 , 𝑋𝐻, 𝑋𝑇]; 

Target number of representative days 𝐾; 

Procedures: 

Step 1: Re-arrange the input operating condition data, grouping them by days, as 𝑋 =

[𝑋𝑊, 𝑋𝑃𝑉 , 𝑋𝐸 , 𝑋𝐻, 𝑋𝑇] = {�⃗�𝑑
𝑊, �⃗�𝑑

𝑃𝑉, �⃗�𝑑
𝐸 , �⃗�𝑑

𝐻 , �⃗�𝑑
𝑇|𝑑 = 1, … 𝐷}.  
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Step 2: Adopt hierarchical clustering approach to cluster days according to 𝑋; 

Step 3: Select the medoid point of each individual cluster as the representative day and calculate 

their corresponding probability of occurrence. 

Output:  

1. Set of input data of representative days: 𝑋𝔣 = {�⃗�𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾};  

2. Set of probabilities of representative days: Ψ𝔣 = {𝜓𝑘
𝔣 , 𝑘 = 1,2, … , 𝐾}. 

 

It is important to stress that the aim of proposing the cost-oriented representative-day-selection 

approach is to simplify the calculation of the energy-system-investment-planning problem with 

improved accuracy, as the widely used input-based approach has some limitations: 

1) Due to the potential nonlinearity between the input domain and output domain in complex 

cases, operational days characterized by significantly different statistical features may lead to 

similar investment results. Meanwhile, operational days characterized by similar statistical 

features can give rise to very different results. Therefore, clustering directly based on the 

investment cost can avoid the mismatch caused by the nonlinearity.  

2) The input data is given as 𝑋 = [𝑋𝑊 , 𝑋𝑃𝑉, 𝑋𝐸 , 𝑋𝐻 , 𝑋𝑇], where 𝑋𝑊 and 𝑋𝑃𝑉are the availability 

factor of Wind and PV. In the cases where the capacities of Wind and PV are decision variables, 

the impact of Wind and PV generation on the system operation cannot be predefined. This can 

result in an irrational day selection if clustering is performed directly on the input dataset 𝑋, 

because the optimized results of the capacities of Wind and PV can influence the weight of  

𝑋𝑊 and 𝑋𝑃𝑉 in 𝑋. 

3) As modelled in Section 4.2.2.4, the requirement of ancillary services (i.e., operating reserve 

and frequency response) can only be determined when the optimization problem has been 

solved, therefore, their influence on optimization results would not be adequately taken into 

account if clustering is only based on the input dataset 𝑋. 
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In order to demonstrate that the proposed cost-oriented approach can effectively address the 

aforementioned three limitations faced by the input-based approach, we test both approaches 

in three simplified cases with increased complexity. Note that we only consider the investment 

planning on the electricity side in the three testing cases for simplicity.  

In the first case, a fixed amount of RES is given, while no inter-temporal constraints are taken 

into consideration. The aim of this case is to demonstrate that even in the simplest scenario, the 

proposed cost-oriented approach still has some advantage over the input-based approach.  

In the second case, we consider the capacity of RES as decision variable (to be optimized), 

while inter-temporal constraints are still not considered. The aim of this case is to show that 

the proposed cost-oriented approach can effectively address the second limitation faced by the 

input-based approach.  

In the third case, we take into account inter-temporal constraints and ancillary service 

requirement on the top of the second case. The aim of this case is to show that the cost-oriented 

approach can effectively tackle the third limitation. 

Finally, we adopt the proposed approach to solve the integrated-electricity-and-heat-system 

investment model presented in Chapter 4.   

In each case, the accuracy and computational time of the two tested approaches are compared 

with the benchmark (i.e., the simulation performed under the whole time horizon) to investigate 

the benefits of the proposed cost-oriented approach. Both of the proposed cost-oriented 

approach and the input-based approach are tested by using MATLAB 2017a and FICO® 

Xpress, on an Intel Xeon E5-2690 PC with 8 cores. 

