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ABSTRACT
We present an approach to master the well-known challenge of calculating the contribution of d-bands to plasmon-induced hot carrier rates
in metallic nanoparticles. We generalize the widely used spherical well model for the nanoparticle wavefunctions to flat d-bands using the
envelope function technique. Using Fermi’s golden rule, we calculate the generation rates of hot carriers after the decay of the plasmon due
to transitions either from a d-band state to an sp-band state or from an sp-band state to another sp-band state. We apply this formalism to
spherical silver nanoparticles with radii up to 20 nm and also study the dependence of hot carrier rates on the energy of the d-bands. We find
that for nanoparticles with a radius less than 2.5 nm, sp-band state to sp-band state transitions dominate hot carrier production, while d-band
state to sp-band state transitions give the largest contribution for larger nanoparticles.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003123., s

I. INTRODUCTION

There is currently significant interest in the properties of
plasmon-induced hot carriers in metallic nanostructures. Such
nanostructures absorb sunlight by generating localized surface plas-
mons (LSPs) that can decay into electron–hole pairs via the Landau
damping mechanism. Other damping mechanisms exist, such as
defect- or phonon-mediated processes, but Landau damping is the
dominant mechanism in small nanoparticles.1,2 The resulting ener-
getic carriers can be harnessed in new applications for catalysis3,4 or
solar energy conversion.5–8

Most experiments employ traditional plasmonic metals, such as
Ag or Au, as these materials exhibit strong plasmonic resonances in
their absorption spectrum. The electronic structure of these mate-
rials is characterized by a dispersive band of mixed s- and p-state
character (referred to as the sp-band), which crosses the Fermi level
and multiple occupied d-bands with a comparably flat dispersion.9,10

If the d-bands are sufficiently close to the Fermi energy, it is pos-
sible to excite electrons from the d-bands into the sp-band.11,12

For example, Barman and co-workers13 measured a photocur-
rent arising from hot d-band holes in gold nanoparticles, but the

relative importance of such d-to-sp transitions compared to tran-
sitions between sp-band states in nanoparticles has not yet been
studied in detail.

Theoretical modeling of hot electron processes allows valu-
able insights into experimental observations. To describe the elec-
tronic structure of noble metal nanoparticles, several groups have
solved the Schrödinger equation of electrons in a spherical well.14–20

While this approach allows the description of experimentally rele-
vant nanoparticles with radii of the order of several tens of nanome-
ters, it does not capture the contribution of d-bands. On the other
hand, first-principles methods, such as density-functional theory
(DFT), allow the description of d-bands10,21–23 but can only be
applied to very small nanoparticles (typically only a few hundred
atoms).24

In this paper, we present an approach that bridges atomistic
and continuum electronic structure theories of metallic nanoparti-
cles via the envelope function technique25 and allows the description
of nanoparticle states derived from d-bands in metallic nanoparti-
cles with large radii. We apply this approach to silver nanoparti-
cles and show that sp-band to sp-band transitions give the domi-
nant contribution to hot carrier rates for nanoparticles with radii
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less than approximately 2.5 nm. However, as the rate of d-band
state to sp-band state transitions increases more quickly with the
nanoparticle radius than the rate of sp-band state to sp-band state
transitions, we predict that d-to-sp transitions dominate for larger
nanoparticles.

II. METHODS
A. Hot carrier generation rates

We employ the framework of Dal Forno, Ranno, and Lischner
to calculate hot carrier generation rates in spherical nanoparticles.15

In this approach, the total number of plasmon-induced hot elec-
trons generated per unit time in a nanoparticle illuminated by light
(polarized along the z-direction) of frequency ω is determined using
Fermi’s golden rule according to

N(ω) =
4π
̵h ∑if

∣Mif ∣
2δ(̵hω − [Ef − Ei]), (1)

where Mif = ⟨ψf |Φpl(ω)|ψi⟩ denotes the matrix element of the total
potential Φpl, which is often calculated using the quasistatic approx-
imation. In this approximation, the potential inside the spherical
nanoparticle is Φpl(ω) = −eE0

ϵ(ω)−1
ϵ(ω)+2 z, where e denotes the elec-

tron charge, E0 is the strength of the externally applied electric field,
and ϵ(ω) denotes the bulk dielectric function of the material. For the
latter, we use a Drude model

ϵ(ω) = ϵb −
ω2

0

ω2
− iωγP

, (2)

where γP denotes the plasmon linewidth, ω0 is the bulk plasmon
frequency, and ϵb is the dielectric constant due to the background
screening by the polarizable d-bands. In addition, ψi and ψf denote
quasiparticle wavefunctions of the occupied and empty states with
energies Ei and Ef , respectively. Note that we have neglected effects
arising from finite quasiparticle lifetimes in Eq. (1), which give rise
to anti-resonant contributions.15 Such transitions only give rise to
low-energy carriers and, therefore, do not play an important role in
applications, such as photodetection and photocatalysis. A factor of
two arising from spin is taken into account.

