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Abstract

Quantum thermodynamics seeks to address the emergence of thermodynamic laws, which govern
how energy is exchanged between physical systems, from a quantum mechanical description of
light and matter. As such, the workhorse model for an underlying description of such energy
exchange processes is the open quantum system: a quantum system which may interact with
an external environment. Open quantum systems are well-understood in regimes where the
interaction between the system and the environment is weak enough that perturbative methods
may be employed to arrive at dynamical equations of motion for the evolution of the system.
How to tackle the strong coupling regime is an open question and much research is still being
devoted in this area. In this project we employ a technique developed for studying an open
quantum system in regimes of strong reservoir coupling in problems in thermodynamics which
have so far been restricted to the weak coupling regime. We spend some time developing our
strong coupling framework and then use it to analyse a quantum heat engine to find that
strong coupling leads to a particular set of operational costs which are not present in more
well-understood weak coupling versions. We also identify effects purely quantum in nature,
present in the engine cycle only at strong coupling, which lead to a degradation in the engine’s
performance. Finally we address the issue of quantum coherence more generally in archetypal
open quantum system models beyond weak coupling, and identify a thermodynamic cost to its

erasure.
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Overview

Quantum thermodynamics is a term which encompasses recent efforts, both theoretical and
experimental, directed towards reaching an understanding of how the laws of thermodynamics
emerge from an underlying quantum theory of matter. Tremendous progress has been made in
this field. However, this project stemmed from a desire to address an area which is conspicuous

in its absence from the impressive results which have already been achieved to date in this topic.

Thermodynamics involves the study of energetic exchanges between physical systems as well
as with their external environments. Classically, it is an emergent theory and the laws of ther-
modynamics are applicable in the limit of a large collection of individual microscopic systems,
whose collective behaviour can be well described by classical laws of physics. Away from this
limit, as the system size is reduced, naturally quantum physics is required to accurately de-
scribe the dynamics. In fact, this setting falls within the remit of a branch of quantum physics
known as open quantum systems. This is a theory precisely designed to tackle the dynamics of

quantum systems which interact with an environment.

In standard treatments of open quantum systems, one needs to make some approximations in
order to work with equations of motion which are tractable. Except for a small number of
exactly solvable models, computing the dynamics of a quantum system which interacts with
an environment consisting of a large number of quantum particles is not possible analytically
and difficult numerically without making some simplifying assumptions. These approximations
typically restrict the treatment of the dynamics to a regime where the interaction between the
system and the environment causes only a small perturbation on top of an otherwise interaction-

free description.

When this toolbox from the theory of open quantum systems is employed in the study of quan-
tum thermodynamics, one is therefore typically restricted to regimes where there is only weak
system-environment coupling. In what follows, we shall be tackling circumstances which go be-
yond this restriction and discussing how the thermodynamics which emerge in this regime differ
from those seen so far in weak coupling scenarios. In chapter 1], we will review the mathematical
toolbox one requires to treat open quantum systems. We will clarify the approximations we

have just alluded to, which restrict standard treatments to the weak coupling regime. This



chapter contains only material which is well-known in the field of open quantum systems and
we will point out where the interested reader may find further detailed discussions of this topic.
In chapter [2| we will move into the strong-coupling regime and discuss a mathematical formal-
ism developed as part of this project specifically to treat open quantum systems beyond the
approximations which would otherwise restrict us to the dynamics and thermodynamics of weak

system-environment interactions.

In chapters [3| and [4] we will apply this framework in the analysis of a quantum heat engine,
first at infinite cycle times and then at finite times. Quantum heat engines have been studied
at weak system-reservoir coupling, however, a general treatment beyond this regime is breaking
new ground and, we would argue, more relevant for practical realisations of such devices. We
will seek to understand what differences arise at strong reservoir coupling and address what can
be done in cases where these differences lead to a degradation in the engine’s performance. On
a more fundamental level, we shall also learn that there are purely quantum effects present in
a finite time quantum engine only at strong coupling which hamper its performance, namely
quantum coherence develops in the working system as a result of quantum correlations with the

heat reservoirs.

In chapter [5| we shall look at quantum coherence in open quantum system models more broadly.
We will identify a thermodynamic cost to its erasure, in the same spirit as Landauer’s erasure
principle, which explains the thermodynamic cost of classical information erasure. More gener-
ally we shall look at information flow between a quantum system and an environment beyond
the realm of weak coupling and understand what thermodynamic signatures arise as a signal of

strong reservoir coupling.

vi



Chapter 1

The dynamics of open quantum

systems

Before embarking on our study of thermodynamics, we shall devote a little time to some basic
mathematical techniques that are required for the treatment of the dynamics of an open quan-
tum system. An open quantum system is one which interacts with some external environment,
which typically we do not wish or are unable to treat explicitly. A closed quantum system’s
dynamics are governed by the Schrodinger equation and specifically a Hamiltonian operator for
the energy of the system. We shall see that the dynamics of an open quantum system can be
described by a different equation of motion called a master equation, the derivation of which
typically involves making some simplifying approximations about the behaviour of the environ-
ment with which the system interacts. As we review the technique of deriving such a master
equation, we will place special emphasis on any approximations made and discuss how these
typically restrict us to a regime of weak system-environment interactions. Later, we will relax
these approximations and derive an alternative treatment of the dynamics of open quantum
systems, known as the Reaction Coordinate (RC) formalism, which will allow us to treat the

case where the open quantum system interacts more strongly with the environment.

The techniques reviewed in this chapter are all commonly employed in the framework of open
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quantum systems and here we generally follow derivations presented in references [I, 2], [3].
Before treating the dynamics of an open quantum system we first review some of the basic

mathematical formalism required.

1.1 Mathematical preliminaries

1.1.1 The Liouville-von Neumann equation for the evolution of a density

operator

We begin with a very brief recap of how to describe the dynamics of closed quantum systems.
Consider a system in a pure quantum state described by the vector | (t)), belonging to some
Hilbert space H°. The time evolution of this vector is given by the time-dependent Schrédinger

equation

i— (1)) = H(t)[(1)), (L.1)

where H (t) is the Hamiltonian for the system, which may carry some time dependence. To keep
expressions unencumbered, we will assume Hamiltonians have units of frequency. This means
that H(t) should read as @, where A is the reduced Planck constant. This is typically what
is meant by the turn of phrase “setting & = 1”. The solution to equation may be written

as

[ (t)) = U(t; to)[¢(t0)), (1.2)

where U(t,tp) is a unitary operator acting on H® which evolves the system state vector at
some initial time ¢y to its state vector at a later time ¢. To reach an explicit form for the time
evolution operator we substitute the right hand side of equation for |1 (t)) into equation
and, cancelling the time-independent initial state vectors from either side, we obtain

z’%U(t,to) = Ht)U (L, to). (1.3)
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We may integrate equation ([1.3]) to give the following expression for the evolution operator from

time to to time ¢
¢

U(t,to) =T exp —i/dsH(s) , (1.4)

to
where T indicates that we take the time-ordered exponential in the expression which follows it.
In the special case where the Hamiltonian is independent of time, a straightforward integration

of Eq. (1.3]) gives
Ult,tg) = exp [—iH (t — to)] . (1.5)

So far we have restricted ourselves to pure quantum systems described by the time-dependent
vector [1(t)). More generally, we may describe the state of a quantum system at an initial time
to by a density operator

p(tO) = Zpa\%(to)ﬂ%(toﬂ (1'6)

We interpret p,, as the classical probability of the system being in the pure state |14 (t9)) at time
to. There are a different possible initial pure states for the system and we require ) po = 1.
In the case where the initial quantum state is pure, the summation index a only runs over one
value and the density operator reduces to p(tg) = [ta(t0)){¥a(to)|- If o runs over more than

one value then the state is known as a mixed state.

To obtain the density operator for the system at some later time ¢ we conjugate p(to) with the

time-evolution operator U (t,to) such that
p(t) = Ult, to)p(to)UT (¢, to). (1.7)

From this expression we can obtain an equation of motion governing the time evolution of the
density operator which is analogous to the Schrédinger equation governing the evolution of
pure quantum systems. We differentiate equation (1.7, and, using equation (|1.1)), arrive at the

Liouville-von Neumann equation

—p(t) = —i[H(t), p(t)] = L(t)p(2)- (1.8)
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In equation we have defined a time-dependent Liouvillian superoperator £, which maps a
valid density operator to another valid density operator. The formal solution to equation
is .
p(t) = T exp /dsﬁ(s) p(to)- (1.9)
to

In the case of a Hamiltonian (and hence Liouvillian) that is independent of time this reduces to
p(t) = exp [L(t — to)] p(to)- (1.10)

The Liouville-von Neumann equation (1.8) will be the starting point for our derivation of the
master equation for an open quantum system. But before diving into that, we will briefly
introduce, in the next section, the concept of the interaction picture description of operators

and quantum states as this will aid in the sections to follow.

1.1.2 The Interaction picture

We shall now briefly review the process of transforming operators and quantum state vectors
into the interaction picture. This process forms a crucial step in treatments of open quantum
system dynamics, since we will wish to treat the interaction between the open system and the
environment as a perturbation on the non-interacting parts of a total system and environment

Hamiltonian.

We consider a Hamiltonian of the form
H(t) = Ho + Hy(t). (1.11)

Here we suppose that Hj describes the bare energy of a system and its environment (another, or
several other quantum systems), and would appear alone in a Schrédinger equation governing
the free evolution of all systems were they not interacting with each other. Hj(t) is the term
describing the interaction between the systems and may, in general, carry some time dependence.

In what follows, we restrict ourselves to situations where this term is independent of time. The
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expectation value of a Schrodinger picture observable A(t), at some time ¢, is obtained by

following the Born rule of standard quantum theory to yield

(A®)) = tr[A@)p(t)]

= tr [A()U(t, to)p(to)UT(t, t0)] . (1.12)

We define a unitary operator which resembles a time evolution operator based on the interaction-

free Hamiltonian
U()(t, t()) = exp [—iH()(t — to)] . (1.13)

Noting that Ug(t, to)Uo(t,to) = Up(t, to)Ug(t, to) = I, equation l} may then be written as

(A(t)) = tr [A(t)Uo(t,to)Ug(t,tO)U(t,to)p(to)UT(t,tO)UO(t,to)Ug(t,to)
= tr [Ud (¢ 1) AU (1, 1)U (8 t0)p(t0)U] (1 o)

= tr [A(t)ﬁ(t)} : (1.14)

where, in the second line, we have used the cyclic properties of the trace and defined the
time evolution operator in the interaction picture as Uj(t,tg) = Ug(t, to)U(t,t0). In the third
line we define the interaction picture form of an operator, denoted by the tilde, as fl(t) =
UOJr (t,to)A(t)Up(t,tp). The interaction picture at time ¢ is therefore defined by the unitary

transformation Uy (¢, to).

We may now determine an evolution equation for the density operator in the interaction picture,
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p(t). Differentiating the expression for the interaction picture form of the density operator yields

G0 = il 0]+ Ujie.0) (o0 ottt

dt
= i [Ho, p(t)] — iU (¢, to) [H(2), p(t)] Uo(t, to)

= —i[Hi(0).50)] (1.15)

where in the second line we have made use of the Liouville-von Neumann equation for the
evolution of p(t) to substitute in for %p(t) and in the last line we have used I = Ug(t, to)Uo(t,t0)
to notice that conjugation of the commutator with Ug (t,tp) amounts to transformation of H(t)
and p(t) into the interaction picture. Equation is, therefore, the equivalent form of the
Liouville-von Neumann equation describing the evolution of the density operator in interaction
picture form. Both equation and the definition of an operator in the interaction picture

will prove useful tools in deriving a Born-Markov master equation in what follows.

1.1.3 The reduced density operator

There is one final key ingredient which we review briefly here, before turning to the description
of the dynamics of an open quantum system by means of a master equation. In the case of a
system S interacting with an environment F, the master equation formalism involves keeping
track of the evolution of the system of interest .S rather than that the global state for S and E.

Consider a Hamiltonian of the form
H=Hgs+ Hg + Hj, (1.16)

where Hg is the Hamiltonian for the free evolution of S ignoring any interaction with F, Hg
the Hamiltonian for the evolution of E without any interaction with S and Hj the term treating

the interaction between S and F. Any observable on the system alone may be written in the
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form A = Ag ® Ig. The expectation value of any such observable will be given by

(At)) = trsip[(As(t) @ Ip) p(t)]

— trs [As(t)ps(®)], (1.17)

where we have introduced the reduced density operator for the system, obtained by taking the

partial trace over the environment degrees of freedom of the density operator for the total state,

ps(t) = tre [p(t)].

The evolution of the reduced density operator pg(t) is therefore obtained from equation ([1.8))

by performing a partial trace over the environment to give

d .
“ps(t) = —i trp [H(1), ps(0)]. (1.18)
We shall make use of equation (1.18)), transformed into the interaction picture, now that we

turn to the derivation of the master equation for the evolution of an open quantum system.

1.2 The Born-Markov master equation

1.2.1 Simplifying the Liouville-von Neumann equation

With these mathematical formalities now firmly in place, and with our grasp of the dynamics
of closed quantum systems refreshed, we now turn to a treatment of the dynamics of an open
quantum system which will culminate in our writing down a Born-Markov master equation.
Although restricted to regimes of weak coupling, it will still serve as a foundation for our
treatment of the strong coupling regime, on which we shall focus later. The derivation will rely
on making some simplifications about how the environment behaves during its interaction with
our system of interest, under what are collectively termed the Born-Markov approximations.
We will highlight these at the relevant points. We begin by considering a Hamiltonian of the

form of equation (1.16]). Let us define Hy = Hg + Hp and employ this to transform H; into the
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interaction picture according to the rules given in section yielding
ﬁ](t) — ei(Hs+HE)tHI€7i(H5+HE)t, (119)

where we have chosen the initial time to be ty = 0. In the interaction picture, the global density
operator for the composite system-environment state will obey equation ([1.15)) as its equation

of motion. Integrating with respect to time, we may write the formal solution as
t
) =9(0) ~ i [ ds [s).55)] (1.20)
0

Substituting the expression for p(t) in equation ([1.20]) back into the right hand side of equation
[CT5) yields

570 == [Fr(0.50)] — [ ds[Fi(o). [As).5)] ). (1.21)
0

Performing a partial trace over the degrees of freedom of the environment we turn this into an

equation of motion for the reduced density operator of the system S:

d

G575 = —itre [F1(0).50)] = [ ds e [Bi0). [fi(9).505)] ] (1.22)
0

Let us assume that the interaction is switched on at ¢ = 0 and that no correlations exist between
the system and environment at that point, meaning that we may write the composite density
operator as a product state: p(0) = ps(0) ® pr(0). Although this step is often skimmed over
and does not fall within the collective understanding of what are meant by the Born-Markov
approximations, we wish to highlight at this stage that this assumption is in fact non-trivial.
Without it, our subsequent derivation of the master equation would break down, but perhaps
more importantly for the purposes of our later treatment of thermodynamic cycles, it is an
assumption that is often vital for the validity of thermodynamic treatments of open quantum
systems. Without it, interesting violations of the laws of thermodynamics are possible and

indeed generalisations to account for the scenario of initially correlated systems are explored in
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Ref. [4] and references therein.

Note also that p(0) = p(0), so we may drop the tilde in the first term on the right hand side
of . We may also assume that the first term on the right hand side evaluates to zero,
trg [ﬁ 1(t), p(O)} = 0. This may done without loss of generality: This term contributes to the
unitary part of the dynamics of the system state pg and as such any non-zero value may always

be subsumed into a redefinition of the interaction-free terms in the Hamiltonian (Hp). Equation

(1.22)) now reduces to

sty == [ ds g [Hite), [Arts). 7)) (1.23)
0

So far we have manipulated Eq. for the global state into Eq. for the reduced state
of the system. But this latter equation is no simpler to solve: it is still an integro-differential
equation where the state of the system at any given time ¢ is conditional on the states at all
previous times as far back as time ¢ty = 0. We would like to have a time local equation in which
% ps(t) depends only on p4(t) at one particular time ¢: an ordinary differential equation which
is more tractable. To make progress, we will make some simplifications known collectively as
the Born-Markov approximations. Under the Born approximation we assume that the global

state of system and environment remains separable at all times:
p(t) = ps(t) ® pe(t) V. (1.24)

This assumption will be valid under the condition that the interaction term Hj is sufficiently
small in magnitude compared with Hg, i.e. we are restricted to the regime of weak coupling.
Furthermore we will make the assumption that the environment is static and remains in its
initial state pg(0). If pg is much larger in dimensionality than pg then any changes to pg due
to the interaction with the system are small and safely negligible on the scale of changes to pg.
We also make the assumption that we may safely neglect any possible correlations between the

system and the environment, meaning that we write the global state of environment and system
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as separable at all times. Of course, in reality we are aware that correlations will develop as a
result of a non-zero interaction term. However, we expect these correlations to be of the order
of the interaction term, which we already assume to be but a small perturbation. Neglecting
correlations therefore is reflective of our weak coupling assumption. The same assumptions
carry through to the interaction picture, since Hy does not contain any coupling terms. No
correlations between the system and environment can be established, therefore, through the

operation e!fotp(t)e= ot

Equation (1.23)) now simplifies somewhat to

t
G7s0) == [ ds e [Aio). [H1(5).5s(5) © 0] ] (1.25)
0

We have approximated away any time dependence for the environment state on the right hand
side as well as explicitly imposed a separability restriction. One might, already at this stage,
be uncomfortable about the approximations we have made and what restrictions they imply for
the validity of any dynamics computed once we tackle solving this equation. We are restricted
to regimes where the coupling is negligibly weak and we shall have to make do with our in-
ability, because of the separability restriction, to track any system-environmental correlations.
Later, when we discuss our approach to tackling the strong coupling regime in section [2| we
shall overcome some of these restrictions and have the ability to track system-environmental

correlations.

However, for the time being, restricted as we already are, we are still facing in equ. |1.25| an
integro-differential equation which is not local in time. The evolution of pg(t) depends on its
past history through the integration of pg(s) over the time variable s between s = 0 and s = ¢.
This is still hard to solve and therefore the next step is to make the Markov approximation with
the goal of localising Eq. in time. This constitutes in replacing pg(s) with pg(¢) in the

integrand, removing the reference to a particular time ¢ = 0 by shifting s — ¢t — 7 and taking
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the integral to infinity, to give a Born-Markov master equation:

() = - / dr tep [Hi(t), [Hi(t = 1), ps(t) @ pi] | (1.26)
0

Equation is now a Markovian ordinary differential equation because only the state pg at
time ¢ appears on the right hand side and is not part of the integration over the variable 7. The
shifting of the integral back to infinity (there is a swap in the limits because of the minus sign
in s =t — 1) removes any dependence on a particular starting time. We will now spend a little
time discussing the circumstances in which such simplifications are justified. In order to do so

we shall define environment self-correlation functions.

1.2.2 Environment self-correlation functions

In an exact treatment of the open system, we can imagine that the system state would be
influenced by its historical states because, at earlier times, these will have imprinted themselves
on the environment through the interaction term Hj;. In other words, the interaction term
allows a system state to alter the initial state of the environment. Then at some later time, this

changed environment will produce some back action, via H; again, on the system.

If the environment is large compared with the system size and relaxes to an equilibrium state
rapidly compared with any dynamics of the system, then even if an earlier system state has
left its mark on the environment, this will quickly get washed away as the environment returns
to equilibrium before there is any chance of some back action on the system. In the case of
treating thermodynamics from the perspective of open quantum systems theory, it is very often
assumed that the environment is initially in a thermal equilibrium state with respect to Hg at
time t = 0, pp(0) = _ePl=BHE]  where the inverse temperature is given by 8 = —=. We
’ trglexp[—BHE]]’ — kT~
imagine, if the environment is taken to be a heat reservoir, that it rapidly rethermalises to this

same equilibrium state whenever it is forced out of equilibrium through interactions with the

system.
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Markovian behaviour is therefore justified from this physical argument. To quantify this a little
more precisely we employ the self-correlation time of the environment 7., as a measure of how
quickly it relaxes to equilibrium. Then in the case where 7., < Tg, the time scale for system

dynamics, the simplifications in the previous section are justifiable.

Let us write a general form of H; in terms of operators acting on the system Hilbert space and

operators acting on the environment Hilbert space as follows
H; = ZAQQ@BQ. (1.27)
(0%
In the interaction picture this becomes

Hy(t) = Y expliHst] Ay exp [~iHgt] ® exp [iHpt] Bo exp [—iHpt] (1.28)

= ) Au(t) ® Bal(t). (1.29)

The environment self-correlation functions over two times ¢ and s are defined as

Cap(t,s) = (Ba(t)Bg(s)) g = trg | Ba(t)Bs(s)ps| - (1.30)

Now, as discussed above, pg is a stationary state and therefore commutes with Hg. So when

substituting in for Ba/lg (t) from (|1.28) we can use the cyclic properties of the trace to show that

Coslt, s) = trp [Ba(t — 8)Bapp| = Caglt — s). (1.31)

The self-correlation functions depend only on the time difference t —s. 7.0 is then the timescale
over which these functions decay to zero and if they do so much more quickly than the timescale

over which the system evolves, then the Markovian approximation is justified.
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1.2.3 General form of the Born-Markov master equation

We now rewrite equation ([1.26]) in terms of the correlation functions Cg(t—s) to explicitly show

how environmental timescales enter the dynamics of an open quantum system. Expanding the

commutators in equation (|1.26) and substituting in from equations (1.31]) and (|1.28)) we obtain

00
5750 == 3 [ ar {[Aa(0) Ap(t = 1)7s(t)] Caplr) + [Bs() Aslt = 7). Aalt)] Caal-1)}
aB

(1.32)
The properties of the environment enter through the self-correlation functions in the terms
on the right hand side of . The Markov approximation is justified when these decay
rapidly to zero on the timescale over which pg(t) varies, 7g. In the interaction picture, we have
transformed away any rapid evolution of the system due to its self-Hamiltonian and we are left
with what we assume to be slow evolution governed by a very small interaction term. The
Markov approximation therefore is based on the assumption that this slow evolution is in stark
contrast to the rapid dynamics of a very large reservoir reflected in self-correlation functions

which decay rapidly to zero compared with the timescale over which any significant changes are

observed in the system.

We may now transform back to the Schrodinger picture to give

st = =il ps(0)] + expl-itfst] (50 ) exp st
= —i[Hs,ps(t)]
-y / ar { [ Aas Ap(=T)ps ()| Cas(r) + |ps(®)As(~T), Aa] Coa(-7) } .
aB

(1.33)

Equation (1.33) gives a general form for the Born-Markov master equation, the equation of
motion for an open quantum system in the limit of weak system-environment coupling. We
will now discuss some examples of specific microscopic models and derive the Born-Markov

equations which apply in each case.
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1.3 The damped harmonic oscillator

We will consider, in this section, the case of a harmonic oscillator as the open quantum system
of interest. We begin with this example because a damped harmonic oscillator is a ubiquitous
model in studies of decoherence and dissipation in open quantum systems [I, 2 B, 5]. It forms
the basis for the quantum version of Brownian motion studied through the seminal Caldeira-
Leggett model [6], a semi-empirical model of a Brownian system moving in a harmonic potential

while coupled to a bosonic environment.

For our purposes we will consider a system moving in one spatial dimension, confined in a
harmonic potential, linearly coupled to an environment which consists of a very large num-
ber of non-interacting harmonic oscillators maintained in thermal equilibrium at a particular

temperature.

We will proceed now by deriving a master equation which relies on Born-Markov approximations
and is therefore subject to weak coupling restrictions as discussed in section Ultimately we
will extend our treatment beyond weak coupling in sections to follow, employing the present
treatment as a benchmark to ensure that our strong coupling treatment is also capable of

reproducing well-established weak coupling results.

1.3.1 Born-Markov master equation for a quantum harmonic oscillator

A derivation of the Born-Markov master equation for a damped harmonic oscillator can be
found in most good open quantum systems textbooks. Our derivation leans most heavily on
that presented in Ref. [3] where the model is studied in the context of the decoherence of open
quantum systems. Once again we begin with a global Hamiltonian of the form of equation (1.16)),
partitioned into a term describing the self-energy of the system S, a term for the self-energy
of the environment E and an interaction term which couples the system with the environment.

The environment self-energy is given by the sum of the self-energies of £ harmonic oscillators
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which do not interact with each other

(P2 +wi@7) , (1.34)

l\.')\r—t

where P, and Q) are momentum and position operators, respectively, for the k' environment
oscillator. These obey canonical position-momentum commutation relations. The self-energy

of the system oscillator of interest, written in terms of position x and momentum p, is given by

Hg (p* + wiz?) (1.35)

[\3\*—‘

where wy is the natural frequency of our system S.

We model the interaction between the system and the environment oscillators as linear in both
the system position coordinate x and the coordinates )i, commonly referred to as bilinear
coupling,

H=2% g:Qu, (1.36)
k
where the g represent coupling constants for each interacting environmental oscillator.

