Accessible biomarkers of inflammatory lung pathophysiology arising from exposure to traffic related particulate matter

Thesis submitted by
Liza Selley

For the degree of Doctor of Philosophy of Imperial College London

Supervisors: Dr Toby Athersuch and Professor Tim Gant

Section of Computational Systems Medicine
Department of Surgery and Cancer
Faculty of Medicine
Imperial College London
2017
Abstract

Exposure to traffic-related particulate matter (TRPM) is a major cause of pulmonary inflammation, inducing symptoms that range from mild coughing or sore throat to life-threatening asthma attacks or exacerbations of chronic obstructive pulmonary disorder. At present, the molecular mechanisms that underlie pulmonary responses to TRPM in vivo require further characterisation (particularly for those that are stimulated by non-exhaust particulates) but cohort recruitment is hindered by the invasive and uncomfortable nature of sampling via biopsy or bronchial lavage. Extracellular microRNA and metabolite biomarkers offer an attractive alternative measure of responses to TRPM as they are detectable in a number of non-invasively accessible bio-fluids, can be profiled using agnostic, data-driven omics strategies and have been associated with diesel exhaust particle (DEP) exposure in recent studies.

Based on evidence that the mechanistic relevance and exploratory power of omics-derived biomarkers can be enhanced through integration of multiple molecular platforms, this study sought to identify miRNA and metabolite biomarkers of pulmonary inflammatory pathways using a combination of microtranscriptomic and metabolomic profiling techniques. Using diverse rodent models of pulmonary inflammation (pharmaceutical, nanoparticle and cytokine-induced), next generation sequencing and microarray analysis identified miR-34b/449a as stimulus-independent, tissue markers of pulmonary specific inflammatory responses.

Targeted analyses confirmed the translation of miR-34b/449a over-expression signatures into serum during prototypical (lipopolysaccharide-induced) pulmonary inflammatory responses and into the supernatants of TRPM exposed macrophages in vitro. Meanwhile, 1H nuclear magnetic resonance spectroscopy identified that the miRNA biomarkers were accompanied by changes in the concentrations of energy metabolism substrates, intermediaries and products in both models. The technique also determined that responses
to TRPM could be differentiated from lipopolysaccharide-induced responses based on additional changes to extracellular amino acid and myo-inositol content but that no significant differences were made to the biomarker panel where responses to exhaust and non-exhaust particulate exposures were compared. This absence of discriminatory power supported hypothesis-driven characterisations of TRPM-induced toxicity in macrophages. Both DEP and brake abrasion dust (BAD) disrupted mitochondrial membrane potential, inhibited phagocytosis activity and induced cytokine secretion to the same degree.

Integrative pathway over-representation analysis (ORA) identified a wide range of cellular pathways that were disrupted in common during prototypical and TRPM-induced pulmonary inflammation. Many of these pathways were eluded to by the metabolite-only ORA but others (such as lipid metabolism and hypoxia signalling pathways) were only detected by the integrative technique. An additional few that belong to characterised responses to TRPM (including glutathione synthesis and xenobiotic metabolism) were excluded by the multi-omics analysis indicated that while the integrative approach enhanced the mechanistic and informative potential of the biomarkers overall, single-omics results were also useful in their own right.
Statement of originality

I certify that this thesis, and the research to which it refers, are the product of my own work, conducted during my doctoral studies at Imperial College London. Any ideas or quotations from the work of other people, published or otherwise, or from my own previous work are fully acknowledged in accordance with the standard referencing practices of the discipline.

Collection of data for the characterisation of U937 responses to particle and endotoxin exposure was assisted by Linda Schuster under my supervision. Particle preparation and analysis by ICP-MS was conducted by Dr Ian Mudway and Mr Andy Cakebread (King’s College London) who provided me with pre-processed data to analyse. In vivo modelling, BALF analysis and RNA extraction for the AZD2230 exposure study were performed by unrecorded personnel at AstraZeneca prior to my project, and sequencing of RNA from these samples (including library preparation) was performed by the Beijing Genomics Institute. Similarly, the in vivo modelling, BALF analysis and serum preparation for the GSK project was performed by Dr Graham Paul et al. at Glaxo Smith Kline. All other RNA isolations and downstream analyses relating to these sample were performed by me.

Copyright declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work.
Acknowledgements

First and foremost I would like to thank Dr Toby Athersuch and Professor Tim Gant for being such helpful and supportive supervisors. Alongside their time and their advice I have truly appreciated their continued encouragement to take on extracurricular challenges and the confidence that they have given me to go off into the world as an independent researcher. It has been an absolute pleasure to work with such positive and thoughtful people.

I am also enormously grateful to Dr Ian Mudway, Professor Ben Forbes and Dr Abhinav Kumar for hosting me in their groups at King’s College, London for my mini fellowship (and of course, the In Vitro Toxicology Society for funding it!). I learnt a huge amount about particulate toxicology and had an extremely enjoyable 12 months, working with Linda, Theresa and Magda as part of the L-Team. I will take many of those experiences on with me as I enter post-doctoral life, particularly Waffle Thursdays and basil-infused gin.

Drs Emma Marczylo and Martin Leonard have also been extremely kind, sharing their expertise in molecular techniques, allowing me to take over their PCR machine for weeks on end and organising illicit particle drops at conferences. I really enjoyed the time I spent at the PHE labs and I would like to thank the entire department for being so very welcoming. Similarly I am very grateful to Dr Tom McKevitt and Graham Paul at GSK and to the team at Astra Zeneca for sharing their samples and data for my rat studies.

PhD life wouldn’t have been half as fun without my lovely friends. I really don’t know how I would have coped without three dart darts, the promise of entry into Pete’s mole bunker or Helena’s amazing cooking on a Friday night. Similarly, Professor Andy Smith and the MRC ITTP group have been wonderful, those weeks in Leicester were just so fun, finding out about the stranger sides of toxicology, eating far too much steak and securing a double win for Team Toby in croquet. I am also incredibly grateful to the MRC for funding my project and for the opportunity that they provided to participate in the Max Perutz writing competition.

Mum and Dad, you have been brilliant. Thank you for feeding me, taking away my phone and putting up with the tantrums as I battled through writing…also for actually pointing out the PhD advert in the first place! Nana, I definitely got my sciencey genes from you, you were the first family member to understand the link between lungs and pollution! You also kept me smiling on the rubbish days where my cells didn’t want to play or the data looked ridiculous.

Finally Leon….thank you for being the smiling face that helped me leave my frustrations at the front door, for helping me see the bigger picture…and for providing this very important figure; a tribute to the little rats that gave their lives for my science.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>Hydrogen-1</td>
</tr>
<tr>
<td>AA</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP binding cassette</td>
</tr>
<tr>
<td>Acetyl-CoA</td>
<td>Acetyl-coenzyme A</td>
</tr>
<tr>
<td>ADCY6</td>
<td>Adenylate cyclase</td>
</tr>
<tr>
<td>Ago</td>
<td>Argonaute</td>
</tr>
<tr>
<td>ALDOA</td>
<td>Fructose-bisphosphate aldolase A</td>
</tr>
<tr>
<td>ALI</td>
<td>Acute lung injury</td>
</tr>
<tr>
<td>Akt</td>
<td>Serine/threonine protein kinase</td>
</tr>
<tr>
<td>AMPK</td>
<td>5'-adenosine monophosphate-activated protein kinase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activating protein-1</td>
</tr>
<tr>
<td>AQP4</td>
<td>Aquaporin</td>
</tr>
<tr>
<td>ARE</td>
<td>Adenylate-uridylate-rich element</td>
</tr>
<tr>
<td>As</td>
<td>Arsenic</td>
</tr>
<tr>
<td>AT1</td>
<td>Alveolar type II epithelial cells</td>
</tr>
<tr>
<td>AT2</td>
<td>Alveolar type I epithelial cells</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine trisphosphate</td>
</tr>
<tr>
<td>ATP1B3</td>
<td>Sodium/potassium-transporting ATPase subunit β-3transporter proteins</td>
</tr>
<tr>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>BAD</td>
<td>Brake abrasion dust</td>
</tr>
<tr>
<td>BALF</td>
<td>Bronchoalveolar lavage fluid</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BCAA</td>
<td>Branched chain amino acid</td>
</tr>
<tr>
<td>BEC</td>
<td>Bronchial epithelial cells</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>BGI</td>
<td>Beijing Genomics Institute</td>
</tr>
<tr>
<td>BGN</td>
<td>Biglycan</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAM</td>
<td>Cellular adhesion molecule</td>
</tr>
<tr>
<td>CC16</td>
<td>Clara cell secretory protein</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-dependent kinase</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complimentary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>chH₂O</td>
<td>Chelator treated H₂O</td>
</tr>
<tr>
<td>ChREBP</td>
<td>Carbohydrate-responsive element binding protein</td>
</tr>
<tr>
<td>CM</td>
<td>Culture medium</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disorder</td>
</tr>
<tr>
<td>CPMG</td>
<td>Carr-Purcell-Meiboom-Gill</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>CSPG4</td>
<td>Chondroitin sulphate proteoglycan 4</td>
</tr>
<tr>
<td>Cₜ</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome P450</td>
</tr>
<tr>
<td>DEA</td>
<td>Differential expression analysis</td>
</tr>
<tr>
<td>DEmiRNA</td>
<td>Differentially expressed miRNA</td>
</tr>
<tr>
<td>DEP</td>
<td>Diesel exhaust particles</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Deoxyribonucleotides</td>
</tr>
<tr>
<td>E2F1</td>
<td>E2F transcription factor</td>
</tr>
<tr>
<td>ELF</td>
<td>Epithelial lining fluid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ENO3</td>
<td>Enolase-3</td>
</tr>
<tr>
<td>ERG</td>
<td>Environmental Research Group</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>FID</td>
<td>Free induction decay</td>
</tr>
<tr>
<td>FOXO1</td>
<td>Forkhead box protein O1</td>
</tr>
<tr>
<td>FXYD3</td>
<td>FXYD domain containing ion transport regulator 3</td>
</tr>
<tr>
<td>GCLC</td>
<td>Glutamate cysteine ligase</td>
</tr>
<tr>
<td>GEO</td>
<td>Gene Expression Omnibus</td>
</tr>
<tr>
<td>GLUD1</td>
<td>Glutamate dehydrogenase 1</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GNG5</td>
<td>Guanine nucleotide-binding protein subunit γ5</td>
</tr>
<tr>
<td>GO</td>
<td>Gene ontology</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GSK</td>
<td>p38 Mitogen activated protein kinases inhibitor (product of GlaxoSmithKline)</td>
</tr>
<tr>
<td>GYG1</td>
<td>Glycogenin 1</td>
</tr>
<tr>
<td>H2O2</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCA</td>
<td>Hierarchical clustering analysis</td>
</tr>
<tr>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>HEXA</td>
<td>β-hexosaminidase</td>
</tr>
<tr>
<td>HIF-1</td>
<td>Hypoxia inducible factor 1</td>
</tr>
<tr>
<td>HIF-1α</td>
<td>Hypoxia inducible factor 1</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intracellular cellular adhesion molecule-1</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>IKK</td>
<td>Inhibitor of nuclear factor kappa-B kinase</td>
</tr>
<tr>
<td>IKK2</td>
<td>Inhibitor of nuclear factor kappa-B kinase subunit beta</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IMPaLA</td>
<td>Integrated Molecular Pathway Level Analysis</td>
</tr>
<tr>
<td>IRAK</td>
<td>IL-1 receptor associated kinase-1</td>
</tr>
<tr>
<td>KHK</td>
<td>Ketoheokinase</td>
</tr>
<tr>
<td>LBP</td>
<td>LPS binding proteins</td>
</tr>
<tr>
<td>LEZ</td>
<td>Low emission zone</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinase</td>
</tr>
<tr>
<td>MH</td>
<td>Müller Hinton</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>miRISC</td>
<td>miRNA inducing silencing complex</td>
</tr>
<tr>
<td>miRNA</td>
<td>microRNA</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>MyD88</td>
<td>Myeloid differentiation primary response gene 88</td>
</tr>
<tr>
<td>n.d.</td>
<td>Not-detected</td>
</tr>
<tr>
<td>NFκB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NGS</td>
<td>Next generation sequencing</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>Nrf2</td>
<td>Nuclear factor erythroid 2-related factor 2</td>
</tr>
<tr>
<td>Nucleotides</td>
<td>Nt</td>
</tr>
<tr>
<td>NUP35</td>
<td>Nucleoporin 35</td>
</tr>
<tr>
<td>ORA</td>
<td>Over-representation analysis</td>
</tr>
<tr>
<td>p13 kinase</td>
<td>Phosphoinositide 3-kinase</td>
</tr>
<tr>
<td>p38 MAPK</td>
<td>p38 Mitogen activated protein kinases</td>
</tr>
<tr>
<td>P body</td>
<td>Processing body</td>
</tr>
</tbody>
</table>
PABP Poly-A binding proteins
PAH Polycyclic aromatic hydrocarbon
PBS Phosphate buffered saline
PC Principal component
PCA Principal component analysis
PDI Polydispersity index
PGE-1 Prostaglandin 2
PLS-DA Partial least squares- discriminant analysis
PM Particulate matter
PMA Phorbol 12- myristate 13-acetate
PM$_{0.1}$ Ultrafine particulate matter ($\leq 0.1 \mu$m diameter)
PM$_{10}$ Coarse particulate matter ($\leq 10 \mu$m diameter)
PM$_{2.5}$ Fine particulate matter ($\leq 2.5 \mu$m diameter)
Poly-A Poly-adenylated
PQN Probabilistic quotient normalisation
Pre-miRNA Precursor miRNA transcript
pri-miRNA Primary miRNA transcript
PRR Pattern recognition receptor
Rb Retinoblastoma protein
RNS Reactive nitrogen species
ROS Reactive oxygen species
RT Room temperature
RTqPCR Reverse transcription quantitative polymerase chain reaction
S. aureus Staphylococcus aureus
Sb Antimony
SCFA Short chain fatty acid
SDC4 Syndecan-4
SEM Standard error of the mean
Si Silica
SLC Solute carrier
Sn Tin
Snai1 Snail Family Transcriptional Repressor 1
SREBP Sterol regulatory element-binding protein
STOCSY Statistical total correlation spectroscopy
TAK1 Transforming growth factor-B-activated kinase 1
TF Transcription factor
Ti Titanium
TiO2 Titanium dioxide
TIRAP Toll-interleukin-1-receptor domain containing adaptor inducing interferon-β
TLR Toll-like receptor
TMREC Database of transcription factors and miRNA regulatory cascades
TNF-α Tumour necrosis factor α
Tp53 Tumour protein p53
TRAF6 TNF receptor associated factor 6
TRAM Toll-interleukin-1-receptor related adaptor molecule
TRPM Traffic related particulate matter
TSP Sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4
UNG Uracil N-glycosylase
UTR Untranslated region
V Vanadium
VCAM-1 Vascular cellular adhesion molecule-1
VIP Variable importance plot
W Tungsten
List of units

pM picomolar
nM Nanomolar
µM Micromolar
mM Millimolar
Nm Nanometer
µm Micrometer
µg Microgram
Mg Milligram
Kg Kilogram
µl Microlitre
ml Millilitre
AU Arbitrary units
kDA Kilo daltons
CFU Colony forming units
Nt Nucleotides
Table of Contents

Abstract ... i

Statement of originality .. iii

Copyright declaration .. iii

Acknowledgements .. iv

Abbreviations ... v

List of units ... xi

Chapter 1. Introduction .. 1

1.1 Pulmonary inflammation ... 1

1.1.1 Structure and function of the respiratory tract ... 1

1.1.2 Pulmonary defence mechanisms .. 4

1.1.3 Inflammatory defences of the alveoli .. 5

1.1.4 Termination or development of the acute pulmonary response 7

1.2 Traffic related particulate matter and pulmonary inflammation 9

1.2.1 Traffic related particulate matter ... 9

1.2.2: Associations between TRPM exposure and pulmonary inflammation 9

1.2.3: Mechanisms of TRPM-induced pulmonary inflammation 11

1.3: Biomarkers and their application to TRPM-induced toxicity 15

1.3.1 Hypothesis-driven response biomarker discovery ... 19

1.3.2 Data-driven biomarker discovery ... 20

1.3.3: Multi-omics approaches to data-driven biomarker discovery 21

1.3.4: Integration of microtranscriptomic and metabolomics datasets 23

1.4 miRNAs ... 26
2.2.3: miRNA sequencing data analysis: ... 59
2.2.4: mRNA sequencing data analysis: ... 60
2.2.5: Prediction of miRNA-mRNA pairing: ... 60
2.2.6: Hierarchical clustering analysis ... 61
2.2.7: Pathway over-representation analysis ... 61
2.2.8: Identification of pulmonary-enriched DEmiRNAs 61
2.2.9: Analysis of publically available microarray datasets 62
2.3: Identification of miRNA-associated transcription factors: 62
 2.3.1: AZD2230 exposure induced an inflammatory response in rat pulmonary tissue. 63
 2.3.2: AZD2230 exposure modulated miRNA expression in AZ rat lung tissue 66
 2.3.3: Validation of DEmiRNA activity using mRNA sequencing data 70
 2.3.4: DEmiRNA activity modulates inflammatory mechanisms 74
 2.3.5: miR-34b and miR-449a are predominantly expressed by pulmonary tissue: 79
 2.3.6: Differential expression of miR-34b and 449a is not specific to AZD2230 induced pulmonary inflammation ... 83
 2.3.7: miR-34b expression was driven independently of transcription factor activity 85
2.4: Summary of results .. 87
2.5: Discussion ... 88
2.5: Conclusion .. 93

Chapter 3: Circulating markers of pulmonary inflammation............................... 94

Chapter overview .. 94
3.1: Introduction ... 94
3.1.2: Aims, hypothesis and study design ... 97

3.2: Methods ... 100

3.2.1: Rat serum samples ... 100

3.2.2: RNA extraction .. 100

3.2.3: RNA purification: ... 100

3.2.4: Total RNA and total miRNA quantifications .. 101

3.2.5: cDNA synthesis .. 101

3.2.6: RTqPCR ... 101

3.2.7: Functional annotation of predicted miR-34b/449a gene targets 102

3.2.8: 1H NMR spectroscopy ... 102

3.2.9: Processing of 1H NMR spectroscopic data .. 103

3.2.10: Multivariate statistical analysis of 1H NMR spectroscopic data 103

3.2.11: Integrated pathway analysis of miRNA quantification and 1H NMR spectroscopic
data ... 104

3.2.12: Univariate statistical analysis of RTqPCR and 1H NMR spectroscopic data.... 104

3.3: Results ... 106

3.3.1 miRNAs are detectable within the serum of rats .. 106

3.3.2 Serum concentrations of miR-34b and 449a are enhanced by pulmonary exposure
to LPS ... 109

3.3.3 LPS-induced increases in miR-34 and 449 expression are inhibited by p38 MAPK
inhibition ... 111

3.3.4: 1H NMR spectroscopy characterised the serum metabolomes of rats following
exposure to LPS in the presence or absence of a p38 MAPK inhibitor 113

3.3.5: Pulmonary exposure to LPS induces changes in the serum metabolome....... 119
3.3.6: LPS induced changes in the serum metabolome are p38 MAPK dependent .. 122
3.3.7 Intratracheal LPS exposure alters metabolic relationships within the serum of rats .. 124
3.3.5: miR-34b and 449a activity may regulate transport and metabolism of glutamine and acetate ... 133
3.4: Summary of results .. 138
3.5: Discussion .. 139
3.5: Conclusion .. 144

Chapter 4: Extracellular markers of pulmonary inflammation induced by traffic-related particulates ... 146

Overview .. 146
4.1: Introduction ... 146
4.1.1: Hypothesis and aims .. 149
4.2: Materials and methods ... 150
4.2.1: Nanoparticles ... 150
4.2.2: Particle size measurement using dynamic light scattering (DLS) ... 150
4.2.3: Measurement of particulate oxidative potential ... 150
4.2.4: U937 culture and differentiation ... 151
4.2.5: Particle exposure ... 151
4.2.6: Quantification of intra and extracellular metals by inductively coupled plasma mass spectroscopy (ICP-MS): ... 151
4.2.7: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay: .. 152
4.2.8: Cytokine enzyme linked immunosorbent assays (ELISAs): .. 152
4.2.9: Maintenance of bacterial stocks: .. 152
4.2.10: Quantification of bacterial phagocytosis behaviour .. 153
4.2.12: Bicinchoninic acid (BCA) protein quantification assay .. 153
4.2.13: Univariate statistical analysis of toxicological data ... 154
4.2.14: RNA extractions: ... 154
4.2.14.1: RNA extraction from U937 lysates: ... 154
4.2.14.2: RNA extraction from U937 supernatants ... 155
4.2.14.3: RNA quantification ... 155
4.2.15: cDNA synthesis: ... 155
4.2.16: RTqPCR data acquisition and analysis: ... 155
4.2.17: 1H NMR spectroscopy .. 155
4.2.17.1: Processing of 1H NMR spectroscopic data: .. 155
4.2.17.2: Feature identification from 1H NMR spectroscopic data............................... 156
4.2.18: Over-representation analysis of metabolite and transcriptomic datasets: 156
4.3: Results .. 157
4.3.1: Physicochemical characteristics of BAD and SRM-2975 particles 157
4.3.2: U937 macrophages ingest BAD and SRM-2975 particles 161
4.3.3: BAD and SRM-2975 are not cytotoxic to U937 macrophages but cause mitochondrial dysfunction .. 163
4.3.4: BAD and NIST induce inflammatory responses in U937 168
4.3.5: BAD and SRM-2975 inhibit phagocytic function in U937 171
4.3.6: TRPM-induced up-regulation of miR-449a is detectable within U937 supernatants .. 175
4.3.7: U937 metabolic profiles are altered in response to pro-inflammatory stimuli 181
4.3.8: Inflammatory stimuli induce alterations in common metabolic pathways in U937 macrophages .. 184

4.3.9: miR-34b/449a activity may influence inflammatory responses to particle exposure in U937 cells .. 186

4.4: Results summary .. 190

4.5: Discussion .. 191

4.6: Conclusion .. 198

Chapter 5: General discussion, conclusions and possible future directions 199

5.1: Summary of findings .. 199

5.1.1: Inflammation-associated miR-34b/449a over-expression signatures translate from pulmonary tissue to serum and from macrophages to supernatants 199

5.1.2: Metabolite markers of pulmonary inflammatory responses distinguished between endotoxin and TRPM-induced responses ... 203

5.1.3: Multi-omics approaches enhanced the mechanistic value of pulmonary inflammatory biomarkers .. 205

5.2: Advantages and limitations of study designs ... 207

5.2.1: Use of an in vitro exposure system for TRPM studies .. 207

5.2.2: Choice of methods for data integration .. 209

5.2.3: Choice of serum as an extracellular matrix for biomarker detection 211

5.2.4: Absence of a continuous control between studies .. 212

5.3: Impacts of findings .. 213

5.3.1: Applications for research .. 213

5.3.2: Applications for policy makers ... 215

5.4: Considerations for future work ... 216
5.4.1: *In vivo* validation of TRPM-associated biomarkers ... 216

5.4.2: Validation of pathway identifications for biomarkers .. 218

5.4.3: Untargeted lipidomics analysis .. 219

5.5: Conclusion ... 220

References ... 222
List of figures

Chapter 1

Figure 1. 1: Schematic representation of the human respiratory tract .. 2
Figure 1. 2: Structural organisation of the gas-exchange region of the lower airways 3
Figure 1. 3: Known mechanisms of TRPM induced inflammation .. 13
Figure 1. 4: The nature and interplay of relationships between biomarkers 18
Figure 1. 5: Omics profiles are influenced by regulators of transcription, translation and protein-protein interactions ... 25
Figure 1. 6: Biogenesis of miRNAs ... 28
Figure 1. 7: Mechanisms of post-transcriptional regulation by miRNAs 31
Figure 1. 8: Schematic explanation of the workflow followed in this study 53

Chapter 2

Figure 2. 1: Absolute inflammatory cell counts measured in BALF samples of rats treated with 0, 1 or 3mg/kg AZD2230 .. 65
Figure 2. 2: HCA of pulmonary tissue samples (miRNA) .. 69
Figure 2. 3: HCA of pulmonary tissue samples (mRNA) .. 73
Figure 2. 4: Regulatory interactions between DEmiRNAs and mRNA targets 77
Figure 2. 5: Numbers of tissues that express lower concentrations of DEmiRNAs than lung tissue in healthy male rats .. 80
Figure 2. 6: Differences in expression levels of miR-34b-5p and miR-449a-3p between lung and other tissues in healthy male rats. .. 81
Figure 2. 7: Expression levels of miR-449a-3p and miR-34b-5p in the pulmonary tissue of mice exposed to nanoTiO2 or IL-13 .. 84
Figure 2. 8: Expression of transcription factors that target miR-34 ... 86
Chapter 3