B. Envelope function method
We calculate the electronic wavefunctions of the nanoparti-

cle using the envelope function method originally developed by
Kohn and Luttinger to describe the electronic structure of charged
defects in semiconductors.25,26 In this approach, one assumes that
the electronic structure of the defect-free material is known, i.e.,
the eigenstates ϕnk and eigenvalues ϵnk (with n and k denoting the
band index and the crystal momentum, respectively) of the crystal
Hamiltonian Hcrys have been determined by solving the Schrödinger
equation

Hcrysϕnk(r) = ϵnkϕnk(r). (3)

Nowadays, this task can be carried out routinely using first-
principles methods, such as density-functional theory or the more
advanced GW approach.

Next, a perturbation δV is considered, which breaks the dis-
crete translational invariance of the infinite crystal. For charged
defects, the perturbation is the screened Coulomb potential induced
by the defect. For a nanoparticle, this is the spherical well potential
that confines the electrons inside the nanoparticle. The eigenstates
ψ (with the corresponding eigenenergies E) of the perturbed Hamil-
tonian Hcrys + δV can be constructed as linear combinations of the
crystal states according to

ψ(r) = ∑
nk

cnkϕnk(r), (4)

with cnk being complex coefficients. Inserting this ansatz into the
Schrödinger equation and multiplying from the right with ϕ∗n′k′
result in a matrix equation for the coefficients. Assuming that the
perturbation does not mix different bands leads to

ϵnkcnk +∑
k′
⟨ϕnk∣δV ∣ϕnk′⟩cnk′ = Ecnk. (5)

Inserting the Fourier transform cnk = ∫d3rcn(r) exp(−ik ⋅ r)
yields

ϵnpcn(r) + δV(r)cn(r) = Ecn(r), (6)

with p = −i̵h∇ denoting the momentum operator.
For a band with a parabolic dispersion, i.e., ϵnk = ̵h2k2/(2m∗)

(with m∗ denoting the effective mass of the band), the equation for
the envelope function cn(r) has the same form as the Schrödinger
equation for an electron in the potential δV. This demonstrates how
the spherical well approximation for a nanoparticle can be derived
from an atomistic model.

Often, an additional approximation is invoked for the wave-
functions.27 Specifically, it is often found that the linear combination
in Eq. (4) is dominated by states near a specific crystal momentum
k0. For semiconductors, this is typically the crystal momentum cor-
responding to the valence and conduction band extrema. In this
case, the integral over k can be carried out analytically and one finds

ψn(r) = cn(r)unk0(r), (7)

where unk0(r) is a lattice-periodic function. Assuming that cn(r) is
normalized, normalization of ψn requires that

∫
Vuc

d3r∣unk0∣
2
= Vuc. (8)

For metals, it is much less clear that this simplified form for ψ is jus-
tified and which crystal momentum k0 should be chosen. However,
this form is highly advantageous for analytical treatment and will be
adopted in this work. Future work will aim to assess the accuracy of
this approximation.

C. Electronic states of spherical nanoparticles
For a parabolic band and a perturbation with spherical symme-

try, we can express the kinetic energy operator in Eq. (6) in spherical
coordinates and use a separation of variable ansatz for cn(r, θ, ϕ).
The angular part of the envelope function is described by the
spherical harmonics Y lm (where l and m denote the orbital and
magnetic quantum numbers, respectively), and the radial part Rν l
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(with ν denoting the principal quantum number) is the solution of

d
dr
(r2 dRνl

dr
) +

2m∗r2

̵h2 (Eνl − δV(r))Rνl − l(l + 1)Rνl = 0. (9)

Analytic solutions of Eq. (9) exist for the infinite square well
potential, i.e., a potential that is zero inside the nanoparticle and infi-
nite outside. In this case, the radial solutions are proportional to the
spherical Bessel functions of the first kind, i.e., Rν l(r)∝ jl(kν lr) with
corresponding eigenenergies Eνl =