We may write equation (1.36)) in the form of equation (1.27) by making the definitions

A ==z (1.37)

B = ) gQs (1.38)
k

The environment self-correlation function is then given by

C(r) =trp [B( BPE} nggz tr [Qk( QZPE] ng trp [Qk( )Qka] ;o (1.39)

We can simplify these expressions by rewriting the position operators for the environment in

second quantised form
1

Qr = Yoor

(ak + a};) (1.40)
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where aj and aL are ladder operators for the k' environment oscillator, satisfying the usual

bosonic commutation relations. In the interaction picture this becomes

3 . . 1 . .
Qk(T) _ elHETle—ZHET _ 27 (ake—zwkT + a]];ezwk7> ) (141)
Wi

We now substitute in for @ and evaluate the trace in equation ([1.39) as follows

trg [Qk(T)Qka} = [tI‘E (akaLpE> e Wk +trg (a,:aka) eiwkr}

1
2wk
1 4 4
= 5 { [1 +trg (a,:aka)} e kT +trp (aLaka) e“"”}
k

1 . .
= o {1 N (@ D] e ™7 4 N (w, T) €47}
k

— % {[1 + 2N (wg, T')] cos (wiT) — isin (wgT)}
Wk

= Lot (28 ) cos ) —isin ) . (1.42)

2wk

In the second line we have made use of the bosonic commutation relation [ak,az] =1. In
the third line we use the fact that the environment is in a thermal Gibbs state at temperature
T, pp = %e—ﬁwwlak with Z = trg [exp [—Bwkalakﬂ, giving trg (azaka) = (65‘”’9 — 1)71 =
N(wg,T), with g = ,CL%T. The environment self-correlation function, in equation is
therefore given by

Cr)=)_ 9k {coth (5;%) cos (wpT) — isin (wkT)} . (1.43)

2w
. k

It is common to define the noise kernel and dissipation kernel, v (7) and 7 (7) respectively, as

follows

vir) = ) 9k coth (%”“) cos (wyT) = jdeQ(:j) coth @“’) cos (wr),  (1.44)
0

2 w
n(r) = Z Ik gin (wT) = /dw J2(w) sin (wgT) . (1.45)
k

0
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In equations (1.44)) and (1.45]), we have introduced the spectral density of the environment

J (w) = Zgzé (w—wk), (1.46)
k

characterising the environment density of states weighted by the strength of the system-environment
coupling at each environment oscillator frequency. We also take the continuum limit for the
environment replacing the sum over individual discrete oscillator frequencies wy by an integral
over a continuous spectrum w. The environment self-correlation function may then be written
more concisely as

C(r)=v(r)—in(r). (1.47)

We may now substitute C'(7) from equation ((1.47)) and the system operator A from equation
(1.37) into equation ((1.33) and write down the following general expression for the master

equation for a damped harmonic oscillator

Gostt) = =i [Hs,ps(®)] = [ dr {0 () o[- ps(®)] ~ in (7) [, (& (=) o ps(0)}]) . (1.48)

0
The first term on the right hand side of equation ((1.48)) represents the unitary (dissipation-less)
part of the evolution of the system oscillator. Environment induced decoherence and dissipation
are described by the integrals over the noise and dissipation kernels in the second and third

terms.

Using equation ([1.35), we can evaluate the specific form of the interaction picture position

operator appearing in equation (1.48)) as

, . 1
7 (7_) — ST po=tHST _ 4 0 (CU()T) + —psin (CL)()T) , (149)
wo

where in the last step we have solved the Heisenberg equations of motion with respect to
Hy = Hg + Hp for the system position and momentum operators. Substituting for & (7) from

equation ([1.49) into equation ((1.48]), and after some algebraic manipulations, we obtain the
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most common form of the Born-Markov master equation for a damped harmonic oscillator:

%Ps(t) = —i |Hg + ;i)owQ,ps(t)} —iy [z, {p, ps (t)}] =D [z, [z, ps (t)]] = f [z, [p, ps (1)]] . (1.50)

In equation (|1.50) we have made the following definitions:

0 = —2/d7'77(T,T)cos(w07'), (1.51)
0
vyo= cjo drn (r,T) sin (woT) , (1.52)
0
D = /dTu(T,T)COS(wOT), (1.53)
0
1 o
f = — [ drv(r,T)sin (woT). (1.54)
wOO/

The first term in equation represents the unitary dynamics of a harmonic oscillator with
natural frequency (w% + (IJ%)% This, then, is the first consequence of note of the interaction
with the environment: it introduces a shift to the natural frequency of the oscillator of interest,
commonly known as the Lamb Shift. The second term is responsible for momentum damping
(dissipation) with rate proportional to y. The remaining terms cause decoherence in the position

basis at rates proportional to normal and anomalous diffusion coefficients D and f.

1.4 The spin-boson model

In section [I.3] we derived the weak coupling Born-Markov master equation for a damped har-
monic oscillator as this quantum system is ubiquitous in generic models of open quantum sys-
tems. Another common starting point for modelling the dynamics of open quantum systems is
to consider a quantum system restricted to two energy levels, interacting with a bath of bosonic
modes. This model is known as the spin-boson model and is, in its own right, a paradigmatic

model in the study of dissipation in open quantum systems [7, [8]. We will derive the weak
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coupling master equation describing the dynamics of the spin of interest forthwith.

1.4.1 Born-Markov master equation for a two-level system

We begin by writing down the Hamiltonian for the spin-boson model:

€ A
H = §O-Z+§O-w+gz ggk (b;rg—l-bk) +§kazbk’ (1.55)

where o, and o, are the usual Pauli spin operators and bL (bg) are creation (annihilation)
operators for each independent environment oscillator, satisfying bosonic commutation relations.
We make the identification Hg = 50, + %aw and Hg =), wkblbk, representing the self-energy
of the spin and the bosonic environment respectively. ¢ is referred to as the bias and A the
tunnelling. This terminology stems from this model being used to represent a double well
potential truncated to lowest quantum state in each well. The bias is the energy splitting
between each single quantum level contained in each potential well and the tunnelling mediates
intrinsic (non-environmentally induced) transitions between these two levels. wy represents the
natural frequency of each k environment oscillator. The remaining term is the interaction Hj
with the coupling parameters given by gr. We now proceed with the derivation of a weak
coupling master equation for the dynamics of the spin, valid to second order in these coupling
parameters. The steps are in line with those taken above for the damped oscillator so we will

proceed more briskly.

The first step is to find the interaction picture version of the interaction term in equation ([1.55)),
which yields (dropping the tildes and indicating the interaction picture by time dependence on

operators)

Hi(t) = eillsty millsteillst ng (bL i bk) o—iHEt
k

= o0,(t) ng (bleiwkt + bke_iw’“t) , (1.56)
k
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where

o,(t) = :2 [(62 + A% cos(ut)) o + Ae (1 — cos(ut)) oy + Ap sin(ut)oy| (1.57)

and

pw=ver+ A2 (1.58)

We now substitute for H; from equation ((1.56)) into equation (1.25)) to yield

Chslt) =~ > /OtdS(Uz(t)ffz(S)ﬁs(t)—UZ(S)ﬁs(t)Uz(t))trEBlpE
t
- Z/ ds (ps(t)os(s)o.(t) —o.(t)ps(t)os(s)) trpBapg. (1.59)
kg V0

Here we have replaced s — ¢ in pg(s) in line with the Markov approximation. B; and By are

given by
B, = Tk <b;[€eiwkt + bkefiwkt> gr (b};/eiwk/s + bklefiwk/s> . (160)
By = g (bL@i‘”’f’s + bk/e_i“k’5> Gk (bzei‘”’“t + bke_i”’“t> . (1.61)
Let us assume the environment is a thermal equilibrium state pp =3, (1_‘367_6%. Performing

the trace over the environmental degrees of freedom, taking the continuum limit for the k envi-
ronment oscillators, and a little algebraic manipulation yields the environment self-correlation

function:

Ci(t—s) = Trg[Bipe| = /OOO dwJ (w) cosw(t — s) coth ,6’71,0’ (1.62)
Cy(t —s) = Trg[Bapg| = /000 dwJ (w)isinw(t — s), (1.63)

where J(w) is the spectral density and the inverse temperature is 5 = lq%T' Substituting back

into equation (|1.59)) we can write down the interaction picture master equation

d

Pst) = —/0 ds (v(t = s) [02(1), [0=(5), ps (D] = in(t = s) [02(2), {0 (s), ps()}]),  (1.64)
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where curly brackets {, } denote the anti-commutator and

v(it—s) = /000 dwJ(w) cosw(t — s) coth %U, (1.65)

nt—s) = /OOO dwJ(w)sinw(t — s). (1.66)

We may now transform equation (1.59)) back into the Schrédinger picture. To do this, we make
use of the definition of the interaction picture density operator, rearrange and then differentiate

with respect to time to give

ps(t) = e*i(HerHE)tﬁS(t)ei(HerHE)t,
d , i d . i
s(t) = —ilHs,ps(t)] +e (HS+HE)t£pS(t)e (Hs+Hp)t (1.67)
Noting that
e_iHStiaz(t)eiHSt =0, (1.68)
dt
and
e M HstHp)l g ()t Hs B — (1 — 5), (1.69)

we can substitute %ﬁs(t) from equation |i into equation 1D to yield

d , ! ~ . ~
ﬁps(t)z—Z[Hs,ps(t)]—/o dr (v(7) oz, [0=(=7), ps (D] = in(7) [0=, {o=(=7), ps (D) }]) -

(1.70)
Here, we have changed the integration variable t — s — 7. Omitting much unenlightening
algebraic manipulation, substituting in for Hg and o,(¢) yields the following full version of the
Schrodinger picture master equation for the spin-boson model
d e A
s = = 0|50t (5 4Ta)) 00 4 i) pu(0)] = DO o o ps )]
TT() = ik (8) aps (e + (T1(E) + ik (8)) o-ps (D)o
— (Talt) — ika(t)) oyps(t)o. — (Ta(t) + ikalt)) o2ps(t)o,

— mi){oyps(1)} — ma(t){ou, ps(D)), (L.71)
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where we have made the following definitions

D(t) = :Q/Otdw(T) (€2 + A% cos(ur)), (1.72)
T (t) = A‘“ dw( ) (1 — cos(ut)) (1.73)
y(t) = — / drv(7) sin(ur), (1.74)
ri(t) = dm( ) (1 = cos(uT)) (1.75)
() = 2 / drn(7) sin(ur). (1.76)

Solving equation (|1.71)) and evaluating the integrals in equations (1.72]- [1.76)) often requires

resorting to numerical techniques, although in certain circumstances analytical solutions are
obtainable. One such situation is when the bias is set to zero, ¢ — 0. This situation is often
treated in good open quantum systems textbooks, for example in Ref. [3]. We will focus, in the
next section, on another simplified version of the model which is analytically solvable, because
we shall later draw on this as a benchmark against which to compare the reaction coordinate

technique for strongly coupled open quantum systems.

1.4.2 An exactly solvable model: the independent boson model

We consider, in this section, a simplified version of the spin-boson model with Hamiltonian
differing from that of equation (1.55)) only in the absence of a tunnelling term. Setting A — 0

allows for an exact analytic solution for the reduced dynamics of the spin.

Let us begin by defining the unitary operator Vp = e, where S = o, Do Ik (bT — bk) We
note that, with ) p = Vp|¢)) and Hp = VPHV;, the Schrodinger equation in this new frame

is written as one expects:

iOY)p = Hplp)p. (1.77)
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The formal solution to equation ((1.77]) is

[(t))p = Up(t)|1(0)) p, (1.78)

where the time-evolution operator is given by

Up(t) = e Pt (1.79)

The astute reader may recognise the operator Vp as one which shifts the position of each
oscillator in the environment. The presence of the spin space o, operator in the exponent
ensures this shift is spin state-dependent: for the spin in the excited state, the shift is positive,
and for the ground state it is negative. This collective excitation of the lattice, in microscopic
models employed in branches of solid state physics, is called a polaron. Hence our usage of the
subscript label P. We will refer to the frame defined by the transformation Vp as the polaron

frame.

It is a straightforward task, making use of the Hadamard Lemma, to evaluate Hp and Up(t) in

the polaron frame, yielding

2
€
Hp = §Uz+zwkb;2bk_ %’;, (1.80)
k k
2
Up(t) = e*ig"zte’iZk“’kab’“teiZk%t. (1.81)

We notice that the polaron transformation reduces the interaction term in Hp to a scalar and
that this is what enables us to write down an analytic solution to the Schrédinger equation in

the polaron frame. Making the definitions

€
Hy = 20Z+Zk:wkb;2bk, (1.82)

H = 0.Y g (bz n bk> , (1.83)
k

we move into the interaction picture with respect to Hy and seek an expression for the time
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evolution operator in the original frame:

Ut) = Hty(t) = etote=5Up(t)e”. (1.84)

Introducing the identity, I = e~ *0teiHot  this expression may be evaluated piecewise as follows:

itlote=S=itot  _ oy | gitlot [_O_Zzgk (bL —bk)] e—iHot]
w K

= x| 30 S (1 ) e_iHOt]
k

— exp|-0. Y %’Z (bZeiwkt - bkeiw'ct)] : (1.85)

L k

2
) i Ik
Noting that e0!Up(t) = ¢’ 2 ", we are left with

2
U(t) _ ei >k %t exp [_Uz Z 5)7/6 (b};eiwkt _ bkeiwkt>] exp [O’Z Z %IZ (b; — bk>] . (186)

i ok %

Making use of the Baker-Campbell-Hausdorff formula to combine exponents and evaluating the

relevant commutators yields
: 2 —1 i i W —iw
Ut)=¢' 2k %te R wi SIH(Wkt)eJZ 2k ‘%(b’t(l_e £)—br(1-e kt)), (1.87)
which we may write more succinctly as

2 .
where ¢ (t) = i—’; sin (wgt) and oy (t) = z—’z (1 — e™*!). We shall drop the time arguments for
k
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these functions in what follows to make expressions less cumbersome. Finally we note that,

exp [UZ Z akbL — a}ibk] = Jcosh (Z OzkbL — a};bk> + o, sinh (Z akbL — a’,;bk>

k k k
— I% (H D(ay,) +HD(—ak)> +a% <H D(ay) — HD(—ak)>
k k k k
= [0)(0 [T D(ew) + 1) A T] D(—aw), (1.89)
k k

where the displacement operator is given by D(ag) = exp [akbL — o/,;bk}. The interaction

picture time-evolution operator is therefore given by
U(t)=e (\0><0! [ID(ew) + D (—ak)> : (1.90)
k k
Let us, as usual, consider an initial state of the form

p(0) = ps(0) ® pg, (1.91)

with pg = 675;13 , a thermal state of the environment with respect to Hp for some given inverse

temperature 5, with Zp = tr (e‘ﬁHB). The matrix elements of the reduced state on the spin,

in the interaction picture, are given by
pii(t) = (i Trs [Tp(0)0] 1), (1.92)

where 7,7 = 0, 1. As expected for an interaction term which is diagonal in the spin energy basis,

the excited and ground state populations remain constant:

polt) = (0[Trz [Tp(0)0"] J0)

= (0lps(0)|0)Trp [[[ D () p [ D (ar)

K K
= poo(0), (1.93)
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and similarly,

pu(t) = (1Trp [ﬁp(o)m] 1)

12 (=ar) ps ] D (—Oék)]

k k
= p11(0). (1.94)

= (lps(0)[1)Trp

These equations make the spin state-dependent shift of the oscillator environment explicit. The

coherences evolve according to

po1(t) po1(0)Trp

k k

[ID () ps]] D (Oék)]

= pPo1 (O)TI“B

11D (2ax) pB] . (1.95)

k

This enables us to define a decoherence function I'(¢) as

por(t) = por (0)e"?, (1.96)

T _og f ook
where I'(t) = InTrp [eZk QO‘kbk_QO‘kbkpB} = > In <e2akbk_2akbk>, with the angular brackets
denoting the expectation value with a thermal state of the environment with respect to Hp.
Noticing that the expression inside angular brackets is the Wigner characteristic function for

the bath mode k, and that it is a Gaussian function, we may write

(eronth-roiney = o~ {({oert}), (1.97)

The expectation value of the anticommutator can readily be evaluated to coth (2,‘:#) and the
2

pre-factor to —4% (1 — coswyt). The decoherence function may therefore finally be written
k

in the form

4| gi|? Wi
r(t):_zk: : coth T (1 — coswyt). (1.98)
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In terms of the spectral density J(w) the decoherence function may be written as:

w2

T(t) = — 7dw4 T) oth <21:;T> (1 - coswt). (1.99)
0

We may now move back into the Schrodinger picture with the time evolution of the reduced

state on the spin fully determined as

ps(t) = 157 g (t)el27!
e7’3t po0(0)  po1(0)el'® ezt 0
0 '3 p1o(0)e" ™ p1y(0) 0 eiat

0 0 eF(t)e—iEt
_ Poo(0) po1(0) . (1.100)

p10(0)el Deict p11(0)

Equation (|1.100]) gives us the exact time evolution of each element of the density operator for

the TLS in the independent boson model.

We finish this section by noting that equation (|1.100]), obtained here from a manipulation of the
Hamiltonian and via the Schodinger equation, is equivalent to setting A — 0 in the spin-boson
master equation derived in the previous section, equ. ((1.71f), to obtain

d [6

Zps(t) = =i |50 p4(0)] = DA o [0, ps (1)) (1.101)

This form of the master equation, second order in coupling parameter g(w), is exact in the

environment oscillator continuum limit, therefore, in the case of zero tunnelling.



Chapter 2

The Reaction Coordinate formalism

for strong system-reservoir coupling

With the exception of the exactly solvable model seen in section , we have, thus far, been
dealing with the dynamics of open quantum systems under restrictions imposed by our inability
to solve integro-differential equations of the form of equation (1.23). By imposing the simplifi-
cations collectively known as the Born-Markov approximations, we are restricted to situations
where the open quantum system is only weakly coupled to its environment. Concretely, this
means that the term responsible for the interaction in the global Hamiltonian is much smaller
than the term representing the energy of the free open system of interest. This weak coupling
theory can therefore only describe situations where the environment remains static, correla-
tions between the system and environment never build up, and there is no feedback from the
environment based on any changes the interaction with the system may have brought about.
Circumstances where the environment is dragged out of equilibrium, where the system and en-
vironment become entangled and where excitations emitted into the environment may in turn

act back on the system cannot be captured by weak coupling theory.

How to solve for the dynamics of open systems when these restrictions are relaxed is an active

field of research. The polaron transformation, which we met in section (1.4.2)) has been used

28
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in conjunction with variational techniques to obtain the dynamics for open quantum systems
at strong coupling, particularly in the context of quantum dots embedded within a phonon
lattice [9]. Numerical techniques, such as the hierarchical equations of motion, can be used to
evaluate the dynamics of the open system observables, given suitable computing power [10, [11].
But these fail to capture any environmental dynamics and cannot track system-environment
correlations. Here we will focus on the reaction coordinate formalism, which also involves a uni-
tary transformation of the global Hamiltonian and permits the study of open quantum systems
beyond weak coupling approximations. Our primary motivation for focusing on this technique
is its ability to retain some information about the environment and any correlations between it
and the system. Later, we will put the technique to use in the field of quantum thermodynamics
where system-environment correlations and non-equilibrium environmental dynamics is proving
to be an active and exciting avenue of research. The formalism is reviewed in Ref. [12], has
been discussed in the general context of open quantum systems in Refs. [13| [I4] and applied to
problems in thermodynamics in Refs [I5] [16] [17]. We shall discuss the features of this formalism
in this chapter and, in sections and we shall derive, in detail, master equations capable
of treating the damped harmonic oscillator and spin-boson model at strong system-reservoir
coupling. We shall see how these reaction coordinate master equations not only capture system

dynamics accurately but also enable one to keep track of system-environment correlations.

The RC formalism is pictured conceptually in figure [2.11 The scenario depicted is that of a
quantum system S which is coupled to an environment consisting of & independent harmonic
oscillators. We shall focus on how the formalism functions for this type of bosonic environment.
However, the formalism has also been applied to fermionic environments, details of which may be
found in Refs. [12[I7]. This star shaped configuration of a quantum system linearly interacting
with an environment of bosons is mapped to an enlarged system S’ which interacts linearly with
an altered environment of bosons E’. The enlarged system S’ comprises the original quantum
system Hamiltonian as well as a collective degree of freedom from the environment, the RC, and
a coupling term between S and the RC. It is then only the RC which is coupled to the residual

environment E’. The purpose of this transformation is to enable the use of the Born-Markov
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master equation formalism to treat the enlarged system S’ as the new open system of interest.
In the original picture, the coupling is considered to be too strong to validate a Born-Markov
approach, whereas, under the mapping, one incorporates the strong coupling within the enlarged

system and leaves only weak coupling terms between the RC and the environment.

Denoting the original environment annihilation operators ag, one can perform this mapping

through a series of Bogoliubov transformations such that

ajp = uklbl + ’U]glb]; + Zukqbq + Z qub:g. (2.1)

q>1 g>1

The first two terms represent the RC mode and the remaining sums representing the mapped
residual environment E’. In general, the preservation of bosonic commutation relations requires
that the matrices U and V' formed by the complex coefficients uy, and vg,, U = (ug,) and
V = (vkq), must obey UUT + VVT = 0 and UVT + VUT = 0. Further conditions are then
implied by our restriction for the type of interactions we wish to be present in the mapped

picture.

We require that an original Hamiltonian of the form

H=Hg+ AZ(Qkak + gZaL) + Zwkalak, (2.2)
k k

where A is an operator acting on the Hilbert space of the system S, be transformed into a

Hamiltonian of the form

H = Hg + MA(by + b)) + Qublby + (b1 + 1) > (frbe + fidh) + > ubfby. (2.3)
k>1 k

In equation (2.3 the system self-Hamiltonian, Hg, is left unchanged. The second two terms
represent the RC self-energy and its coupling with the system with everything else encompassed

within the definition of the residual environment. This mapping can be achieved with the
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Figure 2.1: Schematic of the RC mapping. A model of a quantum system .S interacting sepa-
rately with k£ environment oscillators, each with natural frequency denoted by wy, with coupling
parameters fr. This model is transformed into the reaction coordinate (RC) picture. In the
new picture, we incorporate a collective degree of freedom of the environment, the RC oscillator
with natural frequency €2, into the definition of an enlarged system S’. S’ also includes the
system-RC interaction, parametrised with coupling constant A. The mapping results in a rede-
fined environment E’, which contains k — 1 oscillators (although in practice the continuum limit
is often applied and hence we retain the k label in the schematic). The environment oscillators’
natural frequencies are shifted to vy, and these individually interact with the RC oscillator with
coupling parameters gy.
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following Bogoliubov transformation

1 [ W [ Wq
= _ -_ — A 2‘4
qu 2 ( Qq + wk) kq» ( )
1 W, Wy
= = — — | Agg- 2.5
Vkq 2 <\/ Q, wk) ha (25)
Here, the preservation of bosonic commutation relations imposes that the real-valued ma-

trix (Agq) obey Zq ApgArrq = 0. We obtain that Ay = %, /5—’; and from this can write

down equations for the RC parameters in terms of the original frame spectral density J(w) =
>k 19710 (w — wp):

1 oo

\o= o ), wd (w)dw, (2.6)
T (w)dw
02 = m. (2.7)

The spectral density defining the coupling to the residual reservoir may also be written down in
terms of the original spectral density to complete the mapping. This is done by manipulating
the equations of motion governed by the Hamiltonians in equations and . We shall
illustrate this with two example derivations, for the damped harmonic oscillator and the spin-

boson model in the two sections which follow.

2.1 Reaction Coordinate Mapping for the Brownian oscillator

Hamiltonian

In this section we will apply the RC mapping to the Hamiltonian for the damped harmonic oscil-
lator which was studied under Born-Markov approximations in section Our goal is to reach
a Hamiltonian which will allow us to treat the strong coupling between the central system oscil-
lator and the reaction coordinate exactly, therefore moving beyond the weak coupling regime,
while the interaction to the residual environment may be treated under the Born-Markov ap-

proximations. We begin with the global Hamiltonian separated into system, environment and
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interaction terms H = Hg + Hy + Hp, with (neglecting zero point energy terms)

Hg = woad'a, (2.8)

Hp = Zwkcick, (2.9)
k

H; = ng (a—i—aT) (ck —I—CT). (2.10)
k

Here, a is the annihilation operator for excitations in the oscillator of interest with natural
frequency wp, and ¢ are annihilation operators for the k environment oscillators with natural
frequencies wy. We choose to work directly in second quantised form here, rather than with
position and momentum operators, as we did in section The interaction is parametrised by

coupling constants gy.

We wish to map to a Hamiltonian of the form

H' = Hg + Hg + He, (2.11)
where
Hs = woala+ A (aT + a) (bT + b) + Qb (2.12)
Hy = (b04+0) S fi (rl+ ) + Y wnrr, (2.13)
k k
He = (bT+b>2;£i. (2.14)

For ease of notation we have labelled b as the annihilation operator for the RC and rj as
annihilation operators for the residual environment. Additionally we have required a counter

term, H¢, which we shall discuss further below.