Figure 3.1: LPS signalling pathways ... 99
Figure 3.2: Spectra displaying the quantities of total RNA and miRNA detectable in a
representative sample of rat serum. ... 108
Figure 3.3: Fold increases in miR-34b and 449a concentrations in the serum of rats
following LPS exposure .. 110
Figure 3.4: Fold increases in miR-34b and 449a concentrations in the serum of rats
following LPS and p38/MAPK inhibitor exposure .. 110
Figure 3.5: Representative 1H NMR spectrum generated from rat serum........... 115
Figure 3.6: PCA analysis of serum samples from LPS and GSK treated rats.. 116
Figure 3.7: Inter-sample variability in serum glucose, alanine and taurine concentrations 117
Figure 3.8: PCA scores plot displaying intrinsic metabolic variation within rat serum samples ... 118
Figure 3.9: PLS-DA analysis of the rat serum metabolome. 120
Figure 3.10: Concentrations of feature metabolites measured within the serum of rats
treated with LPS or a vehicle control .. 121
Figure 3.11: Concentrations of feature metabolites measured within the serum of rats
treated with LPS, LPS and GSK or vehicle control .. 123
Figure 3.12: Heat map visualisation of moderate to very strong metabolite-metabolite
correlations in LPS and vehicle exposure serum samples 125
Figure 3.13: Log fold differences in concentration between glutamine and strongly
correlated metabolites in LPS and vehicle exposure samples 127
Figure 3.14: Comparison of serum concentrations of metabolites that display correlating
concentrations to glutamine in rats following exposure to LPS or vehicle control 128
Figure 3.15: Log fold differences in concentration between acetate and strongly correlated
metabolites in LPS and vehicle exposure samples .. 131
Figure 3. 16: Comparison of serum concentrations of metabolites that display correlating concentrations to acetate in rats following exposure to LPS or vehicle control. 132
Figure 3. 17: Gene ontology classifications for the predicted mRNA targets of miR-34a/449b. .. 136

Chapter 4

Figure 4. 1: The oxidative potential of SRM-2975 and BAD.. 162
Figure 4. 2: Light micrographs of U937s ... 164
Figure 4. 3: Viability of U937s following particle exposure... 166
Figure 4. 4: The influence of particle exposure on metrics of cellular health................................. 167
Figure 4. 5: Particle-induced cytokine secretion ... 169
Figure 4. 6: The influence of metals on cytokine secretion .. 170
Figure 4. 7: The influence of particles on phagocytosis behaviour .. 173
Figure 4. 8: Influence of particle exposure on bacterial growth.. 174
Figure 4. 9: RNA content of supernatant samples .. 177
Figure 4. 10: Fold increases in miR-449a concentrations in cellular lysates and supernatants of U937s following 24h exposures to LPS, BAD or SRM-2975 ... 180
Figure 4.11: Typical ¹H NMR spectra generated from the supernatants of U937 macrophages cultured in RPMI 1640 medium... 182
Figure 4.12: Quantities of feature metabolites detected within the supernatant of U937 macrophages following 24 h incubations with media control, 1 µg/ml LPS or 4- 14 µg/ml BAD or SRM-2975 .. 185

Chapter 5

Figure 5. 1: Key observations made during the search for mechanistically relevant, accessible biomarkers of pulmonary inflammation. .. 202
List of tables

Chapter 1

Table 1. 1: Comparative summary of the beneficial and limiting features of techniques used for miRNA biomarker detection ... 35

Chapter 2

Table 2. 1: Experimental characteristics of publically available datasets used for comparison with the AZD2230 model of inflammation.. 62
Table 2. 2: miRNAs that displayed differential expression in the pulmonary tissue of rats following intratracheal exposure to 1 or 3mg/kg AZD2230. .. 68
Table 2. 3: Percentages of predicted DEmiRNA targets that were biologically validated in the AZD2230 exposure model using next generation mRNA sequencing data................................. 72
Table 2. 4: Over-represented pathways within the list of correlating mRNAs.............................. 76
Table 2. 5: List of DEmiRNA-targeted inflammatory mRNAs with metabolic functions............ 78
Table 2. 6: Log2 fold change differences in DEmiRNA expression between pulmonary and other tissue types within the healthy rat .. 82

Chapter 3

Table 3. 1: Concentrations of total RNA and total miRNA within representative samples of rat serum... 107
Table 3. 2: Integrated pathway over-representation analysis for LPS associated metabolites and predicted miR-34b/449 gene targets. ... 137
Chapter 4

Table 4. 1: Hydrodynamic diameter of BAD and SRM-2975 as determined by DLS 159
Table 4. 2: Metal and metalloid content of BAD and SRM-2975 as determined by ICP-MS
... 160
Table 4. 3: Metal and metalloid content of U937 lysates following 24 h exposure to 4-25 μg/ml BAD or SRM-2975... 165
Table 4. 4: Average concentrations of total RNA and total miRNA detected in the lysates of U937s by nanodrop spectroscopy and bioanalyzer small RNA assays. 178
Table 4. 5: Concentrations of total RNA and total miRNA detected in the supernatants of U937s by nanodrop spectroscopy and bioanalyzer small RNA assays. 179
Table 4. 6: Metabolic pathways enriched in the media samples of U937s following particle or endotoxin exposure... 188
Table 4. 7: Cellular pathways that were enriched for exposure-associated feature metabolites and predicted mRNA targets of miR-449a... 189
Chapter 1. Introduction

1.1 Pulmonary inflammation

1.1.1 Structure and function of the respiratory tract

The respiratory tract functions to allow the continuous exchange of O\textsubscript{2} and CO\textsubscript{2} from the body, facilitating cellular function and removing toxic waste. As such it possesses a gas-exchange region composed of respiratory bronchioles and alveoli and a conducting region that carries air from the nose and mouth (the primary respiratory openings), through the pharynx, larynx and trachea to the lungs and passes through the bronchi and larger bronchioles towards the alveoli. Much of the conducting system (the nose, mouth, pharynx and larynx) is referred to as the upper airways while the remainder (the trachea, bronchi and bronchioles) plus the gas-exchange region make up the lower airways (Figure 1.1) (1).

The tubular structures of the respiratory tract are lined by an uninterrupted epithelium containing a mosaic of cell types that originate from the basement membrane. These cells (including basal cells, epithelial cells, goblet cells and clara cells) differ in morphology and distribution according to their function and are coated with a protein and lipid rich epithelial lining fluid (ELF) (2).

Branching from the respiratory bronchioles, the alveoli are suspended in an intricate lacework of connective tissue fibres that extend between the pleura and the alveolar wall (3) and are structured to allow maximal diffusion of gases into and out from the bloodstream (Figure 1.2). In addition to their large surface area (~75m2 in humans) and rich blood supply, 90-95% of their surface area is contributed to by squamous, non-ciliated alveolar type I epithelial cells (AT1). Unlike the ciliated, columnar cells of the conducting region, AT1 possess few organelles and spread broadly over the basement membrane via thin extensions, producing a barrier of only 2-8 μm between the alveoli and the capillary endothelium (4)(5).
Figure 1. 1: Schematic representation of the human respiratory tract. Features of the upper airways are labelled in blue; features of the lower airways are labelled in black.

The remaining 5-10% of the alveolar surface is contributed to by cuboidal type II epithelial cells (AT2) which synthesise and secrete surfactant-associated proteins and phospholipids into the alveolar ELF. This protects AT1 from desiccation and prevents the lungs from collapsing at the end of expiration by reducing surface tension in the alveoli (2).
Figure 1.2: Structural organisation of the gas-exchange region of the lower airways. Branching from the terminal bronchioles, the respiratory bronchioles are lined with ciliated columnar epithelial cells interspersed with secretory Clara cells. Within the alveoli, gas exchange is facilitated by the presence of squamous, non-ciliated AT1 which produce only a thin barrier between the alveolar lumen and the microvascular endothelium. Cuboidal AT2 punctuate the alveolar epithelium where they secrete surfactant into the epithelial lining fluid in order to protect the AT1 from desiccation.
1.1.2 Pulmonary defence mechanisms

Whilst optimising the lungs for gas exchange, the large surface area and thin walls of the alveoli mean that they are highly vulnerable to injury by the pathogens, bio-aerosols, nanoparticles, pollutants and toxic gases that populate inspired air (6). During inhalation, a pressure gradient is generated along the airways, giving rise to convection currents that transport these materials through the airways until diffusional, inertial and gravitational mechanisms cause them to diverge from the airflow streamline and deposit within the ELF (4).

As the primary site of exposure to inhaled agents, the respiratory tract has developed an array of defence mechanisms that neutralise and remove foreign material in order to protect the vital process of gas exchange (6). Most inhaled particles are trapped, neutralised and removed by mechanical and humoral defences in the conducting airways (7), preventing them from reaching the alveoli. Such mechanisms begin in the nose and upper airway with humidification of inspired air and the production of airflow turbulence which encourage smaller hydroscopic particles to clump together and deposit in the periciliary layer of low viscosity mucus that coats the mucosal cells of the epithelium (8,9).

Once trapped, mucosal immunoglobulins, antioxidants, bactericidal enzymes and components of the complement system interact with the particles, degrading pathogenic membranes, reducing oxidative molecules and opsonising non-biological material. Beating cilia move insoluble particles towards the pharyngolaryngeal region to be swallowed or expelled by coughing while liposoluble and hydrosoluble particles are removed through absorption across the epithelium (9).

While these mechanisms prevent the majority of particles from reaching the respiratory airways, gases and smaller particles are able to penetrate the smaller conducting airways and sediment within the alveolar ELF (4). Antioxidant molecules such as glutathione (GSH) and ascorbic acid (AA) can reduce much of the oxidative gases in the ELF, rendering them
less harmful (7) but the lack of a mucociliary layer in this region means that an acute inflammatory response is required to remove deposited particles (5).

1.1.3 Inflammatory defences of the alveoli

Acute inflammation is a non-specific but rapid response to insult by foreign matter which can compartmentalise, destroy and remove injurious agents and promote recovery of damaged tissues (10). In the alveoli this response is initiated by the simultaneous activation of macrophages and epithelial cells, which express a large variety of surface molecules (termed pattern recognition receptors (PRR)) that enable them to recognise a wide range of xenobiotic ligands (including proteins, saccharides, nucleic acids, lipids and opsonisation products) (11).

Upon recognition of these ligands, the receptors initiate numerous signalling cascades that stimulate secretion of antimicrobial products including proteolytic enzymes, reactive oxygen species (ROS) and reactive nitrogen species (RNS) (12) and induce macrophages to remove the foreign material through phagocytic uptake. Here, particles are engulfed within cytoplasmic vacuoles and either fused with lysosomes for subsequent enzymatic degradation, or transported to the lymphatic system (13).

As very few macrophages reside within the alveoli under homeostatic conditions (approximately one macrophage per three alveoli) (14) auxiliary phagocytes must be recruited to sites of contamination in order to remove foreign material rapidly enough to prevent injury or infection from developing. In acute inflammation this support is provided predominantly by neutrophils (rather than monocytes) so activated macrophages and epithelial cells secrete an array of neutrophil-stimulating cytokines, chemokines and lipids that encourage circulating neutrophils to migrate across the pulmonary microvascular endothelium into the alveolar lumen (15).
In healthy adults, circulating neutrophils exist in a resting state, expressing an array of cytokine and chemokine receptors (including those for granulocyte-macrophage colony-stimulating factor (GM-CSF), tumour necrosis factor α (TNF-α) and interleukin (IL)-1β (16)) but retaining their arsenal of proteases intracellularly and displaying minimal ROS synthesis. Upon ligand binding in the pulmonary microvasculature, intracellular granules containing presynthesised PRRs mobilise to the neutrophilic cell membrane, priming them to phagocytose foreign material and to secrete proteases and ROS within seconds of activation (17).

Mitogen activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) dependent pathways encourage the neutrophils to migrate towards the microvascular endothelium (16) which is also primed by cytokine exposure; expressing additional cellular adhesion molecules (CAMs) (including P and E selectins, intercellular CAM-1 (ICAM-1) and vascular CAM-1 (VCAM-1)) and additional chemoattractants.

Primed neutrophils tether loosely to the endothelium via interactions between the endothelial selectins and their own. This allows the neutrophils to roll across the endothelium, inducing conformational changes in their surface integrins which, in the presence of endothelial chemoattractant proteins, enable them to bind strongly with ICAM-1 and VCAM-1 on the endothelial surface (17,18). Once bound, neutrophils migrate through the microvascular endothelial layer and alveolar epithelium, towards the source of inflammation, following the chemotactic gradient of epithelial and macrophage derived chemoattractants. Recognition of xenobiotic ligands at the site of exposure activates the neutrophils, encouraging them to secrete their antimicrobial proteases and ROS and aid phagocytosis of foreign material (17).

Initiation of the acute inflammatory response completes a further 24-48 hours later with the recruitment of circulating monocytes. Upon recognition of neutrophilic and endothelial chemokines, monocytes are primed to traverse the alveolar wall in the same manner as neutrophils; through selectin and CAM mediated interactions with the capillary endothelium.
One inside the alveolar lumen, these monocytes differentiate into macrophages, developing a pro-inflammatory M1 phenotype that enables them to assist the phagocytic response (19).

1.1.4 Termination or development of the acute pulmonary response

In health, acute pulmonary inflammation is a self-limiting process that subsides to basal state within days of an inflammatory stimulus being detected, rapidly returning the tissue to homeostasis. However, in instances of excessive or continuous inflammatory stimulation, the response can become unrestrained, developing into injurious chronic inflammation and damaging the pulmonary parenchyma (20).

Acute inflammation does not terminate simply through an absence of the stimulus and downstream signalling responses but via an active, co-ordinated process called resolution which inhibits and counteracts the mechanisms of inflammatory initiation. Resolution removes neutrophils and debris from the alveoli (efferocytosis) and inhibits efflux of further neutrophils, enabling efficient gas-exchange to continue (21).

Inflammatory resolution is primed during the initial stages of neutrophil efflux; interactions with the microvascular endothelium and with prostaglandin-2 (PGE-2) stimulate the neutrophils to express annexin A1 and produce an array of pro-resolving lipid metabolites (including lipoxins and resolvins) (22). These products replace the pro-inflammatory cytokines, leukotrienes and prostaglandins that were produced during propagation of the inflammatory response and encourage the neutrophils to undergo apoptosis (the first hallmark of resolution) (21).

During apoptosis, neutrophils attenuate further neutrophilic influx (the second hallmark of resolution) by sequestering tissue-derived chemokines in their non-functional surface receptors. They also release α-defensin peptides which work in tandem with the pro-resolving lipid metabolites, promoting M1 macrophages to acquire an anti-inflammatory, pro-resolving M2 phenotype and commence the process of efferocytosis (21).
Ingestion of neutrophils initiates a positive feedback mechanism within the macrophages; encouraging up-regulation of pro-resolving and anti-inflammatory mediator secretion, synthesis of chemokine-targeting proteases and further efferocytosis of neutrophils. Once the macrophages reach their engulfment threshold they become 'satiated', lose their ability to respond to xenobiotic ligand recognition and migrate to the lymphoid organs, returning the alveolar cellular content to basal levels (23).

Where these mechanisms of resolution are impaired or outbalanced by the magnitude of pro-inflammatory stimulation, neutrophils and macrophages accumulate in the alveoli where they continue to secrete pro-inflammatory mediators, ROS and proteases. This activity transitions the response into chronic inflammation and leads to degradation of the proteinaceous structures of the parenchyma, driving a reduction in gas-exchange capability and development of fibrotic tissue (24). Together these factors propel the lungs towards pathophysiology, leading to the development or exacerbation of inflammatory diseases such as emphysema, chronic obstructive pulmonary disease (COPD), bronchiolitis, asthma, acute lung injury (ALI) or cystic fibrosis (CF).
1.2 Traffic related particulate matter and pulmonary inflammation

1.2.1 Traffic related particulate matter

As well as noxious gases, road transport activity expels heterogeneous mixtures of particulate matter (PM). Commonly divided into coarse (PM\textsubscript{10}), fine (PM\textsubscript{2.5}) and ultrafine (PM\textsubscript{0.1}) fractions (> 10 μm, < 2.5 μm or < 0.1 μm in diameter respectively), these materials can also be distinguished by source.

Approximately half of traffic related PM (TRPM) is expelled in the exhaust (25), through incomplete combustion of fuels and through volatilisation of lubricant oils during the combustion process. These particles are primarily carbonaceous, consisting of an elemental carbon core upon which organic compounds (including polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs), sulphates, nitrates, metals and bacterial endotoxins adsorb at trace levels (26,27).

The remaining particles originate from friction-induced wear of mechanical components such as the clutch or brakes, abrasion of the tyres, road surface and road furniture and re-suspension of dust from the road-surface (non-exhaust related PM)(28). These particles vary considerably in terms of composition with brake abrasion dust (BAD) being characterised by high concentrations of Fe, Cu, Zn, Zr, Sn and Sb (29,30) while tyre wear is found in association with road surface materials and contains large quantities of rubber hydrocarbons, carbon black and Si with only trace levels of other metals (29).

1.2.2: Associations between TRPM exposure and pulmonary inflammation

Considerable fractions of exhaust and non-exhaust PM fall within the inhalable and respirable size ranges (defined as ≤ 10 and 4 μm respectively) (31). As examples, 86 and 30% of BAD and road surface abrasion particles (respectively) contribute to total PM\textsubscript{10} and are inhalable beyond the larynx while a further 63 and 15% (respectively) are classified as PM\textsubscript{2.5} and can reach the unciliated airways (32,33). In contrast, fresh diesel exhaust particles
(DEP) are smaller than non-exhaust particles, with 92% possessing an aerodynamic diameter ≤ 1µm (34). These properties enable TRPM to deposit in a widespread manner along the respiratory tract with coarse particles impacting in the upper airways and fine and ultrafine particles sedimenting between the trachea and alveoli (35). Human activities (such as commuting and living amongst a rich road infrastructure) mean that exposure is ubiquitous for much of the population with TRPM contributing 25% of ambient PM$_{2.5}$ and PM$_{10}$ levels globally (36) and concentrating in heavily populated regions (37) and commuter routes (38).

Epidemiological studies consistently report that exposure to TRPM associates with the increased onset and prevalence of pulmonary inflammatory pathophysiologies in human populations. Such studies include analyses of hospital data which correlate ambient concentrations of PM$_{10}$ and PM$_{2.5}$ (of which TRPM is a major component) with admissions for asthma (39) acute bronchitis and pneumonia (40) and associate ambient PM$_{0.1}$ exposure with increased relative risk of admission for total respiratory diseases (41).

These findings are supported by analyses of symptom diaries and medical records which report greater prevalence and onset of chronic phlegm production, cough, asthma and COPD in adults and children who are exposed to high levels of urban PM$_{10}$ (42,43) or live in close proximity to major roadways (44,45). Furthermore, acute chamber exposures to fine and ultrafine ambient PM or DEP enhanced neutrophil and monocyte concentrations in the bronchoalveolar lavage fluid (BALF) and sputum of healthy volunteers (46,47) validating observations that TRPM exposure induces pulmonary inflammatory responses in vivo.

Concern surrounding TRPM-induced inflammation is enhanced by the breadth of sub-populations that possess biological or behavioural traits that make them more susceptible to pro-inflammatory stimulation by particles. Behaviourally these traits centre around exposure dosage and include the large number of individuals who commute long hours, live areas of high traffic density, work in transport, or spend a lot of time outside (38,48).
Biological susceptibility factors are varied and include age (children have immature lungs and immune systems while alveolar macrophage clearance is significantly reduced in the elderly) and polymorphisms in genes that encode antioxidants and components of inflammatory or detoxification pathways (48,49). They also encompass pre-existing, chronic inflammatory pathophysologies which are exacerbated by episodes of TRPM exposure, causing physiological deterioration, increased airway inflammation and mortality.

1.2.3: Mechanisms of TRPM-induced pulmonary inflammation

Although the molecular pathways by which TRPM induces and mediates pulmonary inflammation are not fully characterised, it is widely hypothesised that they are induced in response to oxidative stress (50,51) (Figure 1.3). This injurious state develops when concentrations of ROS (such as superoxide anions, hydrogen peroxide and hydroxyl radicals) outweigh concentrations of protective anti-oxidant enzymes and proteins, preventing them from being inactivated and excreted from biological environments (52,53). Usually electrons orbit the nucleus of their atom in pairs but in the case of ROS, unpaired electrons exist within the atomic nuclei and encourage the molecules to react indiscriminately with their neighbours to gain one of their electrons (oxidation and reduction). This becomes injurious where the neighbouring molecule is a lipid, protein or nucleic acid as the molecular structure of the target (including binding and active sites) can become impaired and lose or alter its function (53). Such damage occurs via three primary mechanisms; direct mutation of DNA structures, modification of caspases and enzymes required for DNA repair and peroxidation of lipids with downstream activation of the arachidonic acid pathway, resulting in the production of DNA damaging lipid metabolites (54).

The oxidative potential of TRPM has been demonstrated directly in acellular systems with hydroxyl radicals being produced by urban dust and diesel exhaust particles (55,56) and the antioxidants, glutathione and ascorbic acid being depleted from synthetic ELFs by carbon black (57). These activities are widely attributed to the synergistic actions of transition metal
ions and PAHs (58) which permit the particles to generate ROS through redox cycling with neighbouring molecules, resulting in a depletion of antioxidant pools (59).

Many of the metals that are found in high abundance on TRPM exist stably in more than one valence state, allowing them to catalyse electron transfer and generate ROS directly (59,60). Iron, for example, catalyses the Fenton reaction in its ferrous state, oxidising H$_2$O$_2$ to hydroxyl radicals and hydroxide ions while vanadium, chromium and cobalt produce ROS via the Haber-Weiss reaction. Such reactions can occur on the surface of particles, producing either surface bound ROS or within the ELF via the action of dissolved metal ions (61).

In contrast to metals, PAHs are chemically inert in their environmental form and require metabolic activation to display redox activity. Once metabolised to quinones by cytochrome P450 enzymes and epoxide hydrolases however, they are capable of redox cycling with hydroquinone and semiquinone structures and inducing endogenous ROS production by disrupting the mitochondrial electron transport chain (60).

The progression from oxidative stress to inflammation is induced by activation of redox-sensitive MAPKs and transcription factors (TFs) such as NFκB and AP-1. Following exposure to ambient PM or DEP, these key regulators of pro-inflammatory mediator expression have been demonstrated to be induced in a redox-dependent manner in airway macrophages and epithelial cells.
Figure 1. 3: Known mechanisms of TRPM induced inflammation: Following inhalation, TRPM deposits within the ELF where it is capable of inhibiting antioxidant enzymes and generating ROS through redox cycling and metal catalysed electron transfer reactions. As well as promoting extracellular ROS accumulation, many TRPM components are ligands for TLRs, stimulating cytokine, CAM and heat shock protein expression via MAPK dependent activation of NFκB and activating protein 1 (AP-1). Such activity is amplified at the level of MAPK stimulation by the oxidation products of interactions between internalised particles and cellular macromolecules and by ROS that is produced by ultrafine particles entering the mitochondria and disrupting electron transport chain activity. Similarly, heat shock proteins contribute a positive feedback mechanism, stimulating TLR activity in parallel to the TRPM.
Using these systems, increases in TF activity were attributed to the activation of stress related MAPKs which phosphorylated cytosolic subunits of NFκB and AP-1, activating them to translocate into the nucleus (62), enhance expression of cytokines, chemokines and ICAM-1 and promote cyclooxygenase-2 mediated secretion of PGE-2 (62–66). These findings have been supported by proteomic evidence that DEP induces a hierarchical oxidative stress response; stimulating transcriptional activation of phase II antioxidant enzymes at low concentrations, inducing pro-inflammatory NFκB mediated cascades at intermediate concentrations and causing mitochondrial damage and pro-apoptotic signalling at high concentrations (67).

Further to the redox-induced response, induction of NFκB and AP-1 signalling pathways is heightened by the activity of TLRs. Exposure to PM_{2.5-10} has been shown to enhance expression of TLR-4 in bronchial epithelial cells (BEC) (68) and to interact directly with TLR-4 and TLR-2 in cultures of airway epithelial cells and macrophages (69). Such activity may occur in a composition dependent manner with metal rich particles displaying affinity for TLR-2 and endotoxin-bound particles interacting with TLR4 (70). TLR signalling may also be enhanced by interactions with heat shock proteins such as Hsp70 which are over-expressed after exposure to PM_{2.5-10}, DEP and tyre wear particles (68,71,72) and have an affinity for TLR binding.
1.3: Biomarkers and their application to TRPM-induced toxicity

Biomarkers are indicators of molecular, biochemical, cellular or physiological changes that are measurable in biological samples following or during a response to an environmental exposure, therapeutic intervention or a pathophysiological event (73). In toxicology, biomarkers are used to quantify exposure to xenobiotic agents, characterise the mechanisms that underlie adverse responses to specific exposures and to predict likely responses to novel exposures or products (74). Importantly for the field of particulate toxicology, they may also be used as indicators for tissue damage that cannot be measured directly (75). In contrast to the field of medicine (which relies heavily on the use of prognostic and diagnostic markers), toxicological markers are categorised as representative of exposure, response or susceptibility according to the information that they provide (Figure 1.4). Internal exposure biomarkers include exogenous substances and their metabolites (e.g. PAHs and quinones) that can be detected within a biofluid or tissue (76). These markers can be especially advantageous for epidemiological studies because their concentrations are influenced by interpersonal variation in absorption, distribution and excretion of exogenous agents. Thus they can often provide a more robust indication of internal and target site exposure than estimations made using traditional biomonitoring methods (including personal and fixed site monitors). Instead, these traditional approaches measure exposure externally without providing evidence of which tissues are influenced by the exposure, the proportion of the substance/metabolite that interacts with them or the duration of interactions with specific metabolites of the substance (74).