Case 1: As the simplest case, inter-temporal constraints are not considered, while a fixed 

amount of wind and PV is given as input, as listed in Table 7.1. The benchmark solution of 

Case 1 is presented in Table 7.2, in which the optimization is simulated based on the whole 

time horizon (i.e., 365 days). 
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Table 7.1 – Planned deployment of Wind and PV in each region 

 Scot (GW) North E&W (GW) Mid E&W (GW) South E&W (GW) 

Wind 18 0 0 10 

PV 0 0 2 9 

 

Table 7.2 – Benchmark solution and CPU time in Case 1 

Operation cost 

(£m/year) 

Investment cost 

(£m/year) 

Total cost 

(£m/year) 

CPU time 

(s) 

2340.07 1230.86 3570.94 899.62 

 

 

Figure 7.1– Performance of tested approaches against the number of representative days in Case 1 

 

Figure 7.1 presents the results obtained through the objective-based approach and the input-

based approach based on different numbers of representative days (K). The performance of 

each approach can be compared by the error of the total cost between the tested approaches 

and the benchmark. As can be observed, both approaches converge to the benchmark since K 
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reaches 10, but the cost-oriented approach consistently shows higher accuracy than the input-

based approach. 

Case 2: In this case, the availability of Wind and PV are given as input, but their capacities are 

decision variables, which are to be optimized. As the RES availability alone cannot describe 

the full RES-related operating conditions, clustering based on the input data may lead to 

significant inaccuracy since the impact of RES on the system operation is not captured 

sufficiently. Meanwhile, the investment costs is considered to be a more rational domain for 

clustering because it directly indicates the investment requirements driven by all input data. 

Therefore, it is expected that the performance of the proposed cost-oriented approach will be 

better than the input-based approach. 

Both approaches are tested against K in this case. Table 7.3 gives the optimization results as 

well as the computational time of the benchmark obtained based on the full-size of input data, 

while Figure 7.2 demonstrates the total costs of tested approaches and shows their errors over 

the benchmark results. For both approaches, the estimated total costs keep approaching the 

benchmark with the increase of K. However, the cost-oriented approach consistently shows 

superior accuracy under the same K. As observed, the cost-oriented approach tends to converge 

faster to the benchmark. Specifically, when K reaches 30, the error of the estimated cost reduces 

to 0.02%, whereas the error driven by the input-based approach is still 0.50% even when K 

reaches 50. 

Furthermore, Table 7.4 shows the CPU time under different K. As can be seen, remarkable 

reduction in CPU time against the benchmark (i.e., 4325.83s) is achieved for both approaches, 

while preserving high accuracy. For example, by using the cost-oriented approach, the 

computational cost can be reduced by 99.7% to achieve a result with an accuracy as high as 

99.98% in this case. 

Table 7.3 – Benchmark solution and CPU time in Case 2 

Operation cost 

(£m/year) 

Investment cost 

(£m/year) 

Total cost 

(£m/year) 

CPU time 

(s) 

1666.95 1712.44 3379.39 4325.83 
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Figure 7.2– Performance of tested approaches against the number of representative days in Case 2 

Table 7.4 – CPU time against number of representative days in Case 2 

 K=10 K=20 K=30 K=40 K=50 K=100 

Cost-oriented 14.26 25.40 40.26 60.72 92.92 368.01 

Input-based 13.84 25.58 35.69 55.57 83.47 353.12 

 

Case 3: In this case, the intertemporal constraints, including generator ramp, minimum 

online/offline time, and the requirement of ancillary services are considered. This will 

significantly increase the complexity of the calculation. Table 7.5 presents the optimization 

results and computational time of the benchmark in this case. 

Table 7.5 – Benchmark solution and CPU time in Case 3 

Operation cost 

(£m/year) 

Investment cost 

(£m/year) 

Total cost 

(£m/year) 

CPU time 

(s) 

2179.79 1320.61 3500.40 95460.13 
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Figure 7.3– Performance of tested approaches against the number of representative days in Case 3 

Figure 7.3 demonstrates the total costs calculated by using the tested approaches and their 

errors against the benchmark under different K. It can be observed that the cost-oriented 

approach shows improved performance over the input-based approach in Case 3 compared to 

Case 2. It is worth noticing that, the cost-oriented approach only requires 20 representative 

days to achieve an accuracy of 99.95%. Meanwhile, it takes the input-based approach 40 

representative days to converge to a high accuracy (99.52%). 

Table 7.6 – CPU time against number of representative days in Case 3 

 K=10 K=20 K=30 K=40 K=50 K=100 

Cost-oriented 47.73 141.42 369.92 684.61 1098.3 8419.3 

Input-based 48.31 136.39 357.62 659.24 997.45 8143.58 

 

Table 7.6 gives the CPU time of the cost-oriented approach under different K in Case 3. As 

can be seen, the cost-oriented approach only requires 20 representative days to achieve a highly 

accurate result, reducing the computational time from 95,460.13s in the benchmark to 141.42s. 

It is significant to stress that, the computational burden rises exponentially with the increase of 

the model complexity. Therefore, the benefits of proposed cost-oriented representative-day-
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selection approach will increase when solving investment-planning problems with higher 

complexity. 