We proceed now as in Ref. [I3]. We shall derive equations of motion for classical canonical
coordinates from the Hamiltonians H and H’. It is also possible to proceed by deriving Heisen-
berg equations of motion and this is done explicitly in Ref. [12]. We re-express H and H' in

terms of position and momentum coordinates for the system g, p,, for the RC z, p,, and for
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the environment X and P;. The Hamiltonian in the original frame becomes

2
where g, = v/4wowy. We have introduced a counter term here, quadratic in the system position
coordinate ¢. The motivation for this is discussed in Ref. [I] and Ref. [5]. It ensures the
Hamiltonian remains always bounded from below, for any strength of interaction. One ought
to write an interaction term based on a Hooke’s law interaction between oscillators where
the coupling involves the relative position of the coordinates of each oscillator, for example
Hirooke = %H($1 — .1E2)2, where k is some arbitrary spring constant. In writing interaction terms
as we have been in Hamiltonians so far, we have been selecting out the term linear in each
position coordinate (as is the convention in the literature), and neglected the terms involving

position squared. If one begins with such an interaction Hamiltonian and includes the squared

terms, the counter terms appear naturally.

We may use Hamilton’s equations and equation (2.15)) to write down the following equations of

motion for the coordinates ¢ for the system, and X} for the environment oscillators:

i) = o)~ X a0 - a0 % 210
k E Ok

Xe(t) = —gra(t) — Wi Xi(t). (2.17)

We make use of the Fourier transform h(z) = J75 h(t)e *#'dt and inverse transform h(t) =

1 o

57 o E(z)eithz in order to eliminate the environment coordinates from the equation of motion

for g as follows,

(2.18)

ol

22(7(2) = woq +ngXk: Z
k

2X(z) = akq<z>+wkxk<z>. (2.19)
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Substituting into equation l) for X, 1(z) from equation 1D and rearranging gives
2 (1-8 5 9 ) —o (220
z - — ———— | q(2) = 0. .
2 2 (W2 — 22) q
Using g, = vAwowy, and J(w) = >, 920 (w — wy), we may write this as
R(2)(z) = 0, (2.21)

where K(z) = 22 (1 — %52’ + 4w [y dw%)

We can evaluate the integral in equation using Cauchy’s integral theorem, performing
analytic continuation of the spectral density function, extending the integral to —oo, closing
the integral in the upper half of the complex plane. We can see from the form of the integrand
that this procedure will be valid for spectral densities which are odd functions of w, since the

denominator is an odd function of w and we require an even integrand. This results in

K(z) = 2% — Wi — 2imwoJ (2). (2.22)
Rearranging and writing z = w — i€ yields

J(w) =

o 51—1>%1+ Im [K (w— ze)} . (2.23)

Now we repeat these steps for the case of the mapped Hamiltonian. We shall then compare
the expression we obtain for the spectral density in that case with equation (2.23), in order to
determine relations for the RC parameters in terms of the parameters appearing in the original

Hamiltonian. The Hamiltonian is given by

H = 7P2 —q 2 4 A4Qwoq + (22:1:2+ 5P +$Z\/4ka:kak

+Z7’“ +Z§ngg —|—2Qx22w—’;, (2.24)
k k k
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or with the rescalings fk = /4Quwy fi. and A\ = /4Qwo\ we have that

2
Hq—fP2 7(] PR At gndt g 92x2+ 5P +x2kak+Z—+Z wWiXE+a?) Tk

2 2‘%
(2 25)
Applying Hamilton’s equations gives the three coupled equations
) 5o X
§ = —woq— AT = 34, (2.26)
i = —S\q—QQx—kaXk—xZﬁ, (2.27)
wi
k k
Xk = —.%'fk - w,%Xk (228)
Performing a Fourier transform, these equations become
2 2 z2 3
-2 +wy + 2z q(z) + \2(2) = 0, (2.29)
( 2 +92+ka> ) 4+ Ag(z +kaXk = 0, (2.30)
(fz +wk,) Xk(z) + fri(z) = 0. (2.31)
Rearranging equation ([2.31]) gives
- fri(2)
Substituting this into equation ([2.30)) yields
—\2
Z(z) = Y q(z). (2.33)
—222 + QZ + Zk (‘*’7’;2)

Equation (2.33)) can now be used to eliminate the reaction coordinate and the bath coordinates

from equation (2.29)) to give

g (80 e -
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where we can label the pre-factor K’(z) and where

Wi \Wi, — )

2) = 52 fl? — 2 i w Jro(w)
L(z) = <1+zk: T z2> 1+490/d S| (2.35)

We choose the coupling to the residual environment to be characterized by an Ohmic spectral
density of the form Jrco(w) = ywexp [—%], with frequency independent coupling strength ~
and cutoff frequency A. The integral can be evaluated analogously to the unmapped case, and,

when taking the limit A — oo, leads to the following expression for £(z),
L(z) = =22 + 2inQyz. (2.36)

Now, since we require that the transformed Hamiltonian replicate the behaviour governed by

the original Hamiltonian, we equate the expressions for the two spectral densities derived above.

Substituting our expression for K’ () from equation (2.34) back into equation (2.23) yields

. - .
Tw) = 2mwo el—l>%l+ tm [K (- %)}
B < 1 > 2y A 2w (2.37)
— \2mwo ) \ (02— w2)? + 270y)%w? ) '

Choosing J(w) to be of Drude-Lorentz form,

We
J - — 2.38
@) =0y (2:38)

we obtain the following relations for the reaction coordinate natural frequency 2 and coupling

strength A, the parameters defining the mapping,

Q = w2ry (2.39)
Q
A2 = % (2.40)

Substituting from equations (2.39) and (2.40|) back into equation (2.37)) results in the following



38 Chapter 2. The Reaction Coordinate formalism for strong system-reservoir coupling

expression for the spectral density

QW

2 4 '
w2 (1-%7 + 8r) +o?

J(w) = (2.41)
For low frequencies w in the environment with respect to the cut off frequency w. and the
RC frequency €2, then under the condition that w. < €, this expression reduces to equation
, the desired original Drude-Lorentz type spectral density. The parameter w,. locates
the exponential cut-off for the reservoir spectral density. If we tune ~ such that the criteria
we < £ is met, then we are positioning the RC frequency in the range above the lower frequency
environmental oscillators where the coupling to the system is strongest (this portion of the
spectral density is represented now as part of the enlarged system which involves strong coupling
between the TLS and the RC). The RC frequency itself is therefore located towards the tail of
the spectral density where coupling to the residual reservoir is weaker, and we shall subsequently

treat this accordingly through a Born-Markov master equation approach.

In this way, it can be noted that the RC formalism is designed to deal with environmental
coupling regimes which differ from those for which the Polaron transformation is well suited to
tackle, when combined with a second order time local master equation approach, see for example
Ref. [18]. Indeed the Polaron technique alongside a perturbative master equation is equivalent
to the non-interacting blip technique which is utilised by the authors in Ref. [7] as the basis
for their discussion of transitions between localisation and delocalisation of the TLS energy
eigenstates in the spin-boson model. There, the authors are concerned with low temperatures
in the environment, or the limiting case of zero temperature, and important frequencies in the
environmental oscillators which are fast relative to the system frequency scale. While their
results can be captured well within the Polaron framework, the RC technique is less well-suited
as it is designed for the opposite case of important environmental frequencies which are closer
to the system frequency, embodied by the criteria that w. < . The RC framework is less
well suited for environmental temperatures which are very low with respect to the energy scale
of the system. This latter issue is discussed in more detail in section to follow, where

we benchmark the RC framework against the exact solution for a simplified version of the
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spin-boson problem considered in Ref. [7].

We are now in a position where all the parameters for the RC mapping have been established and
we may work with the mapped Hamiltonian, equation , knowing it will yield equivalent
behaviour for the dynamics of the central oscillator. In section we will derive a master
equation for the dynamics of the reduced density operator of the newly redefined system S,
which now incorporates both the original central oscillator and the collective degree of freedom

from the original environment encompassed in the RC.

2.1.1 Reaction Coordinate Master Equation for the Brownian oscillator

The goal now is to construct a master equation governing the dynamics of the reduced density
operator pg: of the joint oscillator-RC system. We shall make use of the techniques discussed
in section to ensure the equation treats the coupling between the RC and the residual
environment perturbatively, i.e. under the Born-Markov approximations, but keeps track of the

coupling between the central oscillator and the RC exactly. We consider equation (2.11]) and

define
Hy = Hg + Z wkr;irk, (2.42)
k
H = (bF 4 0) 3 g (v ) + (o + b)2 3 ﬁ (2.43)
k k

Let us write the interaction term as

HYT = A9 B+AA% (2.44)
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where

A = b+ (2.45)
B = ka (7“,];+rk) (2.46)
k
A= Zf’g. (2.47)
W

Before making the Born-Markov approximations, the interaction picture master equation reads

%55, (1) = ~i trp [Hr(0). 7 / dr ey [H;0). [t —).50)]] . (248)
0

where we have transformed HIef ! into the interaction picture with respect to Hy
Hy(t) = et gel T e=itot — A(1) @ B(t) + AA2(t). (2.49)

Making the Born approximation, we assume the global density operator remains separable state

all times,

p(t) = psi(t) @ ppr. (2.50)

We take the residual environment to be in a thermal state of the form

exp (—B >k wkr,irk)
tr {exp (—B Dk wkr;irk) } .

P = (2.51)

Substituting the expressions for H;(t) and p(t) from equations (2.49) and (2.50) into equation

(2.48) yields

%55/ (1) = —id A1), psr(0)] - N2 / dr |A2(t), [ A%(t = ), ps: (7) |
0

- [ar A, [A - 7.5 | T4 () - [ ar [A@), {A@ - 7).5w (0} 1),
0 0
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where we have defined the environment self-correlation functions I't as

Fi

%tr { (B(T)B + B(—T)B) PE’} : (2.53)

Noticing that
— X [,42(15),55/(15)} = —iX [P(t),'ﬁs/(oﬂ ~ 2 / dr [ﬁ%), [E(t - T),ﬁs,(T)H . (2.54)
0

we make the Markov approximation and replace 7 with ¢ in the argument for pgs and extend

the integrals to infinity to give

Chslt) = —i[A(0), 55 (1]

770d7deRC coth <ﬁ2°"> cos (wr) [ﬁ(t), [ﬁ(f — ), 55,(t)ﬂ
0 0

77d7deRc< ysin(wr) [A(e), {A(t = 7), 55 (D) }], (2.55)
00
where we have used
I (r) = /oodeRc(w)coth (52“’) cos (wr) (2.56)
b
I (r) = i]odeRC(w)Sin(WT). (2.57)

0

Equation (2.55]) is in the desired mater equation governing the dynamics of the enlarged system
S’, with weak coupling approximations applied to the interaction between the RC and the
residual environment E’. We may simplify it a little further with a judicious application of the

Sokhotski-Plemelj theorem which reads

o0 oo oo

wf(w e @R — [ dwf(w)d(w — k) £1i Oowf(w)
[ i) [ arestemr = [ dopas )iPO/d g

0 0 0

(2.58)
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Here, P denotes that the Cauchy Principal Value is to be taken for the integral over w, since
there is a divergence at w = k. We perform the integral over 7 in the last term in equation
(2.55) by parts and note that we require the imaginary part of the Sokhotski-Plemelj theorem.

Selecting out only the terms dependent on 7 we therefore find that

w or

/dem wr)At—1) = P (A(t)> —l—/dTCOSLwT) 0A (t_T)' (2.59)

0 0

Substituting these two terms back into the final term in equation and performing the
principal value part of the integral over w we note that this yields a term which is equal in
magnitude but opposite in sign to the first term in equation . Cancelling these two terms,
therefore, and then transforming the remaining terms back into the Schrédinger picture, we

obtain

%pgl(t) = —i[Hg,ps(t //dewJRC w) coth </62 )cos (wT) {A, {Z(—T),pg/(t)ﬂ
00

//dewJRC )COSLM) [A {[A( ), S} Pt )H , (2.60)
0 0

where in the last term we have used the Heisenberg equation of motion W =1 [H s, At — T)] .

Equation is a time-local master equation for the evolution of the composite central oscil-
lator and RC system. It will will keep track of any correlations between the central oscillator
and the collective degree of freedom of the environment encompassed in the RC. Finally, for
the purposes of numerical computation when it comes to solving for the dynamics, we obtain
expressions for the interaction picture system operators A in terms of the eigenstates of Hg,

defined by Hg/|pn) = én|dn). We can expand as follows

A=Y 1o bs1Albw) (0] = > Al d) (0l (2.61)

Jsk Jsk
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and move into the interaction picture

At) = expliHgt] Y Ajrlo;) ok exp [—iHgt]
7.k
= D Ajrexp (i€ t) |65) (dxl, (2.62)

Jk

where £, = ¢; — ¢i. In order to write equation (2.60)) in a more compact form, we define and

evaluate the following integrals:

?d’l’deRc(w) coth <52°"> cos (wr) A(—7)
0

<>
I
Ny 0\8

~ Jrc (&5,k) coth (5%’k> Ajklds) (ol (2.63)
ik
Z = //dewJRC(w)COS(M) [Hr, A(—T)]
00 “
b5)(Pkl, (2.64)

s
5 Z Jre (§5,k) Ajk
7k

where we have neglected the Lamb shift terms in the same way as in Ref. [I3]. This is justified in

sections to follow, when we benchmark dynamics computed according to RC master equations

against exact results and achieve excellent agreement. Using equations (2.63]) and ([2.64]), we

arrive at a compact form of the master equation for pg given by

Ips(t)
ot

= —i[Hg, psr (1)) — [4, [ s (D] + |4, {Z. 00 0 (2.65)

Let us, at this stage take stock. We have at our disposal two equations governing the dynamics
of a quantum harmonic oscillator which is coupled to a bosonic environment: equations
and . The former is valid at weak interaction strengths, within the limits imposed by the
Born-Markov approximations, and the latter is a strong coupling version which should take us
beyond these limitations. Given some initial conditions for the system state (we have assumed
thermal states for the environment), each of these equations can be solved using computational

methods. We will go on to illustrate this in the sections which follow, showing that at weak
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coupling both equations lead to dynamics which agree well with one another. At stronger

coupling we shall see that they diverge.

First, however, we briefly introduce the RC master equation for the case of a spin as the central
system of interest, in order that we may also compare with the dynamics obtained via equation

(1.100)), which gives the exact solution for the independent boson model.

2.2 Reaction coordinate mapping and master equation for the

independent boson model

The RC formalism is applied in detail to the spin-boson model in Ref. [I3]. The mapping and
subsequent derivation of a master equation which treats the coupling between the TLS and the
RC exactly, but the coupling between the RC and the residual environment to second order
under the Born-Mark approximations is identical to that presented in Ref. [13] except that
in the present case we wish to remove the tunneling term in the spin-boson Hamiltonian by
setting A = 0 in order that we may compare dynamics with the exact solution given in equation
. The details of the derivation are also very similar to those discussed in detail in the

previous sections for the harmonic oscillator.

We will therefore not repeat the working here. We just note that the resulting master equation

for the reduced density operator for the joint TLS-RC system, pgs(t) is

Ips(t)
ot

= —i[Hg, psr (1)) = [A, [ psr (D]] + [4, {Zpsr (D)} (2.66)

Here Hg: represents the joint TLS and RC Hamiltonian, incorporating the self-energies of the

TLS and RC as well as the interaction term coupling them, and reads as
Hg = %O‘Z + Ao, (aT + a) + Qad'a. (2.67)

Here Q is the natural frequency of the RC, the operators a and a' respectively annihilate and
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create excitations of the RC, X is a parameter determining the coupling strength between the

RC and the TLS, and A = a + a'. The joint TLS-RC operators x and = have the same forms

as that given in equations (2.63)) and (2.64]).

We are now in a position to compare the dynamics predicted with the strong coupling theory of
the RC formalism with those of the weak coupling Born-Markov approach for both the harmonic

oscillator and the two-level system.

2.3 Dynamics at strong reservoir coupling

2.3.1 Dynamics of the damped harmonic oscillator

We will look at the expectation values for the position and momentum of the model we have
presented thus far of a quantum harmonic oscillator, damped by its interaction with a sur-
rounding environment. We will compare predictions made by the RC treatment with both a
weak coupling theory, generated from a standard Born-Markov master equation, and an exact

solution which can be found in Ref. [19].

The weak coupling solutions can be obtained via a manipulation of the master equation derived

in section which for clarity we repeat here:

%p(t) =—1 HS + %ma)gljv p(t) - ’L"}/ [J?, {pvp(t)}] - D [J}, [.7), p(t)“ - f [l‘, [p,p(t)]] ’ (2'68)

where the self-Halmiltonian of the system is given by

1 1
HS = %pz + 57710031?2, (269)
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the coefficients in front of each commutator bracket are

Wy = —Ti/dTU(T)COS(w()T), (2.70)
y = mi)o 0/ drn(r) sin(wor), (2.71)
D = /dTm/(T)cos(on), (2.72)
0
1 T .
f = —mwoo/dTl/(T)sm(on), (2.73)

and where the noise and dissipation kernels are defined as

N
3
I
—3

dwJ (w) coth <ﬁ2w> cos(wT), (2.74)

0
n(r) = /de sin(wT). (2.75)
0

The expectation value of the momentum operator obeys 4% (p)(t) = £Tr (pp) = Tr[(Lp) p].
Multiplying equation ([2.68]) on the right by p, performing the trace operation and making use

of the relations

[z,p] = i, (2.76)
[2%,p] = 2z, (2.77)
[$,p2] = 2ip, (2.78)

yields an equation of motion for average momentum given by

%@:”ﬂ%+%ﬂﬂ—%@- (2.79)

An equation of motion for the expectation value of the position operator can be obtained in
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similar fashion, resulting in

—{x) = —(p). (2.80)

Solving equations (2.79) and (2.80) provides us with a weak coupling theory with which to

compare results obtained through the RC treatment.

As for an exact solution, we make use of results already obtained and elegantly explained in
Ref. [19]. They obtain the dynamics for certain system and reservoir expectation values via
an exact diagonalisation of the full Hamiltonian describing the system and reservoir degrees of
freedom. Though a little involved, this is possible in the case of a quantum harmonic oscillator
coupled to a reservoir of oscillators and thus is why this model serves well as a benchmark for
the RC treatment. We will make use of equation (48) in that article which we repeat here for

the purposes of self-containment:

@) = ({cos(wt))((0)) + —((w sin(wt))) (p(0), (2.81)

m

(1)) = (cos(wt)))(p(0)) — m((wsin(wt)))(z(0)). (2.82)

The double angled brackets signify an average over frequency with respect to a probability

distribution given in equation (18) in Ref. [19] by

dwow

= |al\Ww 27.
) = laf)P s

(2.83)

The natural frequency of the oscillator is given by wp and its mass by m. The bath contains
a distribution of frequencies denoted by w. The function a(w) is given in the appendix of Ref.

[19] in equations (A17) and (A.18) as

alw 2 (wo +w)2 1
|a(w)] = VP (YQ(WHWQ). (2.84)
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The function Y (w) is given in equation (A.15)

1 92 (w2 — W2 x N2 s N2
Y(w) = ~ (" = wh) +P/dw’|vl(w ) —/dw/vl(w)| : (2.85)
|V(w)\ wo ) w —w / w' +w

and ‘V(w)Q‘ is the spectral density describing the coupling to the environment. P denotes that
the Cauchy Principal Value is to be taken on integration. To summarise at this stage: we
wish to compute the dynamics for position and momentum expectation values of the reduced
system with global Hamiltonian given by equations , and . We have derived
a treatment according to the Reaction Coordinate formalism and we will compare this with

dynamics at weak coupling according to equations (2.79)) and (2.80]) and an exact solution given
by equations (2.81]) and (2.82)).

The reaction coordinate treatment involves solving equation using computational methods
to obtain the dynamics of the enlarged system S’. We may then calculate the expectation value
of position and momentum operators (a:s ® IR and p° ® IC). Performing the partial trace
over the RC degree of freedom will give the average position and momentum dynamics for S.
Figure shows the results of a reaction coordinate treatment, a weak coupling master equation
treatment and the exact solution in a strong coupling regime. The solutions depicted are for

(xo0) = (po) = 1. This corresponds to an initial coherent state for the system S:

) = D()]0), (2.86)

1
2mwq

where a = /"5 +1i

and the displacement operator is given by D(a)) = exp (omT — oz*a).

Note that this state corresponds to one where the expectation values for initial position and
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momentum are equal to 1, (xg) = (po) = 1:

(alzla) = (0|D'(a)zD(a)|0)
= /5 (01D7(@) (a + ") D))

2muwg

— F[<O|(a+a)|0> + (0] (a + ax) [0)]
_ URGQ_U\/WO_l (2.87)

(elpla) = (0|D'(a)pD(a)

— _Z@<0|DT( )(a—aT)D(a)l0>

1
= V2mwolma = v/2muwy =1. (2.88)
2mwy

We have made use of the relations D(a)aD(a) = a + a and D(a)a’D(a) = af + a*. We
have truncated the system and reaction coordinate oscillators at n = 10. The spectral density

considered is given by
Wew

J(w) = ag—
() a0w2+w3

(2.89)
We see that the RC treatment yields excellent agreement with the exact solution in a regime
where the weak coupling theory fails to capture the dynamics correctly. Furthermore we may
verify that the RC treatment agrees with the weak coupling theory in regimes where it does

yield accurate results. We show this in figure [2.3]
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Figure 2.2: A comparison of results from a reaction coordinate treatment of a damped harmonic
oscillator (grey line), with an exact solution according to Ref. [19] (blue dots) and with a weak
coupling master equation (red line). (a) The expectation value for the position operator (z);
(b) the expectation value for the momentum operator (p). Parameters: ag =1, wg = 2, we = 3,
B = 1.5. The weak coupling treatment fails to capture the dynamics correctly for this value of
ap, but the reaction coordinate treatment matches well with the exact results.
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Figure 2.3: (a) A comparison of the expectation value for the position operator (x) computed
from a weak coupling damped harmonic oscillator master equation (red line) with the exact
solution from equation (blue dots). (b) (x) computed according to the RC master equation
(grey line) and the exact solution (blue dots). (c) and (d) show the case for the expectation
value of the momentum operator (p). Parameters: ag = 0.1, wp = 2, w. = 3, f = 1.5. In
this regime of weaker coupling, a standard Born-Markov treatment, the reaction coordinate
treatment and the exact resuls all converge.

2.3.2 Dynamics of the spin-boson model

We shall look, here, at the dynamics of the spin-boson model with the simplification of setting
the tunnelling term A — 0. As previously discussed, this enables us to write down an exact
analytical expression for the global density operator as a function of time and in the case of an

environment initialised in a thermal state we obtain an exact equation for the reduced density
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operator of the spin as a function of time given by equation . The temperature of the
environment enters through the decoherence function, a function which describes the decay of
the off diagonal elements of the reduced spin density operator, given in equation . We will
also consider the dynamics predicted by an RC treatment, namely those governed by a solution

to equation ([2.66|).

Let us consider two alternative spectral densities, describing the coupling between the system

and the environment: an underdamped spectral density of the form

_ aUDFw(Q)w
JUD(w) - (w(Q) . w2)2 + ]._‘2(4)27 (290)

and an overdamped spectral density given by

O pWew

. 291
w? + w? (2.91)

Jop(w) =

These forms of spectral density are studied in Ref. [14] in relation to non-Markovian effects
in excitonic energy transfer in molecular dimers. Each of these is plotted in figure 2.4, The
underdamped case has a peak centered at wg and width determined by I', with the dimensional
coupling parameter ayp employed to tune the coupling strength. In the overdamped case,
the coupling strength is tuned via app and the spectrum is broader with a Lorentzian cut off

determined by w.

Performing the mapping results in the following relations for the underdamped spectral density,

when we take the limit A — oo:

Q = wo, (2.92)
A= | T2UDY0 (2.93)
2
r
(2.94)

C 27mwo
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Figure 2.4: Examples of underdamped and overdamped spectral densities. Parameters: (a)
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Figure 2.5: The overdamped spectral density given by equation (2.91]) can be obtained from the

2
underdamped spectral density by tuning the appropriate parameters, namely by fixing I = %2
and increasing wy such that good agreement between Jop and Jyp is achieved at large values
of wp. Parameters: a = 3/m, w. = 0.2.

In the previous sections we determined relations for the overdamped spectral density. In that
case we were left with a free parameter to tune in order to obtain close agreement between the
mapped dynamics at the exact solution. However, we note in figure 2.5 that a smooth transition
between the two forms of spectral density can be achieved by careful tuning of parameters, so

to eliminate any ambiguity we use equations (2.92(-[2.94)) to study both forms of coupling.

In figure we show how it is possible to achieve close agreement between the behaviour
predicted by the RC treatment using equation ([2.66|) and the exact solution given by equation

(1.100). The plots depict the decoherence of the off-diagonal term pg; in the TLS density
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operator pg for two different initial states: |4+) = %(\0) +11)) and |-) = %(]O) — [1)). In the
RC case, one needs to perform a partial trace over the collective coordinate degree of freedom
to eliminate the RC from pg/. Close agreement is seen in both the weak coupling and strong
coupling regimes, for both the underdamped and overdamped forms of environmental spectral

density.