Susceptibility markers include inherent or acquired features (primarily genetic polymorphisms) that facilitate responses to specific environmental challenges (76). Such markers generally influence the rates by which xenobiotics are metabolised following exposure, affecting the balance between phase I (bio-activation) and phase II (conjugation) metabolic activity by altering the expression or kinetics of metabolic enzymes and their receptors (77). As examples, individuals with enhanced cytochrome P450 (CYP) activity (a
phase I metabolic enzyme) may produce higher concentrations of toxic metabolites following xenobiotic exposure while individuals with decreased phase II enzyme expression will detoxify and excrete harmful metabolites at a lower rate.

Response biomarkers represent the adverse or adaptive biochemical changes that occur within cells, tissues and biofluids following xenobiotic exposure (76). They include induction or repression of gene expression, alterations in circulating metabolite profiles, production of antibodies for specific xenobiotics and the appearance of DNA adducts. Clara cell secretory protein (CC16) is a prominent example of a response biomarker used in respiratory toxicology. Synthesised primarily by Clara cells of the tracheobronchial tree, concentrations of this anti-inflammatory protein are altered in BALF and serum following exposure to inflammatory agents (78,79). Such changes occur as a result of compromised epithelial integrity (80), meaning that movement of CC16 into the serum can be used as a marker of pulmonary epithelial damage.

Compared with exposure or susceptibility biomarkers, response markers are most informative during characterisation of toxicity mechanisms. In contrast to exposure biomarkers, response biomarkers are generally facilitators, regulators or products of biochemical pathways and thus provide indications of which pathways are induced or inhibited downstream of exposure. Furthermore, changes in the concentration or expression of response biomarkers demonstrate that the pathways alterations have already occurred, rather than have the potential to occur as susceptibility markers might suggest.

As such, our understanding of the mechanisms that mediate TRPM-induced pulmonary inflammation could be progressed through identification of response biomarkers that represent the molecular interactions and pathways that are involved in the process. Unlike existing exhaust exposure markers (such as urinary amino-PAHs (81,82) and phenanthrene (83)) and susceptibility markers (including polymorphisms on chromosome 17, chromosome 11 and the CYP1A1 gene (84,85)) they could provide evidence of which molecular and cellular functions are influenced by TRPM exposure.
While response biomarkers may be sought from tissues, cells or biofluids (73), detection using non-invasively accessible samples is an attractive proposition. Traditionally, studies of pulmonary inflammation have used tissue biopsies but this option can be painful and is ethically challenging, leading to a scarcity in samples obtained from healthy subjects that are not confounded by underlying pulmonary diseases or cancers. Similarly, collection of BALF samples for the detection of inflammatory cell infiltrates is highly invasive and thus, does not appeal widely to study participants.

In contrast, samples such as blood, urine or breath condensates can be obtained quickly and painlessly, encouraging greater study participation in healthy populations and in patients with existing pulmonary complications for whom invasive, non-critical procedures are inadvisable (86). As a result, detection of response biomarkers that exist within these accessible samples because of TRPM exposure would enable the adverse outcomes of TRPM exposure to be detected, characterised and monitored in large human cohorts. This would enhance the representability of study cohorts to the population as a whole and provide physiologically relevant models for mechanistic characterisations.
Figure 1.4: The nature and interplay of relationships between biomarkers following the response to an environmental exposure. Concentrations of xenobiotics within the primary site of exposure provide simple markers of internal dose providing the pharmacokinetic properties of the xenobiotic are measurable or understood. The rate at which the xenobiotic is metabolised (if at all) and the products that these reactions produce provide markers for cellular responses that are induced by the exposure, information regarding individual susceptibility to the toxicity and measures of exposure that incorporate the pharmacokinetic properties of the molecule. Biomarkers that illuminate interactions between primary and secondary response sites may be detected within the blood, along with xenobiotic metabolites that are excreted from the primary tissue. Further excretion via the urine or reabsorption of metabolites into non-primary tissues make these biomarkers transient in nature but also facilitates measurement of effective doses in target tissues. The outcomes of interactions between the xenobiotic, its metabolites and host cells may be detected through biochemical changes at primary and non-primary sites. Such changes provide mechanistically relevant biomarkers for the pathways involved in adaptation to exposure or cellular repair and may be used to explain the appearance of pathological changes (Adapted from Timbrell et al. (74)).
1.3.1 Hypothesis-driven response biomarker discovery

It has been suggested that markers of responses to chemical exposures (such as the pulmonary response to TRPM exposure) should link backwards to the source of exposure and forwards to the downstream effects of the exposure (87), thus belonging to the ‘response’ category whilst correlating strongly with measurements of exposure. In relation to exhaust PM exposure, multiple groups have identified markers that meet these criteria, associating TRPM exposure with traditional parameters of toxicity. As examples, ambient DEP and carbon black concentrations have been shown to correlate with decreased CC16 concentrations in BALF (88,89) and with enhanced levels of circulating ICAM-1 (a marker of vascular endothelial dysfunction) (90). Biomarkers for pulmonary responses to non-exhaust particles are yet to be sought specifically but exposure to total truck emissions has been correlated with concentrations of the urinary oxidative stress marker 8-hydroxy-2’-deoxyguanosine and circulating IL-6 with a plausible contribution from metallic non-exhaust PM (81).

These studies have been of considerable value epidemiologically; confirming that the inflammatory and oxidative endpoints that have been observed in vitro following TRPM exposure also develop in human lungs under real world exposure conditions. They are however, limited in terms of expanding our understanding of the molecular mechanisms that initiate and propagate TRPM-induced responses because they are hypothesis driven in nature; quantifying cellular processes that are already established as TRPM-associated.
1.3.2 Data-driven biomarker discovery

Recent advances in high throughput technologies and multivariate statistical analysis are helping toxicologists to augment hypothesis-driven approaches to biomarker discovery (75). ‘Omics’ is a linguistic umbrella term that encompasses a number of high throughput approaches that can quantitatively and qualitatively characterise the expression profiles of different molecular species within bio-samples, measuring 100s-1000s of variables simultaneously (91).

The range of molecular species that can be examined in this manner has increased rapidly over the past decade and includes genomic sequences, expressed genes, proteins, lipids, metabolites, epigenetic features and microRNAs (miRNAs) (91), most of which are easily detectable in accessible bio-fluids. In contrast to the hypothesis-driven approach to biomarker discovery, the initial analyses are agnostic in nature and statistical comparisons of changes in the expression patterns of these molecules after experimental exposures tend to highlight panels of molecules that contribute to cellular responses to the stimulus (92). Collectively, these molecules possess strong biomarker potential which can be harnessed for mechanistic exploration using computational pathway based approaches to identify which cellular processes and molecular interactions they represent. These approaches (including enrichment and over-representation analyses (ORA)) search databases of manually curated pathway annotations for statistically significant overlaps between the panel of biomarker molecules and the molecular content of hundreds of previously characterised pathways. The hypothesis-free manner of these searches means that novel relationships can be discovered between phenotypes and pathways, furthering knowledge of how that phenotype develops (93).

The potential that omics-based biomarker discovery has to further our understanding of pulmonary responses to TRPM exposure has been demonstrated indisputably by Xiao et al. (2003). Using proteomic screens, the group showed that DEP exposure stimulated an 8-fold increase in new protein expression in RAW 264.7 macrophages that was reflective of a
hierarchical response to oxidative stress. After low exposure doses (≤ 10 µg/ml) the macrophages up-regulated synthesis of antioxidant enzymes, after mid-exposure doses (10-50 µg/ml) they produced pro-inflammatory signalling proteins and after cytotoxic exposures (≥ 50 µg/ml) they synthesised additional regulators of mitochondrial function and apoptosis (94). While many of these proteomic changes validated hypothesis-driven knowledge of how macrophages respond to exhaust particle exposure, others (including the induction of receptor-induced apoptosis) were previously uncharacterised (94). These newly identified changes provided novel biomarkers for pathways that are triggered by DEP-induced oxidative stress, progressing our understanding of the response.

Transcriptomic and metabolomic screens have also associated DEP exposure with cellular processes that occur downstream or in tandem with inflammation, thus providing more information than can be achieved through quantification of cytokines or cellular infiltration alone. Microarrays have indicated that bacterial phagocytosis (a process consistently found to be impaired by DEP exposure (95,96) and regulated by cytokines (97)) may be influenced by alterations in expression of genes that reflect cytoskeletal rearrangements (98) while metabolomic screens have detected changes in rates of energy metabolism (99,100) that may be caused by immune cell infiltration and activity (101).

1.3.3: Multi-omics approaches to data-driven biomarker discovery

Biological entities have a complex content; alterations in the expression of individual molecular species, their regulation and their activity is highly dependent on that of the other molecular species. For example, gene expression is dependent on the presence and transcription of intact genetic sequences and influences rates of protein synthesis, having downstream effects on protein-protein interactions and metabolic reactions (91) (Figure 1.5). As such, the mechanistic value of omics-derived biomarkers can be enhanced by integrating multiple types of dataset e.g. metabolomic and transcriptomic or proteomic and miRNomic profiles (102).
In the context of TRPM exposure, this concept is supported by transcriptomic validation of Xiao et al.’s hierarchical proteomic response to DEP exposure (detailed above). Koike et al. (2002) demonstrated that exposure to DEP at 10 μg/ml induced expression of genes that encode pro-inflammatory mediators but not antioxidant enzymes (103) and Jardim et al. (2009) indicated that such changes could be induced by miRNA regulation of canonical signalling pathways (104).

Multi-omics analysis is often achieved using a split study design, whereby multiple samples are harvested from a single experimental set up and split by volume or by fraction for data acquisition using separate platforms. The resulting data can be integrated to three levels; conceptual where biomarkers are sought from the datasets separately and the conclusions matched, statistical where associations such as correlations are sought between features of both datasets and model based where parameters of one biomarker can be predicted by known parameters of another (102). These systems approaches encompass the interconnecting nature of molecular networks and can provide the added benefit of validating conclusions drawn from single omics analyses (102).

When designing analytical workflows for experiments that aim to integrate data from multiple molecular platforms, it is important to consider the nature of relationships that exist between the different molecular species. Proteomic data (for example) can be linked directly to the transcriptome, providing a strong rationale to seek correlations between the two datasets but expression of an enzyme-encoding gene and activity of that enzyme as part of a biochemical pathway are separated by multiple regulatory steps (Figure 1.5) with variable time-courses. As such, strong correlations are not always seen between transcriptomic and metabolomic data meaning that conceptual integration via ORA can be a more informative and reliable option (102), particularly where mechanistic links are sought between different species of biomarkers. Indeed, Cavill et al. (2011) found that pathway level integration of transcriptomic and metabolomic data improved the detection rate of mechanistically relevant
pathways by 76% when applied to the context of chemotherapeutic-induced responses (105).

1.3.4: Integration of microtranscriptomic and metabolomics datasets

Recently, pathway-based approaches have been used to integrate microtranscriptomic (referring to the complement of miRNAs within a sample) and metabolomic datasets (to be presented in detail shortly). By including differentially expressed miRNAs and disease-associated metabolites in a combined ORA, miR-642 and 142 were identified as drivers of disrupted phospholipid homeostasis in varicose vein development (106). Similarly, alterations in energy metabolism pathways have been associated with miR-122 activity during a study that used cellular models to verify predicted links between changes to the microtranscriptome and metabolome following gastric bypass surgery in vivo (107).

Metabolomic and microtranscriptomic profiles may contribute mechanistically relevant insights independently, but this integrative approach enables an additional depth of mechanistic detail to be harvested from the data. By identifying pathways that are significantly altered at both molecular levels, it demonstrates how dysregulation of post-transcriptional regulatory networks can contribute to changes in metabolic reactions under experimental or pathophysiological conditions.

Only a few studies have explicitly explored the possibility that miRNA networks contribute to regulation of metabolic processes during toxicological responses (108,109). However, targeted studies indicate that a range of miRNAs regulate xenobiotic bioactivation and distribution by targeting transcripts for CYP450 enzymes and ATP-binding cassette (ABC) transporters (110). Given that bioactivation of PAHs by CYP450 enzymes is strongly implicated in TRPM toxicity (60) and that exhaust PM is thought to regulate xenobiotic transporter expression through activation of aryl hydrocarbon receptor cascades (111) it is likely that these interactions between the microtranscriptome and metabolome can be detected in relation to TRPM-exposed samples.
By performing pathway-based integrations of global and agnostic miRNA and metabolite profile data, it should be possible to extend associations between the microtranscriptome and metabolome to cellular processes that occur downstream of TRPM bioactivation. Integrated Molecular Pathway-Level Analysis (IMPaLA) is a publically available web-tool that performs a combined pathway ORA using differentially expressed genes and feature metabolites (105). By identifying pathways that are significantly over-represented at both molecular levels, this tool highlights which metabolic pathways are contributed to by changes in the transcriptome. If the transcriptomic input consisted of predicted targets of TRPM-associated miRNA biomarkers, analysis using IMPaLA could produce hypotheses for how TRPM-induced changes in the metabolome are regulated at the post-transcriptional level. This would enhance the mechanistic value of both the miRNA and metabolite biomarkers that contribute to the pathways and accelerate characterisations of cellular responses to TRPM exposure.
Figure 1.5: Omics profiles are influenced by regulators of transcription, translation and protein-protein interactions. Complexity of the transcriptome is contributed to by factors including alternative splicing of mRNA transcripts (112), the presence of activator or silencing proteins and enhancer sequences (113), epitranscriptomic modifications and posttranscriptional RNA editing (114). In addition to these factors, protein abundances may be influenced by miRNA activity, integrity of premRNA processing and the availability of ribosomes and transfer RNA (115). The metabolome represents the output of protein activity and is thus influenced by regulators of the transcriptome and proteome along with integrity of peptide folding, post-translational protein modifications (e.g. activating phosphorylation), correct cellular localisation or substrates and enzymes, and the presence or absence of protein degradation signals or inhibitors (116)).
1.4 miRNAs

miRNA have strong potential for use as non-invasive and mechanistically relevant biomarkers due to their major contribution as regulators of the eukaryotic genome, their relative stability and their rich presence in accessible biofluids. Discovered in 1993, miRNAs are endogenous single stranded non-coding RNA molecules of approximately 19-24 nucleotides (nt) that function to regulate gene expression at the post-transcriptional level (117). To date ~ 28650 miRNAs have been discovered in human samples (118) and due to their ability to regulate hundreds of different genes each, are estimated to control the expression of more than 60% of human protein encoding genes and contribute to the activity of almost every genetic pathway (117). As such, miRNA biomarkers have the potential to provide a considerable amount of information regarding the pathways that are dysregulated in response to an environmental exposure.

1.4.1 Biogenesis of miRNAs

miRNAs are encoded by stem loop structures which disseminate throughout the genome, residing individually or as polycistronic clusters within the introns or exons of protein-coding genes (intragenic) or between transcriptional units (intergenic). In response to transcription factor activity, miRNA genes are transcribed into primary transcripts (pri-miRNAs) by RNA polymerases II and III (for intra and intergenic miRNAs respectively). These molecules can be several kilobases long and, like mRNA transcripts, possess 5’ caps and 3’ polyadenylated tails. As the pri-miRNAs are transcribed, Drosha (a ribonuclease III like endonuclease) cleaves them into shorter (~65 nt) precursor miRNA transcripts (pre-miRNAs) that fold into hairpin loop structures and display a 2nt 3’ overhang that signals for them to be transported from the nucleus into the cytoplasm by exportin 5 nuclear export factors (117,119,120).

Within the cytoplasm pre-miRNAs interact with Dicer (a second ribonuclease III like endonuclease) that cleaves the loop, creating double stranded duplexes of 19-24 nts which complex with ribonucleoproteins including argonaute (Ago) proteins to form a miRNA
inducing silencing complex (miRISC)) (117,119,120). This complex is activated through selection of guide and passenger strands within the duplex; the strand with least thermodynamic stability at its 5’ terminus (the guide strand) is incorporated into the complex while the remaining strand (the passenger strand) degrades or unwinds from the duplex (121) (Figure 1.6).

1.4.2 Post-translational regulation by miRNAs

The miRISC is directed to target mRNAs via the ‘seed’ sequence of the incorporated miRNA. This 6-8 nt sequence is located at the 5’ end of the molecule and binds via Watson-Crick complementarity to ‘seed match’ sequences within the mRNA transcript (often within the 3’ untranslated region). These miRISC-mRNA interactions are well documented to repress synthesis of the target peptide, causing site-specific cleavage or enhanced degradation of the mRNA transcript, inhibition of translation or proteolytic degradation of newly translated peptides (Figure 1.7).

The mechanism of repression that follows miRNA-mRNA binding depends partially on the degree of complementarity that exists between the miRNA seed and mRNA seed match sequences but is also influenced by the selection of Ago proteins that are present in the miRISC (122). In cases of perfect or near perfect matching, the miRISC is able to degrade the target mRNA via endonucleolytic cleavage but only where a catalytically competent Ago is present. This mechanism, referred to as RNA interference, is common in plants but mammals possess only one Ago protein that is capable of cleaving mRNA (Ago2) and their miRNA-mRNA duplexes are often interrupted by mismatches or gaps (122). In contrast, all four mammalian Ago proteins (Ago1-4) are capable of performing non-cleavage based mechanisms of repression and commonly do so where mismatched pairing occurs.
Figure 1.6: Biogenesis of miRNAs. Following transcription by RNA polymerase II or III, pri-miRNA transcripts are cleaved into shorter pre-miRNA molecules by Drosha endonucleases. Pre-miRNAs are bound by exportin 5 nuclear transport factors which transfer them across the nuclear membrane and into the cytoplasm. Within the cytoplasm, the hairpin loop structure is cleaved from the pre-miRNAs by Dicer endonucleases and the resulting miRNA duplex separates into single stranded guide and passenger strands. While the passenger strand is degraded, the guide strand complexes with RBP to produce a mature miRNA molecule.
Eukaryotic translation has 3 major phases; ribosomal initiation (during which an 80S ribosomal complex forms at the mRNA start codon), elongation (where new peptides are synthesised) and termination (where complete peptides are released from the ribosome) (123,124). A number of studies have indicated that miRISCs interfere with stability of the ribosomal initiation complex (14,125,126) and that they do so through interactions with GW182 family proteins (127) which bind Ago proteins subsequent to miRISC formation (128).

miRISC-bound GW182 proteins interact with cytoplasmic poly-adenylated binding proteins (PABP) that localise with the poly-adenylated (poly-A) tails of transcribed mRNAs. This interaction inhibits circularisation of the mRNAs (a pre-requisite for efficient translation) by reducing the affinity of PABPs for the poly-A tail, preventing the PABPs from complexing with 5’ cap-bound initiation factors and accelerating deadenylation of the poly-A tail by recruiting deadenylase complexes to the transcript (129). This deadenylation causes initiation factors to dissociate from the mRNAs, preventing them from entering into translation and encourages them to aggregate within cytoplasmic processing bodies (P bodies). There they are sequestered reversibly or further deadenylated, decapped by 5’ decapping factors and degraded via the 5’ to 3’ exonucleolytic mRNA decay pathway (130).

The majority of evidence that the miRISC represses translation via these mechanisms originates from polysome sucrose density gradient experiments that show that miRNA-repressed mRNAs shift to the lighter portion of the density gradient in response to poor ribosomal loading (14,125,126). Some of these studies, however, have produced contrasting results, showing no difference between the distribution patterns of repressed and non-repressed transcripts and suggesting that post-initiation mechanisms such as nascent polypeptide degradation, premature termination or impaired elongation may also contribute to miRNA-induced translational repression (123,131,132).

Despite the number of studies that support the down-regulatory nature of miRNA activity, evidence has emerged to suggest that they are also capable of stimulating target translation
under specific cellular conditions (Figure 1.7 E) and that a single mRNA may be differentially regulated by multiple miRNAs (119). miR-373 for example, induces expression of E-cadherin in prostate carcinoma cells (133) while miR-206 upregulates krüppel-like factor 1 expression in confluent renal epithelial cells (134).

Mechanistically, it is thought that ribonucleoproteins within the miRISC (including Ago2) act in trans (binding of a separate regulatory factor to a sequence near to the target gene) to promote expression of target mRNAs. While not fully characterised, this may be through direct interactions with the transcript such as the formation of closed loop structures (135) or via inhibition of repressive protein interactions (136). Additionally, miRNAs may compete with mRNA decay pathways and other expression inhibitors (119). As examples, miR-466 up-regulates IL-10 expression by binding to adenylate-uridylate-rich elements (ARE) on the IL-10 promoter and inhibiting interactions with tristetrapolin (a mediator of the ARE mediated decay pathway) (137).

1.4.3: miRNAs as accessible biomarkers of pulmonary inflammatory responses to TRPM exposure

In 2008, Chim et al. showed that placental miRNAs exist within the maternal plasma, making the pioneering discovery that tissue-derived miRNAs are detectable in distal human biofluids (138). This observation was rapidly validated by Lawrie et al. (2008) who detected lymphoma tumour miRNAs within the serum of patients (139) and by Chen et al. (2008) who suggested that serum miRNAs be used as biomarkers for pathological states having determined that they resist nuclease activity and display reproducible and consistent expression patterns between individuals (140).

Since their discovery in plasma and serum, extracellular miRNAs have been detected in all tested human biofluids including saliva, urine, bronchial lavage and pleural fluid (141)
Figure 1. 7: Mechanisms of post-transcriptional regulation by miRNAs. In the absence of complimentary miRNAs, mRNA transcripts are bound by eukaryotic initiation factors (eIF) at the 5’ cap and by PABP, enabling their circularisation and translation by ribosomes (A). Perfect pairing between a miRNA and its target facilitates endonucleolytic cleavage of the mRNA by miRNA-bound Ago2 proteins (B) while imperfect pairing of miRNA to the transcript results in GW182 mediated deadenylation of the 3’ poly-(A) tail, dissociation of PABP and potential degradation of the 5’ cap and transcript (C). miRNAs may also encourage dissociation of ribosomal subunits from the transcript of mediate degradation of nascent polypeptides (D). Under specific cellular conditions, miRNAs enhance translation, potentially by inhibiting interactions between mRNA transcripts and translational suppressors (E).
making them a sensible molecular species to investigate in relation to accessible biomarkers. Packaged within microvesicles or complexed with Ago proteins they are protected from degradation by nucleases and are exchanged between cells via exosome-mediated transport to facilitate intracellular/inter-organ communications (142). Suggestions for their use as biomarkers were supported by further discoveries that the relative composition of total miRNAs varies between biofluids (141) and that it alters under a range of pathophysiological conditions (143). Furthermore, evidence that extracellular miRNAs alter the proteome of target cells (144,145) and can be synthesised specifically for export (146,147) indicates that their presence in biofluids holds great mechanistic value.

The possibility that mechanistically-relevant, extracellular miRNAs could be secreted by pulmonary tissues during inflammatory responses to TRPM exposure is supported by evidence that NFκB–mediated responses to DEP are accompanied by significant microtranscriptomic alterations (~200) in BECs (104). This response includes up-regulation of miR-21 and its downstream pI3/AKT signalling pathway (148) and of miR-375; a suppressor of aryl hydrocarbon receptor expression (required for transcriptional control of PAH metabolism) (149). Indicating that these responses may relate to additional exhaust particle species, mir-21 has also been shown to be up-regulated in the lungs of mice following exposure to carbon black particles, along with miR-135b and 146b (150).

Supporting translation of these microtranscriptomic changes into biofluids, Rodosthenous et al. (2016) found that dysregulation of the extracellular serum microtranscriptome associated significantly with 6 and 12 month moving averages for ambient PM_{2.5} exposure in elderly individuals and that many of the implicated miRNAs contributed to regulation of oxidative stress and inflammatory pathways (151). Similarly Bollati et al. (2016) detected 5.6 and 14-fold increases in the expression of microvesicular miR-128 and 302 in the plasma of steel plant workers following 3 days of occupational exposure to metallic particles (152), indicating that this component of TRPM could be a key contributor to microtranscriptomic changes.
While useful as indicators that *in vivo* response to TRPM exposure can be detected using the extracellular microtranscriptome, the value of the biomarkers identified in the above-mentioned studies is limited by the fact that the miRNA signatures are not always organ specific. miR-302 for example, is secreted into the serum by adipose tissue (153) while miR-128 is used as a prognostic marker of hepatocellular carcinoma (154). As PM$_{2.5}$ exposure has been shown to cause oxidative stress in adipose tissue (155) and the liver following translocation from the lungs (156), it is possible that changes in the serum concentrations of these miRNAs may be contributed to by extra-pulmonary mechanisms. Supporting this observation, monocytes, granulocytes and leukocytes have all been shown to alter their patterns of miRNA expression following inhalation of metallic or carbonaceous particles (157–159). As such, it would be useful to identify those that show greatest specificity to the lung because this would help anchor any markers of pathophysiological mechanisms to the tissue from which they were produced.

1.4.4: Methods for deriving miRNA biomarkers

Detection of miRNA biomarkers generally requires the comparison of expression profiles between two or more experimental groups (known as differential expression analysis (DEA)) to identify miRNAs that associate strongly with the experimental condition of interest. Changes in expression across the groups are usually articulated as a fold change that is assessed statistically for significance, and observes the need to account for multiple testing (160). Input for DEA of miRNAs is generally produced via one of two methods; microarray hybridisation or next generation sequencing (NGS), both of which have advantages and limitations relative to one another and with regards to the application of biomarker detection (Table 1.1).