̵h2k2
νl/(2m∗). The allowed values

of kν l are determined by the boundary condition Rν l(r0) = 0, with r0
denoting the radius of the nanoparticle. For large nanoparticles, we
can approximate jl(x) by sin(x − lπ/2)/x and find

Eνl =
̵h2π2

2m∗r2
0
(ν + l/2)2, (10)

with ν ≥ 1 and l ≥ 0 being integers.
For later use, we also calculate the corresponding angular

momentum resolved density of states, g l(ϵ) = ∑νδ(ϵ − Eν l), for a
parabolic sp-band and find

gsp
l (ϵ) =

√

m∗r2
0

2̵h2π2ϵ
Θ(ϵ − Emin

l ), (11)

with Emin
l =

̵h2π2
(l + 2)2

/(8m∗n r2
0) denoting the smallest energy for

a fixed value of l. Here, we have assumed that the spacing between
energy levels is sufficiently small that the sum over ν can be replaced
by an integral.

D. D-band states in spherical nanoparticles
The envelope function method is not limited to parabolic dis-

persion relations. For any dispersion relation ϵnk, a correspond-
ing equation for the envelope function can be derived by replac-
ing k by −i̵h∇ [see Eq. (6)]. In practice, however, it is difficult
to carry out this procedure because the dependence of the band
structure on crystal momentum is not known analytically. As a
first step toward understanding the role of d-bands in hot car-
rier generation, we invoke a drastic approximation and consider
the limit of a perfectly flat band, i.e., ϵnk = ϵd. For this disper-
sion, it is straightforward to solve the envelope function equation
for an infinite square well. In fact, the solutions of the parabolic
case are also solutions of the flat band case, but all have the same
eigenvalue ϵd.

As all d-band states have the same energy and there are, in prin-
ciple, infinitely many solutions to the spherical well equation, some
regularization procedure is required to obtain meaningful results.
This is achieved by imposing that the envelope function should
not oscillate faster in the radial direction than the spacing between
atoms. This leads to the condition that only solutions with quantum
numbers ν < νmax(l) = ( r0

a0
−

l
2) are allowed, where a0 is the lat-

tice constant of the crystal. The maximum allowed value of l is then
determined by the condition that ν ≥ 0, i.e., lmax = 2r0/a0. Note that
our final results for the hot carrier rates do not depend on a0. No
regularization procedure is needed for a parabolic band as envelope
functions with unphysical fast oscillations have very high energies
and do not influence our results.

E. Matrix elements
Having determined the quasiparticle energies and wavefunc-

tions, we are now in a position to evaluate Eq. (1). We replace the
summations over the initial and final states by sums over the quan-
tum numbers ν, l, and m for each occupied and empty band. Using
Eq. (6) for the nanoparticle wavefunctions, the matrix elements are
given by

Mif = −eE(ω)∫ d3rψ∗f (r)zψi(r) (12)

= −eE(ω)∫ d3rc∗nνlm(r)u
∗

nk0(r)zcn′ν′ l′m′(r)un′k0(r) (13)

with E(ω) = E0(ϵ(ω) − 1)/(ϵ(ω) + 2).
Splitting the integral into a sum over all unit cells in the

nanoparticle and integrals over each unit cell yields

Mif = −eE(ω)(zenv
nνν′ ll′mm′δnn′ + zcrys

nn′ δνν′δll′δmm′), (14)

where the orthonormality of the un’s and the cn’s was used. Here,
zcrys

nn′ = ∫
′ d3ru∗nk0

(r)zun′k0(r)/Vuc (where the prime on the integral
sign indicates integration over a unit cell with volume Vuc) denotes
the transition dipole moment of the vertical transition between the
bands n and n′ in the bulk material and

zenv
nνν′ ll′mm′ = ∫ d3rc∗nνlm(r)zcnν′ l′m′(r) (15)

= [Almδmm′δl+1,l′ + Blmδmm′δl−1,l′]z
env
νlν′ l′ . (16)

Here, we define

Alm =

¿

Á
ÁÀ
(l + 1 −m)(l + 1 + m)
(2l + 1)(2l + 3)

, (17)

Blm =

¿

Á
ÁÀ
(l −m)(l + m)
(2l − 1)(2l + 1)

, (18)

and also (Refs. 28 and 29)

zenv
νlν′ l′ = ∫ drr3R∗νlRν′ l′ =

2̵h2

m∗r0

√ϵνlϵν′ l′
(ϵνl − ϵν′ l′)2 . (19)

The last equality is valid for large nanoparticles.28

The structure of Eq. (14) is interesting: for transitions between
nanoparticle states originating from the same band, the matrix ele-
ment is determined entirely by the envelope functions and the well-
known angular momentum selection rules are recovered. In con-
trast, only the microscopic transition dipole moment determines the
strength of the matrix element for the inter-band transitions.