We can also verify the behaviour of a joint system-environment observable, namely the expec-
tation value for the interaction energy (Hin)(t) = tr[p(t)o. D>, gk(bL +bg)]. It is most straight-
forward to evaluate this in the interaction picture. In section [I.4.2] we evaluated expressions for
the TLS density operator matrix elements in the interaction picture using an exact expression
for the time evolution operator U T(t) and obtained equations . If we do not perform
the trace of the environment degrees of freedom, we can write down a similar expression for the

global state:

pt) = Ut)p(0)U (1)
= (I0><0\ T2 (ex) + 111 HD (—ak)) ps ® pf <I0><0! [1D (—aw) +11)(1 HD (+ak)>
= p%0)( 0|®HD (+ou) plh HD k) 4 p%H0)( 1]®HD (+ou) p HD (+ou)

+ P?sO’l)(O\@HD —ay, PBHD —a) + pst|1) 1!®HD —ag) P HD +ag) .
k

(2.95)

Here we have assumed we initialise the global system in a product state with the environment

at thermal equilbrium at a temperature j3: pth = %e_BHB .

In the interaction picture, the interaction energy becomes Hipy = o, >k gk(bleiwkt + be” k),

Combining this with equation (2.95)), we can evaluate (Hint)(t) = tr [ﬁmtﬁ(t)}, which, after

some algebraic manipulations, results in the following exact analytical expression

J{E}w) [cos(wt) — 1]. (2.96)

(Hin)(£) = 2 /O " dw
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It is also possible to evaluate the interaction energy within the RC framework, by computing
tr[ps () Ao, (a’ + a)], where we obtain pg/ (t) by numerically solving equation . In figure
we show how the RC framework yields an excellent approximation of the interaction energy
in both weak and strong coupling regimes. In this case, the initial TLS state is the |+) state,
however the dynamics of the interaction energy are independent of this initial state. Indeed,
the exact expression for (H;,;) given in equation is independent of any parameters in
the initial TLS state and depends only on the form of the spectral density. Here we show the
results for the overdamped case, but equally good agreement is also seen when we tune to the

underdamped situation.

We stress that computing a joint system-environment observable is not a straightforward task in
open quantum systems which are not exactly solvable. The standard approach of deriving a weak
coupling Born-Markov master equation always traces out any information on the environment,
which, in any case is assumed to remain static in time and in a separable state with the system
at all times. An advantage of the RC treatment, in addition to allowing us to go to stronger
coupling regimes, is that we may keep track of some environment dynamics, approximating
them through the behaviour of the collective RC. This enables computation of joint system-
environment observables, such as the interaction energy, which we shall see later on is essential
in thermodynamic settings, for example in extending analyses of heat engines to the strong

coupling regime.

We will finish this section with a caveat: that care still needs to be taken with applying the
RC mapping to solve a strongly coupled situation. At low temperatures, the RC method agrees
less well with the exact solution. We depict this in figure 2.8] The disparity is apparent in
both the weak and stronger coupling regimes, for both spectral densities variations (although
we only show the overdamped case here). The RC treatment captures qualitatively the correct
behaviour but over estimates the damping of the oscillations in the real part of the coherence

of the TLS, and this is more pronounced as the coupling is turned up.

A hint as to the reason for this breakdown can be found in the fact that even at weak coupling

a disparity is seen. At strong coupling, it is clear that a weak coupling treatment of an open
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quantum system will fail because an appreciable interaction between system and environment
will invalidate the assumption that the environment remains unchanged and uncorrelated from
the system at all times. But even at weak coupling, in a low temperature regime, one can
imagine that small disturbances to the environment may remain longer lived than they would
at higher temperatures when the environment rethermalises quickly on the scale of the system

dynamics.

We can check this by looking at the self-correlation functions of the residual environment E’,

given by

DHr) = /0 OOJRC(w)coth(%u)cos(wT), (2.97)

D™ (r) = i/ooo Jro(w)sin(wr). (2.98)

Inserting Jro(w) = ywexp(=?) for the spectral density in the RC picture, we can simplify these
expressions and investigate how they behave for different residual environment temperatures
(which we always take to be the same temperature as the environment in the original picture).
The expression for D~ becomes

VNN b —w, . 29N
D™ (1) —1/0 'ywexp(T)sm(wT) = At Az (2.99)

which in the limit A — oo tends to zero. The expression for D may be separated into vacuum

and thermal contributions of the form

D (1) = Df.(r)+ D} (1), (2.100)
Dl .(1) = /Oooywexp(_Aw)cos(wT), (2.101)
D, (r) = /Ooowexp(_A”) [coth(ﬂz“’)—q cos(wr). (2.102)

In the same infinite cut-off limit A — oo the expression for D}, tends to — and the expression

m2cosech?( %)

7 ). The vacuum part therefore cancels out and we are inter-

for D} tends to 'y(%2 —
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2 h2 T
ested in the behaviour of the expression —%g(ﬂ). We plot the modulus of this expression

in figure for different inverse temperatures. As 8 — oo this expression tends to —7—12 and as

the temperature increases the correlation function becomes more and more delta-function-like.

The Born-Markov approximations are valid in the limit of short lived environment self-correlation
functions and as the temperature decreases and these become longer lived, these same approx-
imations made with regards to the mapped environment will cause the RC master equation to

yield results which correspond less well to the exact solution for the independent boson model.
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Figure 2.6: Real part of the coherence pg; of the TLS density operator undergoing pure de-
phasing according to the independent boson model. The red dots are obtained using the RC
method and the blue curve is computed from the exact solution. The TLS is initialized in the
|+) state for the overdamped case in (a) and (b), and the |—) state for the underdamped case
in (c) and (d). (a) and (c) display the case for weak coupling, while (b) and (d) the strong
coupling behaviour. Parameters: e = 1, wg = 1, 5 = 0.95. We see that the RC solution agrees
well with the exact dynamics and both weak and strong system-reservoir coupling.



2.3. Dynamics at strong reservoir coupling 59

0.000 0.00%
-0.01f

-0.002} 0 025

A -0.004 |- A -0.03f
z £ ;
3 V. -0.04f
-0.006 - 3
~0.05F

-0.008|- -0.06f
~0.07E,

t t
(a) @ =0.01/m (b) a=0.1/7

Figure 2.7: Interaction energy computed exactly, red curve, as well as within the RC framework,
blue dots. Parameters: ¢ = 1, wg = 1, I' = 20, § = 0.95. We see that the interaction energy
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initialized in the |+) state and (a), (b) show the case for weak coupling, while (c), (d) show the
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exact result.
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Chapter 3

Quantum heat engines at strong

coupling

3.1 Introduction

The theory of thermodynamics emerged in the early nineteenth century as a result of efforts
within the scientific community to evaluate the performance of steam engines, designed for the
purpose of converting a source of energy in terms of heat flow into useful energetic output in
terms of mechanical work. Sadi Carnot’s result [20] that the second law of thermodynamics
may be understood in terms of an ultimate bound on the efficiency of any device which converts
heat into work serves as a testament to the seminal role played by the study of heat engines in
the formulation of the classical theory thermodynamics as we understand it today, exemplified
by its ever prominent role in foundational texts on the subject [21]. With eloquence befitting
his status as a pioneer in the development of one of the pillars of classical physics he motivates

the study of heat engines in 1824 by writing:

“C’est a la chaleur que doivent étre attribués les grands mouvements qui frappent

nos regards sur la terre... les agitations de l’atmosphere, 1’ascension des nuages,

62
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la chute des pluies et des autres météores, les courants d’eau... les tremblements
de terre, les éruptions volcaniques... C’est dans cet immense réservoir que nous
pouvons puiser la force mouvante nécessaire a nos besoins; la nature... nous a donné
la faculté de faire naitre en tous temps et en tous lieux la chaleur et la puissance
motrice qui en est la suite. Développer cette puissance, ’approprier a notre usage,

tel est 'objet des machines a feu.”

“Heat is the cause of all that we find striking on this planet: rumblings in the atmosphere, cloud
formation, rainfall and other meteorological events, the flow of water, earthquakes, volcanic
eruptions,” he writes. “We have the ability to extract the mechanical work sufficient for our
needs from this immense reservoir and moreover, nature has given us the power to create heat
and consequently its motive power anywhere and at any time we like. Developing this power

and appropriating it to our needs, such is the goal of heat engines.”

It is remarkable that two centuries later, in many regards motivations for studying classical
heat engines remain unchanged, although authors of papers published on this topic are per-
haps suitably more modest in their eloquence on the subject. The mitigation of friction and
improvement of engine efficiency are still at the forefront of theoretical research today [22, 23],
with the ultimate goal of extracting more useful work output to meet our needs for the price of

less heat energy.

As technology advances apace, devices of the twenty-first century have been decreasing in size.
Quantum technology is already present in many modern day devices and with the advent of
nanoscale devices like the quantum computers of the near future, it is generally well-accepted
within the research community that nanoscale heat engines will be required to power or, when
run in reverse, to efficiently dissipate the heat these devices generate into the environment at
the price of some invested work cost. In this regard, there are similar motivations for studying a
quantum version of the classical heat engine models studied by Carnot and his contemporaries:
how can we engineer these devices to be as efficient as possible? How can we maximise their

power output or refrigeration power?
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On the other hand, there is, in addition to the practical motivations discussed above, a more
fundamental reason for studying quantum versions of heat engines. Just as they served as a
seminal influence on the formulation of the classical theory of thermodynamics, they can serve
as a means for investigating a quantum version of thermodynamics. Classical thermodynamics
emerged as a phenomenological set of laws governing the energetic exchanges between systems
whose constituent particle number tends to infinity. As systems scale down, in the quantum
setting, very often one deals with just a small number of particles, sometimes even just one. As
fervour within the research community has intensified in the field of quantum thermodynamics
over the recent decades, it was not expected that thermodynamic laws would, a priori, apply in
this setting, with perhaps new thermodynamic effects emerging at the quantum scale. Remark-
ably, however, in settings which reflect the spirit of classical thermodynamics, but with small
quantum systems as the working fluid, it transpires that the laws of thermodynamics do indeed

constrain the operation of heat engines [24], 25] 26, 27] 2§].

That is not to say that novel quantum thermodynamic effects have not been seen. It is well
known that real classical heat engines, operating in finite time rather than the idealised reversible
conditions assumed in the Carnot setting, suffer from friction and heat leaks. In finite time
quantum heat engines, an entirely new type of friction has been discovered which is purely
quantum mechanical in its nature [29, 30, B1], and research into how to mitigate these losses
has ensued [32, 33, 34]. It has even been shown that in certain situations improved engine
performance can be achieved through clever use of certain quantum resources [35, B36], and in
some cases even violate classical thermodynamic bounds [37, [38]. However, these treatments
usually make use of a setting beyond which the laws of thermodynamics would typically apply,

for example non-thermal heat reservoirs [37), B8] or systems out of thermal equilibrium [39].

Much of the research to date on quantum mechanical models of heat engines has been focused
on the weak coupling regime [40, [41], 42] 27, [43], 37, [44]. The reasons for this restriction are
twofold. The analysis of the engine cycle is greatly simplified when one can treat the strokes
of the engine during which it is coupled to a heat reservoir using the Lindblad theory of weak

coupling master equations under the Born-Markov assumptions. The second reason follows
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from the first: under a Born-Markov treatment the working quantum system and heat reservoir
quantum states remain separable at all times, making distinguishing energy flows in terms
of heat and work less problematic [45]. Developing an understanding of whether and how
thermodynamic treatments may be modified to apply beyond this regime is both of fundamental
and practical importance. Nanoscale devices are already able to operate in the strong coupling
regime [46), [47, [48], [49] (50} 9], [51] and quantum heat machines have been proposed which have

exciting practical applications, such as in laser cooling [52] [53].

Identifying consistent definitions of heat, work, and internal energy in the strong coupling
regime has been the subject of recent research [54] [45 55, [56], as well as whether the second
law can be formulated in a regime beyond weak coupling via the means of fluctuation relations
57, 58, 5I] or bounds on entropy production [60] 61, 62, [63]. Yet a consistent approach to
tackling thermodynamic cycles when strong system-reservoir interactions are present is still
lacking, despite some recent efforts involving continuously coupled engines [64} [15] 65] or single

stroke work extraction processes from a single reservoir [66].

In this chapter, we turn our attention therefore to heat engine analysis in the strong coupling
regime. We will look at how non-negligible system-reservoir interactions affect the operation of
the traditional theoretical reversible equilibrium heat engine which operates in an infinite time
cycle. In chapter 4] we will turn our attention to the non-equilibrium and finite time case. The

work presented in this chapter was published in Ref [16].

3.2 Equilibrium quantum heat engine

Quantum, as well as classical, heat engines come in many different flavours and can be classified
according to their different ordering of strokes which involve an interaction between the working
system and strokes which involve the extraction of work. Broadly speaking there are three
different classifications: four-stroke, two-stroke and continuous engines. We will focus here
on a quantum heat engine operating in a four-stroke Otto cycle. We make this choice for

several reasons. Firstly, there have been several previous studies of quantum Otto cycles in the
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weak coupling regime [41], 42| 27, 43|, 37, [44] with various results ranging from those analogous
to classical thermodynamic bounds [27], to interesting violations thereof [37]. A comparison
between the strong coupling version of this cycle and its weakly coupled counterpart is clearly
therefore topically relevant at present. The second reason for our choice is that the Otto cycle
makes a clear distinction between separate strokes where either work is extracted from (or done
on) the system, or where energy is exchanged between the system and the reservoirs. In such a
way, we can circumvent any debate concerning the definition of heat and work in the quantum
regime, since our intention is to focus our discussion on the effects of strong coupling on such

cycles, rather than any issues concerning such definitions.

3.2.1 Otto cycle model

The working fluid for our heat engine will be a two-level quantum system (TLS) with ground
and excited states |g) and |e), eigenstates of a self-Hamiltonian Hg. We label as p the energy
gap between these two states. The thermodynamic Otto cycle for the TLS is schematically

depicted in Figure 3.1} It consists of the following four strokes:

e Hot isochore A’ — B: At point A’ the system is coupled to a hot reservoir Ry, which
is at thermal equilibrium at temperature 7. The global state of system plus reservoir
equilibrates and reaches a steady state at point B. During the stroke Hg remains fixed
with energy gap labelled uj. In standard treatments of the cycle, this would be where
the stroke ends but this is because it is common to ignore the final step where the system
is decoupled from the reservoir (B — B’). We choose to make this step explicit in our
treatment because, at non-negligible system-reservoir interaction strength, there is an

energetic cost associated with it which needs to be evaluated.

e Isentropic expansion B’ — C: The energy gap between the two eigenstates of Hg is
changed from py to pe with p. < pp, while the system remains closed. At point C', the
system is coupled to a cold reservoir R., which is at thermal equilibrium at temperature

T,.. This finishes the stroke at point C’.



3.2. Equilibrium quantum heat engine 67

e Cold isochore C' — D: The global state of system plus reservoir equilibrates and reaches
a steady state at point D while Hg remains fixed with energy splitting u.. The system is

then decoupled from the cold reservoir to reach point D’'.

e Isentropic compression D' — A: The energy gap between the two eigenstates of Hg is
changed back from pu. to py, while the system remains closed. The system is then coupled

to the hot reservoir, reaching point A’, and the cycle begins again.

A/

B
&
<© OOQQ
hot
/ /94 /C uncoupled
/
D ¢ cold

Figure 3.1: The Otto cycle for a two-level quantum system as a working fluid, with ground
state |g) and excited state |e). We plot on the vertical axis the energy gap between the ground
and excited state, labeled u, and on the horizontal axis the population of the excited state P..
The third axis running into the page schematically represents the three possible configurations
of the system: uncoupled from any reservoirs, coupled the hot reservoir at temperature 7}, or
coupled to the cold reservoir at temperature 7T,.. The standard four strokes of the cycle are hot
isochoric thermalisation A’ — B, isentropic expansion B’ — C, cold isochoric thermalisation
C’" — D, and isentropic compression D’ — A. Here, we expand the cycle to explicitly include
steps where the system-reservoir interactions are switched on or off: coupling to the hot reservoir
A — A’ decoupling from the hot reservoir B — B’; coupling to the cold reservoir C' — C’; and
decoupling from the cold reservoir D — D’. This figure is reproduced from Ref. [16].

We model each reservoir as a system of harmonic oscillators, each of which is coupled to the
central working TLS (when the interaction is on) but which do not interact with each other.
This model of a central spin interacting with a bath of harmonic oscillators is typically referred
to as the spin-boson model. It serves as a paradigmatic model in the study of dissipation in
open quantum systems [7]. Examples of its application range from decoherence in biological

systems [8] to semiconductor quantum dots [67, [68]. Setting & = 1 throughout, we write the
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TLS internal energy as

Hg(t) = “(;)I + E(Qt)az + Aét)ax, (3.1)

where €(t) represents the TLS bias, A(t) the tunnelling matrix element, o, . denote the usual
Pauli matrices, and [ is the identity. The eigenstates of Hg are associated with eigenvalues 0

and p(t), where

pu(t) = /(1) + A2(L). (3.2)

The first term in Eq. , proportional to the identity, serves therefore to provide a time-
dependent shift of the system energy scale such that the ground state energy is always set
to zero. Because the cycle is periodic and energy conserved, the work output and total heat
dissipated into each reservoir is unaffected by its presence. We use it to arrive at an unambiguous
definition of positive work as that done on the system during the relevant isentropic strokes.
Negative work is therefore work extracted from the system. The remaining terms are typical in
spin-boson models employed for the analysis of, for example, quantum dots, superconducting

circuits or spins in magnetic fields [48, [49] 50, 9] 69, [70].

We now proceed by assuming that the TLS couples to each harmonic oscillator of a reservoir
via its position xj. If there are k oscillators, each with a different natural frequency w; and
mass my, we may write down the following general form for the kinetic and potential energy of

a reservoir:

it mywi? dy, 2
Hop=S Db W% (. _ S0 (3.3)
: 2my, 2 MWk

Here, py, is the momentum of oscillator k, dp denotes the coupling parameters for the interaction
between the TLS and this bosonic field and o, is the usual Pauli operator acting on the TLS
subspace. We may decompose Eq. into more familiar reservoir Hamiltonian and interaction
terms by defining creation and annihilation operators bz and by, for excitations in each harmonic
oscillator. These must satisfy zj = (1/2mkwk)1/2(b,t+bk) and py, = i(mkwk/Q)l/g(bL—bk). Using
labels h and ¢ to distinguish between the hot and cold reservoirs Ry and R, and defining creation

and annihilation operators CL and ¢t in the same way for the cold reservoir, the self-Hamiltonians
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for the reservoirs are then given by

Hp, = D wi(bfbk +1/2), (3.4)
k

5
I

) D wilcheg +1/2). (3.5)

The interaction terms describing the coupling between the TLS and each reservoir, with all

. . _ d _ _ d :
constants incorporated into f* = k and ¢ = 4 may then be written
p f oy and g = o, may

Hi, = —0. Y floh+ o0+ (0 s (3.6)
k k
Hy, = =023 filch+eg)+ > (f5)2 ). (3.7)

Summing equations (3.1), (3.4), (3.5), (3.6) and (3.7)) gives the full Hamiltonian incorporating

the self-energy of the TLS and each reservoir as well as all interaction energy terms:
H(t) = Hs(t) + Hg, + Hr, + Hj, + Hj,. (3.8)

In practice, only one set of either hot or cold reservoir terms will be present at a time, according
to which isochore stroke is being treated. In the following, we shall omit terms in the reser-
voir and interaction Hamiltonians proportional to the identity as they do not contribute when

evaluating a complete engine cycle, nor help in defining sign conventions as was the case for

Hg(t).

3.2.2 A brief aside on applying the reaction coordinate formalism to a heat

engine

The RC formalism for treating non-negligible system-reservoir interactions was discussed in
depth in chapter [2] But let us briefly review the salient features in order to make the treatment
of this heat engine self-contained. Recall that we apply a unitary mapping of the full system-

reservoir Hamiltonian, which results in an enlarged system S’, consisting of the TLS and the
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RC, a single collective degree of freedom of the environment, which interact strongly. There
are then terms which describe the weak interaction between the RC and a redefined residual

environment E'.

Restricting ourselves to a single reservoir for the time being for simplicity, and therefore dropping

the h or c¢ labels, the Hamiltonian in the original picture is given by

u(t) . €() A(t)
H= 2I+20'z+2Uz‘i'gwkblbk—gz;gk(bl‘i'bk)a (3.9)

where we have ignored terms in the reservoir and interaction Hamiltonians which are propor-
tional to the identity as previously stated. We characterise the system-reservoir interaction by

means of the reservoir spectral density [7] defined as

J(w) = Zg,%(w — Wg)- (3.10)
k

In practice, we make the model tractable by taking the continuum limit for the bath oscillators,

and by employing the following functional form of the spectral density for each reservoir,

QWW,
w? + w?’

J(w) (3.11)

where « is the coupling strength and w,. is a cutoff frequency.

We define a creation operator acting on the RC subspace a' = (1/X) Y K gkbz, satisfying bosonic

commutation relations, with A = />, g,%. The interaction term in equation 1’ may now be

rewritten as

Hy=-0.Y gi(b} +b) = —Ao-(al +a). (3.12)
k

The reservoir Hamiltonian is rewritten as

Hp = Zwkbzbk = Qala + Z fk(aT + a)(r,t + 7)) + Z VkT;ZTk. (3.13)
k k k
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The TLS terms in the Hamiltonian remain unchanged. The full Hamiltonian therefore maps to

] p(t) €(?) A(t) t 1 f T t
H(t) = TI + 70',2 + ?Um — )\O'Z(CL + CL) + QCL a+ ;fk(a + a)(rk + Tk) + ;Vkrkrk-

(3.14)

Here, the RC has natural frequency €2, it couples to the system with strength A, and to the
residual environment via g, whose oscillator excitations at natural frequency v, are created

(annihilated) by r}; (rg)-

The procedure for finding a functional form in the continuum limit for the spectral density
function J (W) = >k f,fé(l/ — 1) characterising the coupling between the enlarged system S’
and the residual bath E’, as well as the parameters Q and A, has been discussed previously in

chapter [2] It results in the following definitions

Q = 2mywe, (3.15)
Q
A=y 22 (3.16)
2
J(w) = ye /A, (3.17)
v is a free parameter and we choose to set v = 7% as in Ref. [I3]. The cutoff frequency

A is eventually taken to infinity and this results in the original form of the spin-boson spectral

density being represented accurately post mapping.

We may now employ the same strategy as that outlined in chapter [2] whereby a standard Born-
Markov treatment [1] of the enlarged open quantum system S’ yields a second order master
equation which captures strong coupling between the TLS and the RC exactly, while only the
weakly coupled residual environment is traced out. We may solve this numerically to obtain
the dynamics of S’ (and subsequently the TLS if we trace out the RC degrees of freedom).
We truncate the number of RC basis states, labelled n here, at a size sufficient to ensure
convergence in the metrics of the engine (work, heat, efficiency). In a standard treatment of

the isochoric strokes, non-Markovian and strong reservoir coupling effects preclude second order
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(i.e. Born-Markov) expansions in the original unmapped representation but we have seen how
this combination of Hamiltonian mapping and second order master equation is capable of very
accurately capturing both the TLS dynamics and steady-states over a wide range of parameters.
Furthermore, the mapping also renders properties of the reservoir accessible through the RC
itself. As such, we are able to track system-reservoir correlations, which are very often not
accessible through other open systems approaches. We shall see how this is crucial in studying
the heat engine at strong coupling in the following sections. It enables a tractable analysis of
the Otto cycle to be formulated in terms of the full system-reservoir Hamiltonian, including

interactions and the resulting correlations.

Particularly important in the context of the heat engine treatment is the global equilibrium
state of the correlated TLS and reservoir at the end of each isochore. We can approximate this
using the steady state solution of the master equation governing the dynamics of S’, which is

given by a thermal state of the mapped system Hamiltonian

- A
Hg = u;t)l + E(zt)az + ét)ax —Xo.(a" 4 a) + Qa'a, (3.18)

as

exp (—515[5')
oo (%)

pgr = , (3.19)
where = 1/kpT is the inverse temperature of the reservoir to which the system is coupled for

that particular isochore. The global state is then approximately given by

PR ps @ per (3.20)

where
. exp(—BHp)
, = ) 3.21
PE trexp(—BHg)] ( )

is a Gibbs thermal state of the residual environment with Hp = >k Vk:T;i?% The reduced state

of the TLS can be obtained by performing a partial trace over the RC degrees of freedom such
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that ps = trreypr[p] = trre[ps’]. In general this does not take the form of a canonical Gibbs

thermal state since there are correlations between the system and reservoir accrued via their

non-negligible interactions. Egs. (3.19)) and (3.20)) are central to the analysis of the generalised

Otto cycle beyond weak coupling assumptions, which follows this section.