Microarrays were amongst the first transcriptomic profiling methods that were optimised for use with miRNAs and are still used extensively because of their cost-effectiveness (161). Microarray chips capture fluorescently labelled miRNAs using complimentary oligonucleotide
probes. The concentrations of these captured miRNAs are quantified relative to endogenous controls using their fluorescence intensity as a proxy for sequence abundance. Whilst able to measure thousands of miRNAs simultaneously and at a lower cost than real time quantitative polymerase chain reactions (RTqPCR) based methods, microarrays are limited in terms of biomarker detection by their inability to distinguish between closely related sequences (such as family members), their restriction to pre-selected miRNA targets and saturation of the probes for highly abundant species (160,161).

NGS avoids these limitations, allowing miRNAs (including novel species) to be quantified in an untargeted manner and differentiated to the degree of single-nucleotide variations. NGS requires miRNAs to be reverse transcribed and fragmented to produce a cDNA library that is amplified and purified before being attached to an oligonucleotide-coated solid phase via 5’ adaptors. Each library fragment undergoes amplification to produce distinct clonal clusters before being flooded with deoxynucleotides (dNTPs) in cycles (e.g. guanosine, cytosine, thymine then adenine). The sequences of each cluster can be established using a variety of techniques that detect the complimentary pairing of the dNTPs to the cDNA. As examples, Illumina NGS platforms measure the wavelength and intensity of fluorophore-conjugated dNTPs at the end of each cycle (162) while semi-conductor sequencing methods measure localised changes in charge that are produced by the release of H+ as nucleotides are incorporated to the growing DNA strand (163). Using bioinformatic tools to align the output against reference genomes for the organism of interest, it is possible to identify and quantify millions of miRNAs in a simultaneous and timely manner (reviewed by Liu et al, 2011 (164)).

Differential expression of miRNAs and their applications as biomarkers are generally validated using RTqPCR. Of the techniques available, RTqPCR is the most accurate, has the widest dynamic range and is most cost-effective for the measurement of few transcripts. Additionally, it is the only technique that can produce absolute expression values (160). Due to the small size and lack of a universal sequence (such as a poly-A tail), miRNAs must be quantified slightly differently to mRNAs; Taqman reagents employ a stem-loop primer that
binds complimentarily with the 3’ end of the miRNA while the SYBR method includes polyadenylation of the 3’ terminus to aid ligation of a sequence-specific reverse primer (160).

Table 1.1: Comparative summary of the beneficial and limiting features of techniques used for miRNA biomarker detection

<table>
<thead>
<tr>
<th>Feature</th>
<th>Microarray</th>
<th>NGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Relatively low per sample (compared with NGS)</td>
<td>High but improving with technological advancements and the use of library barcoding</td>
</tr>
<tr>
<td>Number of parallel quantifications</td>
<td>Thousands (Can be performed in a targeted manner)</td>
<td>Millions (Untargeted)</td>
</tr>
<tr>
<td>Discriminatory power</td>
<td>Imperfect specificity for closely related sequences, capture probes susceptible to cross-hybridisation</td>
<td>Differentiates between sequences that differ by one nucleotide (e.g. miRNA family members)</td>
</tr>
<tr>
<td>Quantification range</td>
<td>Limited at the upper range by capture probe saturation</td>
<td>Sensitivity enables quantification of low copy number miRNAs</td>
</tr>
<tr>
<td>Exploratory potential</td>
<td>Limited to known sequences</td>
<td>Capable of identifying novel miRNAs</td>
</tr>
<tr>
<td>Data processing</td>
<td>Normalisation to endogenous controls</td>
<td>Less well-developed normalisation procedures</td>
</tr>
</tbody>
</table>
1.6: Metabolites and the metabolome

Metabolites are the complement of small molecules (≤ 1.5 kDa) that are formed as intermediaries or products of enzymatic reactions (165). The term ‘metabolic pathway’ refers to a series of these reactions which serves to alter the structure and ultimately the function (or ability to function) of a parent compound. Such pathways may be anabolic, incorporating molecules such as amino acids or fatty acids into larger structures like glycoproteins or phospholipids, or catabolic where the parent compound is separated (e.g. via oxidation) into smaller molecules that are generally destined for excretion (165).

Historically, metabolites have been classified as endogenous (arising internally as products of major biosynthetic, energetic and catabolic pathways and regulated by host enzymes and transporters) or xenobiotic (arising from external or chemical sources but able to be metabolised by endogenous enzymes) and have been studied as distinct entities during pathway analysis. Realistically however, endogenous and xenobiotic metabolites represent the extremes of a continuous spectrum of metabolites that is composed of multiple intermediate categories and requires integrative approaches of study (166).

Sym-endogenous compounds for example, include dietary-derived amino acids, lipids, vitamins and co-factors that are essential to endogenous function but are not encoded for by the host genome. Contrastingly, sym-xenobiotic molecules such as hippurate are not essential for endogenous function; produced by exogenous genomic sources such as the pulmonary or gut microbiota, they impact on the rates of essential reactions by interacting with, and competing for endogenous metabolic resources. Trans-xenobiotic compounds present an intermediate between sym-xenobiotic and xenobiotic metabolite classes. Despite originating from external or chemical sources, they can be converted into endogenous metabolites by specific host tissues (166). A prime example is ethanol which is converted to acetaldehyde by hepatic alcohol dehydrogenases and then to acetate by acetaldehyde dehydrogenase; a substrate for multiple biosynthetic and energetic pathways (167).
The ‘metabolome’ refers to the full complement of metabolites (from endogenous to xenobiotic) that exists within an organism, biofluid, tissue or cell at any given time (168). Within these biological systems, the metabolome is highly complex and covers a wide chemical space (169). Not only is it the product of multiple enzymatic systems with variable substrate affinities and reaction rates (170) but it is strongly influenced by environmental exposures such as diet or stress (169). Such exposures contribute to the highly dynamic nature of the metabolome, altering the activity of biosynthetic, degradation, biotransformation and excretion pathways and contributing to the value of the metabolome as a source of mechanistically relevant response biomarkers.

1.6.1: Metabolic profiling for biomarker identification

The terms ‘metabolomics’ and ‘metabonomics’ describe a top-down systems approach and its dynamism to characterising the metabolome (171). Focused on characterising experimentally or environmentally-induced changes to metabolic profiles, such analyses can be targeted to investigate specific adverse response pathways or molecular species (172,173). Alternatively (and in the case of most de novo biomarker identification studies) they can be global in nature, employed to document the metabolic profiles of biological samples and to investigate the effects that stimulus exposures have on the metabolome (174,175).

Metabolic profiling offers a complementary approach to other omics platforms. Although changes in the transcriptome and proteome are useful for elucidation of molecular response mechanisms, there are cases where mRNA and protein biomarkers are difficult to relate to toxicological end points (175). In vivo exposure to ethanol, for example, induces widespread alterations in gene regulation but not all of the changes contribute to the drunkenness phenotype (171,176).
In contrast, metabolites (as the products, intermediaries and substrates of biological pathway activities) represent the result of all interconnecting upstream molecular changes (171) making them mechanistically relevant to toxicity phenotypes independent of which molecular profiles were altered by the exposure (175). As an example, mitochondrial toxicity may be eluded to by changes in the abundance of respiratory enzymes, but is better represented by changes in the concentrations of the enzyme products (177,178) as these provide evidence that changes to the reaction rates have occurred rather than have the potential to occur.

This feature, along with the fact that metabolomic profiling methods are comprehensively optimised for use with accessible biofluids (179–181) suggests that metabolic profiling would be an appropriate method to employ during the search for mechanistically relevant biomarkers of pulmonary responses to TRPM exposure.

1.6.2: Metabolic profiling for the detection of TRPM-associated biomarkers

Supporting this suggestion, metabolomics approaches have proved a successful aid for detecting novel biomarkers of pulmonary responses to exhaust PM and for developing hypotheses for which cellular pathways they represent. Leading this work, Oeder et al. (2015) performed a conceptual-level integration of metabolomic, proteomic and transcriptomic profiles which identified associations between shipping exhaust particles and reductions in glycolysis, glycine metabolism and pyrimidine metabolism in airway epithelial cells. Interestingly, the study also found that metallic heavy fuel oil PM augmented a greater number of inflammatory and oxidative stress pathways than non-metallic DEP which induced a broader biological response at all omics levels (100). Together, these findings indicate that metallic non-exhaust particles may also yield mechanistically relevant biomarkers at the metabolomic level; a notion that is supported by evidence that metallic particles augment the upstream transcriptome and proteome in pulmonary cells (182,183) and that ambient PM$_{2.5}$ enhances expression of metal binding genes in alveolar macrophages (184).
Through measurement of the human BALF metabolome, Surowiec et al. (2016) demonstrated that TRPM-induced changes to the metabolome are translatable to accessible biofluids. The group showed that exposure to biodiesel reduced concentrations of ATP synthesis intermediaries in BALF and enhanced concentrations of lipid catabolism products from cell membranes of the peripheral airways (185). Subsequently Brower et al. (2016) found that markers of decreased ATP synthesis were detectable in the circulation following exhaust PM exposure in mice and that they were accompanied by increases in serum concentrations of pro-inflammatory lipid products and anti-oxidant molecules (186).

Support for including metabolic profiling methods in microtranscriptomic searches for TRPM response biomarkers arises from evidence that ambient particles (including highly metallic species) can interact directly with superoxide dismutase and glutathione peroxidase enzymes and inhibit their activity downstream of exposure (187). These enzymes are central contributors during anti-oxidant responses to ambient PM exposure (187) but loss of their activity would not be detected during microtranscriptomic analysis of TRPM responses because the toxicity mechanism is exerted downstream of translation. Downstream changes to the metabolome however, have the potential to encompass such mechanisms and could provide evidence of their activity following exposure to different species of TRPM.

1.6.3: Methods employed for metabolic biomarker detection

As well as > 29,000 endogenous metabolites, the human metabolome is expected to contain approximately 40,000 products of xenobiotic, dietary and microbial metabolism (188). While quantification of the entire metabolome is difficult, or perhaps impossible, in biological systems (189), the use of 1H nuclear magnetic resonance (NMR) spectroscopy and/or mass spectrometry (MS) coupled with gas or liquid chromatography generally provides sufficient coverage to identify alterations in pathway activities (190). Focusing on accessible biofluids, more than 24,500 compounds have been detected in human blood samples while 4,000 have been measured in the urine using these techniques (191).
Metabolic profiles are produced in the form of spectra; collections of peaks that relate to the intensities and chemical structures or masses (for \(^1\)H NMR or MS respectively) of the metabolites that exist within a sample. In MS, these signals are produced by ionising chromatographically separated molecules at an ion source to produce a gaseous phase. Ions within this phase are separated based on their mass to charge ratio (which is characteristic and distinctive to each molecule) within a mass analyser and focused towards a detector which recognises the different ions and calculates their relative abundances, creating peak signals (192). In contrast, \(^1\)H NMR signals are generated by the motion of protons flipping between two energy states following excitement by a high frequency pulse when a sample is placed within a magnetic field (193). Fourier transform of the signal creates a chemical shift (a measure that is influenced by the electronic and chemical environments within molecular groups) that is displayed against signal intensity upon spectra, again producing characteristic peak patterns for different metabolites (193).

MS methods benefit from exquisite detection sensitivity (within the pM-µM range) (194), making them especially useful for the detection and structural corroboration of metabolites that naturally occur at low concentrations in biofluids (such as those produced during 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine metabolism (195)). Such sensitivity permits detection of \(\geq 1000\) small molecules within a single sample (194) which, with methods optimised for urine and serum/plasma samples (196,197), offers strong potential to identify exposure or organ-specific biomarkers in accessible biofluids (198).

In contrast, \(^1\)H NMR is less sensitive, permitting annotation of \(\approx 50\) different metabolites per sample (181,199,200) and limiting biomarker searches to fewer molecules (especially as some smaller peaks can be masked by larger ones in the aliphatic region of the spectrum (194)). This can lead to the repetitive identification of ‘usual suspect’ markers by different metabolomics studies (201) and the requirement to seek biomarker panels rather than lone markers to enhance discriminative power. The collagen metabolite 4-hydroxyproline, for example, has been associated with both primary biliary cholangitis (autoimmune destruction
of the small bile ducts) and silica dust induced-fibrosis in 1H NMR spectroscopy based analyses but many of the other metabolites that distinguished the control profiles from the experimental profiles differed between the two conditions, producing distinct metabolic signatures overall (202,203).

Despite being less sensitive than MS, 1H NMR spectroscopy is a non-destructive technique that benefits from higher technical reproducibility, excellent quantitative accuracy and a wide coverage of metabolite classes (including amino acids, sugars and aromatic groups), meaning that it is employed more regularly during studies of molecular toxicology (175). Furthermore, differentiating metabolites can be identified easily and quickly in 1H NMR spectra given the availability of peak fitting tools and databases of assigned spectra. Such databases are less complete for MS data resulting in the publication of masses and retention times as identifiers for biomarkers rather than metabolite names (204). This excludes the biological context of the biomarkers, drastically reducing their mechanistic value and making those derived from 1H NMR spectra more suitable for contexts that require considerable mechanistic characterisation, particularly where pathway analyses are desired.

1.6.4: Statistical interrogation of metabolomic datasets

The methods used to interpret metabolomics datasets are mainly adapted from those used in transcriptomic studies (205). These approaches aim to assess group-wise differences using values called integrals. Integrals are quantitative measures that are calculated for each metabolite using the areas under their respective spectral peaks. They are proportional to the number of H that contribute to the resonances and therefore provide information regarding the abundance of the metabolites in a sample relative to a reference peak (often glucose).

Group-wise differences in individual metabolite abundances can be explored using univariate or multivariate approaches. Univariate statistics such as analysis of variance
(ANOVA) or t-tests can reduce large numbers of measured analytes to only those that show strong, statistically significant associations with the experimental conditions. However, they are generally the second choice for metabolomic studies given that they treat each metabolite individually, excluding inter-molecular relationships and can overlook small but biologically relevant differences (205).

Multivariate approaches are capable of capturing changes in the concentrations and ratios of related metabolites. This type of analysis usually begins with the use of unsupervised pattern recognition approaches such as Principal Component Analysis (PCA). These tools seek to reduce the dimensionality of spectral data whilst expressing as much of its intrinsic variance as possible using a smaller number of factors called principal components (PC) (206). This facilitates visualisation of metabolic patterns that would be difficult to recognise otherwise (207), allowing trends, groupings and outliers to be identified and attributed to contributory metabolites (206).

Supervised pattern recognition techniques such as Partial-Least Squares Discriminant Analysis (PLS-DA) can follow PCA (but are not limited to this application). In contrast to the unsupervised method, PLS-DA relates the data matrix to sample classifiers using a linear regression model. This allows the detection of more subtle differences between groups and determination of which metabolic changes are the most discriminatory between groups (205). Often univariate methods are used to confirm inter-group differences in the abundance of these metabolites, placing confidence in their use as biomarkers for the response in question.
1.7 Modelling pulmonary exposures to xenobiotics

In terms of physiological relevance, human cohorts provide the most appropriate samples from which biomarkers of pulmonary responses to xenobiotic exposures can be sought (208). Cohort studies can be observational by design, employing participants who are already exposed to pollutants (either occupationally or via their geographical location) or interventional, exposing participants to pollutants within exposure chambers or taking them to highly polluted locations (as examples) (209).

Intervention studies (especially those performed in exposure chambers) are particularly useful for identifying biomarkers for responses to specific components of TRPM. Many ambient particulates can induce pulmonary-derived changes in biochemical signatures (including miRNAs and metabolites (210–212), therefore masking the emergence of biomarkers that relate to the particle of interest during co-exposures. By exposing participants to controlled doses of single pollutants (or characterised mixtures), this type of confounding can be minimised and pollutant-specific biomarkers and mechanisms of toxicity be identified.

Given that TRPM is consistently found to elicit pro-inflammatory responses in pulmonary tissue, ethical concerns restrict the dosages to which human participants can be exposed to during intervention studies. As a result, in vivo human biomarkers are generally sought from models of mild pulmonary responses from which only the largest biochemical deviations can be identified. While this has not prevented identification of miRNAs and metabolites that associate with exhaust PM exposure during human chamber studies (185,213), subtle but mechanistically relevant changes may have been ignored or discounted from characterisations of the toxicity, along with the effects of repeated exposures.

In contrast, observational studies are free from ethical constraints on exposure dosage, enabling biomarkers to be sought for responses to environmentally relevant exposure doses and patterns. Occupationally exposed cohorts are particularly valuable because they can experience higher and more consistent exposures than the general population and provide a
greater magnitude of response from which biomarkers can be distinguished clearly from noise (214).

Unlike interventional studies, analysis of data produced by observational methods is strongly limited by the influence of confounding exposures. Advanced statistical models exist to correct for the effects that non-target exposures have on biological responses (215) but these rely on accurate self-reporting of co-exposures (such as cigarette smoke), measurements taken from static monitoring stations and assumptions that all the important covariates have been accounted for.

In addition to ethical constraints and the confounding that can mask biomarker identification in human cohorts, poor participation rates, long time-courses and the high expense that associates with TRPM exposure studies encourage toxicologists to seek putative response biomarkers in simpler non-human models that are designed to reflect key characteristics or behaviours of the true human exposure. Once established and characterised in these controlled and cost-efficient systems, the markers can be validated under authentic human exposure conditions using targeted methods.

1.7.1 In vivo models
In the absence of samples from an appropriate human cohort, animal models offer accessible systems from which in vivo responses to particle exposure can be investigated. Ideally, the test species should absorb, distribute and metabolise the particle of interest in a representative manner to humans but choice is also limited by practicality and economics. As such, rodents (with their small sizes, short gestation periods and low maintenance costs) are a popular model for studies of toxicological mechanisms.

For rodents, particle exposures can be performed by inhalation in exposure chambers (whole body, head or nose-only) or by intratracheal instillation (direct insertion of particle suspensions into the lower airways). As well as being less distressing for the animal, inhalation methods
are often selected because they provide the most natural route of exposure, allowing particles to pass through the upper airways and deposit uniformly within the lungs (as opposed to centrally following direct bolus delivery) (216–218).

It must be noted however that the anatomy of rodent airways differs considerably from that of humans (219), reducing the degree to which toxicological responses can be translated between the species. As examples, rodents are obligate nose breathers while humans inhale oronasally and have wider airways, allowing for greater deposition of coarse particles in the respiratory airways (219). Similarly, rodents have much faster mucociliary clearance rates for PM than humans, with 15% of particles remaining in human lungs for 24 hours after exposure compared to full clearance of rat lungs by 8 hours (220).

Inhalation exposures remove the potential for biological interference by vehicle solvents (216,221) but they also permit deposition of particles on the fur and cage furniture. As well as confounding lung-specific responses by permitting ingestion of particles during grooming or upper airway clearance (222), this drastically reduces the reliability and reproducibility of dosing between animals. While dosimetric modelling can assist estimations of how many particles will be deposited in different airway regions during inhalation time-courses, the final exposure concentrations are not as controlled or consistent as can be achieved with direct instillations of particle samples (219). As such, instillation methods are regularly selected for characterisations of toxicological responses in the lung, particularly where dose-response data is desired.

Independent of the technique used, in vivo exposure doses can be calculated to be comparable to those experienced by humans during real world exposures. Depending on the experimental target (e.g. epithelium, interstitium), doses are normalised to parameters like body weight, epithelial surface area, interstitial weight or macrophage counts with the aim of inducing responses that best resemble those experienced by humans in specific scenarios. Despite this consistency, it is necessary to consider that differences in the molecular and cellular composition of human and rodent lungs may influence the degree to which rodent-
derived biomarkers and pathway characterisations can be extrapolated to human populations. Molecules that are differentially expressed during pulmonary inflammation in rats or mice may not be influenced in humans under equivalent conditions.

In the context of inflammatory responses, evolutionary divergence of the immune system may be one such factor. While the genomes of humans and rodents diverged up to 95 million years ago (223), pathogens continue to evolve rapidly (alongside the introduction of novel nanomaterials and pollutants), exerting strong pressure on immune responses to co-evolve and further diverge from one another (224). This is observable at the cellular level through differences in the number and size of alveolar macrophages in human and rat lungs (225,226) and at the molecular level through differences in induced antioxidant concentrations (227) and TLR4 activity (224).

Although TLR4 expression itself is highly conserved across species (228), exposure of mouse and human macrophages to LPS (an archetypal TLR agonist) differentially regulated 70% of orthologous gene pairs, revealing considerable species-specific differences in TLR4-induced responses. In addition to differences in downstream cytokine, chemokine, growth factor and matrix metalloproteinase expression, mouse TLR4 was regulated by stronger and more rapid negative feedback mechanisms, indicating the existence of interspecies differences in sensitivity to inflammatory stimuli (224). Considering the strength of association that has been made between TRPM exposure and TLR4 activity (229,230), this suggests that caution must be taken when attempting to translate biomarkers of TRPM-induced pathways between these species.

Of particular importance to the interpretation of metabolomics data is evidence of interspecies differences in the availability of enzymes and substrates for metabolic pathways that associate with pulmonary inflammation. Pulmonary collagen synthesis for example, is induced in mice following exposure to DEP or silica dust (203,231) and in hamsters following zirconium nanoparticle exposures (232). Such activity is demonstrated by increased concentrations of proline and 4-hydroxyproline (essential collagen substrates) in excised
pulmonary tissue (203) or by heightened incorporation of $[^{14}\text{C}]$ labelled proline into collagen fibers (232). Despite the fact that increased collagen production has also been observed in human models of silicosis (233), expression of arginase I (the enzyme required to synthesise proline from ornithine in rats) is non-detectable in human pulmonary fibroblasts (234), indicating that distinct differences could exist between pathways of inflammation-induced collagen metabolism in humans and rodents.

Similarly, Koufaris and Gooderham (2013) suggest that interspecies (or even inter-strain) differences in the regulation, function and repertoire of miRNAs may influence the toxicity that exogenous exposures exert upon different organisms (235). Although miRNA: mRNA interactions are highly conserved between mammalian species (235) (to the extent that mammalian orthologs are frequently used to improve the accuracy of miRNA target prediction algorithms in human studies (236)), evolutionary divergence can occur due to mutations in the mature miRNA or target mRNA sequence or alterations in miRNA editing or biogenesis (235).

Furthermore, evolution of animal miRNAs is a highly dynamic and ongoing process (237) with new miRNAs continually being acquired as species and even intra-species strains evolve (238,239). Given that one miRNA can target hundreds of different mRNA transcripts (117) (including enzymatic facilitators of metabolism) such changes in miRNA repertoire may contribute greatly to inter-species differences in cellular responses to toxicity. Together these factors may influence the degree to which common miRNA biomarkers can be detected between species following equivalent exposures or, where mutations in mRNA sequences are involved, the mechanistic information that they provide.

1.7.2 In vitro models

With less concern regarding cross-species extrapolation and the simplicity with which their parameters can be manipulated, *in vitro* systems are commonly employed to study
mechanisms of toxicity (240). Pharmaceutical industries, for example, have shown a strong upward trend in the use of in vitro tests between the 1980s and 2013, including those used to study responses in the respiratory tract (241). While a key aim of in vitro modelling is often to accurately reflect in vivo exposures and responses, in vitro toxicologists generally use one cell type (or a small combination) to model specific features of pulmonary tissue. Rather than attempting to replicate the composition of the entire respiratory tract (which is made up of 40 different cell types) this permits characterisation and comparison of toxicological mechanisms in each of the specialised structures of the airways (242).

Providing examples of this, A549 adenocarcinoma cells are regularly used to model the alveolar epithelium because they secrete cytokines, metabolise xenobiotics and produce surfactants in a similar manner to in vivo AT2 cells. Similarly Calu-3 cells are used to study bronchial epithelial functions due to their ability to secrete mucins and form tight intercellular junctions (243,244). Given their key role in the induction of inflammatory cascades and neutrophil recruitment, macrophage or monocyte-derived macrophage models (including U937 or THP-1) are commonly employed to study responses to particles that possess pro-inflammatory potential.

Cell cultures may be established using primary cells (grown from chemically or enzymatically disaggregated biopsy samples) or from sub-cultured and transformed cell lines (245). Compared with cell lines, primary cells hold the advantage of a more differentiated phenotype that displays greater similarity to the tissue of origin and provides biomarkers that extrapolate more successfully to in vivo exposure scenarios (246). Generally however, they dedifferentiate rapidly meaning that an adequate supply of biopsy tissue is required to maintain experimentation on primary cultures (247,248). As well as being low-throughput and time-consuming, this introduces a high degree of inter-donor variability that can confound interpretation of responses to semi-characterised or novel exposures (247). This factor must be weighed against an advantageous increase in representability for the outbred
human population, meaning that primary cells are regularly used to validate responses that have been observed in cell lines initially.