 We now employ the proposed cost-oriented representative-day-selection approach to solve the 

integrated-electricity-and-heat-system investment model presented in Chapter 4, under the 

scenario described in Section 6.2.2, where the capacities of all generation are optimized under 

the carbon target of 100g/kWh.  

Table 7.7 shows the performance of the cost-oriented approach with different K, while the last 

column gives the benchmark result. It can be observed that the CPU time and the calculating 

error rise significantly compared to the three simplified cases, due to the increased complexity 

of the tested model. When K reaches 50, the error is lower than 1%. More accurate results can 

be achieved by increasing K, but the corresponding increase in computational time would be 

much more dramatic, thus jeopardising the overall benefits. 

Table 7.7 – CPU time and error of proposed approach against number of selected days 

K 10 20 30 40 50 100 365 

CPU Time (s) 162 832 1822 3254 7523 67036 732604 

Error (%) 23.68 6.34 4.21 2.56 0.94 0.58 0 

7.4 Conclusions of the Chapter 

This chapter proposes a cost-oriented representative-day-selection approach that can 

significantly reduce the computational burden of the integrated-electricity-and-heat-system 

investment-model proposed in Chapter 4, while ensuring that the investment decisions made 

based on the selected days are near-optimal. 

The proposed representative-day-selection approach comprises 4 key steps: (1) transfer of the 

clustering domain, (2) dimensionality reduction, (3) cluster allocation, and (4) representative 

day identification. In the first step, the purpose is to map the original dataset in the operational 

domain to the objective domain, which is characterised with the investment costs of various 

technologies covering different regions based on the simulation of each individual day, because 
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the objective domain is more rational for performing data clustering in the investigated context. 

In the second step. The aim of performing dimensionality reduction is to handle the issue of 

high-dimensionality while allowing the data clustering to be carried out in a more effective 

domain that retains the key features of the original domain. In the third step, a hierarchical 

clustering approach under Ward's linkage criterion is adopted to cluster the operating days 

according to the corresponding investment costs. In the final step, the medoid point of each 

established group is identified as the representative day.  

Three factors limit the performance of the widely used input-based approach, including: (i) the 

potential nonlinearity between the input domain and output domain in complex cases may lead 

to mismatch in data clustering; (ii) the impact of RES generation on the system operation 

cannot be predefined in the cases where the capacities of Wind and PV are decision variables; 

and (iii) the impact of ancillary services requirements on the optimization result cannot be 

adequately taken into account if clustering is only based on the input dataset. In order to 

demonstrate the effectiveness of the proposed cost-oriented approach in terms of addressing 

the limitations faced by the input-based approach, three simplified cases with increased 

complexity were tested. In the first case, a fixed amount of RES is given, while no inter-

temporal constraints are taken into consideration. In the second case, the capacity of RES is 

considered as decision variable, while inter-temporal constraints are still not considered. In the 

third case, the inter-temporal constraints and ancillary service requirement are taken into 

account on the top of the second case. Results demonstrate that the proposed cost-oriented 

approach consistently shows advantages over the input-based approach throughout the three 

cases. 





 

Chapter 8 Conclusions and Future Work 

This thesis has investigated a series of decarbonisation strategies in order to support the 2050 

carbon reduction target. By using the proposed integrated electricity and heat system 

investment model, it evaluated the economic performance of different promising low-carbon 

heating technologies and identified the optimal heating technology portfolio for delivering a 

low-carbon future energy system in different scenarios. This thesis also demonstrated the 

significance of considering various interactions among different energy sectors at the planning 

stage and the synergy effect through the coordinated operation of different components of the 

multi-energy system.   

This final chapter summarises the conclusions drawn from the previous chapters and addresses the 

research questions 1 to 4, before listing further work. 

8.1 Summary of Conclusions 

8.1.1 District Heating Network Modelling 

In Chapter 2, a novel DHN investment model is proposed to address RQ1.  

In this model, the length of pipelines, which determines the cost of excavation and the 

installation of pipes is the key factor that drives the capital cost of DHNs. When the layout of 

consumers in a district has been determined, the length of pipelines can be calculated with the 

help of the fractal-based algorithm, the potential capital cost of DHN in that district is then 

determined and will not be influenced by the variation of heat demand. Therefore, the lower 

the heat demand (kW) in this district, the higher the unit investment (£/kW) of DHN. 