To illustrate this, we consider the energy expectation with respect to the full Hamiltonian
(H) = tx[Hp), (3.22)

where H is given by Eq. and p = exp(—FH)/trlexp(—SH)] is a thermal state of the
interacting system and reservoir in the original representation. Such a calculation is necessary
at points B and D of the cycle as described in section [3.2.1] as a key ingredient in calculating
work and heat around the cycle. Eq. is difficult to evaluate if a factorisation assumption

between the system and reservoir is not made. However, under the RC treatment it becomes

(H) = e[ 5) ~ te{ g ps] + [ B pi), (3.23)

where we have used Eq. for the mapped density operator and the fact that tr[_, f (at +
a)(r,t + 1,)pr] = 0. The average energy of the interacting system and reservoir therefore
simplifies into a sum of thermal expectations for the enlarged mapped system Hamiltonian and
the residual bath. The natural boundary this method draws between the system and reservoir
is also intuitively appealing as it provides a link to standard thermodynamics but at finite
coupling strength: the residual environment provides a well defined temperature, serving as the
textbook static thermal reservoir employed in traditional thermodynamic treatments of heat

engines as a reference for energy absorption and dissipation even at strong coupling.

3.2.3 Generalised Otto Cycle Analysis

We now present a detailed analysis of the Otto cycle by considering energetic changes with re-

spect to the full system-reservoir Hamiltonian H and global state, which we will label x. Doing
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so allows us to go beyond weak system-reservoir coupling and vanishing correlations. Using
the RC formalism, we will derive expressions which may be evaluated for arbitrary interaction
strength but will simplify to standard weak coupling forms when the assumption of fully fac-
torising TLS-reservoir states is permitted. Let us now go through the cycle stroke by stroke, as

described in section [3.2.11

Hot isochore

The cycle is periodic and we are treating here the equilibrium version of the cycle, where the
isochoric strokes are run for a theoretical infinite time such that full equilibration can occur.
Therefore we may choose any starting point for our treatment without loss of generality. We
consider starting at point A’ in figure. The interaction between the system and the hot
reservoir has just been switched on. We assume this happens instantaneously. The interaction

with the cold reservoir is not present and the Hamiltonian along the isochore is given by

H=H{ + Hg, + Hg, + H,, (3.24)
where
, A

with superscripts labelling the points around the cycle. We have HE = H g“/ since the stroke
involves no source of external work. At the end of the stroke (point B) the full state of the

system and both reservoirs x? has relaxed to equilibrium such that it might be written as

x? = pn ® pr.. (3.26)

Here
exp [—Bn (HE + Hp, + Hy,) ]

"= i {oxp [ n (HZ + H, + Hy, )]} (320

is the equilibrium state of the interacting TLS and hot reservoir and pg, represents the state

of the uncoupled cold reservoir. We write this in factorised form making the assumption that
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there are no correlations between the system and the cold reservoir at this stage in the cycle.
This implies that while a reservoir is uncoupled from the TLS it returns to its uncorrelated
thermal Gibbs state at the appropriate temperature. One could imagine that we have access to
two further large infinite thermal reservoirs for the purpose of returning the uncoupled ones to

their thermal states.

For a non-negligible interaction term Hy, , the density matrix of the system and hot reservoir
pr, is difficult to evaluate using standard open quantum systems techniques. Employing the RC

formalism, and in particular Eq. (3.20), we may write

L~ eXp(—ﬁhﬁ{B/)
trlexp(—BrHE)]

® pE, = sy, @ PEy, (3.28)

which is more tractable since we have reduced the full environment of the hot reservoir to an
effective single oscillator correlated with the TLS. The residual environment is now uncorre-
lated with the enlarged system and remains factorisable: PE; is a thermal state of the hot
reservoir residual environment (self Hamiltonian H Eﬁl) at inverse temperature 8y, = 1/kgTh.

The Hamiltonian for the enlarged system S’ appearing in this equation is given by
flg, = HSB — )\haz(a;rl +ap) + Qha};ah, (3.29)

which includes a RC for the hot reservoir, with natural frequency €2, and creation (annihilation)

operators a}LL (ap).

We wish to evaluate the average energy at the end of the stroke, point B, as this is the quantity
needed for a final calculation of the heat dissipated and work extracted around the full cycle.

This is done by taking the trace of the Hamiltonian with the full state x? = py ® pg.:

(H)YP = tr [(HE + Hp, + Hr, + Hz,) pp © pr.)

= te [ ps; | + o [Hiy py | + tr [Hropn.]. (3.30)

In the second line we have used Eq. (3.28)), as in the example of Eq. (3.23]). We can distinguish
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correlated contributions in the first term in the second line of Eq. from uncorrelated
contributions in the second term, which depend only on the residual thermal bath and will
cancel out in the full cycle analysis. The presence of the residual thermal bath is still important,
however, as it provides a reference against which we can define energy absorption along the hot
isochore. The third term in Eq. is the internal energy of the cold reservoir and we recall
that we assume both reservoirs re-thermalise when uncoupled from the system. In this way,
each reservoir is initially in a thermal equilibrium state at a well-defined temperature whenever
the coupling with the TLS is turned on. Correlations are then generated along the subsequent
isochore. ppg, is therefore taken to be a Gibbs thermal state at inverse temperature . = 1/kgT,

at this point:
exp(—fB.Hr,)
trlexp(—f.HR.)]

PR. = Pth. = (3.31)

In the standard treatments of the cycle, one assumes that the interaction is weak enough that
one may treat the isochores according to a Born-Markov master equation. One therefore makes
the approximation that the full state remains separable at all times with each reservoir in a
thermal state at its given temperature. In other words, the state p, is given by a tensor product
of the system state pg, and the hot reservoir state py,. Each state is of canonical Gibbs form

with respect to the relevant self-Hamiltonian. For the TLS, this yields

exXp (—ﬁhHSB)

psh = , (3.32)
otr [exp (—BhHg)]
with H g defined in Eq. (3.25), and for the hot reservoir we have
exp(—bnHr,) (3.33)

Pt = rlexp(—BuHRr,)]’

We note that both of these states are diagonal with respect to their respective self-Hamiltonians
and therefore contain no coherence in the relevant energy eigenbases. Using equations (3.1)) and

(3.2) for the system Hamiltonian, the expression for the average energy at weak coupling then
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simplifies to

(H) Do = % [1 — tanh (le;hThﬂ + (HRy,)th + (HR,)th, (3.34)

where we denote the reservoir thermal expectations by (Hg,)u, = tr[Hg,p,], for i = h,c. We
see, in this way, that standard weak coupling results can be recovered from the RC version when

further separability assumptions, relying on negligible coupling, are made.

We then turn off the interaction between the TLS and the hot reservoir. We need to consider
explicitly any cost associated with this step. To do so we define the point after decoupling as

B’ and denote the corresponding Hamiltonian as
HY = HE + Hp, + Hp,. (3.35)
The average energy of the total system x p/ is then given by
(H)B' = tr [(HSB + Hp, + Hg,) XB’} . (3.36)

We assume Hj, is switched off instantaneously. The full state has no time to change between
points B and B, &' =8 = Ph @ peh,, and the work associated with this step is given by the

change in average energy

(H)P = (H)? = —tr [Hy, pn] (3.37)

In a weak coupling treatment pj, = pg, ®psn, and equation (3.37)) for the energetic cost associated
with decoupling from the environment evaluates exactly to zero because tr [Hy, pp] = 0 when
the reservoir state is diagonal with respect to its self-Hamiltonian. At finite coupling, however,

the RC approach yields the state given by equation (3.28]) and we obtain
(HYE' — (H)? = Aptr [az(a;rb + ah)ﬁs;j , (3.38)

which is generally non-zero. This work contribution associated with decoupling must be included
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in the cycle analysis. If this contribution were negative, then we would gain a certain amount
of extracted work from the engine at this point. However, we shall see that it is positive in
the examples considered in section [3.2.6] and thus represents a penalty in the amount of work

extracted from the engine.

It is possible to mitigate some of this cost by performing a modified version of the Otto cycle.
For ease of presentation we will hold back our treatment of that version until section [3.2.5
which involves considering the case of an adiabatic interaction switch off. For the time being,

we proceed with the next stroke of the cycle.

Isentropic expansion

No interaction between the TLS and either reservoir is now present. The energy gap in Hg is
changed such that pp — . by tuning the parameters €, — €., Ap — A.. The TLS Hamiltonian

at the end of the stroke (point C) is given by
€ A
HS = %I + 50+ Shon (3.39)
Once again, we seek to evaluate the average energy along the stroke as
(H(t)) = tr[(Hs(t) + Hg, + Hg.) x()]. (3.40)

The evolution of the global state, and in particular of the TLS component, depends in general
on the details of the time-dependent protocol for tuning the TLS parameters. In the usual
treatment of the Otto cycle, it is assumed that these parameters are changed very slowly. In
this limit, the quantum adiabatic theorem holds [71]. This result is well understood but for

clarity we will re-derive it in the present context of our heat engine.

We begin by defining a unitary transformation

V (t) = exp [—io,0 (£)/2], (3.41)
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with 6 (t) = tan~1 [A () /€ (¢)]. Now, we consider the Hamiltonian H’ in the frame defined by
V(t):

H'(t) = VI HOV () +iVIe)V(t)

= ,u;t) (I+o0,)— Q(Qt)ay + Hg, + Hpg,. (3.42)

If e(t) and A(t) are tuned with the same time dependence then 0(t) = 0. Otherwise, if these
parameters are tuned slowly enough such that (t) < u(t) then the transformation defined
by V(t) approximately diagonalises the system Hamiltonian Hg(t) at any instant in time (it
remains proportional to o.). We may transform the global state into the basis defined by V()
as well to yield x/(t) = VI(t)x(t)V(t). In this basis, the average energy at any point along the

stroke, is given by

) = A0 (1w o 0]} + tr [, + HrIX ()] (3.43)

where we have dropped the term in 9(75) maintaining the assumption that the parameters are
tuned slowly enough such that (t) < u(t). Now we proceed to evaluate the right hand
side of Eq. and the purpose of rotating into the frame in which Hg(t) remains di-
agonal becomes clear. Let us define a time evolution operator in the transformed frame as
U'(t) = Texp [—i f(f H g(T)dT], with T' denoting the time-ordered exponential. Now we sub-
stitute x'(t) = U'(t)x'(0)U'T(t) into Eq. and show that the term tr[o,X/(t)] remains

constant:

o @] = U Ox U )

— [U'T(t)aZU’(t)X'(O)] : (3.44)

where we have used the cyclic property of the trace. In the adiabatic limit ( < 1), H 5(t) =
(u(t)/2)(I+02), such that the time evolution operator commutes with o, and so U'f (t)o, U’ (t) =

0,. This leaves us with tr[o,x'(t)] = tr[o.x/(0)], i.e. this term remains constant along the
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stroke. The average energy along the stroke is then

() =" 0t () + tr [, + Hr )X ()

_ Z((é))ws(o» +tr[(Hp, + Hi)x(1)]. (3.45)

There is no dependency in the reservoirs Hamiltonians along the stroke, and so their energy
expectation values are unchanging. The energy of the global system at the end of the stroke

reads

(H)C = tr [(HS + Hg, + Hg,.) X°]

- %tr [HE py) + tr [Hg, pn] + (Hr ). (3.46)

The average energy along the stroke scales linearly with u(¢) and the difference in energy between

the start and end points of the stroke gives the work extracted:

(H)C — (H)B' = (Zh - 1) tr [HEpn) . (3.47)

In the weak coupling limit this reduces to

()G — (V= (1 =) [ 1= rann (2] (3.48)

where pp > fic.

The interaction between the system and the cold reservoir is now switched on instantaneously,
taking us to point C’. Again we wish to account for any energetic costs this entails and so

evaluate the average energy:
(H)C = tr [(HSC + Hg, + Hg, + Hi,) XC/} ; (3.49)

with y¢" = ¥ because the switch on is done instantaneously. As previously stated, we assume

that the hot and cold reservoirs relax to equilibrium at temperatures T} and T, respectively,
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when uncoupled from the TLS. This means that when the interaction is turned on, the system
is coupling to a reservoir in a thermal equilibrium state. Hence, the work associated with
coupling to the cold reservoir, (H)C" — (H)C evaluates to zero in both the weak coupling and

RC treatments as the cold reservoir state pg, is a thermal state.

Cold isochore

This stroke proceeds analogously to the hot isochore. The global state relaxes to equilibrium
with the cold reservoir interaction present. The full state at the end of the stroke (point D) is
given by

X" = pe ® pun, (3.50)
Here

__exp [—,Bc (HSD-FHRC‘FHIC)}
Pe= {exp [-B. (HE + Hp. + H1.)]}

(3.51)

is a thermal state of the interacting TLS and cold reservoir. We have assumed that the hot

reservoir has re-thermalised along the stroke, see Eq. (3.33)).

We apply the RC treatment to account for the interacting system and cold reservoir once again

and accordingly write down the average energy at point D:

(H)P = tr [(Hg + Hg, + Hg, + H1.) pepin, |

= tr [ﬁgﬁsg} + tr [ﬁEgﬁEg} + (HRy,)th (3.52)
with
exp(—,BcHg,) ~ _ ~
Pe = 2= ® pE, = ps; ® PEL, (3.53)
© trfexp(—f.HS)]
where
HS = HS — Mo.(al + ac) + Qeala, (3.54)

is the RC mapped Hamiltonian for the system and cold reservoir. Here, pg: is a thermal state

of the cold reservoir residual environment (with Hamiltonian H £1) at inverse temperature f..
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In the weak coupling treatment, the state again reduces to the product of three thermal states

for the system and the two reservoirs, such that the average energy simplifies to

(1) = |1 =t (2] + o+ 2 (3.55)

The interaction between the system and the cold reservoir is now switched off and we reach

point D'. With no interaction terms in the Hamiltonian, the average energy reads
int D’'. With i i in the Hamiltoni h g gy d
(H)P' = to | (HS + Hp, + Hp,) X”] (3.56)

If the interaction is switched off instantaneously then Y = yP = Pe @ piny,» and the work cost
is

(HYP' — (H)P = —tx [H,p.) (3.57)
In the weak coupling treatment, the cold reservoir remains in a thermal state and factorises

out of the expression for p.. The cost again, therefore, evaluates to zero. At strong coupling,

however, we obtain

(H)P' = ()P = Mtr [ (af + ac)psy | (3.58)

within the RC approach, which is generally non-zero. In section [3.2.5we consider the alternative

treatment of mitigating this work penalty by adiabatic decoupling.

Isentropic compression

This stroke is analogous to the isentropic expansion stroke, with the system parameters changed

back to their original values. At point A the TLS Hamiltonian therefore reads

A
HA = %I + %az + Ston. (3.59)
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Again, we consider the adiabatic limit such that the average energy at point A is given by

(H)A = tr [(Hﬁ—i—HRh —i—HRC) XA]

- %m« [HS pe] + tr [Hr.pe] + (Hry )in- (3.60)

C

The energy difference across the stroke gives the work done on the system:

(A — (HYP' = (Z” - 1) tr [HS pe] . (3.61)

Under weak coupling assumptions this simplifies to

(b~ (1YL = (1 = 1) 1= (). (3.62)

Then we switch on the coupling to the hot reservoir instantaneously and return to point A’.

The Hamiltonian contains the term Hj, and the average energy is given by

(YA =tr [(Hg + Hp, + Hg, + Hp, )x™
:Mh

tr [HS pe| + tr [Hp,pe] + (Hp, )tn

C

=(H)*, (3.63)

where, in the last line, as in the cold reservoir case, we make the point that there is no cost
associated with the switch on of the coupling to the hot reservoir, as it is in thermal equilibrium

at this point.

3.2.4 'Work output and efficiency at finite coupling

Now that we have analysed the cycle in detail and obtained expressions for the average energy

at all points around the cycle, Eqns. (3.30)), (3.36)), (3.49), (3.52)), (3.56)) and (3.60)), we are in a

position to evaluate the net work output and energy conversion efficiency of the finite coupling

Otto cycle.
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We sum the energetic changes along each isentropic stroke to evaluate the net work output W.
Note that this includes contributions from the cost of decoupling the reservoirs (although not

from coupling - as explained in the preceding section):
W =(H") —(HP) + (H) — (H®) + (H"") = (H”) + (H") - (H"")

In the weak coupling treatment, the interaction terms evaluate to zero. The expression for the

net work output then reduces to the standard form

/

e =) — ()P + ()"
:% (He = n) [tanh <2k’;hTh) — tanh <2k’;CTC>} : (3.65)

It follows from equation ([3.65)), that pup/ue < T /T, must hold for there for be a net output of

Wwea - <H>D

work from the engine. This is known as the positive work condition. When this condition is
violated, the effective temperature of the TLS at the end of the hot isentrope is greater than
the temperature of the hot reservoir. At the end of the cold isentrope, it is colder than the
cold reservoir. This means heat flows in the opposite direction to that required for an output
of work, and instead, a net amount of work is invested into the system for it to operate as a
refrigerator enabling heat to flow from the cold to the hot reservoir. The energy transferred into

the system from the hot reservoir is evaluated as the change in energy along the hot isochore:

Q=(H)" —(H)"

=tr [HSpn| — %tf [HS pe] + tr [Hg, (on — pin,)] + tr [Hr, (pin, — pe)] + tr [Hr, pn]

C

(3.66)

Once again, In the weak coupling treatment, this reduces to a standard form because the
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reservoirs remain in thermal equilibrium such that their internal energies cancel out:

_ Hha He _ Kh
Qweak = 9 |:tanh (2]€BTC> tanh <2]{,’BTh):| . (367)

The efficiency of the engine is defined as the ratio of the net work output to the energy absorbed

from the hot reservoir by the TLS along the hot isochore,

w
n=—. 3.68
0 (3.68)
For weak coupling, using equations (3.65)) and (3.67)), this simplifies to
Nweak = 1- &7 (369)

[t
which is commonly known as the Otto efficiency (for a two-level system).

Before turning to some results, we will briefly describe in the next section a method by which

some of the costs incurred due to the reservoir decoupling may be recovered.

3.2.5 Adiabatic reservoir decoupling

In this section we consider a modification of the Otto cycle which allows us to mitigate some of
the work cost associated with decoupling from the hot and cold reservoirs at points B’ and D',
respectively. We consider decoupling the TLS from each reservoir adiabatically at the end of
each isochore. In this case the global state at point B’ has evolved from point B. Turning the
interaction off adiabatically means doing so infinitesimally slowly such that the state at B’ is
the steady state solution of a weak coupling master equation describing the interaction between
the system and the hot reservoir. The global state is therefore given by a tensor product of

three thermal states:

X' = ps, © piny, ® pen (3.70)
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see Eqgs. (3.31) - (3.33)). The energetic cost of decoupling now evaluates to
(H)P = (H)? = tr [HE (ps, — pn)] + tr [Hr, (pin, — pn)] — tr [Hr, pi] (3.71)

This cost remains zero in the standard weak coupling analysis since the reservoirs remain ther-
mal and the interaction term is vanishing. At finite coupling, however, it contains a work
contribution and a component of heat dissipation into the hot reservoir. In order to separate

the two we compute the change in free energy, F' = E — T'S, of the full state:

g — Fp =(H)? — —5(F) - |(1)? - ~5(x?)
Bh Bh

— e fexp (< (HE + He, + H3,))] - 5

1
5 InZs, — —1InZg,, (3.72)

Bn

where S(p) = —tr[plnp] is the von Neumann entropy, Zg, = tr [exp (—ﬁhHg)}, and Zp, =
tr [exp (—fSrHR, )] are standard partition functions involving the TLS and reservoir Hamiltoni-
ans. We define this as the work contribution to the decoupling cost. The heat dissipated into

the bath during decoupling is then given by the change in energy minus this work contribution
Qpp = (H)P —(H)B —[Fp — Fg]. (3.73)

The RC approach may be employed to perform these calculations, as discussed in earlier sections.

A similar procedure holds for the cost of decoupling from the cold reservoir at point D. If the

interaction is switched off adiabatically then the state at D’ is given by

X" = ps. @ pun, @ pin,., (3.74)

where pg, is the Gibbs state given by

_exp (—B:HS)
PSe = W [exp (—B.HS)]

(3.75)
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In complete analogy to Eq. (3.71)) the energetic cost is evaluated as
()P — (H)? =tr [HS (ps. — pe)] + tr [HR.(pin. — pe)] — tr [Hr.pe] - (3.76)

This may be partitioned once again into a work contribution and energy dissipated into the

cold reservoir in the same way as was done in Eqns. (3.72) and (3.73]).

For adiabatic decoupling, the expression for the net work output around a complete cycle then

evaluates to

W = <Z; — 1) tr [nggh] + <':}CL — 1) tr [ngsc}
1 1
—I—Elntr [exp (=B (Hg + Hg, + Hy,))| + Elntr [exp (=8 (Hg + Hp, + Hp,))]
1 1 1 1
—@].HZS}L - @11’1 ZRh - janSC - E].HZRC. (377)

The total energy dissipated into the hot reservoir comprises both the contribution from the hot

isochore and the subsequent decoupling, ) = Q4B + @ppr. It reads

W 1 1
Q = —H—’:tr [Hﬁpgc] —tr [Hégpsh] +Elnzsh+@anRh
— Intr [exp (=B, (HS + Hg, + Hy,))] - (3.78)

We clarify that we do not consider the possibility of switching on the coupling to either reservoir
adiabatically. There is no cost associated with this, in any case, but doing so would negate the
need for the hot/cold isochores that follow. Adiabatic coupling therefore has no equivalent in

the standard Otto cycle.

3.2.6 Results for the equilibrium quantum Otto cycle

With the groundwork in place, we now explore the impact of strong coupling and system-
reservoir correlations on the engine’s performance. First we consider the example of adiabatic

isentropic strokes, as outlined above. Later we will extend the analysis to the opposite limit of



88 Chapter 3. Quantum heat engines at strong coupling

sudden isentropes. In both cases, we will see that strong coupling acts to reduce the performance
of the cycle compared with the weak coupling version. This is consistent with findings for
continuous heat engines in the strong coupling regime [64]. However, additionally in our case,
we are able to identify the primary reason for the reduced performance in the shape of the work
costs imposed in decoupling the system and reservoirs after each isochore. This distinguishes
these results from considerations for continuous engines which operate such that system-reservoir
coupling is always present. In fact, as we shall see, were it not for this cost, it would be possible

for the strong coupling engine to output more work than its weak coupling counterpart.

Adiabatic isentropic strokes

In the adiabatic limit the isentropic strokes of the cycle are carried out slowly enough for the
quantum adiabatic theorem to hold. In Fig. [3.2] we show representative plots of the work output
and energy absorbed from the hot reservoir in this regime. The parameter which is tuned along
the horizontal axis is the ratio of the TLS bias at the start and at the end of the isentropic
expansion. Note that this also dictates the bias ratio along the isentropic compression stroke.
This effectively controls the extent to which the energy gap between the two eigenlevels of
the TLS Hamiltonian is changed during the isentropic strokes. We compare the strong coupling
regime with the weak coupling limit (dashed curves), Egs. and . In the case of strong
coupling, we consider the two alternative cycles with either instantaneous (dotted curves) or
adiabatic (solid curves) decoupling of the reservoirs from the TLS as outlined previously. For

strong coupling, all calculations have been performed using the RC formalism.

In the weak coupling limit, net work output vanishes when € /e, = 1. Since tunneling A is
maintained fixed here, a ratio of 1 means that there is no change in the energy spacing of the
TLS across the isentropic strokes. In other words, there are no isentropic strokes and only two
thermalisation strokes. As such no work is extracted from the engine. Work output vanishes
also when pyp,/pe = Ty, /Te.. This is known as the positive work condition derived from Eq.
which implies that for Wy.e.r to be negative (our sign convention for positive work output)

we require pp /e < Tp/Te. This is also the point at which the energy absorbed from the hot
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Figure 3.2: Adiabatic limit. (a) Work output and (b) energy absorbed from the hot reservoir
for a TLS quantum Otto cycle plotted as a function of the TLS bias at point A, €;,. We choose to
plot €5, /€. on the horizontal axis rather than py, /. because we are keeping A fixed. Blue dashed
curves: weak coupling; Yellow dotted curves: strong coupling with instantaneous decoupling of
the reservoirs; Red solid curves: strong coupling with adiabatic decoupling of the reservoirs.
Parameters (in units of €.): Ap = A, =1, B, = 1, Be = 2.5, we = 2, a = 0.005, and n = 30
states are taken in the RC calculations. We see that work output and energy absorbed from
the hot reservoir are both reduced at stronger coupling, but that this effect can be mitigated
by adiabatic decoupling of the reservoirs. Even at what could be argued as still relatively weak
coupling compared with the energy scale of the TLS, we still see large enough interaction costs
to have an impact on work output. Figure is reproduced from Ref. [16].
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reservoir vanishes: at this ratio the TLS has the same effective temperature as the hot reservoir
and so no thermalisation occurs during the hot isochore. Beyond this point, for weak coupling
we have that up/pe. > Tp/T. and the engine turns over to operate instead as a refrigerator,

absorbing energy from the cold reservoir and dissipating into the hot reservoir.