Immortalised cell lines provide a more continuous option than primary cells. Originating from tumour biopsies or undergoing artificial immortalisation through treatment with chemical carcinogens, viral oncogenes or irradiation, these cells possess genetic mutations that allow them to evade senescence (245). Most lines grow rapidly, facilitating their use in high-throughput toxicological screening, but also encouraging clonal expansion of phenotypic changes that differentiate the populations from their parent cells. As such, toxicological responses and biomarkers that are identified in cell lines often require validation in primary cells or in vivo models. Furthermore, validations in other systems reduce the confounding impact that mutations that are intrinsic to cell lines (such as over-expression of oxidative stress-related nuclear erythroid factor 2 p45-related factor 2 (Nrf-2) by A549s (249)) may have on data interpretation.

In vitro models can be developed using mono-culture (cultivation of a single cell type) or co-culture (cultivation of two or more complimentary cell types) techniques. Although co-cultures can display greater physiological similarity to in vivo tissue and permit the study of inter-cellular interactions, mono-cultures are the classical system used to characterise pulmonary responses to particle deposition in vitro (247). As well as being easier and cheaper to develop than co-cultures (which require intensive optimisation of growth conditions), their simplicity facilitates understanding of how individual cell types respond to adverse exposures, especially those that are not broadly characterised (e.g. non-exhaust particles).

Given their association with intercellular communications (250), this feature may be particularly advantageous during exploration of the roles that extracellular miRNA markers play in the development of inflammatory phenotypes. Indeed, monocultures of A549 epithelial cells have been used to confirm that up-regulation of miR-128 expression (but not
miR-302 expression) by metal-rich PM in vivo is contributed to by airway epithelial cells (251).

Several methods have been developed for the exposure of cells to PM in vitro. Of these, incorporation of particles into the media of submerged cell cultures is the most simple, cost-effective and reproducible (240,247,252), making it a common choice for determining mechanisms of toxicity. The system has however, been criticised for its poor reflection of particle deposition in vivo as submerged particles are subject to agglomeration or diffusion of water-soluble components (247). Furthermore, particles can interact with components of culture medium to form protein and lipid rich coronas (coatings of biomolecules that adsorb onto the surface of particles) (252) that are capable of influencing common toxicity metrics (including cytotoxicity, pro-inflammatory potential and oxidative potential) in a medium-specific manner (253).

As a result, air liquid interface (ALI) models have been developed, facilitating aerosol deposition of particles directly onto the apical surface of cells that are supplied with medium from the basal surface. This method has been shown to enhance in vivo characteristics of airway cells (encouraging A549 to secrete surfactant (254) and tracheal epithelial cells to become ciliated (255)) indicating that ALI is the superior model. However, it must be considered that both LPS and metallic particles have been shown to induce comparable inflammatory cascades in submerged and ALI cultures of A549 and THP-1 cells, (252). This suggests that submerged cultures could be equally as suitable for the characterisation of inflammatory responses and discovery of inflammation-related biomarkers, (including those induced by highly metallic particles like non-exhaust PM).
1.8: Project aims and hypotheses

1.8.1: Project hypotheses

Given the potential that miRNAs and metabolites possess for use as mechanistically relevant biomarkers of toxicological response pathways and the fact that evidence is emerging for their association with TRPM exposure, the following work sought to address the hypothesis that **mechanistically relevant miRNA and metabolite biomarkers are detectable during pulmonary responses to TRPM exposure**. Furthermore, given that these molecular species are found abundantly within human biofluids (including those that associate with exhaust PM), the project sought to test a second hypothesis—**that these biomarkers are detectable in extracellular samples**. Such biomarkers could facilitate a significant advance in our ability to study pulmonary responses to TRPM in human cohorts, particularly cohorts of ‘healthy’ individuals.

1.8.2 Project aims

Specifically, the project followed the workflow presented in Figure 1.8. Aiming to **identify miRNA biomarkers for pulmonary-specific inflammatory responses**, global microtranscriptomic profiling approaches were used to identify miRNAs that were produced by the pulmonary tissue itself during inflammatory events (Chapter 2). These miRNAs (identified using rodent models of exposure to diverse pro-inflammatory stimuli) directed targeted analysis of rat serum from an intratracheal lipopolysaccharide (LPS) exposure model (Chapter 3).

This analysis aimed to **determine whether miRNA signatures of pulmonary inflammatory events could be detected within an accessible biofluid** and was paired with untargeted 1H NMR metabolic profiling approaches to ascertain whether inflammatory pulmonary responses also induce changes to the metabolome that can be detected extracellularly. Such changes could be used to broaden the panel of pulmonary-specific biomarkers of inflammation and to enhance their mechanistic relevance through the performance of multi-omics pathway analyses. As such, the final aim of the LPS
rat serum study (Chapter 3) was to identify whether the inflammatory miRNAs could have influenced any of the metabolic pathways that associated with the response.

A U937 human macrophage model was employed as a biologically controllable system to assess whether any of the accessible miRNA and metabolite markers of pulmonary inflammation are relevant to the context of TRPM exposure and whether pathway-level interplay exists between their expression (Chapter 4). Toxicological responses to exhaust (DEP) and non-exhaust particles (BAD) were characterised using traditional, hypothesis-driven toxicological approaches to provide phenotypic anchors for the results of targeted miRNA quantifications and untargeted 1H NMR-based metabolic profiles. Comparing DEP and BAD-associated markers with each other and with those that associated with LPS exposure, the study aimed to determine whether biomarkers for particle-specific pulmonary responses can be detected extracellularly. Together these mechanistically relevant tools aim to progress our understanding of uncharacterised in vivo responses to non-exhaust PM exposure.
Figure 1.8: Schematic explanation of the workflow followed in this study. This diagram displays the models used in the study, the relationships between the models and the questions that they aimed to answer.
Chapter 2. miRNA markers of pulmonary inflammation in the rat

Chapter overview

The work detailed in this chapter aimed to identify pulmonary-specific miRNA markers of inflammation that are expressed within the lung tissue itself. The work centres on an integrated analysis of miRNA and mRNA next generation sequencing (NGS) data that was obtained from the pulmonary tissue of rats following exposure to a pro-inflammatory inhaled pharmaceutical.

2.1: Introduction

Differential expression analysis (DEA) is a widely employed tool in the field of biomarker discovery that seeks to identify genes that are over or under expressed as a result of experimental or pathophysiological conditions (256). Using a gene by gene approach, the method performs a series of univariate comparisons that simplify the multivariate output of transcriptomic profiling data by identifying the genes that show the greatest and most statistically significant changes in expression (257).

DEA can be performed using data acquired by microarray or NGS and is applicable to the study of both mRNA and small RNA transcriptomes. For several decades microarrays were the most popular method of RNA profiling but NGS data has since emerged as the input of choice for DEA (256). This change was driven initially by the global nature of NGS which, unlike the microarray, does not rely on a priori knowledge of genomic features (258). Rather than relying on probe hybridisations, NGS expression data is produced by converting RNA molecules to cDNA and sequencing it in a high throughput manner (259) (as detailed in Chapter 1). This permits thorough coverage of large genomes- something that has only recently become accessible with microarray technology (260).
Despite the increasing popularity of whole-genome microarrays (which are cheaper to run per sample than NGS), NGS remains a sensible choice when studying miRNA expression patterns. The global nature of the technique facilitates identification of novel transcripts; an important opportunity given that characterisation of the microtranscriptome continues to expand. Furthermore, it distinguishes between highly homologous sequences (such as miRNA family members) with a resolution of one nucleotide, circumventing the cross-hybridisation issues that encumber microarrays (258).

In the context of miRNA biomarker discovery, DEA has been used to identify single miRNAs or panels of miRNAs that separate cases from controls under numerous pathophysiological and toxicological conditions. These include but are not limited to non-alcoholic fatty liver disease, pancreatic cancer, myocardial infarction and drug induced kidney and liver injury (261–264). Alone, these markers provide great clinical value in terms of diagnosing and making prognoses for their respective pathophysologies or toxicities. This value can be increased by combining DEA with downstream target prediction studies and pathway analyses in order to uncover mechanisms through which the conditions developed.

Algorithms such as miRanda, TargetScan and PITA have been developed to aid miRNA target prediction (265). These algorithms search mRNA 3'UTR sequences for complementarity with the 5' seed sequence of a chosen miRNA and assesses the likelihood of successful binding occurring between these sites based on factors such as evolutionary conservation, repetition of binding sites and site accessibility (265). While this bioinformatics approach is fast and inexpensive, the complex and heterogeneous nature of miRNA-mRNA interactions means that it produces large numbers of false positive and low efficiency predictions that require lengthy and expensive biological validation.

Researchers have begun to address this limitation by integrating miRNA expression data with complementary mRNA expression data, enabling correlations to be made between the expression of miRNA markers and their predicted targets within a single sample. Based on evidence that miRNAs can degrade target mRNAs or enhance their expression through
feed-forward regulation of transcription factors (266), this approach assumes that strongly correlating miRNA-predicted target pairs interacted within the biological context of the experiment and that uncorrelated predicted targets were falsely selected. As a result, ‘noise’ mRNAs are excluded from downstream pathway analyses, enabling the regulatory functions of differentially expressed miRNAs (DEmiRNAs) to be explored without being confounded.

This integrative approach has proved successful in determining that the phenotypes of Alzheimer’s disease and non-obstructive azoospermia (a complete lack of sperm in the seminal fluid) are contributed to by dysregulation of miRNA panels (154,267) and that up-regulation of miR-200c is responsible for dysregulation of IL-8 expression in ulcerative colitis (268). Furthermore, integration of miRNA and mRNA microarray datasets has provided detailed insights into the mechanistic development of several pulmonary pathophysiologies, showing that the miR-23a cluster promotes epithelial to mesenchymal transition in idiopathic pulmonary fibrosis and that the targets of DEmiRNAs include wnt and focal adhesion pathway members in COPD (269).
2.1.2: Hypotheses and aims

Using methods similar to those described in the integrative studies above, the following work tested twin hypotheses; 1) inflammatory responses within the lung are accompanied by characteristic and mechanistically relevant alterations in the miRNA transcriptome and 2) some differentially expressed, inflammation-associated miRNAs will be released specifically by pulmonary tissue and thus have potential for use as biomarkers of inflammatory responses within the lung.

The primary aims of the study were to identify miRNAs that are differentially expressed within pulmonary tissue during a typical in vivo inflammatory response and to explore the regulatory functions of those miRNAs during the inflammatory response using complimentary mRNA sequencing data, miRNA target prediction algorithms and pathway enrichment approaches. These aims were achieved by sequencing the mRNA and miRNA transcriptomes of pulmonary tissue taken from rats treated with AZD2230 (an inhaled proprietary pharmaceutical compound).

Intended to inhibit inflammatory cascades during exacerbations of COPD, AZD2230 was designed to be retained within the lungs and to inhibit pro-inflammatory NFκB signalling by binding to IKK2 (an agonistic regulatory subunit of NFκB). Despite NFκB being a key mediator of inflammatory signalling within the lung, the rats used in the current model experienced airway infiltration by immune cells in a manner that is typical of the initiation phase of pulmonary inflammation. As such they were considered an appropriate platform from which miRNA markers of pulmonary inflammatory responses could be sought.

As inflammation can be the outcome of exposure to various airborne agents, a secondary aim of the study was to determine whether any miRNA markers of AZD2230-induced pulmonary inflammation also associate with pulmonary responses to different types of inflammatory stimuli in additional models. In order to meet this aim, two rodent miRNA microarray datasets produced from pulmonary tissue were selected from the Gene Expression Omnibus (GEO) for analysis; one a model of nanoTiO₂ exposure and the other
an example of allergic inflammation induced by IL-13 overexpression and doxycycline exposure. Using these data, the expression of ASD2230-induced inflammatory markers was compared between inflammatory and control phenotypes for both models to determine whether their differential expression also associated with responses that were induced by different types of stimuli.

With organ specificity being a desirable property of biomarkers, and particularly those that will be sought in accessible fluids, data from GEO was also used with the aim of assessing the pulmonary specificity of AZD2230-associated miRNAs. By comparing the expression of AZD2230 associated miRNAs between the lungs and 18 other tissue types in healthy rats, it was possible to determine which miRNA markers were most likely to be expressed predominantly by the lungs (and therefore have the greatest potential utility in the current context). This final aim served to meet the over-arching aim of the project; identifying markers of inflammation in accessible bio-fluids that originated from injury within the lungs.

2.2: Methods

2.2.1: AZD2230-exposed tissue samples: AstraZeneca (UK) (unrecorded personnel) supplied pulmonary tissue harvested from 11 Sprague Dawley rats 24 hours after completion of a 7-day course of intratracheal treatment with 1mg/kg or 3mg/kg AZD2230 in saline or
with only the saline vehicle (for control purposes), administered once daily. These doses were established based on the maximum tolerated dose (determined within AstraZeneca, based on terminal sampling) plus an intermediate dose to provide a dose-response. Cell count values produced from the bronchoalveolar lavage fluid (BALF) of each animal were also provided by the team at AstraZeneca. These data were established using standard staining and flow cytometry methods.

2.2.2: Statistical analysis of BALF metadata: Differences in the cellular content of BALF from each treatment group were identified and examined for significance using one-way ANOVA tests with Bonferroni correction to account for multiple testing. Differences in cell count that produced corrected p values ≤ 0.05 were considered significant. Analysis was performed using GraphPad Prism version 5 (Graphpad Software, USA).

2.2.3: miRNA sequencing data analysis: miRNAs from the AZ samples were prepared and sequenced by Beijing Genomics Institute (BGI). Samples were prepared using the Small RNA v1.5 Sample Preparation Kit (Illumina) in accordance with the manufacturer’s instructions and data was acquired by a Hiseq2000 sequencing system (Illumina). The data was imported into CLC Genomics Workbench 7.4.0 where the sequences were adaptor trimmed. Reads were imported into sRNA Workbench and aligned against the Rattus norvegicus miRNA reference data available in miRBase release 21 to produce read count values for each known miRNA within the samples. Sequences with >1 mismatched base or expression counts lower than 10 were excluded from the analysis to avoid inclusion of falsely assigned molecules. miRNA precursors were also excluded in order to limit the quantitative analysis to mature molecules that had the potential to interact with mRNA targets at the time of sampling. Expression of mature miRNAs was compared between treatment groups using the differential expression module of sRNA Workbench (based on the edgeR package for R). This software normalised the read counts using a trimmed means of M-values approach and calculated fold changes in the expression of known miRNA species between treatment groups in a pair-wise manner. Differential expression between
treatment groups was considered significant where the log fold change was ≥ 2.0 and p values ≤ 0.05 with a false discovery rate (FDR) ≤ 20% were produced.

2.2.4: mRNA sequencing data analysis: BGI sequenced the mRNA content of the tissue samples using the TruSeq RNA Sample Preparation v2 Kit (Illumina) and Hiseq 2000 sequencing platform (as instructed by the manufacturer). Adaptor trimmed sequence data was imported into CLC Genomics Workbench 7.4.0. Using an RNA-Seq Analysis tool, reads were mapped against genomic, mRNA and transcript reference sequences for *Rattus norvegicus* obtained from the Ensembl database (Release 76). To avoid inclusion of falsely assigned sequences, reads with >2 mismatches or counts of < 100 were excluded from further analysis.

2.2.5: Prediction of miRNA-mRNA pairing: Banks of predicted gene targets were identified for the differentially expressed miRNAs (DEmiRNAs) to limit analysis of the mRNA data to genes that were likely to be regulated by the DEmiRNAs. The Predicted Targets module of miRWalk 2.0 was employed for this purpose. The software used the algorithms of four target prediction databases (TargetScan, miRanda, miRDB and miRWalk itself) that searched for 7mer or 8mer complementarity between all known *Rattus norvegicus* gene sequences and each DEmiRNA (individually). To reduce the number of false positive matches, genes that showed complimentary pairing to the DEmiRNAs in ≥3 of the databases were included in the predicted target bank.

Graphpad Prism (Graphpad Software, San Diego) was employed to calculate Pearson’s correlations between the read count values of DEmiRNAs and their respective lists of expected targets. Correlations were considered significant and strong where a p value of ≤ 0.05 and a correlation coefficient of ≤ -0.50 (for negative correlations) or ≥ 0.5 (for positive correlations) were produced. These mRNAs will be referred to as ‘correlating mRNAs’.

For some analyses, use of correlating mRNAs was restricted to genes that contribute to the mammalian inflammatory response. A list of inflammatory response genes was compiled.
from correlating genes that also existed within the Immport or Immunome Database lists of InnateDB (referred to as inflammatory correlating mRNAs). Contribution of inflammatory genes to metabolic pathways was explored by further restricting the list of inflammatory correlating mRNAs to those that belonged to KEGG pathway mo01100.

2.2.6: Hierarchical clustering analysis: Variation and similarities between the expression profiles (both miRNA and mRNA) of tissue samples were visualised by unsupervised hierarchical clustering analysis (HCA) using a Euclidean similarity metric. HCA was performed using Qlucore Omics Explorer V3.0.

2.2.7: Pathway over-representation analysis: Inflammatory pathways that could have been influenced by DEmiRNA activity were identified using the pathway over-representation module of IMPaLA. The list of inflammatory correlating mRNAs was computationally compared with 3073 previously defined gene sets (corresponding to cellular pathways) from 11 public databases (270) to identify pathways that significantly overlapped with the correlating mRNA set. The analysis was performed against a background gene set composed of all of the mRNA species that were measured in the tissue samples and had read count values ≥ 100. Pathways were considered to be significantly over-represented in the correlating mRNA dataset if they contained ≥4 correlated mRNAs and if their overlap was assigned a p value ≥ 0.05.

2.2.8: Identification of pulmonary-enriched DEmiRNAs: Pulmonary-enriched DEmiRNAs were identified using the GSE52754 dataset which was obtained by Minami et al (2013) and is available from the National Centre for Biotechnology Information Gene Expression Omnibus database (271). The dataset comprised quantile normalised gene expression values for miRNAs expressed in individual tissues of healthy, 9-week-old male Sprague-Dawley rats and was acquired using a customised 8x 15k Agilent Rat miRNA microarray containing probes from miRBase 15.0 and 16.0. Log2 fold changes in DEmiRNA expression were obtained between lung tissue and 18 other tissue types using GEO2R (a web tool that runs BIOquery and limma packages for differential expression analysis in R). DEmiRNAs
were considered to be enriched in pulmonary tissue if their fold change was significant (\(p \leq 0.05\)) and indicated greater expression in the lung than for 90% of the tested tissues.

2.2.9: Analysis of publically available microarray datasets:

miRNA microarray datasets produced during studies of pulmonary inflammation were identified in Gene Expression Omnibus using the search terms ‘miRNA AND lung AND inflammation’. Datasets were selected for comparison with the AZD2230 dataset where studies were performed \textit{in vivo} and were accompanied by experimental evidence of an inflammatory phenotype (\textbf{Table 2.1}). Differential expression analysis was performed for each quantile normalised dataset using the GEO2 tool to identify miRNAs that were differentially expressed between control samples and samples with an inflammatory phenotype (\(p \leq 0.05\)).

2.3: Identification of miRNA-associated transcription factors:

Transcription factors that may have influenced the expression of inflammatory miRNAs were identified using the TMREC database. Algorithms within the database sought to match the input miRNA against 74,248 curated cascades of miRNA- transcription factor interactions (sourced using TransmiR, TRANSFAC, miRecords and TARBase databases) (272).

\textbf{Table 2.1:} Experimental characteristics of publically available datasets used for comparison with the AZD2230 model of inflammation.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Inflammatory stimulant</th>
<th>Tissue</th>
<th>Species</th>
<th>Data acquisition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSE37085</td>
<td>Constitutive IL-13 over-expression induced by exposing</td>
<td>Pulmonary</td>
<td>\textit{Mus musculus} (C57BL/6)</td>
<td>Affymetrix miRNA array</td>
<td>Ooi \textit{et al.} 2012 (273) PMID: 22611474</td>
</tr>
</tbody>
</table>
2.3: Results

2.3.1: AZD2230 exposure induced an inflammatory response in rat pulmonary tissue

Elevated quantities of inflammatory cells within the BALF are representative of an inflammatory response within the accompanying lung parenchyma (275). The cellular content of BALF collected from the AZD2230-exposed and control rats was therefore used as a marker of inflammation within their pulmonary tissue. This information was compared between dosage groups to establish whether AZD2230 had stimulated a pro-inflammatory response within the lungs (Figure 2.1).
In comparison with vehicle samples, the total inflammatory cell content of BALF increased significantly after 7 days of AZD2230 exposure in a dose dependent manner. Specifically, 1mg/kg treatment stimulated significant increases in BALF platelet content (455%) compared with controls. Numbers of neutrophils, macrophages, lymphocytes and eosinophils were also heightened within the BALF (3152, 130, 144 and 244% respectively) but not strongly enough to reach statistical significance. With 3mg/kg treatment, neutrophils, lymphocytes, eosinophils and platelets were significantly more abundant in the BALF compared with control samples (4136, 339, 329 and 507% respectively). Macrophage counts remained heightened when compared with controls (136%) but did not increase when compared to the BALF of animals treated with 1mg/kg AZD2230. These results indicated that AZD2230 treatment induced infiltration of the small airways by inflammatory cells, reflecting a dose-dependent pro-inflammatory pulmonary response.
Figure 2. 1: Absolute counts of total inflammatory cells and platelets (A), neutrophils (B), macrophages (C), lymphocytes (D), eosinophils (E) and platelets (F) measured in BALF samples of rats treated with 0, 1 or 3mg/kg AZD2230 once daily for 7 days. Significant differences in the cellular content of BALF from each treatment group were identified using one-way ANOVA tests with Bonferroni correction. Differences in cell count with p values <0.05 were considered significant and are labelled ‘*’. ‘**’ and ‘***’ represent significant differences with p values of <0.01 and <0.001 respectively. Error bars show the standard error of the mean. n=3-4
2.3.2: AZD2230 exposure modulated miRNA expression in AZ rat lung tissue

Next generation sequencing was employed to collect the miRNA expression profiles of non-exposed, control pulmonary tissue and pulmonary tissue exhibiting an AZD2230-dependent inflammatory phenotype. Sequencing generated an average of 1.8×10^7 reads per sample of which $95\% \pm 2.4\%$ could be mapped to the genome. On average, $72.2\% \pm 2.5\%$ of these reads aligned with the sequences of known mature miRNAs with an average of 549 ± 20 mature miRNA species being detected per sample.

Differential expression analysis was employed to explore the cause of variation between the miRNA transcriptomes of different treatment groups. It was used to identify miRNAs that showed significantly different expression levels when compared between control samples and samples exposed to 1mg/kg or 3mg/kg AZD2230. For a miRNA to be considered differentially expressed between two groups its log2 fold change in expression after exposure must have been ≥ 2.0 with a p value of ≤ 0.05 and FDR $\leq 20\%$.

miRNAs that fit these criteria are displayed in Table 2.2. Following exposure to 1mg/kg AZD2230, 3 miRNAs exhibited differential expression when compared with controls. Of these, 1 was up-regulated with treatment and 2 were down-regulated. Following exposure to 3mg/kg AZD2230, 22 miRNAs exhibited differential expression with enhanced differential expression being evident for the 3 that were significantly altered following exposure to 1mg/kg AZD2230. Of these miRNAs, 7 were down-regulated and 15 were up-regulated. These results suggest that AZD2230 exposure alters miRNA expression in a dose-dependent manner.

HCA was performed using the normalised read count data for DEmiRNAs to confirm whether their expression patterns proved characteristic for the different treatment groups. The resulting dendrogram (Figure 2.2) clustered 3mg/kg AZD2230 treated samples from the 1mg/kg AZD2230 and vehicle treated samples at the first branch (with the exception of one sample) then split the vehicles from the 1mg/kg AZD2230 treated samples at the second branch. This confirmed that the greatest difference in DEmiRNA expression profiles existed
between vehicle and 3mg/kg AZD2230 treated groups and that the second largest difference existed between vehicle and 1mg/kg AZD2230 treated samples. The result indicates that altered expression of these miRNAs associates with and represents AZD2230 induced inflammation.
Table 2.2: miRNAs that displayed differential expression in the pulmonary tissue of rats following a 7 day course of intratracheal exposure to 1 or 3 mg/kg AZD2230. Read count values were obtained via next generation sequencing and compared with those obtained from the pulmonary tissue of vehicle-exposed rats using sRNA Workbench. Differentially expressed miRNAs met the following criteria: log2 fold change ≥ 2 or ≤ -2, p ≤ 0.05 and FDR ≤ 20%.