As the investment cost of DHNs is dramatically influenced by the heat density in the supplied 

district, all GB regions are categorized into these 4 different representative districts in 



164 Conclusions and Future Work 

 

accordance with their heat density. Based on the fractal-based algorithm, the length of 

representative networks with different geographic features can be calculated. The whole GB 

area is then represented as a linear combination of representative areas. By applying this 

approach, the investment cost of DHNs driven by different user penetrations in different 

representative areas can be quantified and incorporated into the national level energy system 

investment model to optimize the penetration of DHNs. 

This chapter also investigated the operational principles of various heat sources in DHNs, 

including CHP plants, HPs and TESs and analyzed the coordinated operation of these heat 

sources to increase the flexibility of DHN operation. The results demonstrate that the synergy 

effects brought by integrating various heat sources can significantly improve the flexibility of 

DHN operation. HP and TES can both enhance the flexibility of CHP operation. All operating 

points in the extended operating area through HP can be theoretically reached unconditionally, 

while the reachability of the points between the extended operating area through TES and the 

original operating area of CHP depends on the state of charge of TES. Specifically, the 

boundary of the extended area can be reached only when the stored heat in TES is enough to 

enable the maximum discharging or the headroom of TES is enough to enable the maximum 

charging. When both HP and TES support the operation of CHP, the extended operating area 

of DHNs is enhanced by the combined contribution of HP and TES. 

8.1.2 Modeling of Flexibility through Building Thermal Characteristics 

In Chapter 3, the dynamic thermal process of pre-heating is investigated to address RQ2.  

The first-order building thermal dynamic model is integrated into an energy management 

problem to investigate the utilisation of pre-heating as an alternative way to reduce the 

operational costs while taking into account the comfort conditions in buildings. Pre-heating 

through building thermal storage is enabled by allowing temperature variations within a pre-

defined comfort zone. Through pre-heating, energy consumption can be managed in an 

economic-benefit-oriented way. By comparing the operational costs between the case where 

pre-heating is enabled and the case where additional TES is installed, the economic value of 

pre-heating can be evaluated and the capability of the inherent storage of buildings can be 

quantified under given thermal parameters of buildings. 
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A series of sensitivity studies are performed to investigate the limiting factors of the value of 

building inherent storage. Results show that (i) the equivalent storage of preheating is almost 

proportional to the volume of buildings and the insulation level of buildings; (ii) When the 

insulation condition is improved, the heat demand decreases accordingly, compressing the 

space of operational savings through pre-heating. Therefore, pre-heating can deliver more 

operational savings in buildings with a lower insulation level. However, when considering 

investment costs of different assets (e.g., HPs, generation), improved building insulation can 

significantly enhance the benefits of pre-heating, as reduced energy losses can introduce extra 

flexibility to pre-heating, making pre-heating more effective to shift peak load; (iii) 

Additionally, the equivalent size of building storage highly depends on the width of the 

temperature comfort zone. However, there is a cap of the benefits through increasing the size 

of TES, while the increase of temperature deviation allowance will keep bringing added 

benefits until the indoor temperature can freely drift without the need of any heat provision. 

8.1.3 Integrated Electricity and Heat System Investment Model 

In Chapter 4, a novel modelling framework for the whole system optimisation of the integrated 

heat and electricity systems investment is proposed to address RQ3.  

The proposed optimization model can simultaneously optimize the investment in electricity 

generation (including RES and traditional generation), heating assets (including district heating 

plants and distributed heating appliances), the construction of heat networks, reinforcement of 

electricity transmission networks and distribution networks, while minimizing the system 

operational cost, taking into account frequency response and operating reserve requirements. 

The impact of integrated systems reducing system inertia on the frequency response 

requirement is explicitly modelled in the constraints. Carbon emission and security constraints 

are also included. The investment model of DHNs proposed in Chapter 2 is integrated into this 

combined heat and electricity system investment model to optimize the penetration of DHNs 

in different representative areas. 

A variety of operation constraints are taken into account, including: electricity and heat balance 

constraints, heating technology mix constraints, power flow constraint, DSR constraints, TES 

operating constraints, pre-heating constraints, generation unit constraints, RES curtailment 
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constraints, ancillary service constraints, CHP operating constraints, distribution network 

reinforcement constraint, heat network investment cost constraints, system security constraints, 

and carbon constraint. 

To further address RQ3, a set of comprehensive cases studies are carried out by applying the 

integrated heat and electricity system investment model in Chapter 5 and 6. 

8.1.4 Evaluation of Alternative Heating Decarbonisation Strategies 

In Chapter 5, the economic performance of various heating strategies in the decarbonisation of 

the heat sector through coordinated operation with the electricity system is assessed. A set of 

comprehensive case studies are carried out to compare the economic performance of different 

heating strategies from multiple perspectives and analyse the associated impacts on the 

electricity system.  