The strong coupling treatments both yield lower work outputs than the weak coupling calcu-
lations. Contrary to the weak coupling treatment where there is a net work output as soon as
tn /e > 1, at stronger coupling, there is a regime where u, /1. > 1 but the engine still consumes
a net amount of work. This is because of the decoupling cost which must be overcome before
net output is seen. Work, also, cannot be extracted right up to the limit of up/pu. = T /T
(positive work condition). Strong coupling, however, leads to a reduction in the energy absorbed
from the hot reservoir which would entail an efficiency gain were it not for decoupling costs. In
contrast to the weak coupling case, for strong coupling the work output and energy absorbed
do not change sign at the same point, meaning that these regimes where there is net output
at weak coupling but not so at strong coupling are regimes in which the cycle acts neither as
an engine nor as a refrigerator. It simply consumes work while still being a conduit for heat to
flow from the hot reservoir to the cold one. Comparing the adiabatic decoupling case with the

instantaneous one, we see that a large proportion of the decoupling cost may be recovered.

To illustrate that decoupling costs account for the majority of the loss in performance, we
have separated these contributions from the remaining work output in Fig. [3.3] In the case of
instantaneous decoupling we see that even when we neglect the cost of switching off the reservoir
interactions (dotted curve), slightly less net work is extracted along the isentropic strokes than
in the weak coupling case (dashed curve). This is because the TLS state differs from the thermal
state obtained in the adiabatic decoupling and standard weak coupling treatments at the start
of the isentropic strokes. The size of the cost term (dashed line) is the dominant effect though.
This emphasises just how severe a simplification is made by neglecting interaction effects in the
weak coupling treatment. We see that the cost can be mitigated to a certain extent by the
adiabatic decoupling procedure (solid line). The work extracted neglecting the decoupling cost

still only recovers to the weak coupling limit in this case, thus the total work output is still
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Figure 3.3: Adiabatic limit. Net work output of the Otto cycle separated into decoupling
work cost and magnitude of the remaining work extracted components. The parameter which
is varied along the horizontal axis is the ratio of the TLS bias ej/e.. Blue dashed curve:
weak coupling (no decoupling cost) and strong coupling work extracted ignoring work cost
(adiabatic decoupling case); Yellow dotted curve: strong coupling work extracted ignoring work
cost (instantaneous decoupling case); Red dashed line: strong coupling cost of instantaneous
decoupling; Purple solid line: strong coupling cost of adiabatic decoupling. Parameters as in
Fig.[3.2] It is the cost of decoupling the reservoirs which accounts primarily for the loss in work
output at stronger coupling. The beneficial effect of adiabatic decoupling in mitigating this cost
is seen in the difference between the red dashed and purple lines. Figure is reproduced from
Ref. [16].

lower and costs cannot be fully overcome. Moreover we see that costs remain flat with the ratio
€n/€. which means there are regions at small and large ratios where, as mentioned above, net
work output goes negative and the engine consumes both energy from the reservoir and a net

amount of work.

We now consider how efficient the engine is, with efficiency defined as in Eq. . In Fig.|3.4
we show a parametric plot of the work output against the efficiency of the engine for both strong
and weak coupling. The parameter which is varied as we move along a curves is the TLS bias,
€n. In the weak coupling regime, the efficiency increases monotonically with e, (although, as
we have seen, work output does not) and saturates at the Carnot limit, noc = 1 — T./T},. This
is the point at which the net work output vanishes, pp/pue = T /T.. Maximum work output
occurs prior at an efficiency lower than the Carnot bound, and in practice this is the efficiency

of the working engine. At stronger coupling, the efficiency of the engine is inferior. This is
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Figure 3.4: Adiabatic limit. Parametric plots of work output versus efficiency in the adiabatic
isentropes regime for a quantum Otto cycle. The parameter which is varied along these curves
is TLS bias during the hot part of the cycle, ¢,. Blue dashed curve: weak coupling; Red
solid curve: strong coupling with adiabatic decoupling of the reservoirs; Yellow dotted curve:
Strong coupling with instantaneous decoupling of the reservoirs. Parameters (in units of €.):
Ap,=A.=1,06,b=1, 6. =25, w. =2, a = 0.005, and n = 30 states are taken in the RC
calculations. Figure is reproduced from Ref. [16].

because work output is reduced in this regime and the energy absorbed from the hot reservoir
is not reduced sufficiently to prevent a reduction in efficiency. We also note that qualitatively
different behaviour is observed compared with the weak coupling limit: the Carnot limit is never
reached and maximum efficiency, although not coinciding with maximal work output, is much
closer than in the weak coupling case. This means that the engine, during practical operation,
operates at close to its optimal efficiency. Efficiency is not monotonic with TLS bias in this
regime and falls to zero as the work output vanishes. This creates the loop structure of both the
instantaneous decoupling and adiabatic decoupling curves, evocative of studies of classical heat
engines containing some source of internal frictional loss, for example in Ref. [31]. The efficiency
can be improved with the adiabatic decoupling protocol, since there is some mitigation of the
decoupling costs. In this case we notice a loop which lies outside the instantaneous decoupling

case.

We point out at this stage that, for instantaneous decoupling in certain parameter regimes, it
is possible for the the work output in the strong coupling case to beat the weak coupling limit,

if one were to ignore the decoupling cost. Obviously, there is no escaping this cost but we
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Figure 3.5: Adiabatic limit. Work output of the Otto cycle plotted as a function of the
TLS tunneling, Ay, during the hot part of the cycle. Here, we ignore the decoupling cost for
strong coupling (we are only considering instantaneous decoupling). Blue dashed curve: weak
coupling; Yellow dotted curve: strong coupling. Parameters (in units of A.): €, = €. = 1,
Bn =1, B =25, w. =2, a =1, and n = 30 states are taken in the RC calculations. Figure is
reproduced from Ref. [16].

simply wish to make the point that, on taking the isentropic strokes in isolation, it is possible
to find parameter regimes in which more work is extracted because of stronger coupling with
the reservoirs. An example is shown in Fig. [3.5] Here the tunnelling, Ay, is tuned along the
isentropic strokes rather than €. Note this still results in changing the TLS energy gap along
this stroke. The decoupling costs far outweigh such enhancements still, and the cycle as a
whole always displays a reduction in work output for the strong coupling calculations. But
the example serves to show that strong coupling itself does not always act to the detriment of

possible work extraction.

Finally, in Fig. [3.6] we examine how the engine performance scales with system-reservoir cou-
pling strength « . At weak coupling, we make the approximation that the magnitude of the
interaction term is negligible and hence the weak coupling efficiency is flat with «. At stronger
coupling, the first sanity check is that, as expected, the weak coupling efficiency is recovered
as a — 0. It is clear that the detrimental effect of the decoupling cost is more pronounced at
higher couplings. The adiabatic decoupling procedure becomes increasingly valuable as cou-

pling is increased, despite being unable to fully recover the weak coupling efficiency. In fact, for
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Figure 3.6: Adiabatic limit. Efficiency of the Otto engine plotted as a function of coupling
strength «. Blue dashed line: weak coupling - the efficiency is constant and equal to 1 — “—2
as in equation ; Yellow dotted curve: strong coupling with instantaneous decoupling of
the reservoirs; Red solid curve: strong coupling with adiabatic decoupling of the reservoirs.
Parameters as in Fig. with €5, /€. = 2. Figure is reproduced from Ref. [16].

large enough couplings, it allows the cycle to perform as an engine even when the work output
has vanished in the instantaneous decoupling case. It is also worth recognising that the sensi-
tivity of the cycle performance to the system-reservoir decoupling procedure (instantaneous or
adiabatic) could be used (even at fixed «) to signify the presence of strong coupling effects in
experimental realisations of quantum heat engines. This is because it is a feature inherent to

the strong coupling regime and completely absent in the weak coupling treatment.

Sudden isentropic strokes

Until now, we have been considering the case where the isentropic strokes are carried out in
the adiabatic limit. We move now to the sudden limit of the Otto cycle. This means we carry
out the isentropic strokes so quickly that the quantum state has no time to evolve along the
isentropic strokes between points B’ and C or between D’ and A. The global states at C and A
are therefore given by x© = XB/ and x4 = XD/. This changes the respective energy expressions

at these end points of the isentropic strokes. In the instantaneous decoupling limit, considering



3.2. Equilibrium quantum heat engine 95

0.06 = T T r r r

0.05

0.04

< 0.03

0.02

0.01

0.004

€nlec

Figure 3.7: Comparing the adiabatic and sudden limits. Work output of the Otto cycle
plotted as a function of the TLS bias during the hot part of the cycle, €,. We ignore the
decoupling cost for the strong coupling curves here. Blue solid curve: weak coupling adiabatic;
Yellow (small) dashed curve: strong coupling adiabatic with instantaneous decoupling; Blue
(large) dashed curve: weak coupling sudden; Yellow dotted curve: strong coupling sudden.
Parameters as in Fig. though with /e, = 0.1. Figure is reproduced from Ref. [16].

the cycle as a whole, we find that in the sudden limit the net work output reads

W = tr [HE (p. — pn)] + tr [Hg(ph — pe)| — tr[Hy, pa) — tr[Hi,pe). (3.79)

The energy absorbed from the hot reservoir is now given by

QYP =tr [HE (pn — pe)] + tr [Hr, (o — pr,)] + t [Hr (pr. — pe)] + tr[Hi,pn]. (3.80)

Both expressions may be evaluated within the RC formalism, as was the case in the adiabatic

treatment.

It is well understood that engines which operate outside of the adiabatic regime are hampered
by coherence developing during work extraction strokes between the energy eigenlevels of the
working fluid [23 29 43]. This effect, known as quantum friction, is always detrimental to
the engine’s work output when compared with an adiabatic version. This is the reason for
the severe reduction in the weak coupling work output as compared to the adiabatic limit in

Fig.[377 Interestingly, in this example, we note the effect of quantum friction is less pronounced
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Figure 3.8: Sudden limit. Parametric plots of work output against efficiency in the sudden
regime for a quantum Otto cycle. The parameter which is varied along each curve is the TLS
bias during the hot part of the cycle, ¢,. We consider two different temperatures of the cold
reservoir. Blue dashed curve: weak coupling and 8. = 2.5; Yellow solid curve: strong coupling
and 8. = 2.5; Blue dot-dashed curve: weak coupling 8. = 1.75; Orange dotted curve: strong
coupling . = 1.75. Parameters (in units of €.): Ay, = A, =1, B =1, w. = 2, a = 0.001, and
n = 30 states are taken in the RC calculations. Figure is reproduced from Ref. [16].

in the strong coupling regime. Indeed, were it not for the cost of decoupling (which outweighs
the benefit), the strong coupling engine would outperform its weakly coupled counterpart. The
impacts of the decoupling cost on the work output and energy conversion efficiency are high-
lighted in Fig. There, we see both the effect of quantum friction leading to a loop-like
structure qualitatively similar to those seen in Fig. [3.4] as well as the impact of finite coupling
costs reducing work output and efficiency resulting in smaller loops. We find that the scaling
of engine performance with coupling strength is qualitatively similar to the adiabatic isentropic

limit in Fig. 3.6

3.2.7 Summary

We have analysed an equilibrium quantum heat engine in the regime of strong coupling between
the system and reservoirs, employing the RC formalism to properly account for the generation
of system-reservoir correlations. We have seen that this results in costs incurred by decoupling
the system and reservoirs. These costs impact negatively on the performance of the engine. We

have seen that it is possible to recover some of this lost performance by operating a variation
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of the cycle which involves adiabatic decoupling, pertinent only to the strong coupling regime.

Let us finally emphasize that it is thanks to the RC formalism that we have been able to
compute explicitly the work costs involved in coupling and decoupling the system and the
reservoirs around a heat engine cycle. These costs are typically ignored in the weak coupling
limit. In that regime, it is assumed that the interaction term in the Hamiltonian is small
enough that the reservoirs remain in thermal equilibrium, and so linear interaction terms may
be considered as being without any associated energetic costs. This assumption is frequently
valid in classical thermodynamic systems, where energetic costs associated with interactions
between large systems are typically restricted to the surface of macroscopic objects. For small
surface area to volume ratios, these costs can be safely neglected. At the quantum scale this
need not necessarily be so. It may be argued that in considering such costs, we have had to
specify a particular microscopic model of a heat engine and that, as a result, the emerging
thermodynamics becomes dependent on our choice of model, which departs from the spirit
of classical thermodynamics and its universality. In response to this, we would argue that
at strong coupling, whether on the quantum or classical scale, a model specific description of
thermodynamics may be inevitable since one is forced to consider the type of interaction between
the working fluid and heat reservoir. In such cases, a formalism such as the RC method that

allows for a physically intuitive treatment of these interactions holds great promise.

We have so far restricted ourselves to an idealised reversibe version of the Otto cycle where full
equilibration occurs along the isochores and where the isentropic strokes are carried out either
in the adiabatic or sudden limit. This cycle theoretically requires an infinite amount of time
to complete, although, for sufficiently long times, the deviations from the metrics presented
here as a result of finite time isochores would be minimal. This engine, in any case, produces
negligible power output and is therefore of little practical use, beyond the fundamental concepts
explored here. In the next chapter we will consider a more practical, non-equilibrium version
of the engine, which operates in finite time and therefore generates finite power output, albeit

at the cost of irreversibility.

There have been various proposals for experimental realisations of nanoscale heat engines [72, [73],
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741,175, [76, [77]. Although the protocols presented in this chapter are idealised in that they involve
complete decoupling of the system from the reservoirs at various points during the engine cycle,
it is certainly possible to control very precisely parameters such as the bias and tunnelling, for
example, in experimental realisations of double well quantum dots in semiconductor nanowires
[67, 68]. An experimental realisation of a single-atom heat engine has recently been achieved
[72], indicating that tuning the interaction strength as required for protocols such as those
outlined here is possible. As such, let us now turn our attention to a more practical treatment

of the quantum Otto cycle at finite time.



Chapter 4

Non-equilibrium quantum heat

engine

To operate the Otto cycle in finite time, there is the option of performing the isentropic strokes
away from the adiabatic regime as well as the possibility of performing the isochoric strokes
such that the relevant reservoir is decoupled before full equilibration has occurred. In the
laboratory, of course, both of these will be the case. It is well understood that quantum engines
operating outside the adiabatic regime are hampered by coherence developing between the
energy eigenlevels of the working fluid during the work extraction strokes [29]. This effect, known
as quantum friction, degrades the engine’s work output when compared with a stroke performed
infinitely slowly in which the quantum adiabatic theorem holds. Avoiding the costs imposed by
quantum friction, negating this quantum disadvantage, may be possible by employing techniques
known as shortcuts to adiabaticity, which enable the engine work strokes to remain adiabatic
despite being carried out in finite time [32, [7§] or through quantum lubrication in the form
of an appropriate form of environmental noise [79]. Nevertheless, quantum coherence accrued
through non-adiabatic work strokes can prove to be advantageous when comparing instead with
the equivalent non-adiabatic stochastic (classical) engines in the particular limit of small action

which is discussed in Refs. [80, [8I]. Away from this limit, it has been argued that coherence

99
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acts as a disadvantage over the classical non-adiabatic case [82]. Nanoscale heat engines have
recently become an experimental reality [72] and these effects have been seen in the laboratory

183].

In what follows, we analyse the same quantum Otto heat engine cycle as in the previous chapter,
however now operating in finite time. We will spend some time discussing the advantages of
strong coupling when it comes to maximising power output before shifting our focus onto the
effect of coherence between the TLS energy eigenlevels resulting from system-reservoir correla-
tions accrued during the heat exchange strokes rather than the isentropic strokes. In typical
treatments of the quantum Otto cycle, a weak coupling assumption is made which results in
system and environmental reduced quantum states remaining separable at all times. In the
adiabatic regime, where no coherence accrues in the TLS during the work extraction strokes,
the weak coupling assumption also means the TLS reduced state remains diagonal in its energy
eigenbasis during the heat exchange strokes. By going beyond the weak coupling assumption,
but remaining approximately adiabatic along the work extraction strokes, we will see how co-
herence caused by system-environment correlations leads to power losses even where quantum
friction plays no role. By considering a version of the strongly coupled engine where coherence
is suppressed, we will see that a fully coherent engine, despite generating greater power output

than a weakly coupled version as in Ref. [84], suffers from this distinctly quantum disadvantage.

We have already seen how finite reservoir coupling is detrimental to the performance of infinite
time heat engine cycles when compared to cases in which the coupling strength is vanishingly
weak. This is due primarily to the energetic costs imposed when decoupling the working sys-
tem and reservoirs around the cycle in the finite coupling case. Our focus here is markedly
different. Instead of purely focusing on a comparison between weak and strong coupling, we are
interested in the relative performance of coherent and incoherent heat engine cycles where both
are operating at finite coupling strength. We shall see that strong system-reservoir coupling
imposes a distinct quantum coherent limit on heat engine performance when compared with

the equivalent incoherent cycle.

As in the previous chapter, in order to access the strong coupling regime, we make use of RC
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formalism. We will therefore restrict our description of this technique here to only the features
salient to the present analysis of the finite time Otto cycle. We refer the reader to preceding
chapters for a more in depth presentation of the formalism. We proceed first, for clarity, by
refreshing our memory of the Otto cycle TLS model which was first introduced at the start of

the previous chapter.

4.1 The Otto cycle model at finite time

We consider a TLS with self-Hamiltonian Hg which may interact separately with two heat
reservoirs, at temperatures 1}, and T, with T} > T., operating in an Otto cycle as described
in section Adopting the same labels, the cycle proceeds as A’BB'CC'DD’A, with the

following adaptations:

e Hot isochore: at A’ the TLS is coupled to the hot reservoir and interacts with it for a
finite time 7; to reach B. In the standard, infinite time version of the cycle, 7, — oo and
the global state of system plus reservoir at point B is taken to be a Gibbs thermal state
with respect to the total Hamiltonian at inverse temperature (3, = ﬁ. However, in
what follows we consider a finite 7; where the state at the end of the stroke may be out
of equilibrium. The interaction between the TLS and the hot reservoir is then instanta-

neously set to zero and we do not consider here the possibility of adiabatic decoupling

(B — B').

e Isentropic expansion (B’ — C): Hg is tuned such that the gap between the two energy
eigenvalues is reduced. The finite time taken for this stroke is given by 7. In what follows,
we consider the adiabatic limit, where 7 is large enough that the adiabatic theorem may
be applied to give a very good approximation to the state at the end of the stroke, but
where we still have 7 < 7;. Now, the interaction between the TLS and the cold reservoir

is switched on instantaneously as before (C' — C”).

e Cold isochore (C' — D): The TLS interacts with the cold thermal reservoir at temperature
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T, for a finite time 7;. As with the hot isochore, in the infinite time version of the cycle
the global state at the end of the cold isochore is a Gibbs state with respect to the total
Hamiltonian, now at inverse temperature 8. = ﬁ. For a finite 7; the global state

will not have reached equilibrium. The system is then decoupled from the cold reservoir

instantaneously (D" — D").

e Isentropic compression (D' — A): Hg is tuned for a time 7 such that the gap between
energy eigenstates is increased back to the same level it was at point A’, and the adiabatic
approximation again holds. The cycle is completed by instantaneously turning on the

interaction with hot reservoir (A — A’).

These four strokes are repeated until a limit cycle is reached [85] and all transient states have
settled to their limit values. In this limit, the global quantum state at any particular point in

the cycle is the same from one cycle to the next.

The full Hamiltonian for the internal energy of the TLS and the two reservoirs plus interaction
terms reads the same as in the previous section and given in equations , , ,
and . Once again, In order to access the strong coupling regime, we make use of the RC
mapping as described in Refs. [I4] [I3] and in particular for the infinite time Otto cycle in Ref.

[16] and the previous section.

As before, in order to numerically solve the RC master equation it is necessary to truncate the
Hilbert space for the quantum state of the enlarged system S’. In practice this means truncating
the number of excitations Nrc we consider in the RC mode. We choose the truncation such
as to reach a reasonable compromise between computation time and convergence of the engine

metrics (in particular the work output of the cycle).

We wish to emphasize now some points which have already been discussed in the infinite time
version of the cycle, but are equally important in the present context. Whereas in standard
treatments of heat engines, one is accustomed to applying the weak coupling assumption such
that the quantum state for the total system of TLS plus each reservoir remains separable at

all times in the TLS and reservoir degrees of freedom, here the weak coupling approximation
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is applied to the residual environments. This results in a total state which is separable at all
times in the degrees of freedom of S, R} and R[,, namely pg' ®p R, @ PR, but where correlations
between the TLS, the hot and the cold RC will form and indeed persist even in the limit cycle.
These correlations are crucial to the performance of the engine in the stronger coupling regime.
We show in the following section that the resulting coherence leads to limits on the engine’s

output which are not present in an incoherent version of the cycle.

4.2 Rethermalising reservoirs

Before turning to the characteristics of the finite time quantum Otto cycle, we must first address
an implicit assumption which was made during the infinite time treatment of the cycle and
that requires some adaptation here at finite times. In the infinite time version of the cycle,
we assumed that when the TLS was decoupled from a particular reservoir, by the time the
coupling was turned back on again this reservoir had returned to thermal equilibrium. Indeed,
that the TLS is only ever coupled to a thermal reservoir at the start of an isochoric stroke
is the reason why the particular form for the TLS-reservoir interaction in equations and
yields no coupling costs. In the finite time version of the cycle, we also wish to make
this assumption because, for the sake of our strong coupling comparison with weak coupling,
we want to remain as close in spirit as possible to standard thermodynamic treatments which
consider thermal reservoir resources. Since we shall be explicitly computing the dynamics of the
full global state around the cycle, we need to build in to our model some phenomenologically
motivated mechanism which explicitly ensures that an uncoupled reservoir returns to thermal

equilibrium by the time it is coupled once more to the TLS.

In this section therefore, we briefly discuss how to modify the master equation governing the
motion of the enlarged system S’ in order to additionally induce damping of the uncoupled RC.
The master equation for the enlarged system S’ for the spin-boson model (the model used here

for the interaction between the TLS working system and the reservoirs) for the case of one RC
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takes the form

— = i Hs, p(0)] = [4, Do, p(O]] + [4,{Z, p(0)}],

(4.1)

where the first term on the right hand side governs the unitary evolution of S’ and the other
Liouvillian terms induce decoherence and dissipation in the energy eigenbasis of S’. Here,

A=a+a', Hy is defined in equation (3.18)) and the operators y and Z are given by

0o 00 500 n -
X = fy/ dT/ dww cos(wT) coth o e HISIT AetHs'T
0 0

(1]
|

o0 o . .
= fy/ dT/ dw cos(wT) [HS/,e_ZHS’TAe’HS’T].
0 0

While the hot reservoir is coupled to the TLS, we wish to ensure that the cold reservoir rether-
malises, and vice versa. This is because we wish to isolate effects on the engine metrics (work,
heat, power, efficiency) which are due to strong coupling. Were the reservoirs not to thermalise
while they are uncoupled from the system, it might be argued that any changes in the engine
metrics might be due to the effects of coupling to non-thermal reservoirs. We can do this by
adding terms to equation (4.1)) which act only on the uncoupled RC space and hence do not
depend on the full system plus RC eigenstructure. The uncoupled RC is a simple harmonic

oscillator so we may add standard weak coupling dissipators, for example as can be found in [I]

1 1
Laamp = Yaamp(N + 1) { ap(t)a’ = ~aap(t) - plt)a'a
2 2

1 1
+ ¥ {atp(t)a ~ gaato(t) - 5p(thaa' |

(4.4)

Here, N = % is the thermal occupation number for the RC with frequency €2 at inverse
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temperature 3. We choose the rate 744, to ensure thermalisation occurs over a timescale such
that the TLS re-couples to a thermal reservoir at the start of the subsequent isochore. The

operators a (a') represent the annihilation (creation) operations of the uncoupled RC.

4.3 Computing out of equilibrium engine states around the

Otto cycle

The work output of the Otto cycle is given by the net energy change of the system across
each of the isentropic strokes. This also involves accounting for the energetic costs associated
with turning on or off the interaction term at the start and end of these strokes. As discussed

previously, this leads to the following expression for work output
W = tx [H5pC) — tr |[H5p? | + tr [Hlp*| = tr [HEpP] = tr [Hy,p7) — o [HpP] . (45)

Here, h (c) superscripts on the Hamiltonian operators indicate that the splitting in the TLS is
set to €p, (€.). The density operator p is labelled with superscripts A — D indicating the various
points around the cycle. In the infinite time version of the cycle, p represented the quantum
state of the enlarged system S’ consisting of the TLS and the RC from the hot reservoir for
points A and B and from the cold reservoir for points C and D. Here we consider S’ to be the

enlarged system which consists of the TLS and two RCs (both hot and cold).