<table>
<thead>
<tr>
<th>Treatments compared</th>
<th>miRNA</th>
<th>Log2 fold change</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle vs 1mg/kg AZD2230</td>
<td>rno-miR-449a-3p</td>
<td>+5.59</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-204-5p</td>
<td>+2.38</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>rno-miR-1298</td>
<td>-2.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Vehicle vs 3mg/kg AZD2230</td>
<td>rno-miR-204-5p</td>
<td>+6.69</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-449a-3p</td>
<td>+6.64</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-329-5p</td>
<td>+3.71</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>rno-miR-212-3p</td>
<td>-3.69</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-1298</td>
<td>-3.55</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-449c-5p</td>
<td>+3.24</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-133b-3p</td>
<td>+3.12</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-365-5p</td>
<td>+3.04</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-483-3p</td>
<td>+3.03</td>
<td>0.044</td>
</tr>
<tr>
<td></td>
<td>rno-miR-448-3p</td>
<td>-2.99</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-1912-3p</td>
<td>-2.91</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-212-5p</td>
<td>+2.83</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-155-5p</td>
<td>+2.79</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-429</td>
<td>+2.72</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-3583-5p</td>
<td>-2.56</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>rno-miR-21-3p</td>
<td>+2.56</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-301b-3p</td>
<td>+2.53</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>rno-miR-6215</td>
<td>+2.41</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>rno-miR-493-5p</td>
<td>-2.39</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>rno-miR-130b-3p</td>
<td>+2.22</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-15b-5p</td>
<td>+2.13</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>rno-miR-34b-5p</td>
<td>-2.09</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Figure 2. 2: HCA of pulmonary tissue samples following a 7 day course of exposure to AZD2230 (1 or 3mg/kg, administered once daily) or a saline vehicle in the rat. HCA was performed using the expression values of miRNAs that were differentially expressed between vehicle and exposed samples (log2 fold changes in expression of ≤ -2 or ≥ 2 and p value < 0.05 as measured by the EdgeR package of sRNA Workbench using read count values obtained by next generation sequencing). Analysis was performed on Qlucore Omics Explorer and used a Euclidean similarity metric.
2.3.3: Identification of potential DEmiRNA activity using mRNA sequencing data

The conventional use of bioinformatics based algorithms for miRNA target prediction is limited by a high false positive rate. Therefore, the contributions that DEmiRNAs made to AZD2230-induced pulmonary inflammation were explored by integrating computational target prediction algorithms with mRNA next generation sequencing data. This analysis sought to identify genes that showed evidence of being regulated by the DEmiRNAs in response to AZD2230 exposure.

Next generation sequencing identified 8829 mRNA species in the AZD2230 samples that had expression levels ≥ 100 counts. Of these, 1,065 were identified as putative targets of the DEmiRNAs using the miRNA target prediction module of miRWalk. 465 predicted target mRNAs displayed expression patterns that significantly and strongly correlated with the expression patterns of ≥ 1 of 15 of the DEmiRNAs in response to AZD2230 exposure (p value ≤ 0.05, Pearson’s r ≤ - 0.5 for negative correlations or ≥ 0.5 for positive correlations) with 706 unique mRNA-miRNA interactions being identified. This approach was far more stringent than the use of target prediction algorithms alone with only 5-51% of the miRWalk predictions being supported by the AZD2230 exposure model (Table 2.3).

Although the down-regulatory role of miRNA activity has been explored in greater detail, interactions between miRNAs and mRNAs have also been shown to enhance gene expression (112). In this study, 52% of mRNA-miRNA pairings displayed negatively correlating expression patterns which are indicative of the miRNAs having inhibitory influences on expression of their target genes. The remaining 48% of miRNAs displayed positively correlating expression patterns with their mRNA targets, suggesting that they may have an inducible role (if found to interact directly). As a result of AZD2230-induced differential expression of the DEmiRNAs, these regulatory relationships resulted in decreased counts of 326 correlating mRNAs (63% due to decreased expression of inducible DEmiRNA activity and 37% due to increased expression of inhibitory DEmiRNAs) and
increased counts of 347 correlating mRNAs (37% due to increased expression of inducible genes and 67% due to decreased expression of inhibitory DEmiRNAs).

As miRNAs commonly function by degrading target mRNAs, it was hypothesised that DEmiRNA-targeted mRNAs would be differentially expressed between AZD2230 and vehicle exposed samples. This was confirmed by performing unsupervised HCA on the read count data of mRNA genes that correlated with ≥1 DEmiRNA.

The analysis indicated that a large difference in gene expression existed between vehicle and AZD2230-exposed samples which were separated by the first branch of the dendrogram. Except for one 3mg/kg sample, samples exposed to 1mg/kg and 3mg/kg AZD2230 were differentially clustered at the second branch of the dendrogram (Figure 2.3). This confirmed that expression of DEmiRNA-regulated mRNAs was altered in a dose-dependent manner following AZD2230 exposure, indicating that AZD2230 may have enhanced the biological activity of the DEmiRNAs. The direction of gene regulation was consistent across the dose range with 243 mRNA genes (52% of total miRNA-targeted genes) being down-regulated and 222 genes (48% of total miRNA-targeted genes) being up-regulated following exposure to either 1mg/kg or 3mg/kg AZD2230.
Table 2. 3: Percentages of predicted DEmiRNA targets that display correlated expression patterns with their computationally associated DEmiRNAs in the AZD2230 exposure model using next generation mRNA sequencing data.

<table>
<thead>
<tr>
<th>miRNA</th>
<th>Number of computationally predicted targets</th>
<th>Number of correlated targets</th>
<th>% of predicted targets that correlate with DEmiRNA expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-130b-3p</td>
<td>218.00</td>
<td>40.00</td>
<td>18.35</td>
</tr>
<tr>
<td>miR-133b-3p</td>
<td>237.00</td>
<td>13.00</td>
<td>5.49</td>
</tr>
<tr>
<td>miR-15b-5p</td>
<td>438.00</td>
<td>43.00</td>
<td>9.82</td>
</tr>
<tr>
<td>miR-204-5p</td>
<td>408.00</td>
<td>21.00</td>
<td>5.15</td>
</tr>
<tr>
<td>miR-212</td>
<td>165.00</td>
<td>85.00</td>
<td>51.52</td>
</tr>
<tr>
<td>miR-21-3p</td>
<td>165.00</td>
<td>24.00</td>
<td>14.55</td>
</tr>
<tr>
<td>miR-301b-3p</td>
<td>221.00</td>
<td>72.00</td>
<td>32.58</td>
</tr>
<tr>
<td>miR-329-5p</td>
<td>248.00</td>
<td>18.00</td>
<td>7.26</td>
</tr>
<tr>
<td>miR-34b-5p</td>
<td>350.00</td>
<td>102.00</td>
<td>29.14</td>
</tr>
<tr>
<td>miR-365-5p</td>
<td>157.00</td>
<td>11.00</td>
<td>7.01</td>
</tr>
<tr>
<td>miR-429</td>
<td>367.00</td>
<td>28.00</td>
<td>7.63</td>
</tr>
<tr>
<td>miR-448-3p</td>
<td>242.00</td>
<td>65.00</td>
<td>26.86</td>
</tr>
<tr>
<td>miR-449</td>
<td>367.00</td>
<td>39.00</td>
<td>10.63</td>
</tr>
<tr>
<td>miR-483-3p</td>
<td>244.00</td>
<td>57.00</td>
<td>23.36</td>
</tr>
<tr>
<td>miR-493-5p</td>
<td>219.00</td>
<td>54.00</td>
<td>24.66</td>
</tr>
</tbody>
</table>
Figure 2.3: HCA of pulmonary tissue samples following exposure to AZD2230 (1 or 3mg/kg) or a saline vehicle in the rat. HCA was performed using the expression values of mRNAs with expression patterns that correlated strongly and significantly with the expression of ≥ 1 DEmiRNA (p < 0.05 and a correlation coefficient of ≤ -0.50 for negative correlations or ≥ 0.5 for positive correlations as determined by Pearson’s correlation analysis). Analysis was performed on Qlucore Omics Explorer and used a Euclidean similarity metric.
2.3.4: DEmiRNA activity modulates inflammatory mechanisms

Pathway over-representation analysis was performed upon the set of DEmiRNA-regulated mRNA genes to identify mechanisms by which the differential miRNA activity could have contributed to the pulmonary response to AZD2230 exposure. The analysis also served to determine whether non-inflammatory mechanisms were co-induced by the exposure as these could confound identification of inflammation-specific markers.

Biological pathways relating to lipid metabolism were most over-represented in the gene set (11 pathways identified) followed by cytokine modulated responses (9 pathways identified), cytokine neuronal signalling, small molecule transport, tumour suppression (3 pathways identified per category), endocytosis (2 pathways), apoptosis, calcium signalling, cell cycle progression, airway hyper-responsiveness and hypoxia signalling (1 pathway identified per category). Two pathways that included validated miRNA targets were also identified as over-represented in the gene set (Table 2.4).

Literature resources indicated that the majority of over-represented pathways play roles in the mammalian inflammatory response but that some, such as calcium and neuronal signalling, are not inflammation-specific (276–278). To focus on inflammation-specific responses to AZD2230 exposure, genes that did not contribute to a known inflammatory response were discounted from further analysis. This was achieved by selectively focusing on genes that are included in the Immport or Immunome Database lists of InnateDB (a manually curated list of experimentally validated inflammatory genes) and served the purpose of filtering out differential miRNA activity that regulated cellular functions additional to inflammation.

Visualisation of the inflammatory mRNA-DEmiRNA network showed that 148 of the DEmiRNA-regulated genes had an inflammatory-specific function (32% of the total correlating mRNAs). While miR-34b-5p, miR-301b-3p and miR-212 had the greatest number of interactions with inflammatory mRNAs (35, 29 and 25 targets respectively), all 15 DEmiRNAs regulated expression of ≥1 inflammatory gene following AZD2230 exposure.
Evidence of co-operative regulation was also evident between the DEmiRNAs with 30% of the inflammatory mRNAs being targeted by multiple DEmiRNAs (18% by 2 DEmiRNAs, 9% by 3 DEmiRNAs and 3% by 4 DEmiRNAs) (Figure 2.4). Together these data suggest that the DEmiRNAs influenced the inflammatory component of the pulmonary response to AZD2230 exposure and that they worked co-operatively as a network.
Table 2.4: Over-represented pathways within the list of correlating mRNAs. Pathways were identified using IMPaLA and selected as contributors to the pulmonary response to AZD2230 exposure in rats where ≥ 4 correlating mRNAs were included in the pathway and when the overlap was assigned a p value ≤ 0.05. Analysis was performed against a background gene set composed of all of the mRNA species that were measured in the tissue samples and displayed read count values ≥ 100.

<table>
<thead>
<tr>
<th>Pathway category</th>
<th>IMPaLA pathway identifier</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway responsiveness</td>
<td>Beta-agonist/beta-blocker Pathway</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>Apoptosis modulation and signalling</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Calcium signalling</td>
<td>Calcium signalling pathway</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Cell cycle progression</td>
<td>Aurora A/B signalling</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Cytokine modulated response</td>
<td>Beta2 integrin cell surface interactions</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Gap junction</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>AP-1 transcription factor network</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Syndecan-4-mediated signalling events</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Arginine and proline metabolism</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Cytokine-cytokine receptor interaction</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>TNF signalling pathway</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>ALK1 signalling events</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Type II interferon signalling</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Endocytosis</td>
<td>Nef-mediates down modulation of cell surface receptors</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Endocytosis</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Hypoxia signalling</td>
<td>HIF-1-alpha transcription factor network</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Lipid signalling</td>
<td>Glycosphingolipid biosynthesis</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>D-myoinositol-5-phosphate metabolism</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>Synthesis of PIPs at the golgi membrane</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>Cholesterol biosynthesis</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>Activation of gene expression by SREBP</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>Recycling pathway of L1</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>L1CAM interactions</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Triacylglyceride synthesis</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Sphingolipid metabolism</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Glycerolipid metabolism</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Regulation of cholesterol biosynthesis by SREBP</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Neuronal signalling</td>
<td>Synaptic vesicle pathway</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>GABAergic synapse</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>Serotonergic synapse</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Small molecule transport</td>
<td>Transport of small molecules</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>Membrane trafficking</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Tumour suppression</td>
<td>Validated transcriptional targets of TAp63 isoforms</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>Direct p53 effectors</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td></td>
<td>BARD1 signalling events</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>Validated miRNA targets</td>
<td>miR-targeted genes in squamous cell</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td></td>
<td>miR-targeted genes in muscle cell</td>
<td>≤ 0.01</td>
</tr>
</tbody>
</table>
Figure 2.4: Regulatory interactions between DEmiRNAs and their inflammatory mRNA targets. mRNA genes included in this network are members of the ImmPort or Immunome Database lists of InnateDB and have correlated expression values with ≥1 DEmiRNA in the pulmonary tissue of rats following intratracheal exposure to 1 or 3mg/kg AZD2230 (p <0.05 and a correlation coefficient of ≤ -0.50 for negative correlations or ≥ 0.5 for positive correlations as determined by Pearson’s correlation analysis). Directionality of regulation was determined using read count data for individual genes.
Further interrogation of the inflammatory gene network sought to address the over-arching aim of identifying both miRNA and metabolite markers of pulmonary inflammation by identifying whether any of the DEmiRNA targets encoded proteins with metabolic activity. Of the 148 mRNA genes that belonged to the inflammatory network, 9 were identified as metabolic genes due to the inclusion of their protein products within KEGG pathway *rno:01100* (Metabolic Pathways for *Rattus norvegicus*).

Exploration of the functions of these genes determined that 7 of the metabolic inflammatory genes encoded protein mediators of lipid metabolism with only the genes encoding subunits of RNA polymerase III and glutamate-cysteine ligase belonging to other metabolic pathways (Table 2.5).

Table 2.5: List of DEmiRNA-targeted inflammatory mRNAs with metabolic functions

<table>
<thead>
<tr>
<th>mRNA</th>
<th>Protein</th>
<th>KEGG Orthology</th>
<th>DEmiRNA regulators</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLR3D</td>
<td>RNA polymerase III subunit D</td>
<td>Nucleotide metabolism</td>
<td>miR-212, 34b</td>
</tr>
<tr>
<td>PLCE1</td>
<td>Phospholipase C epsilon 1</td>
<td>Inositol phosphate metabolism</td>
<td>miR-212</td>
</tr>
<tr>
<td>GCLC</td>
<td>Glutamate-cysteine ligase catalytic subunit</td>
<td>Glutathione metabolism</td>
<td>miR-301b</td>
</tr>
<tr>
<td>GCNT2</td>
<td>Glucosaminyl (N-acetyl) transferase 2, 1-branching enzyme (I blood group)</td>
<td>Glycosphingolipid biosynthesis</td>
<td>miR-133b</td>
</tr>
<tr>
<td>PAFAH1B1</td>
<td>Platelet activating factor acetylhydrolase 1B subunit</td>
<td>Ether lipid metabolism</td>
<td>miR-15b</td>
</tr>
<tr>
<td>PPAP2B</td>
<td>Lipid phosphohydrolase 3</td>
<td>Glycerol lipid metabolism</td>
<td>miR-212</td>
</tr>
<tr>
<td>PPT1</td>
<td>Palmymitoyl-protein thioesterase 1</td>
<td>Fatty acid metabolism</td>
<td>miR-130b, 301b</td>
</tr>
<tr>
<td>PTGS1</td>
<td>Prostaglandin-endoperoxide synthase</td>
<td>Arachidonic acid metabolism</td>
<td>miR-365</td>
</tr>
<tr>
<td>SPHK2</td>
<td>Sphingosine kinase 2</td>
<td>Sphingolipid metabolism</td>
<td>miR-301b</td>
</tr>
</tbody>
</table>
2.3.5: miR-34b and miR-449a are predominantly expressed by pulmonary tissue:

The major aim of the AZD2230 exposure study was to identify miRNAs that associated with inflammation in the lung specifically. As such it was necessary to identify whether any of the AZD2230-associated DEmiRNAs are expressed more predominantly by lung tissue than other tissues. This was achieved using the GSE52754 dataset (acquired by Minami et al. 2014 (271)) which enabled comparison of DEmiRNA expression between the lungs of healthy rats and 18 other tissue types.

Differential expression analysis identified that expression of miR-34b-5p and miR-449a-3p was significantly greater in lung tissue than in 95 and 90% of analysed tissues respectively. This indicated that these miRNAs are predominantly expressed by pulmonary tissue in the rat. Indeed, only the testes and bone marrow expressed greater or statistically similar quantities of either miRNA when compared with lung tissue (Figure 2.5-6, Table 2.6).

miR-429 and 130b expression levels were significantly greater in the lung than for 63 and 68% of analysed tissues (respectively) suggesting that these miRNAs were largely expressed by lung tissue but not specifically so. Pulmonary expression of the remaining DEmiRNAs was either statistically similar to or less than the expression levels of more than 50% of the analysed tissues with miR-212 and 329 being expressed at higher levels by all other tissues (Figures 2.5-6, Table 2.6). As such, only miR-34b and miR-449a were carried forward as potential markers of pulmonary inflammation.
Figure 2. 5: Numbers of tissues that express lower concentrations of DEmiRNAs than lung tissue in healthy male rats. Values were obtained from the GSE52754 dataset (n=3) and are expressed as a percentage of the total number of tissues analysed.
Figure 2. 6: Differences in expression levels of miR-34b-5p and miR-449a-3p between lung and other tissues in healthy male rats. Values were obtained from the GSE52754 dataset (n=3) and represent log2 fold changes in the expression of DEmiRNAs that were significantly enriched in pulmonary tissue (p ≤ 0.05 and log2 fold change ≤ 0.00 in ≥ 90% of assessed tissue types). * p ≤ 0.05, *** p ≤ 0.001.
Table 2.6: Differences in DEmiRNA expression between pulmonary and other tissue types within the healthy rat. Values were obtained using the GEO2 differential expression module of GEO using data available in the GSE52754 dataset. Differences in miRNA expression were considered significant where assigned p values ≤ 0.05. Red highlighting indicates that a miRNA is expressed at significantly greater levels in the lungs than in the compared tissue while green highlighting indicates that the compared tissue contained greater levels of a miRNA than lung tissue. No highlighting is representative of statistically similar levels of miRNA expression between the lungs and the compared tissue.

<table>
<thead>
<tr>
<th></th>
<th>miR-34b</th>
<th>miR-449a</th>
<th>miR-130b</th>
<th>miR-429</th>
<th>miR-133b</th>
<th>miR-365</th>
<th>miR-15b</th>
<th>miR-21</th>
<th>miR-204</th>
<th>miR-449c</th>
<th>miR-493</th>
<th>miR-301b</th>
<th>miR-483</th>
<th>miR-488</th>
<th>miR-312</th>
<th>miR-329</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenal gland</td>
<td>-4.66</td>
<td>-10.61</td>
<td>-4.04</td>
<td>-12.70</td>
<td>-3.81</td>
<td>0.02</td>
<td>-1.25</td>
<td>0.02</td>
<td>1.53</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>6.12</td>
<td>6.48</td>
<td>11.90</td>
</tr>
<tr>
<td>Bladder</td>
<td>-5.97</td>
<td>-5.04</td>
<td>-5.65</td>
<td>0.11</td>
<td>4.65</td>
<td>1.82</td>
<td>-0.40</td>
<td>1.60</td>
<td>2.28</td>
<td>-2.74</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>2.65</td>
<td>0.37</td>
<td>8.71</td>
</tr>
<tr>
<td>Blood Vessel</td>
<td>-8.78</td>
<td>-9.27</td>
<td>-6.58</td>
<td>-11.37</td>
<td>4.12</td>
<td>2.48</td>
<td>-0.04</td>
<td>0.66</td>
<td>2.90</td>
<td>1.46</td>
<td>1.46</td>
<td>1.46</td>
<td>1.46</td>
<td>3.26</td>
<td>1.46</td>
<td>6.69</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>-9.98</td>
<td>0.01</td>
<td>4.36</td>
<td>-10.68</td>
<td>-3.30</td>
<td>-0.13</td>
<td>-0.55</td>
<td>-0.31</td>
<td>-6.64</td>
<td>2.15</td>
<td>2.15</td>
<td>3.94</td>
<td>2.15</td>
<td>7.75</td>
<td>6.12</td>
<td>2.15</td>
</tr>
<tr>
<td>Brain</td>
<td>-3.54</td>
<td>-11.45</td>
<td>-7.84</td>
<td>-11.43</td>
<td>-2.14</td>
<td>-2.61</td>
<td>-3.01</td>
<td>-3.08</td>
<td>3.64</td>
<td>-3.21</td>
<td>-0.05</td>
<td>-0.05</td>
<td>2.76</td>
<td>0.72</td>
<td>8.76</td>
<td>12.51</td>
</tr>
<tr>
<td>Colon</td>
<td>-11.42</td>
<td>-8.09</td>
<td>2.83</td>
<td>2.75</td>
<td>-0.20</td>
<td>-1.67</td>
<td>0.33</td>
<td>1.65</td>
<td>1.81</td>
<td>0.70</td>
<td>0.70</td>
<td>2.70</td>
<td>0.70</td>
<td>4.79</td>
<td>7.47</td>
<td>0.70</td>
</tr>
<tr>
<td>Eyeball</td>
<td>-12.04</td>
<td>-10.51</td>
<td>-3.09</td>
<td>-1.50</td>
<td>3.53</td>
<td>-0.65</td>
<td>-1.31</td>
<td>-1.25</td>
<td>8.68</td>
<td>-1.80</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>2.79</td>
<td>0.87</td>
<td>9.91</td>
</tr>
<tr>
<td>Heart</td>
<td>-5.22</td>
<td>-9.50</td>
<td>-5.91</td>
<td>-11.02</td>
<td>9.29</td>
<td>-0.44</td>
<td>-0.08</td>
<td>-0.20</td>
<td>0.30</td>
<td>-1.51</td>
<td>1.94</td>
<td>1.94</td>
<td>1.94</td>
<td>4.57</td>
<td>1.76</td>
<td>1.94</td>
</tr>
<tr>
<td>Kidney</td>
<td>-5.85</td>
<td>-10.23</td>
<td>-3.63</td>
<td>1.38</td>
<td>-2.54</td>
<td>-0.57</td>
<td>-0.41</td>
<td>0.72</td>
<td>2.50</td>
<td>-2.24</td>
<td>1.21</td>
<td>1.21</td>
<td>1.21</td>
<td>-0.82</td>
<td>2.17</td>
<td>4.20</td>
</tr>
<tr>
<td>Liver</td>
<td>-9.92</td>
<td>-8.36</td>
<td>-4.77</td>
<td>-3.98</td>
<td>-8.05</td>
<td>1.42</td>
<td>-0.09</td>
<td>2.32</td>
<td>-3.19</td>
<td>-0.37</td>
<td>3.08</td>
<td>3.08</td>
<td>3.08</td>
<td>4.10</td>
<td>7.19</td>
<td>3.08</td>
</tr>
<tr>
<td>Neuron</td>
<td>-5.73</td>
<td>-10.76</td>
<td>-5.36</td>
<td>-12.30</td>
<td>0.00</td>
<td>0.11</td>
<td>-0.45</td>
<td>-0.56</td>
<td>5.49</td>
<td>-2.53</td>
<td>0.63</td>
<td>0.63</td>
<td>0.63</td>
<td>2.20</td>
<td>1.17</td>
<td>11.27</td>
</tr>
<tr>
<td>Pancreas</td>
<td>-9.36</td>
<td>-7.81</td>
<td>-4.22</td>
<td>-1.54</td>
<td>-7.50</td>
<td>-1.89</td>
<td>-4.30</td>
<td>-3.15</td>
<td>-5.45</td>
<td>0.18</td>
<td>12.03</td>
<td>3.63</td>
<td>3.63</td>
<td>6.60</td>
<td>10.39</td>
<td>3.63</td>
</tr>
<tr>
<td>Pituitary Gland</td>
<td>-3.09</td>
<td>-6.89</td>
<td>1.30</td>
<td>0.56</td>
<td>-2.09</td>
<td>-3.02</td>
<td>-1.14</td>
<td>-3.19</td>
<td>4.95</td>
<td>-0.26</td>
<td>3.83</td>
<td>5.44</td>
<td>-0.26</td>
<td>1.61</td>
<td>9.69</td>
<td>12.78</td>
</tr>
<tr>
<td>Skeletal Muscle</td>
<td>-10.82</td>
<td>-9.27</td>
<td>-5.67</td>
<td>-10.81</td>
<td>10.31</td>
<td>1.10</td>
<td>-0.81</td>
<td>-0.81</td>
<td>2.22</td>
<td>-1.03</td>
<td>2.13</td>
<td>2.13</td>
<td>2.13</td>
<td>4.56</td>
<td>4.94</td>
<td>11.43</td>
</tr>
<tr>
<td>Skin</td>
<td>-10.01</td>
<td>-10.44</td>
<td>-2.96</td>
<td>-0.10</td>
<td>6.21</td>
<td>0.05</td>
<td>0.10</td>
<td>0.40</td>
<td>2.95</td>
<td>-2.45</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>-2.91</td>
<td>6.39</td>
<td>9.44</td>
</tr>
<tr>
<td>Spleen</td>
<td>-5.12</td>
<td>-4.25</td>
<td>3.15</td>
<td>-12.14</td>
<td>-2.32</td>
<td>-1.72</td>
<td>2.47</td>
<td>1.87</td>
<td>3.92</td>
<td>-2.63</td>
<td>0.82</td>
<td>0.82</td>
<td>1.36</td>
<td>6.01</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>-8.01</td>
<td>-10.03</td>
<td>2.01</td>
<td>3.14</td>
<td>-2.79</td>
<td>-0.78</td>
<td>0.08</td>
<td>0.92</td>
<td>-0.46</td>
<td>-2.04</td>
<td>1.41</td>
<td>1.41</td>
<td>1.41</td>
<td>1.63</td>
<td>6.58</td>
<td>1.41</td>
</tr>
<tr>
<td>Testicle</td>
<td>4.43</td>
<td>4.99</td>
<td>-6.13</td>
<td>-11.27</td>
<td>-1.41</td>
<td>-2.53</td>
<td>2.02</td>
<td>-0.04</td>
<td>4.94</td>
<td>-1.50</td>
<td>1.66</td>
<td>1.66</td>
<td>1.66</td>
<td>3.29</td>
<td>2.23</td>
<td>1.66</td>
</tr>
<tr>
<td>Thyroid</td>
<td>-11.02</td>
<td>-9.62</td>
<td>-1.14</td>
<td>1.55</td>
<td>2.12</td>
<td>-0.50</td>
<td>-0.30</td>
<td>-1.38</td>
<td>5.72</td>
<td>1.11</td>
<td>1.11</td>
<td>1.11</td>
<td>1.11</td>
<td>6.77</td>
<td>1.11</td>
<td>7.10</td>
</tr>
</tbody>
</table>
2.3.6: Differential expression of miR-34b and 449a is not specific to AZD2230 induced pulmonary inflammation

For use as markers of pulmonary inflammation, differential expression of miR-449a and 34b in inflamed lungs must be validated in additional and different models of pulmonary inflammation. Therefore, the applicability of these miRNAs as markers of general pulmonary inflammation was investigated through differential expression analysis of publicly available miRNA microarray datasets. The datasets selected for analysis provided examples of particulate-induced pulmonary inflammation (nanoTiO₂ exposure, GSE19487) and allergic airway inflammation (constitutive IL-13 expression, GSE37085).