The results suggest that hybrid HP-B has a significant overall economic advantage over HP-

only and DHN, mainly due to investment savings from the presence of residential gas boilers. 

To be more specific, the comparison of hybrid HP-B over HP-only indicates that hybrid HP-B 

can drive savings over HP-only through the reduced requirement of distribution network 

reinforcement and OCGT as back-ups, due to the significant reduction of peak electricity 

demand which is compensated by gas-based heat, however,  the operation cost increases as a 

result of reduced level of electrification in the heat sector, while more low-carbon generation 

is invested to compensate for the extra carbon emission from the gas consumption. The 

comparison of hybrid HP-B over DHN indicates that the main advantage of hybrid HP-B is the 

saved investment in the construction of the pipework. However, the investment cost of DHN 

highly depends on the heat density of the deployed area and hence grants DHN the economic 

advantages to be deployed in highly populous areas. Among all the investigated heating 

technologies, hydrogen boilers is the most capital-intensive, making it not suitable for large-

scale deployment yet. However, since it can boost the integration of RES, its competitiveness 

can be improved under a more demanding carbon scenario. 

The economic assessment for the optimal portfolio of heating technologies is performed given 

the cost assumptions, demonstrating that under the carbon target of 100g/kWh, 16% of the total 
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heat demand is covered by DHN (all deployed in urban areas) while the rest supplied by hybrid 

HP-B. When the carbon target is tightened to 50g/kWh, a 5% increase in the penetration of 

DHN is deployed (21% in total), manifesting its enhanced competitiveness in a more 

demanding carbon scenario. A series of sensitivity studies are performed to illustrate the 

robustness of the heating strategies to the cost uncertainty of heating technologies. The results 

also clearly demonstrate the changes on the electricity side driven by the different 

decarbonisation strategies in the heating system. The building energy efficiency has a 

significant impact on the whole system cost. When the building energy efficiency improves, 

the investment in district-heating technologies is gradually shifted to distributed-heating 

technologies, meanwhile, large savings are achieved in the total investment of heat sectors.  

The capital cost of DHN mainly depends on the length of the pipeline. When the layout of 

consumers in a district has been determined, the potential capital cost of DHN in that district 

is also determined and will not be influenced by the variation of heat demand. Therefore, the 

lower the heat demand (kW), the higher the unit investment (£/kW) of DHN. As a consequence, 

the competitiveness of DHNs reduces when building energy efficiency improves. Additionally, 

the investment of RES decreases with improved building energy efficiency due to reduced heat 

demand and decreased availability of flexibility from heat sectors. 

The value of building energy efficiency improvement is also impacted by carbon targets, the 

more demanding the carbon target is required, the more savings can be achieved through the 

improved building energy efficiency. Additionally, the whole system benefits through pre-

heating increase with the improvement of the building energy efficiency in different carbon 

scenarios. The more demanding the carbon target is required, the more savings can be achieved. 

8.1.5 Assessment of Benefits of Integrated Heat and Electricity Systems 

In Chapter 6, the benefits through considering the interactions between the heat system and the 

electricity system at the planning stage were quantified across different sectors of the whole 

multi-energy system.  

The results demonstrated that the integration of the heat and electricity system can bring 

significant benefits by increasing the investment in the heating infrastructure in order to 
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enhance the system flexibility that in turn can deliver larger cost savings in the electricity 

system, thus meeting the carbon target at a lower whole-system cost. System integration can 

deliver the shift in carbon emissions from the heat sector to the electricity sector, driven by the 

shift in heat production from gas-boilers to NG CHPs, while facilitating the electrification of 

the heat sector, which leads to significant cost savings in the electricity sector through the 

replacement of some NG CCS capacity by NG CHP (fundamentally enabled by the flexibility 

that significantly reduces RES curtailment). 

TES can also make a great contribution to the reduction of the whole system operational and 

investment costs in the electricity sector at the cost of increasing the investment in the heat 

sector. Specifically, TES enables: (i) delivery of operation savings through alleviating the 

curtailment of RES, (ii) reduction of NG CCS capacity by supporting provision of ancillary 

services leading to an increase in RES production and (iii) the shift in heat delivery from end-

use to district based technologies, driven by the flexibility requirements.  