The first four terms in equation are the usual energetic contributions for the work output
of the cycle, which arise also in the weak coupling treatment. The final two terms are a distinct
feature of the strong coupling treatment and arise because of costs of decoupling the TLS from
either the hot or the cold reservoir. Since we include terms which bring about a rethermalisation
of the non-interacting RC once it is decoupled, according to equation , we are still faced

with the situation where there are no coupling costs, as explained previously.
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The energy transferred into the system during the hot isochore is given by
Q = tr [Hh,pB} —tr [Hh,pA} . (4.6)

We have previously discussed how this expression contains contributions from the interaction
energy between the TLS and the RC as well as a contribution from the RC being pulled out of
equilibrium. These contributions are neglected in weak coupling treatments but are important

at stronger coupling and computable within the RC framework.

To evaluate equations and , one needs to calculate the quantum states of S’ at
each of the points A, B, C' and D when the engine is operating in the limit cycle. In the
infinite time version of the cycle, this involves taking the steady state solution of an enlarged
RC master equation along each isochore to obtain p? and pP. p© and p* can be obtained by
unitary evolution along the isentropic strokes. In the present work, for finite time isochores, the
calculation is much more involved and we must solve the dynamical equation of motion for the
full state S’. For point B, we must solve the dynamical equation of motion for the hot isochore
which is given by

d

5P = Lasplpt)], (4.7)

where La—,p = Lp[p(t)] + Laamp(p(t)]. Ly is given by the right hand side of equation (4.1))
with parameters set according to the hot isochore. The other Liouvillian term is as described
in section [£.2] and is responsible for rethermalisation of the non-interacting RC representing the

cold reservoir. For a particular isochore time, 7;, the solution to this equation is

p? =y (7)[p"] = exp(Lasp 7)[p"). (4.8)

Decoupling from the hot reservoirs happens instantaneously and so the state is unchanged
between B and B’. The state then evolves unitarily to point C' under the time dependent

Hamiltonian given in equation ({3.1). Here we choose a time dependence for €(t) and A(t) such
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that (ep, Ap) — (€, A¢) in a time 7 which is much smaller than 7; but such that the state still

evolves adiabatically to a very good approximation:

t t
_ep e\ Ap (A7

The state at point C can then be computed by solving for the time dependent unitary evolution

governed by the Liouville von-Neumann equation of motion

d

Splt) = —ilHs(0), p(t)]. (4.10)

The interaction term for the cold bath is turned on instantaneously with no change in the system
state and then the subsequent two strokes are carried out completely analogously to the previous
two, but with the cold reservoir taking the place of the hot, and with (e, A.) — (e, Ap) along
the cold adiabatic stroke. In general, one complete cycle will return a different state at A’ than
that which was injected. However, after a number of cycles, these transient dynamics vanish
and the limit cycle is reached [43], where the state at any one particular point is the same from

one cycle to the next. This is the regime in which the engine’s figures of merit are computed.

4.4 Non-equilibrium engine metrics

An Otto cycle heat engine outputs an optimal amount of work when it is permitted to absorb
the maximum amount of heat during the hot isochore and convert this into work adiabatically
along the hot isentropic stroke. For the process to be cyclic, a further heat exchange must occur
with a heat reservoir and some work done on the working system before it is brought back into
contact with the hot reservoir once more. Performing the isochoric strokes in finite time means
that a less than maximal amount of heat can be exchanged between the working system and the
reservoirs, with the knock on effect that a less than optimal amount of net work is performed by
the engine. However, in reality engines are designed to operate out of equilibrium in order that

they may generate a finite amount of power. There is therefore a tradeoff to be had between
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extracting as much work as possible, and reducing the amount of time needed to perform a

cycle.

Increasing the interaction strength between the TLS and the reservoirs in this engine speeds up
the process of equilibration. The working system approaches its equilibrium state more quickly
than with the interaction strength kept very weak. The closer the TLS is permitted to get to its
eventual equilibrium state before embarking on the isentropic strokes, the more heat is absorbed
(or dissipated) during the hot (or cold) isochore. This then translates into a larger population
difference between the two energy eigenlevels of the TLS during the isentropic strokes, which
is desired for optimal work extraction. Increasing the coupling strength is therefore one way
of mitigating the loss in work output by performing the isochoric strokes in finite time. One
has to pay an energetic cost due to system-reservoir decoupling at stronger coupling, as has
been previously discussed. But for intermediate coupling strengths, before these costs begin
to dominate too severely, the time gained in reaching close to equilibrium along the isochores

translates into a greater power output at stronger coupling.

We show this behaviour of the engine in figure|4.1l Two different types of cycle are plotted there:
an incoherent and a coherent version of the engine. We shall discuss the difference between these
two shortly, but for the moment, let us note the general behaviour in both cases is for the work
output of the engine to increase with coupling strength up to a point where there is a turnover as
reservoir decoupling costs begin to dominate. Note that we are considering here a finite isochore
time, 7;, and that therefore the system has not reached its strongly coupled equilibrium state (at
which point, as we have seen in the previous discussion of the equilibrium engine, work always
decreases with coupling strength). The energy absorbed from the hot reservoir increases with
coupling strength too and this leads to a decrease in efficiency over weaker coupling scenarios.
However, as we have explained, the metric one often seeks to improve upon in practice is the
power output, and we see here that, at finite coupling before costs begin to dominate, there is a
region where it is beneficial to increase the system-reservoir coupling. A similar finding is also
reflected in the analysis of the strong coupling regime for a heat engine via a different approach

in Ref. [84], where the isochores are long enough that the engine is considered to have reached
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Figure 4.1: (a) work output, (b) heat absorbed, (¢) efficiency and (d) power output of the non-
equilibrium TLS Otto cycle engine, each as a function of coupling strength « for 7; = 3000. The
metrics are plotted for two types of cycle: blue dotted curve the incoherent engine, blue solid
curve the coherent engine. Parameters: e, =1, ¢, = 1.5, Ap, = A, =1, w. = 0.265, B = 0.95,
Be = 2.5, Ydamp = 0.1, Nrc = 9. We see that work output and power increase with coupling
strength up to a point where interaction costs begin to dominate and subsequently reverse this
trend. The heat absorbed from the hot reservoir increases with coupling strength. Efficiency
monotonically decreases with coupling strength. For all these metrics, an improvement is seen
in the case where the build up of quantum coherence in the engine is suppressed.
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Figure 4.2: A joint plot of power and work against isochore time for av = 0.0055/7, with work
plotted in black on the left hand axis and power plotted in blue dashed on the right hand axis.
Parameters: e. =1, ¢, = 1.5, Ap, = A. =1, w. = 0.265, 8, = 0.95, 8. = 2.5, Npc = 9. We see
that power is maximised at isochore times which are shorter than those required for the engine
to have equilibrated (where work output saturates).

arbitrarily close to equilibrium.

This latter point is reflected in figure where we show the work output and power output as
a function of 7; for an intermediate coupling strength at which costs do not yet outweigh the
benefits. As the system S’ approaches equilibrium, the work output saturates. Power output,
however, is in fact maximised before the working fluid has reached its equilibrium. If the desired
metric for the engine is how much power it can produce, it is therefore preferable for it to operate

out of equilibrium, by choosing shorter isochore times and intermediate coupling strengths.

4.5 Quantum nature of the heat engine

So far we have discussed the benefits of the strongly coupled engine over that of its weakly cou-
pled counterpart in terms of increased power output. This of course has a significant practical

importance for future technologies where nanoscale devices like heat engines may be key com-
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ponents. Another benefit of analysing this particular model at strong coupling is that it affords
us some insight into some fundamental effects on the thermodynamics of the engine which are
purely quantum in nature. In a traditional weak coupling treatment of the Otto cycle, when
the isochores are long enough, the TLS equilibrates to a Gibbs state, which is diagonal in the
energy eigenbasis. This is a probabilistic distribution of classical energy eigenstates. With the
isentropic strokes carried out adiabatically, populations in these energy eigenstates are kept
constant and no coherence in the working system state accumulates. In fact, if the isentropic
strokes remain approximately adiabatic when the cycle is treated at finite time, then no co-
herence is present during the isochores. Therefore quantum coherence does not play a role in
the traditional, weak coupling treatment of the Otto cycle. At non-negligible system-reservoir
interaction strength, quantum coherence in the energy eigenbasis is present in the TLS state at
the end of the isochores because of correlations present between the TLS and the reservoir as
the reservoir is pulled out of thermal equilibrium. This coherence will, in general, persist during
the isentropes even if they are performed adiabatically. In this way, the strongly coupled TLS

Otto cycle is inherently quantum in nature.

We wish to isolate the effects on engine performance of coherence in the working system de-
veloping during the heat exchange isochoric strokes as a result of non-negligible interactions
with the heat reservoirs. To do so, we need to distinguish this fully quantum version of the
cycle and one where coherence is prevented from accumulating. We achieve this distinction by
introducing into equation some terms which will induce pure dephasing [I}, [3 [86l, [87] in
the energy eigenbasis of the system of interest, while taking care that these have no energetic
contribution. To meet with these criteria, these purely dephasing terms must commute with

Hg/, which we diagonalise and write as

Hg = ZETL‘ETL)(ETL‘ (4'11)

We then construct a purely dephasing Liouvillian term as

Laep = Yaep Y (1 En)(Eul, [|En)(Enl, p(2)]]. (4.12)
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We are free to choose 74e, to ensure dephasing occurs on an appropriate timescale, such that
coherence is prevented from developing during the isochoric strokes of the engine. We can
then compute the states of the working system at various points around the cycle as previously
described in section We define the incoherent engine as the version of the cycle where
these pure dephasing terms have been including during the isochoric strokes. We stress here
that these terms achieve pure dephasing in the energy eigenbasis of the enlarged TLS + RC
eigenbasis rather than just the TLS energy eigenbasis. This is the natural choice for a system
interacting strongly with an environment, rather than introducing purely dephasing terms into
the master equation which only act on the TLS. The latter would be inappropriate as they
have an energetic effect since they do not commute with the unitary part of the equation which
depends on Hg/. The RC treatment, therefore, provides a route to choosing purely dephasing

terms at strong reservoir coupling.

We compare these two versions of the Otto cycle, coherent and incoherent, and analyse the
effect of quantum coherence on engine performance in figures as a function of coupling
strength and as a function of isochore time. In the solid curves we depict the behaviour of
the fully coherent engine. The dotted curves represent the incoherent version of the cycle. At
longer isochore times, i.e. larger 7;, the incoherent and coherent engines converge. Determining
precisely how the timescale of this convergence relates to the coupling strength is the subject
of ongoing work, however early indications are that thermalisation is inversely proportional to
the coupling strength, rather than inversely proportional to its square which is true in a fully
weak coupling treatment. At longer times, the state of S’ approaches thermal equilbrium with
the relevant residual reservoir which is maintained at the hot or cold temperature. This state
is then diagonal in the energy eigenbasis of S/, and so no coherence is present in either type of
engine at points B or D if the isochore is long enough. For shorter times however, this is not

the case, and pure dephasing does have an appreciable effect on the engine metrics.

The dephased engine absorbs more heat along the hot isochore and outputs a net work larger
enough to yield a higher efficiency than the fully coherent engine. Decoupling costs remain

comparable. These are dominated by the RC state being pulled out of equilibrium along the
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Figure 4.3: (a) Heat, (b) efficiency, (c) work and decoupling costs plotted against isochore time
7; for the non-equilibrium TLS Otto cycle. Solid curves represent the fully coherent engine
while dotted curves depict the behaviour of the incoherent engine where quantum coherence has
been suppressed by pure dephasing in the energy eigenbasis of S’. Parameters: a = 0.01/7,
€ =1,€, =15 A, = Ap =1, we. = 0.265, B, = 0.95, 8. = 2.5, Nrc = 9. We see that
dephasing leads to a quicker approach to equilibrium values for heat, work output and therefore
efficiency. Decoupling costs remain comparable in both types of engine.
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Figure 4.4: Parametric plot of power output against efficiency for the non-equilibrium TLS Otto
cycle for various values of coupling strength «. Solid curves represent the fully coherent engine
while dotted curves depict the behaviour of the incoherent engine. The parameter which is varied
along the curves is the isochore time 7;. Other parameters: €. = 1, ¢ = 1.5, A, = Ap = 1,
we = 0.265, B, = 0.95, B. = 2.5, Nrc = 9. We see that dephasing in the energy eigenbasis of S’
leads to an engine that outperforms its quantum coherent counterpart for a range of coupling
strengths. At weaker coupling, this effect is less pronounced.

isochores and this is not prevented by dephasing terms. In figure we show this improved en-
gine performance in parametric power versus efficiency plots for a selection of coupling strengths.
Even at weaker but finite coupling, where coherence development is minimal, a pronounced im-

provement in power and efficiency over the coherent engine can be achieved by dephasing.

Dephasing in the TLS+RC basis accelerates the process of equilibration of the working system
S’. Of crucial importance for heat and work calculations, which result from average energy
differences between the points of the Otto cycle, are the ground and excited state populations
of the TLS (in the eigenbasis of Hg), or rather the difference between these populations. In
figure we show how these are affected by dephasing in the full TLS+RC energy eigenbasis
at point B, just before the hot adiabatic stroke begins, and at point D, just before the cold

adiabatic stroke begins.

At point B, we wish to have as much population as possible in the excited state and therefore
as small a population difference as possible. Recall that, for a two-level system, the maximally

mixed state with half its population in the ground state and half in the excited state corresponds



4.5. Quantum nature of the heat engine 115

. 0.245
®
£ 0.240
g 0.235}
'S 0.230} /
< /
x 0.225};
5 ,
= 0.220
0.215

Work cold adiabat

2 4 6 8 10
7[107]
(c)

Figure 4.5: (a) The difference in population of the TLS eigenstates at point B in the Otto
cycle, (b) The difference in population of the TLS eigenstates at point D in the cycle, (c) work
extracted during the hot adiabatic stroke and (d) work input during the cold adiabatic stroke,
each plotted against isochore time 7;. Solid curves represent the fully coherent engine while
dotted curves depict the behaviour of the incoherent engine. Parameters: a = 0.01/m, €, = 1,
en, = 1.5, A = Ap =1, w. = 0.265, 8, = 0.95, 5. = 2.5, Ngc = 9. We see that dephasing
in the energy eigenbasis of S’ leads to a population difference at crucial points around the
cycle which is more beneficial for net work extraction. At shorter isochore times, there is a
smaller population difference at point B in the version of the engine where coherence has been
suppressed, meaning more heat has been absorbed during the hot isochore and more work can
be extracted on the subsequent stroke. At point D, there is a larger population difference in
the dephased engine, meaning more heat has been dumped into the cold reservoir during the
cold isochore, and less work is done on the subsequent stroke.
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to a theoretical thermal state at infinite temperature. The smaller the population difference at
point B therefore, the higher the temperature reached by the TLS. This entails that more heat
has been absorbed from the hot reservoir during the hot isochore and that the subsequent hot
adiabatic stroke can extract an optimal amount of work. We recall that this stroke is carried
out approximately adiabatically and the population difference in the TLS is preserved up to

point C.

At point D, after interacting with the cold reservoir, it is desirable to have as little population
in the excited state as possible and therefore as large a population difference as possible. This
corresponds to a low temperature (recall that the ground state is the theoretical thermal state
with zero temperature). It means that as much heat as possible has been dumped into the cold
reservoir and that on the subsequent adiabatic stroke, the work performed on the system can

be kept to a minimum.

We see this behaviour well illustrated in figure For longer isochore times, the population
difference at points B and D is the same in both the fully coherent and dephased (incoherent)
engines. As previously discussed, this is what we would expect since we know that the engine
metrics at longer times are the same for both types (heat, work, efficiency). At shorter times,
the dephased engine displays a faster approach to the level reached at longer times than the
fully coherent engine. At point B there is therefore a smaller population difference (plot (a))
at shorter 7; and at point D a larger population difference (b). We see the effect this has
on the work extracted during the hot adiabat (c) and invested during the cold adiabat (d).
The dephased engine allows from greater work extraction and smaller work investment during
these strokes when the previous isochore time has been shorter than that required for close to

equilibrium levels to be reached.

4.6 Summary

We have looked at how a quantum system undergoing an Otto cycle can operate as a heat engine

in a regime not typically considered: that of finite coupling and finite time. Yet, both of these
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conditions are more readily met in any practical application of such a device. Vanishingly small
interactions are harder to engineer and control. Very slow operation of the engine, yielding
maximum work output, is not as practical as maximising finite power output for completing
whatever task the engine may be designed for in a realistic time. In these, more realistic regimes,
we have seen that finite system-reservoir interaction strength leads to a greater power output

of the engine.

We have also compared a distinctly quantum version of the Otto cycle with one where quantum
effects are minimized. In the coherent cycle, the working system is able to populate distinctly
quantum states and develops coherence in the energy eigenbasis at finite isochore times due
to its appreciable interaction with the environment. In an incoherent cycle, this coherence is
dephased and the working system optimises its population of the ground and excited energetic

states, desirable for a work extraction calculation.

This is a distinct effect from that of quantum friction, which degrades the work extraction
strokes of quantum heat engines when these strokes are carried out in non-adiabatic conditions.
We still operate in a close to adiabatic regime where there are negligibly small non-adiabatic
transitions during the work strokes. Here, quantum coherence enters the cycle only through

strong system-reservoir interactions.

In the case of quantum friction, superadiabatic schemes have been proposed to allow quantum
engines to remain in the adiabatic regime despite operating in finite time, thus negating the
detrimental effect of coherence build up along the isentropes. We argue here that schemes to
dephase the working fluid of a quantum engine during isochoric strokes will also mitigate a

degrading effect, accountable to strong coupling, and lead to enhanced performance.

We have explained in the main part of this chapter, how dephasing has been applied in the
TLS+RC energy eigenbasis as a natural basis for systems strongly interacting with the reser-
voirs. We have also considered the effect of dephasing in the reduced TLS energy eigenbasis.
This is done in Ref. [80] as a means of representing the classical counterpart to a quantum

coherent engine, where coherence develops along the isentropes. We found that the behaviour
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of such a stochastic engine was qualitatively similar to the case presented here: engine per-
formance was enhanced. For the sake of avoiding repetition we therefore do not present that
work here. However, we wish to note that dephasing in the TLS energy eigenbasis was also
problematic. When included in a master equation for the enlarged system S’, purely dephasing
terms on the TLS subsystem could lead to unphysical population differences at the end of the
isochores. This issue arises because terms which induce pure dephasing on the TLS in a weak
coupling master equation have a different effect in the enlarged RC master equation. They
can also act to change the population difference in the TLS since they do not commute with
the enlarged system self-Hamiltonian Hgs, which includes a coupling term between the system
and the RC. These terms therefore also entail an undesired energetic contribution (leading to
erroneous population differences). The RC treatment thus allows us to identify the correct basis

in which to apply pure dephasing.

This draws to a close this chapter on heat engines in the strong coupling regime. In the final
chapter, to follow, we shall stick with the theme of quantum effects in thermodynamics at strong
coupling. In the sections to follow, we seek to address the question of whether decoherence, i.e.
the erasure of the quantum content of a particular state, entails an unavoidable thermodynamic

cost.



Chapter 5

Thermodynamic cost of quantum

information erasure

5.1 Introduction

Information theory and thermodynamics are intricately related through Landauer’s erasure
principle [88]. The latter establishes that there is an inherent work cost associated with an irre-
versible computation, specifically the cost of memory erasure. This principle is most commonly
formulated in terms of a process which involves the resetting of a classical bit of information.
The bit may be in the 0 or 1 state and therefore represents some information which an observer,
unaware of the state, is not privy to. Resetting the bit involves wiping this information and
forcing the bit into a known state, for example the 0 state. Landauer’s principle tells us that
this erasure of information must be accompanied by a dissipation of heat equivalent to at least
kpTIn2 into the environment (which is assumed to be in thermal equilibrium at temperature
T). Here, kp is the Boltzmann constant. Conservation of energy tells us therefore that there
must be an equivalent amount of work done on the physical system used to represent the bit of
information, representing the cost of information erasure. This simple, fundamental observation

reverberates widely across physics and information theory. It may be employed in a resolution
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of the Szilard engine and Maxwell’s demon paradox [89]. It leads to a fundamental bound on the
capacity of a noisy communication channel (one that is open to the environment) for the trans-
mission of information encoded in both classical systems [90] and quantum systems [91] [02]. It
can be used to determine an upper bound on the amount of classical information which can be
encoded in a quantum state, as an alternative means of proving that quantum states cannot be
cloned, and as a means of setting a bound to how efficient any stochastic process of enhancing

the degree of entanglement in a multi-partite quantum state can be [93].

Landauer’s erasure principle is by its very nature a statement about open physical systems. It
has been argued that it holds for the erasure of classical information in the both the case where
this is encoded in a classical physical system (i.e. a macroscopic one which is well described
without recourse to quantum theory) and also the case where a quantum physical system is
used to represent the classical information. It holds in both the weak and strong environmental

coupling regimes [88|, 94] [95].

The question we seek to address in this chapter concerns the erasure of quantum information
in the form of coherence. This is the degree to which a given quantum state represents a su-
perposition of classical states. Can this type of erasure, the decoherence of a single quantum
bit, be understood in a thermodynamic setting, in the same spirit as the thermodynamic con-
notations of erasing a single bit. In answering the question we have just posed concerning the
erasure of quantum information, we shall see that we are led to consider the issue of anomalous
information flow in a setting where a Born-Markov treatment is invalid, i.e. a non-Markovian

setting.

Recently, attempts have been made to establish a correlation between anomalous information
flow and anomalous heat flow in non-Markovian open quantum systems [96]. In Markovian
open quantum systems, information which passes from the system into the reservoir is lost,
since the reservoir is modelled as static. However in non-Markovian open quantum systems,
one accounts for how the interaction may alter the reservoir state to one which may transfer
some information back to the system through subsequent interactions with the system. In the

case of the spin-boson model studied in Ref. [96] and for the definitions of information flow and
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heat flow considered therein, no conclusive correlation is seen between anomalous flows of each
kind. We shall revisit this question of whether there is any correlation between the behaviour
of a thermodynamic quantity and the behaviour of information transfer beyond the realm of

weak coupling.

We will explore all of this, at first, within the simplified version of the spin-boson model which
we discussed in sections and the independent boson model. We will then extend our
treatment to the more complicated spin-boson model. The independent boson model induces
pure decoherence of the spin in its energy eigenbasis. The question of properly accounting for
quantum coherence in the thermodynamics of open quantum systems is the subject of much
debate in the literature. We are, of course, particularly interested in cases where system-
environment interactions are non-negligible. We have seen in chapter [3|that in these situations,
when a system is left to thermalise by exchanging heat with a thermal reservoir, a canonical
Gibbs state with respect to the system self-Hamiltonian is in fact not the steady state equilib-
rium. The difficulties with associating heat flow into a system with changes in its von Neumann
entropy in such settings are discussed in Ref. [97]. The approach advocated for there is for a
special definition of quantum heat which contains two components, one associated with entropic
changes in the system and another, excess heat, associated with the preservation of quantum
coherence into the steady state. The approach relies on a definition of thermodynamic entropy
which assumes that coherence in the system prevents a steady state which would otherwise be
Gibbsian. A different approach is discussed in Refs [98, [99]. Key to this strategy is to assume
a thermal reservoir is capable of exchanging both heat and work with the system. Elsewhere
the argument is made for associating thermodynamic entropy solely with diagonal entropy
[100L T0T]. The latter coincides with von Neumann entropy only in the case of states with no
coherence in the energy eigenbasis. This approach rules out any thermodynamic interpretation

to decoherence.

Here, we make use of the exact definitions of reversible entropy flow and irreversible entropy
production for a time independent open quantum system, as derived in Ref. [61]. We shall

see how these come into play in the context of the independent boson model. We will explore
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decoherence within that framework, with the objective of discovering whether it uncovers a
thermodynamic signature associated with the erasure of quantum information. We will see how
entropy flow and entropy production can be extracted using the RC framework and this will
allow us to extend our analysis beyond the exactly solvable independent boson model to the

spin-boson model where these quantities are less easily computed otherwise.

5.2 Information flow in the independent boson model

We begin by recalling from sections and[2.2]that the global Hamiltonian for the independent
boson model is given by
_ € T T
H=Zo.40. 3 i (b +bk) + D wiblbn, (5.1)
k k
where all symbols retain their meaning from those previous sections and we identify each term

as the self-Hamiltonian of the system Hg = §o., the self-Hamiltonian of the environment

Hp=5, wkabk and the interaction term Hy =0, ) . gk (b,t + bk).