To evaluate zcrys, an expression for unk0(r) is needed. In prin-
ciple, this can be obtained straightforwardly from a first-principles
band structure calculation, but it is not a priori clear how k0 should
be chosen. To make progress, we choose k0 as the Γ-point of the first
Brillouin zone but interpret unΓ as an effective function that repre-
sents the average behavior of the band n in the whole Brillouin zone.
Using a tight-binding ansatz, we express the lattice periodic function
describing the sp-band as

usp,Γ(r) =
√

Vuc∑
R
[αpϕp(r − R) + αsϕs(r − R)], (20)

where ϕs and ϕp denote atomic s- and p-orbitals and R is a lattice
vector. The coefficients αp and αs describe the relative contribu-
tions of s- and p-states and can be determined from a Mulliken
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analysis of the Bloch states obtained from first-principles calcula-
tions as explained below. Note that the true usp ,Γ obtained from
a band structure calculation would only have s-contributions by
symmetry.

If a similar tight-binding ansatz is used for the d-band (but
without any admixture of non-d states) and inter-atomic contribu-
tions to the dipole matrix element are neglected (assuming that the
wavefunction overlap between neighboring atoms is small, which
is consistent with the fundamental assumption of the tight-binding
ansatz), we find

zcrys
d,sp = αpzat

dp, (21)

with zat
dp denoting the dipole moment for an atomic d-to-p transition,

which can be obtained from a first-principles calculation. Note that
the atomic dipole selection rule forbids transitions from d-states to
s-states.

F. Final expressions for the hot carrier rates
in spherical nanoparticles

The total number of hot electrons N(ω) can be written as a sum
of d-band state to sp-band state transitions Nd→sp and sp-band state
to sp-band state transitions Nsp→sp (there are no transitions among
d-band states as they are fully occupied). Using our results for the
matrix element of d-to-sp transitions, we find

Nd→sp
(ω) =

4π
̵h

Nd∣eE(ω)zcrys
d,sp ∣

2 lmax

∑

l=0
(2l + 1)

νmax(l)

∑

ν=1

× δ(ϵd + ̵hω − Eνl)Θ(EF − ϵd)Θ(Eνl − EF) (22)

=
8π
̵h

Nd
√

ϵ̃(ϵd + ̵hω)
∣eE(ω)zcrys

d,sp ∣
2
Θ(EF − ϵd)

×Θ(ϵd + ̵hω − EF)

⎡
⎢
⎢
⎢
⎢
⎣

ϵd + ̵hω
ϵ̃

−

√

ϵd + ̵hω
ϵ̃

+
1
4

⎤
⎥
⎥
⎥
⎥
⎦

, (23)

where we defined ϵ̃ = ̵h2π2
/(2m∗r2

0) and the sum over ν has been
transformed to an integral. In addition, EF denotes the Fermi level
and Nd = 5 denotes the number of d-bands. For large nanoparti-
cles, (ϵd + ̵hω)/ϵ̃ ≫ 1 and the last two terms in the brackets can be
neglected, resulting in

Nd→sp
(ω) =

8π
̵h

Nd(
2m∗r2

0
̵h2π2 )

3/2

∣eE(ω)zcrys
d,sp ∣

2

×Θ(EF − ϵd)Θ(ϵd + ̵hω − EF)
√

ϵd + ̵hω. (24)

Note that the d-to-sp transition rate is proportional to r3
0 and, thus,

scales with the volume of the nanoparticle. This is expected as in the
bulk material only d-to-sp transitions are possible (there are no ver-
tical sp-to-sp transitions in the bulk). As discussed above, the matrix
element of d-to-sp transitions does not depend on the nanoparti-
cle size, but the number of available d-to-sp transitions does, which
leads to the calculated volume dependence.