Targeted mining of the lists of miRNAs that were differentially expressed between the pulmonary tissues of mice exposed to filtered air (control) and mice exposed to 40 mg/m³ nanoTiO₂ identified that the particulate exposure induced log2 1.49 and log2 0.42-fold increases in miR-449a and miR-34b expression (p ≤ 0.001) (Figure 2.7A). log2 0.79 and log2 0.41 fold increases in miR-449a and 34b expression were also identified in the pulmonary tissue of mice with constitutive IL-13 expression when compared to wild-type mice with basal IL-13 expression levels (Figure 2.7B). These patterns of differential expression were equivalent to those induced by AZD2230 for miR-449a but not for miR-34b which was down-regulated in the AZD2230 model (see Table 2.2). These data suggest that over-expression of miR-449 during inflammation occurs independently of the stimulus type but that miR-34b expression may be regulated by different or additional processes following AZD2230 exposure.
Figure 2. 7: Expression levels of miR-449a-3p and miR-34b-5p in the pulmonary tissue of mice exposed to 40mg/m3 nanoTiO2 or filtered air (A) or with constitutive or wild type IL-13 expression (B). Values were obtained from datasets and differential expression was established using the GEO2 analysis module of GEO. ** p ≤ 0.01, *** p ≤ 0.001. Error bars represent standard error of the mean calculated from n=13 (A) or n= 6 (B).
2.3.7: miR-34b expression was driven independently of transcription factor activity

miR-449a/34b regulation was explored with the aim of understanding why miR-34b and 449a were differentially regulated following AZD2230 exposure despite belonging to the same miRNA family and functioning co-operatively in other models (279). The work also sought to determine why this regulatory event only occurred in the AZD2230 model but not the nanoTiO₂ or IL-13 models.

miRNA expression is strongly regulated at the transcriptional level and regulation of miR-449/34 family members by multiple transcription factors (TFs) has been validated *in vitro* within the context of carcinogenesis (280,281). Mining of the TMREC database determined that miR-34b and 449a are regulated by non-overlapping groups of transcription factors (tumour protein 53 (p53), snail family transcriptional repressor 1 (Snai1) and Zinc finger E-box-binding homeobox 1 (Zeb1) for miR-34b and cyclin dependent kinase (CDK), forkhead box protein O1 (FOXO1), retinoblastoma protein (Rb) and E2F transcription factor 1 (E2F1) for miR-449). This suggested that differential expression of p53, Snai1 or Zeb1 could have induced the differential regulation of miR-34b following AZD2230 exposure.

While no difference in Tp53 or Snai1 expression was detected, targeted analysis of the mRNA expression data showed that AZD2230 exposure induced a 48% decrease in Zeb1 expression as compared to vehicle exposure (p <0.05) (*Figure 2.8A*) which correlated positively and strongly with the decreased miR-34b expression (r= 0.90, p < 0.01) (*Figure 2.8C*). This contrasted with the negative correlations that were observed between 16 and 9% decreases in Zeb1 expression (p <0.01 and p < 0.05 respectively) following IL-13 and nanoTiO₂ exposure (r= 0.74 and 0.30 respectively, p < 0.05) (*Figure 2.8B, D and E*). As Zeb1 has been validated as a suppressor of miR-34 expression in both lung and breast adenocarcinoma cell lines (281), these results suggest that its activity contributed to up-regulation of miR-34b in the IL-13 and nanoTiO₂ models but was reduced or counteracted in the AZD2230 model specifically.
Figure 2. 8: Expression of transcription factors that target miR-34 (A and B) and their correlation with miR-34b expression in the pulmonary tissue of rats exposed to AZD2230 (C), nanoTiO$_2$ (D) or constitutive IL-13 expression (E). Gene expression values were obtained through mRNA sequencing with quantile normalisation (AZD2230 model) or by mRNA microarrays with locally weighted scatterplot smoothing normalisation (nanoTiO$_2$ and IL-13 models). Significant differences in gene expression were identified by Student’s t test while correlations between transcription factor and miR-34 expression were established by Pearson’s correlation analyses. Error bars represent SEM, n=6-13, * p <0.05, ** p < 0.01.
2.4: Summary of results

- Intratracheal exposure to the pharmaceutical compound, AZD2230 induced an inflammatory phenotype (characterised by influx of immune cells) in the pulmonary tissue of rats.
- Expression of 15 miRNAs was significantly altered in association with AZD2230-induced pulmonary inflammation.
- Differential expression of AZD2230-associated miRNAs was predicted to dysregulate expression of 148 inflammation-associated genes. Of these genes, 9 contribute to metabolic processes.
- Of the differentially expressed miRNAs, miR-34b and miR-449 displayed greatest specificity for pulmonary tissue when compared with 18 other tissues in healthy rats.
- Targeted analysis of microarray data from murine models of nanoTiO₂ exposure and IL-13 overexpression indicated that miR-34b and miR-449a have potential as biomarkers of pulmonary inflammation, independent of stimuli.
2.5: Discussion

Etheridge et al. (2011) suggest that biomarkers should possess several properties; they should be pathologically and organ specific, easily translatable between different models and non-invasively accessible (282). This body of work sought to identify alterations in miRNA expression that contribute to inflammation within the lungs and assess their suitability as biomarkers for pulmonary-specific inflammatory responses. Based upon global measurements of miRNA expression in the pulmonary tissue itself, the work was designed to direct targeted investigations into whether miRNA markers of pulmonary inflammation translate to accessible biofluids. Such markers could enable toxic responses to inhalable agents to be identified and monitored non-invasively in human cohorts, e.g. for exposomics studies or in preclinical assessments of toxicity.

The AZD2230 model of pulmonary inflammation in rats was used as a platform to identify miRNAs that regulate or are regulated by inflammatory pathways in the lungs. The model was selected because inhalation of AZD2230 induced dose-dependent infiltration of the airways by inflammatory cells which is a typical outcome of inflammatory cascades that begin within the lungs (283). Next generation sequencing produced comprehensive profiles of the miRNAs expressed within the pulmonary tissue of the rats, identifying 15 that associated significantly with the inflammatory phenotype.

Differential expression of these miRNAs was confirmed to influence the pulmonary response to AZD2230 exposure. This was established by integrating established computational target prediction algorithms with the output of complimentary mRNA sequencing data. This approach has previously furthered mechanistic understanding of conditions such as nasopharyngeal carcinoma (284) and COPD (269) and stringently bypasses the limitation that computational algorithms produce numerous false positive predictions through over-reliance on Watson-Crick pairing (265).

In this model of AZD2230 exposure, the method determined that expression of all fifteen DEmiRNAs correlated with dose-dependent changes in the expression of their predicted
mRNA targets. In particular, the miRNAs were shown to correlate with expression of genes that associate with inflammatory pathways specifically, including the TNF-α and interferon signalling pathways and AP-1 network activity. As miRNA regulatory mechanisms include degradation of mRNA molecules as well as promotion of mRNA translation (119), this suggested that the inflammatory response to AZD2230 exposure was under some post-transcriptional control by the DEmiRNAs. Furthermore, 30% of the gene targets were shown to be regulated by more than one DEmiRNA suggesting that this regulatory activity was fine-tuned and as the result of a co-operative network (119).

Many of the AZD2230-induced DEmiRNAs have been previously associated with inflammation in the lungs, indicating that their ability to represent pulmonary inflammation could apply across different in vivo models and human cohorts. miR-15b was shown to be over-expressed in the lungs of COPD patients (269) along with miR-34 and miR-449 (285) while miR-133b and miR-21 are up-regulated during allergic airway inflammation (286) and bleomycin-induced idiopathic pulmonary fibrosis (287). miR-365 was demonstrated to up-regulate IL-6 expression in alveolar macrophages during tuberculosis infection (279) and miR-212 has been associated with TLR signalling and modulation of NFκB expression in macrophages (288) which form the forefront of pulmonary defences.

The organ specificity of the AZD2230-associated DEmiRNAs was investigated with the aim of identifying those that were expressed characteristically by the lungs and could therefore be associated with pulmonary injury if detected in the systemic circulation. In line with previous comparisons (279,289,290), miR-34b and 449a were found to be expressed predominantly in the pulmonary tissue of healthy rats with only the testes displaying statistically similar or greater expression levels for either miRNA. As the testes are unlikely to be directly impacted by inhalable agents, the risk of this source confounding studies of pulmonary inflammation was considered to be minor. Therefore miR-34b and 449a were carried forward as candidate markers for pulmonary inflammation.
miR-34b and miR-449a possess homologous seed sequences meaning that they belong to the same functionally related family; the miR-449/34 family. This group of miRNAs is composed of six members (miR-449a, b and c which are encoded by one genomic cluster, miR-34b/c which are encoded by a second genomic cluster and miR-34a). *In vitro* pulmonary systems have shown that these miRNAs inhibit expression of cell cycle progression genes (291), which contributes to bronchial epithelial cell differentiation by inhibiting proliferative activity (292) and contributes to p53 or E2F1 mediated tumour suppression (289,291,293) alongside apoptosis (294). They also regulate multiciliogenesis in airway epithelial cells by repressing the Delta/Notch pathway (295).

For miR-34b and 449a to be considered markers of generalised pulmonary inflammation (rather than just an AZD2230 specific response), their differential expression must be applicable to multiple pulmonary inflammatory stimuli. Targeted investigations of miR-449a and 34b expression in mouse models of nanoTiO$_2$ exposure and constitutive IL-13 expression showed that both candidate markers were differentially expressed in additional and heterogeneous models of pulmonary inflammation. This suggested that differential expression of these miRNAs is common to pulmonary inflammation, independent of the stimulus; a result that is shared by studies of COPD and asthma cohorts (285,296) and LPS-stimulated macrophages (297).

The analysis did however, highlight an anomalous differential pattern of regulation for miR-34b in the AZD2230 model. Whilst nanoTiO$_2$ exposure and IL-13 activity induced significant up-regulation of both miRNAs, AZD2230 exposure only increased expression of miR-449a with miR-34b expression being significantly lower than for control samples. This is surprising because miR-449 and 34 family members are consistently shown to function redundantly and to be regulated in the same direction under experimental conditions (296,298).

It may be that the discrepancy in changes of miR-34b expression between models was contributed to by AZD2230-induced induction of DNA damage pathways. In addition to promotion of neutrophillic influx with the possibility of accompanying ROS production (which
may produce a spectrum of genotoxic effects ranging from nucleobase modification to strand breakages or crosslinks (Palmai-Pallag et al), AZD2230 is shown to possess the molecular qualities of a non-typical DNA intercalator (namely more than two aromatic rings and a basic centre in a near-planar conformation (Borjesson et al)). In similarity to ROS induced DNA damage, DNA intercalating drugs are shown to activate p53 responses (Achanta et al, Wang and El-Deiry) which in turn regulate expression of miR-34 family members (Navarro and Leiberman). Although p53 activity is shown to enhance miR-34 expression (Navarro and Leiberman), activity of these miRNAs under DNA damaging conditions is only modestly reduced through silencing of p53 (Salzman et al) suggesting that additional regulatory molecules contribute to their response during DNA damage, potentially resulting in the decreased miR-34b expression seen in the AZD2230 model.

Indeed, pathway enrichment analysis showed that AZD2230 exposure associated with several pathways that are induced by transcription factors. As transcription factors are key regulators of miRNA expression (299) and DNA damage ((300), this lead to the hypothesis that the differential miR-34b regulation may have been caused by variation in transcription factor activity. In support, the TMREC database demonstrated that the promotors of miR-449b and 34a contain binding sites for non-overlapping sets of transcription factors.

Of the three transcription factors found to target miR-34b, only Zeb1 was differentially expressed by AZD2230 exposure, showing significant down-regulation. As Zeb1 is a validated suppressor of miR-34 (281), and its down-regulation correlated negatively with increased miR-34b expression in the nanoTiO₂ and IL-13 models, it may be that the differential miR-34b regulation was contributed to by additional regulatory events which counter-acted the activity of Zeb1.

These seemingly anomalous regulatory events could include hypermethylation of CpG islands in the miR-34 promoter which has been shown to have a silencing effect that counter-acts miR-34 induction by p53 (301) or up-regulation of miR-21 which has a suppressive effect in breast cancer cells (302). Alternatively, as p53 is a major inducer of
miR-34 expression (289) and p53 levels were not enhanced by AZD2230 exposure, this additional event could simply be an absence of agonistic activity. It must be noted however that this analysis was limited by an absence of functional protein quantification, thus excluding the impact of post-translational regulation of protein activity. Irrespective of the nature of the event, its discrepancy from the other models indicates that it is an artefact of AZD2230 exposure, potentially caused by the DNA intercalating structure of the compound. This suggests that the mechanism is unlikely to impact the use of miR-34b as a biomarker of pulmonary inflammation in new models, particularly if measured in tandem with miR-449a.

As miR-34b and 449a were not expressed exclusively within the lungs (just at higher levels than other tissues) their reliability as accessible biomarkers of pulmonary inflammation could be enhanced if they were measured as part of a wider molecular panel. In line with the overarching aim of integrating miRNA and metabolite markers of pulmonary inflammation, eight AZD2230-associated DEmiRNAs were identified that target genes that encode metabolic pathway mediators.

Most of these gene targets are required for the synthesis or modification of pro-inflammatory lipids and were up-regulated by AZD2230 exposure, indicating that analysis of the lipid content of inflammatory samples could yield further mechanistically relevant biomarkers of pulmonary inflammation. These inflammatory lipids included prostaglandins (products of arachidonic acid metabolism that mediate allergic airway (303) and residual oil fly ash-induced inflammation (304)) and sphingolipids (inducers of IL-8 secretion by alveolar macrophages (305)).

GCLC; the gene that encodes the catalytic subunit of glutamate cysteine ligase (the rate limiting enzyme responsible for glutathione synthesis) was also dysregulated by AZD2230 exposure, showing evidence of down-regulation due to increased miR-301b activity. Glutathione (GSH) plays a critical role in protecting the lungs from oxidative stress with low levels leading to pro-inflammatory imbalances between oxidants and antioxidants (306). GCLC expression is modulated by AP-1 activity – a pathway that was dysregulated by
AZD2230 exposure- indicating that differential measurement of metabolites that belong to glutathione synthesis and activity pathways could also be a source of mechanistically relevant biomarkers of pulmonary inflammation.

2.6: Conclusion

Integration of miRNA and mRNA sequencing data confirmed a mechanistic role for miRNAs in the development of pulmonary inflammation in vivo and indicated that metabolic markers may also be detectable within inflamed lung tissue.

This body of work identified significant associations between the expression of miR-449a/34b and pulmonary inflammatory phenotypes with targeted measurements in healthy tissues and alternative inflammatory models indicating their candidacy as markers of stimulus-independent but pulmonary-specific inflammation. Such observations demonstrate that differential expression of miR-449a and 34b may be translatable to accessible biofluids following pulmonary insult, and could potentially be accompanied by characteristic metabolic changes.
Chapter 3: Circulating markers of pulmonary inflammation

Chapter overview

Detection of biomarkers of pulmonary inflammation in accessible sample types is an attractive proposition. The blood is a rich source of cell-derived miRNA and having identified that miR-34b and 449a are significantly differentially regulated in pulmonary tissue during inflammation, the following work sought to determine whether the same association is detectable in blood.

Targeted quantifications of extracellular miR-34b and 449a were performed in a targeted manner using a rat model of intratracheal lipopolysaccharide (LPS) exposure. These were accompanied by metabolic profiling with the aim of identifying markers of metabolic pathways that could accompany or be influenced by increased miR-34b and 449a activity.

3.1: Introduction

Following extensive exploration of their use as diagnostic and prognostic markers in the context of disease (282), extracellular miRNAs are being sought as non-invasive biomarkers for toxicological responses. Such considerations have focused primarily on adverse reactions to pharmaceuticals in the liver, kidneys, heart and retina (307–309) but evidence that exposure to ozone, ultrafine particles and metallic particles alters miRNA expression profiles in human sputum, saliva and blood (251,310,311) indicates that the approach could be applied successfully to investigations of pulmonary inflammation, particularly those relating to TRPM exposure.

Although Weber et al. (2010) demonstrated that extracellular miRNAs are present in 12 different biofluids (141), most biomarker searches have been performed in serum or plasma. Despite providing low yields of total RNA compared with tissue or cells, these biofluids contain approximately 350 characterised miRNA species (141) making them advantageous
for untargeted miRNA biomarker mining. Furthermore, many of the miRNAs that reside in serum and plasma localise to exosomes (312). Exosomal miRNAs are hypothesised to contribute to intercellular communications, so changes in their concentrations are likely to provide mechanistic information regarding the cellular and molecular processes that triggered or inhibited their release.

A further advantage of using serum and plasma for miRNA biomarker studies is that these fluids are rich in metabolites (313), making them a prudent choice for inter-omics analyses. Serum in particular has been recommended for use in metabolomic analyses due to its enhanced metabolite content and stability when compared with plasma (313) and has been shown to display changes in metabolite content under conditions of pulmonary inflammation (314,315). These changes include alterations in carbohydrate and urea-arginine metabolite concentrations that correspond to changes seen in matched tissue samples (315), suggesting that the serum metabolome could be a useful source of markers for metabolic activity in inflamed lungs.

Workflows for integrating microtranscriptomic and metabolomic datasets are yet to be fully developed but integration of transcriptomic features (i.e. the product of the microtranscriptome) with metabolomic features is considered a powerful approach for enhancing mechanistic understanding of biological phenomena (316). By combining transcriptomic and metabolomic data, Cavill et al. (2011) demonstrated a 76% improvement in the detection rate of the pathways that underlay in vitro responses to chemotherapeutics as compared with the use of transcriptomics data alone (317).

To do this, the authors employed a statistical pathway-level approach that reflected the fact that genes and metabolites are linked through biochemical reactions (the building blocks of pathways) (270) rather than directly as for genes and proteins where simpler correlative integrations suffice (316). The study directed development of the webtool IMPaLA which (in addition to the gene enrichment analyses employed in Chapter 2) can search
simultaneously through its 3073 curated pathways, seeking those that are enriched for both genes and metabolites in an integrative manner (270).
3.1.2: Aims, hypothesis and study design

In consideration of the limited number of mechanistically relevant, circulating biomarkers that exist for pulmonary responses to inflammatory stimuli, the following study tested the hypothesis that **differential expression of the pulmonary inflammatory miRNAs (miR-34b and 449a) is present in the serum of rats during episodes of pulmonary inflammation and that accompanying metabolite markers can also be detected.**

Specifically the study sought to determine whether **serum concentrations of miR-34b and 449a are reflective of those seen in pulmonary tissue** during pulmonary inflammation and whether pulmonary inflammation is accompanied by **alterations in the serum metabolome** that may widen the panel of available biomarkers.

Modifying the approaches used by Cavill *et al.*, (2011) metabolic data (acquired globally by \(^1\)H NMR spectroscopy) was integrated with the predicted gene targets of miR-34b/449a (as obtained in **Chapter 2**) to identify crossover between the pathways that were represented by the metabolite and miRNA markers. This approach aimed to add depth to the mechanistic value of individual miRNA and metabolite markers by identifying pathways that may not be detected by single-omics analyses.

Serum from the AZD2230 exposed rats was unavailable, therefore data was acquired for this study using the serum of rats that was harvested 4h after intratracheal exposure to LPS; a model that produces localised pulmonary inflammation. LPS endotoxins are a major component of the outer membrane of gram negative bacteria and as potent inducers of TLRs (**Figure 3.1**), are considered prototypical signals for activation of the innate immune system (318). As such, much of our understanding of *in vivo* pulmonary responses is attributable to models of LPS exposure (319–321) and the likelihood of circulating markers of LPS-induced pulmonary inflammation being applicable to additional models (including TRPM exposure) is strong.
With the aim of increasing confidence in any metabolite or miRNA biomarkers found in this study, analyses included data obtained from rats that were exposed simultaneously to LPS and the p38 MAPK inhibitor GSK258899. The rationale behind these experiments was that molecules that display altered serum concentrations in response to inflammatory stimuli will remain at control level where inflammation is inhibited, thus supporting their association with the inflammatory phenotype.
Figure 3.1: LPS signal transduction. Upon contact with the pulmonary epithelial surface, LPS binds LBP via its lipid A group. LPB acts as a shuttle, transferring the endotoxin to cell membrane receptors such as CD14. Ligand binding at CD14 induces oligomerisation and activation of TLR4 which recruits intracellular adaptor proteins such as TIRAP and TRAM. Downstream processing may be dependent or independent of MyD88, depending on whether expression of cytokines or interferons and interferon-inducible genes is required. In the MyD88 dependent pathway, IRAK-4 phosphorylates and activates IRAK-1 which phosphorylates TRAF6. Phosphorylated TRAF6 activates TAK1 which stimulates MAPK signalling and activates IKK regulators of NFkB signalling. These pathways enhance expression of cytokines and cytokine-inducible genes. LPS binding proteins (LBP), Toll-interleukin-1-receptor domain containing adaptor inducing interferon-β (TIRAP), Toll-interleukin-1-receptor related adaptor molecule (TRAM), Myeloid differentiation primary response gene 88 (MyD88), IL-1 receptor associated kinase-4 (IRAK-4) IL-1 receptor associated kinase-1 (IRAK-1) TNF receptor associated factor 6 (TRAF6) transforming growth factor-B-activated kinase 1 (TAK1).
3.2: Methods

3.2.1: Rat serum samples: Rat serum samples were kindly provided by Dr McKeivit’s laboratory at GlaxoSmith Kline (UK). Samples were harvested from male Crl:WI(Han) rats 4h after intratracheal installation of 2 μg LPS (isolated from \textit{E.coli} 0127:B8 and suspended in PBS), 2 μg LPS and 0.3, 3 or 30 μg/kg GSK258899 (blended with inhalation grade lactose), 30 μg/kg GSK258899 or lactose in phosphate buffered saline (PBS) as a vehicle control. To comply with ethical regulations, exsanguination was performed via the abdominal aorta under isoflurane anaesthesia and death confirmed by cervical dislocation.

3.2.2: RNA extraction: Total RNA was extracted from the plasma samples using a Trizol LS method. Plasma (200μl) was diluted 1:1 in RNase free H2O and combined with 3.75 x volumes of Trizol LS (Life Technologies, UK) in ultra-high recovery tubes. The tubes were vortexed for 10 s, incubated for 5 mins at room temperature (RT) then spiked with 8.1×10^5 copies/μl of synthetic cel-miR-39 (QIAgen, Netherlands) which was used as an exogenous control. 1 x volume of chloroform was added to each sample then the tubes were vortexed again for 10 s, incubated at RT for 15 mins and centrifuged (12,000 x g, 4°C, 20 mins) to separate the solution into aqueous, precipitate and organic layers. The upper aqueous layer containing the RNA was transferred to a fresh tube, combined with 15 μg/ml GlycoBlue carrier molecule (Life technologies) and vortexed for 10 seconds with 0.75 x starting volume of 2:1 ethanol: isopropanol. Samples were incubated at RT for ten minutes then centrifuged (12,000 x g, 4°C, 20 mins) to pellet the RNA. RNA pellets were washed twice with 80% (v/v) ethanol then dried via SpeedVac (ThermoFisher Scientific, UK) using a medium heat for 4 mins before being re-suspended in 100 μl RNase free H2O.

3.2.3: RNA purification: As plasma is highly proteinaceous, an acid: phenol clean-up procedure was performed to further purify the RNA. 100 μl RNA was combined with 100 μl 1:1 acid-phenol: chloroform and centrifuged for 15 mins (12,000 x g, 4°C). The upper aqueous phase was harvested and transferred to another tube while a further 100 μl H2O was added to the acid-phenol: chloroform, vortexed and centrifuged (12,000 x g, 4°C) to
ensure maximal yield. The second aqueous phase was combined with the first and combined with 15 μ/ml GlycoBlue. Samples were precipitated overnight at -20°C in 1/10th volume of 3M NaOAc (pH5.2) and 2.75 x 100% ethanol then centrifuged for 10 minutes (12,000 x g, 4°C) to pellet the RNA. Once the supernatant had been discarded, RNA pellets were washed twice with 75% ethanol, dried using a SpeedVac (as above) and re-suspended in 20μl nuclease-free H₂O.