The information content of a physical system is encoded in its entropy. In the present case of a
TLS interacting with a bosonic reservoir we are interested in information flow into and out of
the TLS, and therefore in the von Neumann entropy of the reduced TLS density operator as a

function of time:

Ss(t) = —kptr [ps(t)nps(t)] . (5.2)

For ease of notation, we shall henceforward drop the Boltzmann constant proportionality factor
by setting kg = 1. More specifically we are interested in the change in the system’s entropy

ASg(t) as it interacts with the environment between times ¢t = 0 and ¢,

ASs(t) = —tr [ps(t)nps(t)] + tr [ps(0)Inps(0)] . (5.3)
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We will proceed by manipulating equation into an expression which isolates two distinct
contributions: one reversible, associated with heat exchange with a reservoir, and the other
irreversible, associated with entropy generation within the system. The derivations which follow
are due to Ref. [61], and we work through them here for the dual purposes of keeping this
document self-contained and clarifying precisely which assumptions about the system and its
interaction with the reservoir are made. We begin with the common assumption that the initial
global state of system and environment is separable, p(0) = ps(0) ® pg(0). Because this global

system is closed, the von Neumann entropy remains constant:

—tr[p(t)np(t)] = —tr [p(0)np(0)] = —tr [ps(O)nps(0)] — tr[pp(O)lnpp(0)].  (5.4)

In the above, we have substituted in for the separable initial global state at ¢t = 0. Rearranging
equation (5.4]) and substituting in for the second term on the right hand side of equation ([5.3))

yields

ASs(t) = —trlps(t)lnps(t)] + tr [p(t)np(t)] — tr [pe(0)nps(0)]. (5:5)

We may now expand the first term on the right hand side of equation (5.5) by adding and

subtracting a term proportional to the logarithm of the initial environment state to give

ASs(t) = —trlp(t)mps(t) @ pp(0)] + tr [om(t)Inps(0)] + tr [p(H)np(t)] — t [px(0)Inpx(0)]

= —trp()lnps(t) @ pe(0)] + tr [p(t)np(t)] + tr [(pe(t) — pp(0)) mpe(0)],  (5.6)

where in the second line we have merely performed a rearrangement in order to group together

system terms and, separately, environmental terms.

Now, let us define heat flow as energy leaving the reservoir, positive if there is a net flow of
energy out of the reservoir and negative if there is a net flow of energy into the reservoir. By
extension, this is consistent with the sign convention we have taken elsewhere for work in the

case of time dependent Hamiltonians, positive if there is a flow of energetic work done into
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the working system and negative if there is a flow of work out of the system. Heat flow is
therefore computed as the change in the expectation value of the environment Hamiltonian:
Q)

environment to be initialised in the thermal equilibrium state pg(0) = p% =

(Hg(0)) — (HE(t)) (note that this ensures the correct sign convention). We take the
w and note
that in our model there is no time dependence on the global Hamiltonian, given in equation

(5.1)), and more specifically for our purposes here, no time dependence in the environment term.

This means we may manipulate the expression for heat flow as follows

Q) = trlpp(0)Hp] — trpp(t)HE]

= Stullpe(®) - pe(0) lnpi(0). (5.7)

We note that the right hand side of equation is equivalent to the final term on the right
hand side of equation up to the factor of % We will therefore label this term reversible
entropy flow and associate it with heat flow, A.(¢) = SQ(t), as defined by energy leaving the
environment. If the energy of the reservoir falls, i.e. Q(¢) > 0 then entropy flows into the TLS,
i.e. Ac(t) > 0. The alternative situation where entropy flows out of the system, i.e. A.(t) <0,

is associated with heat dissipation into the reservoir and Q(t) < 0.

The other two terms on the right hand side of equation may be written more compactly as
the relative entropy between the correlated full system-environment state p(¢) and a separable
state composed of the tensor product of the reduced TLS state pg(f) and an environment
which has remained in equilibrium, [p(¢)]|ps(t) ® p3] = tr [p(t)Inp(t)] — tr [p(t)Inps(t) @ pr(0)].
Collectively these two terms define the irreversible entropy production within the TLS, A;(¢),
for which there is no associated heat flow. In summary, we have partitioned the change in

entropy of the TLS into a reversible and an irreversible component as follows

ASs(t) = Ai(t) + Ac(t) (5.8)
Ai(t) = D[p(t)|lps(t) @ pi] (5.9)

Ac(t) = tr[(pe(t) — pE)npH] . (5.10)
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The superscript on the environment state signifies the initial thermal equilibrium state. We
note that equation (5.9)) implies A;(¢) > 0 and that our sign convention is that positive entropy

flow, A.(t), is associated with heat flowing out of the reservoir and into the system.

For the independent boson model, we can write down exact analytical expressions for reversible
and irreversible entropy production. The total energy is partitioned into an internal energy term
for the TLS, an interaction term and an environment internal energy, see equation (5.1)). An

exact expression is given in equation ([2.96)) for the expectation value of the interaction energy

as a function of time. We also know from equations (1.93)) and ((1.94) that the TLS populations

are unchanging. The TLS internal energy is therefore constant, A(Hg)(t) = 0. As the total

Hamiltonian is time independent, by energy conservation we therefore obtain

Qt) = 2/000 dwjijw)[l — cos(wt)], (5.11)
Ac(t) =20 h de[l — cos(wt)]. (5.12)
0 w

By equation ([5.8)), we can also arrive at the following expression for entropy production in the

independent boson model

Ai(t) = ASs(t) — 28 /0 b dwjfuw)[l ~ cos(wt)], (5.13)

where, in practice, one can compute the TLS entropy change, ASg(t), using the expression
derived in section for the exact time evolution of the TLS density operator given in

equation (|1.100), for a given spectral density and decoherence function.

In figure [5.1] we perform this computation for two different initial TLS states, one with no
coherence and the other a maximally coherent superposition of the two system energy eigen-
states. We define |g) and |e) as the ground and excited eigenstates respectively of Hg = $o.
and |£) = %(|g> + |e)). Reversible entropy flow, in (a), is independent of the initial state
and is proportional to the change in energy held within the interaction term, equation .

This implies that for non-negligible system-environment coupling there is a flow of heat into the
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Figure 5.1: Reversible entropy flow (a) and irreversible entropy production (b) for an initial
state with coherence in the energy eigenbasis, (yellow curve), and without, (blue curve) as a
function of time for the independent boson model. Entropy flow is independent of the initial
state. For the |g) state (ground eigenstate of Hg), irreversible entropy production is equal in
magnitude and opposite in sign to entropy flow. For the |—) = %ﬂ g) — |e)) state (an equal

superposition of ground and excited eigenstates of Hg) there is an additional contribution from
the erasure of the quantum coherence of the state. Parameters: ¢ = 1, wg = 1, I' = 20,
a=0.01/m, 8 =0.95.

reservoir even though the system dynamics are static. Irreversible entropy production, plotted
in (b), does depend on the amount of coherence within the TLS initial state. For a state with no
coherence in the energy eigenbasis, it is equal in magnitude and opposite in sign to the entropy
flow. This is the case for all states which lie on the z-axis of the Bloch sphere, i.e. all states
which are mixtures of |g) and |e). All such states are fixed points under the independent boson
model, and therefore there is no change in the system entropy, ASg = 0, implying A; = —A,
by equation [5.8] For states with coherence in the energy eigenbases, there is an additional
contribution A; due to the erasure of this coherence as the TLS state tends to a mixed state
which lies on the Bloch sphere z-axis. This accounts for the additional amount of irreversible
entropy production seen for the |—) initial state. In the independent boson model therefore,
the thermodynamic cost of decoherence appears as an additional contribution to irreversible

entropy production, which is not detectable as dissipation of heat into or out of the reservoir.
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5.3 Information flow in the independent boson model according

to the RC framework

It is also possible to evaluate approximations for entropy flow and entropy production within
the RC framework. This is not necessary in the case of an exactly solvable model such as the
independent boson model, where exact analytical expressions are available, but we wish to show
here how the RC framework can alternatively be employed, when done so with care. We will
then employ it in the case of the full spin-boson model where exact expressions for entropy flow

and entropy production are not available.

In the RC picture, the system-reservoir interaction is captured by an interaction between pg
and the collective environmental degree of freedom prc, the joint state of which we label as
ps/. ps’ remains at all times in a separable state with a residual environment pgs, which, in
turn, remains in its initial equilibrium state. We now proceed by re-deriving equation in

the RC frame. The change is entropy of the TLS is then

ASs(t) = —tr[ps(t)nps(t)] + tr [p(t)lnp(t)] — tr [pe(0)Inpe(0)]
~ —tr[ps(t)nps(t)] + tr [psi(t) © pern (ps (t) @ ppr)]

—tr [prc(0) ® pp/n (pro(0) ® ppr)] . (5.14)

In the second line we have recast p(t) and pg(t) into the RC picture in the second two terms
on the right hand side under the assumption that the initial state is given by p(0) = ps(0) ®
prc(0) ® pr/(0). By adding and subtracting tensor products with environmental states to the

first term, this may be rewritten as

ASs(t) » — trlps(t) @ pprln(ps(t) ® pre(0) ® per)] + tr [pre(t) @ perin (pre(0) @ pEr)]

+ tr [pgl(t) ® pprln (pgl(i) ® pE')] —tr [PRC(O) ® pprln (PRC’(O) & pE')] . (5.15)
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Collecting terms we arrive at the following more succinct expression for TLS entropy change

ASs(t) = — trlps/(t)n(ps(t) @ pre(0))] + tr [ps: (t)nps: (t)]

+ tr[(pre(t) — prc(0)) Inpre(0)], (5.16)

and at the following expressions for entropy flow and entropy production within the RC picture

IS
2

Dlps (t)llps(t) @ prce(0)], (5.17)

Ac(t) ~ tr((pro(t) — pro(0)) Inpre(0)] . (5.18)

However, proceeding in this way involves making severely restricting approximations on the
environmental dynamics which we would expect to adversely affect the accuracy of any com-
putation of entropy flow and entropy production. In equation we have replaced the
global state p(t) with the global state in the RC frame pg/(t) ® pgs. This involves making the
Born-Markov approximations on the residual reservoir E’. We have seen in chapter [2 how these
approximations are valid for computing the dynamics of the reduced original system state pg(t)
in regimes where they are invalid when made on the original environment E. But we cannot
expect the framework to reproduce the correct dynamics of the full environment. Indeed the
framework is designed for situations where this computation is not possible. Since the expres-
sions for entropy flow, and by extension entropy production, in equations and rely
on expressions being available for the full global state and the reduced state of a dynamical
non-Markovian environment, we anticipate that approximating them with expressions from the

RC framework, as we have done here, will lead to inaccuracies.

We will show, in due course, how despite this the RC framework may still be used to provide
accurate estimates. However, for the time being we observe these anticipated inaccuracies in
figure when the RC framework is employed in the manner outlined so far. Here, we plot

A, and A; for two initial states of the TLS at both weak and strong coupling to the bosonic

reservoir, computed exactly according to equations (5.12) and (5.13) and also using equations

(5.17) and (5.18). It is clear that, although we saw in chapter [2 that the RC picture leads to
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Figure 5.2: (a) Reversible entropy flow A.(t) at weak coupling and (b) at strong coupling. The
results are independent of initial TLS state. (c) Irreversible entropy production A;(t) at weak
coupling for an initial TLS state |—) and (d) for an initial TLS state |g). (e) Irreversible entropy
production A;(t) at strong coupling for an initial TLS state |—) and (f) for an initial TLS state
lg). Blue curves - exact solution; red dashed curves - calculated in RC picture according to
equations and ; black points - calculated in the RC picture using equations
and . Parameters: ¢ = 1, wp = 1, I' = 20, § = 0.95, strong coupling o = 1/m, weak
coupling @ = 0.01/7. When the RC framework is instead used to compute the interaction
energy in equation and the system entropy change in equation we obtain good
agreement with the exact solutions for A.(t) and A;(t) at weaker and stronger coupling.
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excellent agreement with the exact results for TLS dynamics as a function of time, employing
equations ((5.17)) and ([5.18]) does not yield a good approximation to the exact results for entropy
flow between the TLS and the reservoir, or entropy production within the TLS, at either strong

or weak coupling, for either initial TLS state, with or without coherence.

In the case of entropy flow ((a), (b)), the qualitative behaviour is reproduced in the RC frame,
but the predictions are quantitatively inaccurate. Entropy production ((c)-(f)) is very poorly
represented in the RC frame, when using equations ((5.17)) and (5.18)), except at short timescales

in the case where there is initial coherence in the system state.

A better approach is to employ the RC framework to compute a good approximation for the
interaction energy and the TLS energy (via the dynamics of the TLS). The change in energy

for the global state in the independent boson model is given by

AE(t) = A(Hs)(t) + A(Hr)(t) + A(HE)(t), (5.19)

where A(e)(t) = tr[e(p(t) — p(0))], and the Hamiltonian terms are as written in equation (5.1)).
We have seen in section 2.3.2] and in figure 2.7 how the RC framework can be used to compute
an accurate approximation for the second term in equation . In figure we saw how the
dynamics of pg(t) can also be obtained to a high level of accuracy. We may therefore employ
these dynamics in a computation of the first term in equation , in cases where this term is
not constant such as the full spin-boson model to which we shall extend our analysis in section
Since we are dealing with a time independent total Hamiltonian, we have that AE(t) = 0.
Therefore, armed with accurate approximations for the first two terms, we may tackle the third
term, the change in energy in the environment, which we also know how to relate to reversible

entropy flow according to

= —BA(Hg)(t)

= PBIA(Hs)(t) + AH)()] - (5.20)
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Furthermore, the change in the von Neumann entropy of the TLS, ASg(¢), can be well approx-
imated by means of the RC version of the system dynamics. This means we now have good
approximations for two of the three terms in equation , which we may therefore combine to
yield a more accurate approximation for the third term, irreversible entropy production A;(t).
Proceeding in this manner yields the black dots plotted in figure which agree well with the

exact results.

We can therefore avoid the pitfalls of computation by means of equations and ,
which fail to yield accurate approximations because the RC fails to capture the dynamics of
the whole environment sufficiently well to allow for it to serve as an approximation for the
environment terms in equations and . We simply need to take care that the RC
framework is used to obtain approximations for either system observables or the interaction
energy, rather than full environment observables. This is the method we shall employ in the

next section to look at information flow in the spin-boson model.

5.4 Information flow in the spin-boson model

The total Hamiltonian for the spin-boson model is given by

Hgsp = gaz + %U:C 02> ge(bl +b) + > wiblby. (5.21)
k k
Here, we have an additional term proportional to o, known as the tunnelling term, with ampli-
tude A. The TLS self-energy is now given by Hg = 50, + %o—x, which differs from the definition
in section [5.2] as it now contains this additional tunnelling term. The interaction energy and
reservoir energy terms remain unchanged from the independent boson case. This model is no
longer exactly analytically solvable and as we have discussed in previous chapters, the RC ap-
proach is a powerful method for computing the dynamics of the TLS beyond weak coupling,
as it can accurately keep track of correlations between it and the reservoir. Crucially, we may

employ the RC framework to obtain an accurate approximation for the expectation value of
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the interaction energy as a function of time which is a key ingredient for our present task of
obtaining accurate approximations for information dynamics in the form of entropy flow and

entropy production.

We therefore proceed exactly as outlined at the end of section [5.3] and consider information
flow in the spin-boson model by computing the change in von Neumann entropy of the TLS
ASg, partitioned into entropy flow A, and entropy production A; for various initial states of
the TLS in figure In (a) and (c), we consider the ground and excited energy eigenstates
of Hg, |g) and |e), in (b) an equal superposition of these eigenstates, |—) = %ﬂg) —le)), and
in (d) we consider an initial Gibbs state of the TLS, pg! = %5}15). For all of these initial
TLS states, the RC is initialised in a Gibbs state at inverse temperature 8 with respect to the
RC self-Hamiltonian and the composite system S’ starts in a tensor product state. In (e) we
consider the special case of an initial ground energy eigenstate of the composite system of S’

with respect to the TLS+RC self-Hamiltonian, |gg).

For each of the initial states which are pure states of the TLS, the steady state value for ASg
is the same (dashed lines), since each of these begins with Sy nx = 0 and reaches the same
equilibrium steady state. In the case of p¢, the change in von Neumann entropy ASg is much
smaller. This is because this initial state is already close to the long time equilibrium state but
we note that ASg # 0 as a result of strong reservoir coupling effects pulling the TLS state away
from a canonical Gibbs thermal state. The approach to this equilibrium value for ASg is not
monotonic, with oscillations present at shorter times fading away to a steady approach at later

times.

The two components of entropy change, A, and A; also display this oscillatory behaviour at
shorter times before transitioning to a steady approach to their respective equilibrium values.
Entropy production A; is always positive by equation , but non-monotonic dynamics, as
observed here, are not forbidden. Entropy flow A., on the other hand, can be positive or negative
and we recall that according to the sign convention we have adopted in the previous section,
heat flowing into the TLS is accompanied by a positive entropy flow, while heat dissipating out

of the TLS entails a negative entropy flow. As we might expect heat, and therefore entropy
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Figure 5.3: Change in the von Neumann entropy of the TLS, ASg, and its partitioning into
reversible entropy flow, A., and irreversible entropy production, A;, for various initial states:
(a) |g), ground energy eigenstate of the TLS; (b) |—) = %(\g) —|e)), a superposition of the two
TLS energy eigenstates; (c) |e), excited energy eigenstate of the TLS; (d) p§ a Gibbs thermal
state of the TLS at temperature (; (e) |gs), the ground energy eigenstate of the enlarged
TLS+RC system S’. Solid curves show the dynamical behaviour of ASg (black), A, (red) and
A; (blue). Dashed curves mark the steady state values (and note that in (e) the steady state
values for A; and A, are approximately the same). Parameters: e =1, A =1, wg = 1, I' = 20,
B =0.95 a=0.1/r.



134 Chapter 5. Thermodynamic cost of quantum information erasure

flow, is positive for the ground states |g), and |gss) as these represent Gibbs thermal states at
a theoretical temperature 7' = 0 with respect to their relevant self-Hamiltonians. The |—) state
is not a thermal state, but a projection onto the its closest Gibbs state would be one at infinite
temperature and so heat and entropy flow are negative for this state. Likewise, the state |e) is
not a thermal state but one would expect heat to dissipate out of the system as it approaches
the equilibrium state and so A, < 0 here too. When the system is initialised in a Gibbs thermal
state at the temperature of the reservoir, i.e. a thermal state at inverse temperature 3, pgq,
strong coupling effects lead to heat dissipation into the reservoir and A, < 0 as the system is
pulled towards its non-canonical equilibrium state. In all these cases, non-monotonic behaviour
can be observed in A, at shorter times, signifying anomalous heat flow resulting from strong

coupling between the system and reservoir.

Quantifying non-Markovianity is the subject of a vast body of literature in the field of open
quantum systems [102]. A common approach for studying the non-Markovianity of interactions

between a two-level system and an environment is to examine the dynamics of the trace distance,

D(p(t),a(t)) = 31/(p(t) — a(t)T(p(t) — o(t)), between two initially orthogonal pairs of TLS
states p and o [103] [104]. The trace distance is non increasing under trace preserving quantum
operations. Specifically this means that for a Markovian evolution £(p), then D(E(p),E(0)) <
D(p,o0). If the dynamics of the trace distance are such that it increases at any stage in its
evolution, then this is a signature for non-Markovianity and it acts as a witness. In Ref. [96],
this witness for non-Markovianity is used to examine whether any correlation is present between
information backflow from an environment into an open quantum system and heat flow, in a
similar spirit to the concepts under investigation in this chapter. In the situation studied
there, it was inconclusive whether any correlations were seen between anomalous heat flows
and signatures of non-Markovianity indicated by witness events in the trace distance measure.
As such the question of whether information backflow was related to anomalous heat flows in

non-Markovian systems was left open.

In our case, heat is defined in such a way as it is intricately related to a component of the

information content of the TLS, namely the reversible entropy flow. When the rate of entropy
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flow changes sign, this indicates sections of the equilibration process that involve heat flow
contrary to the overall net flow across the total equilibration process. For the states |g) and
lgs’) this means heat flow back from the system into the reservoir, and in the other cases, this
means heat flow back from the reservoir to the system. Likewise, the other component of the
rate of change of TLS entropy, the irreversible entropy production rate which is not associated
with any heat flow, is negative for some sections of the equilibration process. It has been argued
recently that such negative entropy production rates are indicators of the non-Markovian nature

of the reservoir in open quantum systems [105].

We notice that, in general, the magnitude of A; is larger than the magnitude of A, for the initial
state with coherence in the TLS energy eigenbasis. For other initial states without coherence,
the magnitudes of each component of entropy change are similar. Indications from what we
learned in the previous section on the independent boson model suggest that this is a signature
of the erasure of this initial quantum coherence. But, beyond this, it is less straightforward, in
the case of the full spin-boson model, to associate entropy production solely with the erasure of
quantum information in the form of coherence, as we have previously done in the independent
boson model. All the initial states shown in figure [5.3] whether quantum coherent or not,
generate irreversible entropy production in a non-monotonic fashion. The dynamics of TLS
populations and coherence in the energy eigenbasis are intricate. Under this Hamiltonian, the
reduced density operator for the TLS undergoes dynamics with terms in the master equation
responsible for both decoherence and dissipation. So we expect to see complex dynamics in
both the TLS populations and the coherence, unlike in the independent boson model where
there were only coherence dynamics. In figure [5.4] we see the behaviour of the population in the
ground energy eigenstate and the real and imaginary parts of the coherence for the different

initial states considered in figure [5.3

The population in the ground state, P,, will tend towards an equilibrium value given by the
steady state solution of the RC master equation, as discussed in previous chapters. Strong
coupling and non-Markovian effects manifest themselves in the non-monotonic behaviour of P,

as it tends to this equilibrium value for all the initial states considered here. Coherence also
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Figure 5.4: (a) Population in the ground energy eigenstate of the TLS; (b) and (c) real part of
the coherence of the TLS in its energy eigenbasis; (d) and (e) imaginary part of the coherence
of the TLS in its energy eigenbasis for the spin boson model at finite coupling, for the various
initial states from figure and as indicated in the legend on plot (a). For clarity with have
separated these five states into two plots for each component of the coherence, and note the
difference in scale on the vertical axis. Black dashed line represents steady state equilibrium
values. Parameters: e =1, A=1, wy =1, =20, 5 =0.95, « =0.1/m.
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oscillates and will tend to an equilibrium level according to the RC master equation steady
state. We note that, even for initial states with no quantum coherence in the TLS energy
eigenbases, transitions to quantum coherent states occur as a result of the finite strength of
system-environment coupling. This is the behaviour responsible for the quantum nature of the
heat engine discussed in the previous chapter, for instance, and is not behaviour which is seen
in a standard weak coupling treatment of the spin-boson model. It is also now the reason it
is less straightforward to associate A; purely with coherence destruction, as we were able to in

the case of the independent boson model.

5.5 Summary

We have seen in this chapter how to employ exact definitions of entropy flow and entropy
production and apply them in the analysis of an open quantum system which is strongly inter-
acting with its environment. We showed how the decoherence of the TLS in the independent
boson model manifests itself purely in terms of irreversible entropy production, thus giving a
thermodynamic interpretation to the erasure of quantum information in that context. In con-
trast, the erasure of classical information is always accompanied by heat dissipation according

to Landauer’s principle.

Beyond this model of pure decoherence, we used the RC method and the partitioning of entropy
to look at information flow, and backflow, in the spin-boson model under strong coupling non-
Markovian regimes. We were able to associate anomalous heat flow with entropy flow in the
opposite direction to that expected, identifying a connection between a thermodynamic quantity
and an information theoretic one which had not been successfully achieved previously when

employing the trace distance as a witness to non-Markovianity [96].



Concluding remarks

This project has sought to address an area which has, as yet, been largely lacking in recent
efforts at extending the theory of thermodynamics to the quantum regime. We have developed
a framework for tackling open quantum systems which interact strongly with their environment
and this has allowed us to examine aspects of quantum thermodynamics at strong working

system-reservoir coupling.

In chapter [2| we saw how the RC framework could be used to give excellent agreement with
exact results for open quantum system dynamics. It allows for a treatment which goes beyond
standard techniques which restrict us to weak coupling and afford us only the ability to compute
system dynamics and observables. The RC framework tracks, in addition to the system, some

environmental dynamics which allows insight into system-environmental correlations.

This toolbox was applied to the cases of equilibrium and non-equilibrium heat engines in chap-
ters [3] and 4l We saw how these engines behaved differently from their weakly coupled coun-
terparts in terms of work and power output, efficiency and heat absorption. All of which are
the metrics classical and weakly coupled quantum engines are judged by. In addition, by keep-
ing track of system-environment correlations, we were able to identify the source of additional
operational costs in the case of strongly coupled engines and proposed a method by which
these could be mitigated. The non-equilibrium, strongly coupled engine gave us insight into
quantum effects not present in weakly coupled counterparts of the engine which are not able to
develop quantum coherence during their operational cycles. We saw how this coherence caused

a resistive effect which was detrimental to the engine’s performance.
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In chapter [5| we examined coherence in a more general setting than that of the workings of a
heat engine. In the case of a quantum system undergoing decoherence alone as a result of its
interaction with an environment, we saw how the erasure of quantum coherence was associated
only with irreversible entropy production within the system. We saw how the RC framework
allows for an accurate calculation of this quantity which would otherwise require a full treatment
of environmental dynamics, which, in general, is not possible with standard methods from open
quantum systems. We then looked at the spin-boson model, within the RC framework, and
partitioned the system’s entropy change into reversible entropy flow and irreversible entropy
production. We discussed signatures therein of non-Markovianity and anomalous heat flow

which result from strong system-reservoir interaction strength.
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