For the sp-to-sp transitions, we express the summations over
the initial and final states as integrals over the sp-band density of

states according to

Nsp→sp
(ω) = 8π̵h3

∣
eE(ω)
m∗r0

∣

2

∑

l,m
∫

EF +̵hω

EF

dϵ
ϵ(ϵ − ̵hω)
̵h4ω4 gsp

l (ϵ)

× [gsp
l+1(ϵ −

̵hω)A2
lm + gsp

l−1B2
lm] (25)

=
4π
̵h
∣

eE(ω)
3 m∗r0ω2

√

ϵ̃
∣

2

∑

l
∫

EF +̵hω

EF

dϵ
√

ϵ(ϵ − ̵hω)

×Θ(ϵ − Emin
l )[(l + 1)Θ(ϵ − ̵hω − Emin

l+1 )

+ lΘ(ϵ − ̵hω − Emin
l−1 )], (26)

where the angular momentum selection rules were used and the
resulting summation over m was carried out. The integral over ϵ can
be performed assuming that l′ = l ± 1 ≈ l (which is valid in the limit
of large radii). The resulting sp-to-sp hot carrier rate is expressed as
a sum of several terms according to

Nsp→sp
(ω) = C(ω)[Na(ω) + Nb(ω, lF) −Nb(ω, l0)

+ Nc(ω, lF) −Nc(ω, l0) + Nd(ω)] (27)

with

Na(ω) = [
√

EF(EF + ̵hω)(2EF + ̵hω) −
√

EF(EF − ̵hω)

× (2EF − ̵hω) + ̵h2ω2 ln
√

EF +
√

EF − ̵hω
√

EF +
√

EF + ̵hω
](1 + l0)2, (28)

Nb(ω, l) =
α(l)
120ϵ̃

(24̵h2ω2 + (2 + l)2

×[(−2 + 20l)ωϵ̃ + (l + 2)2
(5l + 1)ϵ̃2

]), (29)

Nc(ω, l) = (
̵h3ω3

ϵ̃
−

9̵h2ω2

8
) ln[

α(l) + ϵ̃(l + 2)
α(l) − ϵ̃(l + 2)

] −

̵h2ω2

4
(2l + 1)2

× ln[
α(l) + ϵ̃(l + 2)

2
√

ϵ̃ (
√

EF +
√

EF + ω)
] +
̵h2ω2
(4 − l)α(l)

2ϵ̃
, (30)

Nd(ω) =
√

EF(EF + ̵hω)(2EF + ̵hω)((lF + 1)2
− (l0)2

), (31)

where we defined C(ω) = 2|eE(ω)|2/(3m∗π̵h3ω4), α(l)
= 2ϵ̃

√

(l/2 + 1)2 + ω/ϵ̃, l0 = 2(
√

(EF − ̵hω)/ϵ̃ − 1), and lF
= 2(
√

EF/ϵ̃ − 1).

G. Material parameters
To evaluate the above expressions for the hot carrier generation

rates, the values of several material-specific parameters are required.
Here, we focus on silver nanoparticles. In the Drude model for the
bulk dielectric constant, we use ̵hγP = 60 meV,30 ̵hω0 = 9.07 eV,
and ϵb = 4.1814 with a field intensity E0 = 8.68 ⋅ 105 V/m. The Fermi
energy is set to EF = 5 eV and ϵd = 2 eV.31 For simplicity, the effective
mass is set to the bare electron mass.

To determine the atomic transition dipole moment zat
dp,

we carry out a first-principles density-functional theory (DFT)
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calculation for an isolated silver atom. We use the all-electron
code FHI-aims,32 the Perdew–Burke-Ernzerhof (PBE) exchange-
correlation functional,33 and the default “tight” atom-centered
numerical basis sets.32 We average the square of the transition dipole
moments of all possible d-state to p-state transitions and take the
square root of this value. This results in zat

dp/e =0.13 Å.
We also carry out a first-principles DFT calculation for a fcc

silver crystal (with a0 = 4.145 Å) using the same parameters as for
the silver atom. A 12 × 12 × 12 k-point grid was used to sample
the first Brillouin zone. From a Mulliken analysis of the sp-band, we
determine its average p-state content in the k-space region where the
sp-band lies above the Fermi level (as this region is of relevance to
d-to-s transitions). This procedure yields αp = 0.81.