The benefits of pre-heating were also investigated. Based on the results, the application of pre-

heating can substitute a considerable amount of TES, but the value of pre-heating is intensely 

affected by the building insulation levels. Additionally the marginal value of pre-heating 

declines with the increase of percentage of households providing this service. It is worth 

noticing that the improvement of building insulation level can effectively reduce heat demand, 

thus compressing the space of operational savings through pre-heating. However, when 

considering investment costs of different assets, improved building insulation can introduce 

extra flexibility to pre-heating, thus increasing investments savings. 

In the end, this chapter investigated the role that balancing service requirement plays in the 

benefits of system integration. The results indicated that the level of balancing service 

requirements would have a significant impact on the value of the system integration. In this 

context, the benefits through system integration may vary with the development of different 

balancing-service-provision technologies, including the contribution of RES, nuclear 

generation, and emerging flexibility technologies, etc. 
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8.1.6 Computational Complexity Reduction 

In Chapter 7, a cost-oriented representative-day-selection approach is proposed to reduce the 

computational burden of the integrated-electricity-and-heat-system investment-model, while 

ensuring that the results are near-optimal, thus addressing RQ4.  

The proposed representative-day-selection approach comprises 4 key steps: (1) transfer of the 

clustering domain, (2) dimensionality reduction, (3) cluster allocation, and (4) representative 

day identification. By using this approach, the computational burden of the integrated 

electricity and heat system investment model can be significantly reduced. Additionally, the 

investment decisions made based on this approach can reach a high accuracy.  

This chapter also demonstrates the superior performance of the proposed cost-oriented 

representative-day-selection approach against the widely used input-based approach. Based on 

our analysis, there are three factors that can potentially limit the performance of the input-based 

approach, including: (i) the potential nonlinearity between the input domain and output domain 

in complex cases may lead to mismatch in data clustering; (ii) the impact of RES generation 

on the system operation cannot be predefined in the cases where the capacities of Wind and 

PV are decision variables; and (iii) the impact of ancillary services requirements on the 

optimization result cannot be adequately taken into account if clustering is only based on the 

input dataset. In order to demonstrate the effectiveness of the proposed cost-oriented approach 

in terms of addressing the limitations faced by the input-based approach, three cases with 

increased complexity were tested. The results of all case studies indicate consistent 

improvement of accuracy when using the proposed cost-oriented approach compared to the 

input-based approach. 

8.2 Future Work 

Based on the conclusions of this thesis, a number of significant areas are identified for 

improvement in future work: 

 It will be useful to further improve this thesis by getting a detailed understanding of the 

local effects of different categories of buildings which may potentially have significant 
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impacts on the suitability of different heating technologies and develop more detailed 

understanding of the impact of building efficiency and HNs.   

 The gas network is an important component of the multi-energy system, especially 

when natural gas still dominates the heat sector and supplies a considerable proportion 

of the electricity generation in the UK. Therefore, it will be important to integrate the 

gas network into the proposed integrated electricity and heat system investment model 

to enable a more comprehensive analysis of the potential development direction of 

multi-energy system towards a low-carbon future.   

 There is growing evidence that hydrogen may play an important role in the 

decarbonisation of the future energy system. Additionally, recent research indicates that 

the present distribution-level gas network can be adopted to deliver hydrogen without 

much update, therefore, the potential investment cost of adopting hydrogen will be 

significantly reduced, increasing the competitiveness of hydrogen. In this context, it 

will be important to further enhance the model by investigating the potential role and 

value of hydrogen technologies. 

 Electric vehicles can significantly enhance the impact of DSR on the electricity system 

while fuel cells can effectively decarbonise the energy system by feeding on hydrogen. 

Therefore, it is also significant to consider the importance of the transport sector in the 

integrated energy system, including the impact of large scale application of electric 

vehicles and fuel cells on the electricity system.  

 The cooling system is an important component of the multi-energy system, it will have 

significant impacts on the future energy system operation and investment decision, 

especially in the context that improved building insulation is required to reduce the heat 

demand in winter, which will bring about the issues of overheating in summer. 

Therefore, it will be necessary to investigate the role cooling system plays in the future 

multi-energy system planning.  

 It will be interesting to investigate the potential role of end-side-used micro-CHP and 

the season heat storage in the future energy system. 

 In order to identify robust strategies for the decarbonization of the integrated electricity 

and heat sectors, it is essential to understand the impact of considerable uncertainties in 
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future cost of different technologies and expand the proposed integrated electricity and 

heat system investment model into a multi-stage model.  