III. RESULTS
Figure 1 shows the contribution of d-to-sp transitions to the

total hot carrier generation rate in Ag nanoparticles with different
radii as a function of photon energy. No transitions occur when the
photon energy is smaller than the energy difference between EF and
ϵd. The rate exhibits a peak at the localized surface plasmon energy,
̵hωLSP = 3.65 eV, as a result of the strong LSP-induced enhance-
ment of the electric field. As discussed above, the rate scales with
the volume of the nanoparticle [see Eq. (24)], explaining the rapid
increase in the d-to-sp excitation rate with increasing nanoparticle
size.

Figure 2 shows the contribution of sp-to-sp transitions. For
small photon energies, the hot carrier rate diverges. This is a con-
sequence of the large matrix elements for transitions between states
that are close to the Fermi energy [see Eq. (19)], which is also consis-
tent with the trends observed in time-dependent DFT calculations.34

Similarly to the d-to-sp case, the curves exhibit a peak when the pho-
ton energy is sufficiently large to excite a localized surface plasmon
(see the inset of Fig. 2).

In contrast to d-to-sp interband transitions, vertical sp-to-sp
transitions are not possible in the bulk material. However, such tran-
sitions are found in nanostructures where translational invariance
is broken and crystal momentum is not conserved due to the pres-
ence of the nanoparticle surface. As a consequence, we expect the
sp-to-sp transition rate to scale with r2

0 , i.e., with the area of the

FIG. 1. Hot carrier generation rate due to d-to-sp transitions as a function of photon
energy for silver nanoparticles with different radii. We present results for r0 = 5 nm
(yellow curve), r0 = 10 nm (light green curve), and r0 = 20 nm (dark green curve).

FIG. 2. Hot carrier generation rate due to sp-to-sp transitions as a function of
photon energy for silver nanoparticles with different radii. We present results for
r0 = 5 nm (yellow curve), r0 = 10 nm (light green curve), and r0 = 20 nm (dark
green curve).

nanoparticle surface. Comparing Figs. 1 and 2, we, indeed, find that
d-to-sp transitions dominate, but those sp-to-sp transitions become
increasingly important as the size of the nanoparticle is reduced
(of course, sp-to-sp transitions are always relevant at low photon
energies because of their large matrix element, but those transi-
tions are not relevant for the plasmon decay). The crossover to a
size regime, where sp-to-sp transitions dominate, occurs at a radius
of approximately 2–2.5 nm. Figure 3 shows the hot carrier rates
for r0 = 2.5 nm, and it can be seen that the sp-to-sp and d-to-sp
contributions are of comparable magnitude for this nanoparticle
size.

Finally, we explore the dependence of the d-to-sp hot carrier
rate on the energy of the d-band ϵd. Figure 4 shows results for
ϵd = 3 eV and ϵd = 1 eV in addition to ϵd = 2 eV. For the lower d-band
energy, the onset of d-to-sp transitions occurs at energies larger than
the LSP energy. As a consequence, the d-to-sp rate does not “bene-
fit” from the LSP electric field enhancement and the overall d-to-s
contribution is relatively small.

FIG. 3. Plasmonic hot carriers generation rate due to d-to-sp transitions (red
curve), sp-to-sp transitions (blue curve), and total generation rate (green curve)
as a function of photon energy for a silver nanoparticle with r0 = 2.5 nm.
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FIG. 4. Hot carrier generation rate due to d-to-sp transitions as a function of photon
energy for silver nanoparticles (r0 = 20 nm) for ϵd = 1 eV (blue curve), ϵd = 2 eV
(green curve), and ϵd = 3 eV (red curve).

IV. CONCLUSIONS
We have presented a new approach for calculating the con-

tribution of d-bands to the hot carrier generation rate in metallic
nanoparticles. In particular, we have derived an equation for the
envelope function of a nanoparticle state, which derives from a d-
band, and solved this equation in the limit of perfectly flat bands.
Evaluating Fermi’s golden rule for d-band state to sp-band state
transitions and also for sp-band state to sp-band state transitions
in silver nanoparticles, we find that the rate of d-to-sp transitions
scales with the nanoparticle volume and dominates hot carrier gen-
eration for nanoparticles with radii larger than 2.5 nm. In contrast,
the rate of sp-to-sp transitions scales with the surface area of the
nanoparticle and gives the dominant contribution for very small
systems. It should be straightforward to extend this approach to
other materials, such as silver and gold alloys, and their nanostruc-
tures, allowing us to refine the design of nanoplasmonic devices with
optimized hot carrier rates. Future work will be carried out to com-
pare our predictions to first-principles calculations and to extend
the description to other loss mechanisms, such as phonon-mediated
processes.
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