 In terms of the representative-day-selection approach, it will be helpful to further 

develop the proposed cost-oriented approach for the selection of longer operating 

periods to address the investment planning problem considering inter-day or seasonal 

energy storage. Additionally, it will be helpful to expand of the proposed approach for 

the multi-stage investment planning problems. 
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Appendix A Data and Parameters   

A.1 Parameters and Images of Representative Districts 

Representative area 1 is selected from an urban area characterised by a high heat density. 

Detailed parameters of this area acquired from the National Heat Map and the fractal model 

are listed in Table. A.1, while the generated topology of heat network that can be potentially 

deployed in this area illustrated in Fig. A.1. According to the economic attraction model 

described in 2.1.2, the consumers are highly evenly distributed within the given area (compared 

to the other representative areas as follows). 

Table. A.1 – Parameters of representative area 1 

Area (km2) 0.864 

Heat density (kWh/km2/yr) 61.7 

Area category Urban 

Consumer count 836 

Length of network (km) 16.82 

 

Representative area 2 is selected from an area with a relatively low heat density compared to 

representative area 1 and categorised as sub-urban area in this thesis. Detailed parameters of 

this area acquired from the National Heat Map and the fractal model are listed in Table. A.2, 

while the generated topology of heat network that can be potentially deployed in this area is 

illustrated in Fig. A.2. As can be seen, the consumer distribution is less even than that in 

representative area 1. 



A-2 Data and Parameters 

 

Table. A.2 – Table Parameter of representative area 2 

Area (km2) 0.912 

Heat density (kWh/km2/yr) 25.1 

Area category Suburban 

Consumer count 651 

Length of network (km) 12.94 

 

 

Fig. A.1 – Topology of heat network that can be potentially deployed in representative network 1 

 

Fig. A.2 – Topology of heat network that can be potentially deployed in representative network 2 

Representative area 3 is selected from an area with a much lower heat density than the previous 

representative areas and categorised as semi-rural area in this thesis. Detailed parameters of 



A.1 Parameters and Images of Representative Districts A-3 

 

this area acquired from the National Heat Map and the fractal model are listed in Table. A.3, 

while the generated topology of heat network that can be potentially deployed in this area is 

illustrated in Fig. A.3. 

Table. A.3 – Table Parameter of representative area 3 

Area (km2) 4.36 

Heat density (kWh/km2/yr) 3.05 

Area category Semirural 

Consumer count 956 

Length of network (km) 20.43 

 

 

Fig. A.3 – Topology of heat network that can be potentially deployed in representative network 3 

Representative area 4 is selected from an area with the lowest heat density compared to the 

other representative areas and categorised as rural area in this thesis. Detailed parameters of 

this area acquired from the National Heat Map and the fractal model are listed in Table. A.4, 

while the generated topology of heat network that can be potentially deployed in this area is 

illustrated in Fig. A.4. 



A-4 Data and Parameters 

 

Table. A.4 – Table Parameter of representative area 4 

Area (km2) 19.11 

Heat density (kWh/km2/yr) 0.89 

Area category Rural 

Consumer count 1632 

Length of network (km) 39.62 

 

 

Fig. A.4 – Topology of heat network that can be potentially deployed in representative network 4 

The cost assumptions of DHNs, length of pipelines under full deployment of DHNs, and the 

number of representative districts are presented in Table. A.5 and Table. A.6 [27]. 

Table. A.5 – Parameters of different representative DHNs 

Type of areas 
Capital cost of 

DHN (£/km) 

Length of pipelines under full 

deployment of DHN  (km) 

Number of 

representative districts 

Urban 1122 16.8 3632 

Suburban 772 12.9 4536 

Semirural 597 20.4 7300 

Rural 468 39.6 5992 

 



A.2 Profiles of RES Availability Factor A-5 

 

Table. A.6 – Economic parameters of DHNs 

Parameter of DHNs Values 

Life span (year) 40 

Cost of capital (%) 6% 

 

A.2 Profiles of RES Availability Factor 

The availability factor of wind and solar generation are illustrated in Fig. A.5 and Fig. A.6. The 

maximum and average availability factor for wind are 1 and 0.39 while for solar are 0.78 and 

0.12. The potential output of wind/solar generation is equal to the product of the capacity of 

wind turbine/PV panel and their availability factor, while the actual output is the difference 

between the potential output and the curtailment. 

 

Fig. A.7 – Profile of wind availability factor 
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A-6 Data and Parameters 

 

 

Fig. A.8 – Profile of solar energy availability factor 

A.3 Operation & Economic Parameters of Different Technologies 

Table. A.7 shows the cost parameters of various generation technologies. 

Table. A.7 – Cost Parameters of Generation Plants 

Generation 
Capital cost 

(£m/MW) 

Fixed O&M 

(£/kW/year) 

Variable O&M 

(£/MWh) 

Discount Rate 

(%) 

Lifetime 

(year) 

Nuclear 4.34 83.4 5 8.90% 60 

CCGT 0.51 16.6 3 7.80% 25 

OCGT 0.32 8.2 3 7.80% 25 

NG CCS 2.15 41.6 3 9.20% 25 

Coal CCS 2.43 92.7 3 8.20% 15 

NG CHP 0.76 34.4 5 7.80% 25 

Biomass CHP 5.17 304.7 11 12.20% 24 

Wind 1.52 30.9 5 8.90% 23 

PV 0.67 6.2 0 6.50% 25 
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A.3 Operation & Economic Parameters of Different Technologies A-7 

 

Table. A.8 and Table. A.9 give the operational parameters of different generation technologies. 

Table. A.8 – Operation parameters of Generation Plants 

Generation 
Min stable 

generation 

Ramp 

rates 

Annual 

Availability Factor 

Max Response 

provision 

Max Reserve 

provision 

Nuclear 80% 10% 0.91 0% 0% 

CCGT 50% 60% 0.93 10% 50% 

OCGT 40% 100% 0.93 10% 60% 

NG CCS 50% 50% 0.93 10% 50% 

Coal CCS 40% 50% 0.93 5% 60% 

NG CHP 50% 60% 0.93 10% 50% 

Biomass CHP 50% 60% 0.93 10% 50% 

Wind N/A N/A 0.39 0% 0% 

PV N/A N/A 0.12 0% 0% 

 

Table. A.9 – Carbon and operating cost parameters of thermal generators 

 

Generation 

technology 

Average cost 

(£/kWh) 
Efficiency 

Average CO2 emissions 

(g/kWh) 

MSG Full MSG Full MSG Full 

Coal CCS 54.4 39.5 25.4% 35.0% 116 80 

CCGT 84.7 74.1 51.5% 58.8% 422 368 

CCGT CCS 63.4 55.9 45.2% 51.3% 39 34 

OCGT 139.7 124.5 31.2% 35.0% 689 613 

NG CHP 84.7 74.1 51.5% 58.8% 422 368 

Biomass CHP 42.9 37.5 34.8% 39.8% 0 0 



A-8 Data and Parameters 

 

Table. A.10 and Table. A.11 give the economic and operational parameters of different heating 

technologies and TES. 

Table. A.10 – Parameters of Heating Technologies in 2030 

End-use 

heating 

Capital cost 

(£/kWth) 

Installation 

(£) 

O&M fixed 

(£/kWth /yr) 

Efficiency 

(%) 

ASHP 612 1200 20 1.6-3.6 

Gas boiler N/A N/A 32 95% 

District 

heating 

Capital cost 

(£m/MWth) 

O&M fixed 

(£/MWth/yr) 

Efficiency 

(%) 

HP 0.48 3200 380% 

Gas boiler 0.08 2960 98% 

 

Table. A.11 – Parameters of TES 

Storage CAPEX 𝜀𝑠 (h) Static eff Charging eff 

ITES 80 £/m3 6 99% 99% 

ETES 2.4 £/litre 3 99% 99% 

 

Table. A.12 shows the parameters of 4 types of representative distribution networks. 

Table. A.12 –Parameters of distribution networks in 2030 

 
Percentage of 

demand supplied 

Unit Reinforcement cost 

(£/kVA/year) 

Peak load that can be accommodated 

without reinforcement (GW) 

Urban 33.3% 37 5 

Suburban 41.2% 62 4.8 

Semirural 17.8% 26 2.1 

Rural 7.7% 19 1 



A.3 Operation & Economic Parameters of Different Technologies A-9 

 

Table. A.13 shows the parameters of different types of generation with low and high flexibility. 

Table. A.13 – Operating parameters of generators in different scenarios 

Flexibility & 

efficiency 
Generation MSG 

Maximum response  

(% rating) 

Efficiency (%) 

MSG FULL 

Low 

CCGT 50% 12% 51.5% 58.8% 

Gas CCS 50% 7% 45.2% 51.3% 

Nuclear 60% 0 - - 

OCGT 40% 30% 31.2% 35.0% 

Coal CCS 40% 5% 25.4% 35.0% 

High 

CCGT 40% 17% 55.1% 58.8% 

Gas CCS 40% 10% 48.1% 51.3% 

Nuclear 80% 0 - - 

OCGT 40% 40% 33.0% 35.0% 

Coal CCS 40% 5% 29.7% 35.0% 

 