3.2.4: Total RNA and total miRNA quantifications: Total RNA was quantified using a Nanodrop 2000 UV-VIS spectrophotometer (Thermo Scientific, USA). Measurements were made in accordance with the manufacturer's instructions, measuring RNA at a wavelength of 260nm. Total miRNA was quantified using a 2100 Bioanalyzer and Small RNA Kit (Agilent) as instructed by the manufacturer.

3.2.5: cDNA synthesis: cDNA was synthesised using the TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). For each reaction, 5 μl RNA was mixed with 10 μl mastermix containing 0.15μl of 100mM dNTP mix, 1 μl of 50U/μl multiscribe reverse transcriptase, 1.5 μl 10x RT buffer, 0.19 μl 20U/μl RNase inhibitor, 1.16 μl nuclease free H₂O and 3 μl each of reverse transcription primers for hsa-miR-449a or hsa-miR-34b and cel-miR-39. Reverse transcription was performed by incubating the samples at 16°C for 30 minutes, at 42°C for a further 30 minutes then heated to 85°C for 5 minutes to terminate the reaction. cDNA was stored at -20°C until use.

3.2.6: RTqPCR: Using a 96 well plate, 1.33 μl cDNA was combined with 18.67 μl of a mastermix containing 10 μl TaqMan 2x Universal PCR Master mix with Uracil N-Glycosylase (UNG), 7.67 μl nuclease-free H₂O and 1μl of 20x primers for hsa-miR-449, hsa-miR-34b or cel-miR-39. Plates were centrifuged for 5 mins at 10,000 xg and placed inside a QuantStudio 6 Flex RTqPCR System (Applied Biosystems) for data acquisition using Quantstudio 6 and 7 Flex Software. Samples were heated to 50°C for 2 minutes to activate the UNG enzyme.
then to 95°C to activate taq polymerase before undergoing 40 cycles of product denaturation for 15 seconds at 95°C and product annealing and extension for 60 seconds at 60°C.

Raw data was analysed using the 2-(ΔΔ C_T) method described by Litvak and Schmittgen (2001) (322). Briefly, changes in target expression (compared to control) were calculated using the mean cycle threshold (C_T) values of 3 technical repeats and calibrated to the accompanying change in exogenous control expression (cel-miR-39). This produced fold change values for the differences in target expression that existed between control and treated samples.

3.2.7: Functional annotation of predicted miR-34b/449a gene targets: Lists of predicted gene targets were produced for miR-34b/449a using the MiRWalk database. The molecular functions of the proteins for which these genes encode were explored using Panther Classification System with Gene Ontology version 1.2 (Paul Thomas, USA). Using manual curations and bioinformatic algorithms the database classified the genes based on gene ontology (GO) terms (323).

3.2.8: 1H NMR spectroscopy: Serum samples were centrifuged for 10 minutes at 16000 xg to remove suspended particulate matter then combined with 10mM sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP) in D_2O and transferred to 5.00 mm NMR tubes. 1H NMR spectra were acquired for the samples using a Bruker AVANCE 600 spectrometer (Bruker, Biospin, Rheinstetten, Germany) fitted with a Bruker TXI probe and an automated sample handling carousel (Bruker) at a frequency of 600.29 MHz and at a temperature of 300K. One dimensional NMR spectra were obtained using a Carr-Purcell-Meiboom-Gill (CPMG) spin-echo pulse sequence (324). Following 4 dummy scans, 32 transients were collected into 32,000 datapoints with a spectral width of 20 ppm, acquisition time of 3.07 seconds and relaxation delay of 4.00 seconds. Prior to Fourier transformation, a line broadening factor of 0.3 Hz was applied to all spectra.
3.2.9: Processing of 1H NMR spectroscopic data: Spectra were imported into MATLAB R2013a (Mathworks, USA) where automatic phasing, referencing of chemical shifts to the resonance of the glucose peak (δ 5.233) and baseline correction were performed using an in-house code. Prior to peak alignment the residual water resonance (δ 4.18-5.15 ppm) was removed and spectra exhibiting low signal: noise ratios were excluded from the analysis. The remaining data was normalised using the probabilistic quotient normalisation (PQN) method to protect against influences from non-biological variations in metabolite dilution such as pipetting error.

For multivariate analyses, full resolution spectra (29813 data points) were reduced to 45 data points (corresponding to individual peaks) by integration. To obtain the reduced resolution data, metabolite peaks were assigned using Chenomx software version 7.7 (Chenomx Inc, Canada). Assignments were confirmed by comparing the output of Statistical Total Correlation Spectroscopy (STOCSY) (which identified peaks with highly correlating concentrations ($r^2 \geq 0.9$) as belonging to a common molecule) with spectra from the Human Metabolome Database Version 3.6 (available at http://www.hmdb.ca/). These assignments directed selection of representative peaks for each metabolite from which peak areas were integrated based on manually assigned minima and maxima. Where metabolites contributed peaks at multiple resonances, the least overlapped peaks were selected for integration in order to produce the cleanest values.

3.2.10: Multivariate statistical analysis of 1H NMR spectroscopic data: Feature metabolites were identified using multivariate approaches. Reduced resolution values were imported into SIMCA-P+ 14 (Umetrics, Sweden) and subjected to Pareto scaling. Principal Component Analysis (PCA) was performed to examine overall variance within the dataset and Partial Least Squares- Discriminant Analysis (PLS-DA) was implemented to model associations between metabolic profile and treatment type. PLS-DA modelling split the spectral data into a test set and a validation set and attempted to predict which classes the spectra in the validation set belonged to by comparing their metabolic content with that of
test set spectra. Modelling provided a Q^2 value that represented the goodness of prediction produced by the model, and thus, diagnosed its performance. Models that produced Q^2 values ≤ 0.5 were considered to have good predictive power and metabolites that displayed weights ≤ -0.2 or ≥ 0.2 in the PLS-DA loadings plots were treated as feature metabolites that were potentially influential to the model. The validity of PLS-DA modelling was assessed by permutations test. This cross-validation method rearranged the dataset into 1000 different permutations and compared their predictive power with that of the original dataset, providing R^2_Y and Q^2_Y values that indicated a valid model if below 0.40 and 0.05 respectively.

3.2.11: Integrated pathway analysis of miRNA quantification and 1H NMR spectroscopic data: In order to study pathway level metabolic interactions, Pearson’s correlation analyses were performed in a global manner using the reduced resolution values from the 1H NMR experiment. Correlation coefficients ≥ 0.5 or ≤ -0.5 with p values ≤ 0.05 were considered to represent pathway commonality between the metabolites in question. Cellular pathways that could have influenced the changes in feature metabolite concentration were identified using the pathway over-representation module of IMPaLA. Lists of feature and correlating metabolites and predicted gene targets for miR-34b/449a (identified using the MiRWalk database in Chapter 2) were input to the analysis. These were computationally compared with 3073 previously defined metabolite and gene sets (corresponding to cellular pathways) from 11 public databases (325) to identify pathways that significantly overlapped with the feature metabolite and target gene lists. Pathways were considered to be significantly over-represented in the integrated dataset if they contained ≥ 3 correlated metabolites and genes and if their joint overlap was assigned a p value ≥ 0.05 with a FDR of $\geq 20\%$.

3.2.12: Univariate statistical analysis of RTqPCR and 1H NMR spectroscopic data: Student’s T tests with FDR corrections were performed to identify statistically significant changes in the serum concentrations of feature metabolites and miR-34b/449a between
treatment groups. Correlation coefficients were compared between treatment groups using Fisher's Z tests. Any differences in concentrations or correlations with p values ≤ 0.05 and a FDR ≤ 20% were considered significant. Univariate analyses were performed using Microsoft Excel version 14.0.
3.3: Results

3.3.1 miRNAs are detectable within the serum of rats

Prior to quantifying miR-34b and 449a, the success of the RNA isolation procedure was assessed using Nanodrop 2000 and Bioanalyzer 2100 technology to measure total RNA and total miRNA concentrations within a subset of the serum samples. This check was performed because the RNA content of plasma is considerably lower than for cells and requires more steps to be isolated, posing multiple opportunities for loss of yield and the risk of obtaining poor starting material concentrations.

Samples displayed peaks at 260nm when analysed by Nanodrop 2000 UV/VIS spectrophotometer (Figure 3.2 A), indicating that RNA was present (with little contamination from protein that absorbs at 280nm). Across the subset total RNA yields ranged between 9.3 and 25.2 ng/µl (Table 3.1), falling within the expected range of our laboratory (326) and meeting the assay requirements suggested for small RNA quantification (327).

Quantification of the total miRNA content of the samples indicated that these total RNA concentrations were contributed to by miRNAs. Samples produced yields of 994.3-21499.6 pg/µl for RNAs falling within the expected size range for miRNA (Table 3.1, Figure 3.2 B).
Table 3.1: Concentrations of total RNA and total miRNA within representative samples of rat serum. Data were acquired using Nanodrop 2000 and Bioanalyzer 2100 (with Small RNA Kit) instruments respectively. Bracketed numbers refer to two separate samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total RNA (ng/µl)</th>
<th>Total miRNA (pg/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle (1)</td>
<td>9.3</td>
<td>1516.1</td>
</tr>
<tr>
<td>Vehicle (2)</td>
<td>25.7</td>
<td>944.3</td>
</tr>
<tr>
<td>LPS (1)</td>
<td>13.3</td>
<td>5432.8</td>
</tr>
<tr>
<td>LPS (2)</td>
<td>16.7</td>
<td>16697.1</td>
</tr>
<tr>
<td>LPS + 0.3 µg/kg GSK (1)</td>
<td>14.9</td>
<td>1674.1</td>
</tr>
<tr>
<td>LPS + 0.3 µg/kg GSK (2)</td>
<td>7.6</td>
<td>1721.1</td>
</tr>
<tr>
<td>LPS + 3 µg/kg GSK (1)</td>
<td>9.8</td>
<td>2612.0</td>
</tr>
<tr>
<td>LPS + 3 µg/kg GSK (2)</td>
<td>12.7</td>
<td>1252.1</td>
</tr>
<tr>
<td>LPS + 30 µg/kg GSK (1)</td>
<td>11.9</td>
<td>18504.7</td>
</tr>
<tr>
<td>LPS + 30 µg/kg GSK (2)</td>
<td>25.2</td>
<td>21499.6</td>
</tr>
<tr>
<td>30 µg/kg GSK (1)</td>
<td>19.5</td>
<td>18463.3</td>
</tr>
<tr>
<td>30 µg/kg GSK (2)</td>
<td>14.4</td>
<td>16630.1</td>
</tr>
</tbody>
</table>
Figure 3.2: Example spectra displaying the quantities of total RNA (A) and total miRNA (B) detectable in a representative sample of rat serum. Spectra were acquired using Nanodrop 2000 and Bioanalyzer 2100 (with Small RNA Kit) instruments respectively.
3.3.2 Serum concentrations of miR-34b and 449a are enhanced by pulmonary exposure to LPS

miR-34b and 449a were quantified within the serum of rats following 4h pulmonary exposure to LPS (2 μg) or to a non-inflammatory lactose-PBS control. These measurements aimed to determine whether the inflammation-induced changes in miR-34 and 449 concentrations that were observed in pulmonary tissue (Chapter 2) are detectable in accessible blood samples.

RTqPCR measurements indicated that plasma concentrations of miR-34b and 449a were 6.09 ± 1.65 and 7.54 ± 1.84-fold greater in LPS-exposed rats compared with vehicle-exposed rats (p ≤ 0.01) (Figure 3.3). These results indicate that pulmonary enhancement of miR-34b and 449a expression during inflammation translates to the serum.
Figure 3.3: Fold increases in miR-34b and 449a concentrations in the serum of rats following 4h pulmonary exposures to LPS (2 μg) as compared with serum from rats exposed to vehicle control. Data were acquired by RTqPCR, normalised to exogenous cel-miR-39 concentrations and analysed using the 2-(ΔΔ C\text{_{T}}) method. Values represent the mean ± SEM of 6-18 biological replicates, obtained from 3 technical replicates for each. Significant differences were detected between treatment groups using Student's T tests, * p ≤ 0.05, ** p ≤ 0.01.
3.3.3 LPS-induced increases in miR-34 and 449 expression are inhibited by p38 MAPK inhibition

To assess the association between LPS-induced pulmonary inflammation and increases in serum concentrations of miR-34b and 449a, the two miRNAs were quantified in the serum of rats that had been treated with LPS in the presence of an anti-inflammatory p38 MAPK inhibitor (GSK). The hypothesis driving this experiment was that inhibition of p38 MAPK activity (a key component of the LPS-induced inflammatory response) within the lung would prevent over-expression of miR-34b and 449a in the tissue and result in the serum concentrations remaining comparable to control.

While serum concentrations of miR-34b and 449a were elevated 0.09 and 0.25-fold by GSK exposure alone (p = 0.09 and 0.06, respectively), serum concentrations of both miRNAs were significantly lower in LPS exposed rats where the LPS was administered in combination with the inhibitor. When compared with samples from rats that had been exposed to LPS alone, miR-34b concentrations were 4.21, 4.12 and 4.48-fold lower in the serum of rats that were exposed to LPS in the presence of 0.3, 3.0 and 30.0 μg/ kg GSK (p < 0.05), becoming only 0.83, 0.91 and 0.56-fold higher than for control animals (Figure 3.4 A). miR-449a concentrations were also significantly decreased by GSK exposure, reducing 5.56, 5.73 and 5.99-fold in the presence of 0.3, 3.0 and 30.0 μg/ kg GSK (p <0.01) and becoming only 0.98, 0.81 and 0.25 fold greater than for control animals (Figure 3.4 B).

These results indicate that the elevations in serum concentrations of miR-34b and 449a that accompany pulmonary responses to LPS exposure are likely to be p38 MAPK dependent. Furthermore, mitigation of this response by GSK supports the association between serum concentrations of the miRNAs and inflammatory responses within the lung.
Figure 3.4: Fold increases in miR-34b and 449a concentrations in the serum of rats following 4h pulmonary exposures to LPS in the presence of a p38/MAPK inhibitor (compared with that of rats exposed to vehicle control). Data were acquired by RTqPCR, normalised to exogenous cel-miR-39 concentrations and analysed using the 2^- (ΔΔ C_T) method. Values represent the mean ± SEM of 6-18 biological replicates, obtained from 3 technical replicates for each. Significant differences were detected between treatment groups using Student's t-tests, ** p ≤ 0.01.
3.3.4: 1H NMR spectroscopy characterised the serum metabolomes of rats following exposure to LPS in the presence or absence of a p38 MAPK inhibitor

The second aim of this study was to establish whether the LPS-induced alterations in circulating inflammatory miRNA concentrations were accompanied by changes in circulating metabolite concentrations. To meet this aim, the rat serum metabolome was characterised following inhalation of LPS and compared with that of rats that had inhaled a vehicle control or LPS with GSK.

As knowledge of pulmonary metabolic responses to inflammatory stimuli is limited, analyses were performed in an untargeted, global manner using spectra obtained by 1H NMR spectroscopy and selected multivariate and univariate statistical approaches. This approach led to the detection and quantification of 45 metabolites within the samples (Figure 3.5) with each being present within the spectra of all treatment groups.

PCA was employed to detect and explain intrinsic variation within the dataset in an unsupervised manner. The analysis identified limited intrinsic metabolic variation within the dataset ($Q^2 = 0.16$) that was explained using two components. 12.3% of the variation was attributed to principal component (PC) 1 which was strongly characterised by taurine and alanine content while the remainder of the variation associated with PC2 which was driven by glucose content (Figure 3.6 A-B).

Although most samples clustered together, independent of exposure grouping (Figure 3.6 A), four small sub-clusters of samples existed within the dataset. These were separated from the majority group because they contained 50-51% more taurine, 35-63% more glucose, 12-38% less alanine or 25-31% less glucose than the dataset averages (for clusters 1, 2, 3 and 4 respectively) (Figure 3.6 A-F). Upon visualisation, the variation caused by increased glucose concentrations in samples LPS_4, LPS_41 and Vehicle_26 was considered an outlying phenomenon (Figure 3.7 A). These samples contained 83, 82 and 52% more glucose than the average for their exposure groups, compared with ranges of 25% less to
25% more and 31% less to 11% more than average for the rest of the samples in the LPS and vehicle exposure groups (respectively). As a result these spectra were removed from downstream supervised analyses to prevent them from falsely influencing the models. The remaining sample within cluster 2 showed only 8% more variation from its group average than the remaining samples so was retained within the dataset.

As the samples within clusters 1, 3 and 4 did not associate with any single exposure group but exposures were known to have been performed in four separate batches, the effect that this non-biological factor had on metabolic variation was explored. Assignment of exposure batch to the PCA plot showed that clusters 1, 3 and 4 all contained samples that were produced across the exposure batches indicating that their variability was biological in nature rather than batch dependent (Figure 3.8). As this variation did not cause samples to fall outside of the 95% confidence interval (the Hotelling’s T² ellipse) the dataset continued to be analysed as a whole.
Figure 3.5: Representative \(^1\)H NMR spectra generated from the serum of male Crl:WI (Han) rats. The full spectrum is shown (A) alongside magnified views of the aliphatic (B) and aromatic (C) regions. The frequency range containing the water peak (4.18-5.15 ppm) has been removed.
Figure 3.6: PCA analysis of 1H NMR spectra of serum samples from LPS and GSK treated rats. Scores (A) plots display intrinsic metabolic variation within the serum samples of rats (as measured by 1H NMR) and loadings plots (B) highlight the metabolites that drove the variation. Concentrations of metabolites that associate with clusters 1-4 are displayed for each potentially anomalous sample as a % of the average concentrations across the dataset (C-F, respectively). All values were subjected to PQN normalisation prior to use and were Pareto scaled for multivariate analysis.
Figure 3.7: Inter-sample variability in serum glucose, alanine and taurine concentrations. Graphs display concentrations of glucose (A), alanine (B) and taurine (C) within serum samples of rats treated with LPS, LPS and GSK (0.3-30 μg/ml) or vehicle or GSK only control substances. Outlying samples are circled in red.
Figure 3.8: PCA scores plot displaying intrinsic metabolic variation within the serum samples of rats with data points coloured according to session of exposure. Data was obtained using 1H NMR spectroscopy, subjected to PQN normalisation and Pareto scaled prior to analysis.
3.3.5: Pulmonary exposure to LPS induces changes in the serum metabolome

PLS-DA was performed to identify metabolites that associated strongly enough with LPS exposure to distinguish the serum of LPS exposed rats from that of control animals. A cross-validated model was produced (Figure 3.9 A) that separated the exposure classes along one component (PC1) which explained 42% of metabolic variation between the classes (Figure 3.9 B). Examination of the accompanying loadings plot indicated that LPS exposure associated with greater serum concentrations of acetate and creatinine than vehicle exposure but lower serum concentrations of glutamine and alanine (Figure 3.9 C). The accompanying Variable Importance Plot (VIP) indicated that glutamine concentration had most bearing on sample classification when compared with the other features followed sequentially by alanine, acetate and creatinine (Figure 3.9 D).

The statistical significance of LPS-induced changes in feature metabolite concentration were explored using Student’s t-tests with FDR corrections for multiple testing. This analysis confirmed that the serum of LPS treated rats contained 25% more acetate (p ≤ 0.05) and 24% less glutamine (p ≤ 0.01). Compared with the serum of vehicle exposed rats, the serum of LPS exposed rats also contained 5% less alanine and 29% less creatinine but these changes did not reach statistical significance (p= 0.26 and 0.43 respectively) (Figure 3.10).
Figure 3.9: PLS-DA analysis of the rat serum metabolome. Scores (A), loadings (B) and VIP (C) plots were used to identify metabolites that differentiate between the serum of rats treated with LPS or with a vehicle control. Data was obtained using 1H NMR spectroscopy, subjected to PQN normalisation, Pareto scaled and modelled according to exposure class. Validity of the model was determined by permutations test using 999 permutations (D).
Figure 3.10: Concentrations of feature metabolites measured within the serum of rats treated with LPS or a vehicle control. Values were obtained by 1H NMR and normalised using the PQN method then significant differences were sought between exposure groups using Student’s T tests with FDR correction; * $p \leq 0.05$, ** $p \leq 0.01$. Error bars represent SEM of 8 or 18 replicates (vehicle and LPS respectively).
3.3.6: LPS induced changes in the serum metabolome are p38 MAPK dependent

In order to strengthen their association with the pulmonary response to LPS exposure, the concentrations of metabolic features were compared between the sera of rats that were exposed to LPS and rats that were exposed to LPS in the presence of 0.3, 3 and 30 μg/kg GSK; an anti-inflammatory inhibitor of the p38 MAPK pathway. As with the miRNA experiment above, metabolic alterations that were induced by LPS were expected to reverse in the presence of the inhibitor, thus validating their association with the exposure.

While administration of 0.3 μg/kg GSK had no impact on LPS-induced changes in serum metabolite concentrations, the 30 μg/kg dosage inhibited LPS-induced increases in acetate concentrations by 18% (p ≤ 0.01), retaining them at equivalent concentrations to the vehicle control (102% of control). LPS-induced decreases in glutamine concentrations were also inhibited by GSK at 30 μg/kg (29%, p ≤ 0.01), remaining at 98% of vehicle control level.

Treatment with 3 μg/kg GSK also inhibited LPS-induced changes in feature metabolite concentrations. In the presence of the inhibitor, glutamine concentrations were 41% higher than in LPS exposure samples (p ≤ 0.001) and were statistically similar to the vehicle control (107% of control). LPS-induced changes in acetate concentration were also inhibited (but not significantly so) with concentrations being 8% lower than for LPS exposure samples and retained at 115% of vehicle control concentrations (Figure 3.11).

As exposure to GSK alone did not induce significant changes in the serum concentrations of feature metabolites, these changes were attributed to interactions between the inhibitor and pathways that had been induced by LPS recognition. Together the results validate the associations between LPS exposure and changes in serum glutamine and acetate concentrations, suggesting that they are produced as a result of p38 MAPK pathway activity.
Figure 3.11: Concentrations of feature metabolites measured within the serum of rats treated with LPS, LPS and GSK (0.3-30 μg/ml) or vehicle or GSK only controls. Values were obtained by 1H NMR and normalised using the PQN method then significant differences were sought between exposure groups using Student’s T tests with FDR correction; * p ≤ 0.05, ** p ≤ 0.01. Error bars represent SEM.
3.3.7 Intratracheal LPS exposure alters metabolic relationships within the serum of rats

Metabolites with concentrations that are strongly correlated often contribute to common metabolic pathways. Based on this rationale, correlations were measured globally between the concentrations of measured metabolites to identify which metabolic relationships had developed specifically during pulmonary inflammation and which had ceased to exist. Correlations with r values ≥ 0.5 or ≤ -0.5 were considered to be of moderate strength while those with r values ≥ 0.6 or ≤ -0.6 and ≥ 0.7 or ≤ -0.7 were considered strong and very strong (respectively). These correlations were considered to represent pathway level metabolic interactions and are displayed in Figure 3.12.

3.3.7.1 Intratracheal LPS exposure associates with relationships between glutamine and glucose and glutamine and glutamate in the serum metabolome

In the serum of LPS treated rats, glutamine concentrations correlated positively with glucose concentrations (r = 0.78, p ≤ 0.001), positively and strongly with glutamate (r = 0.68, p ≤ 0.01) and creatinine (r = 0.65, p ≤ 0.01) and positively and moderately with methionine (r = 0.54, p ≤ 0.05) concentrations (Figure 3.12 A). Further exploration of these relationships indicated that glutamine concentrations were significantly greater than those of glucose and methionine (log fold differences of 0.82 and 5.35, p ≤ 0.001) in the LPS serum samples but significantly lower than those of glutamate or creatinine (log fold differences of -0.32 and -0.37, p ≤ 0.001) (Figure 3.13 A).

Fisher’s Z tests indicated that the relationships between glutamine and creatinine and glutamine and methionine that were detected in the serum of LPS exposed rats were not significantly different to those detected in the serum of vehicle treated rats (p = 0.682 and 0.787 respectively), suggesting that they do not associate with the inflammatory response in particular. In these control samples glutamine concentrations correlated very strongly with creatinine (r = 0.776, p ≤ 0.001 and moderately with methionine (r = 0.560, p ≤ 0.05) (Figure
Figure 3.12: Heat map visualisation of moderate to very strong metabolite-metabolite correlations in LPS (A) and vehicle (B) exposure serum samples. Coloured squares represent Pearson’s correlation coefficients (r) calculated using PQN normalised 1H NMR values obtained from 18 (A) or 8 (B) samples. Feature metabolites are labelled with bold, red text.
3.12 B) and remained significantly greater than methionine concentrations and lower than creatinine concentrations (log fold differences of 0.78 and -0.38, p ≤ 0.001) (Figure 3.13 B).

In contrast, the positive correlation between glutamine and glutamate did not reach the thresholds for strength or statistical significance in vehicle samples (r= 0.49, p = 0.21) and no correlation was found between glutamine and glucose concentrations (r= 0.06, p = 0.90) (Figure 3.12 B) suggesting that these relationships were unique to the LPS exposed samples. In support of the use of these relationships for biomarker purposes, both glucose and glutamate concentrations were found to be significantly lower in LPS serum samples than in vehicle samples (27.31 and 14.13%, p ≤ 0.01 0.05) indicating that they may have contributed to the LPS-associated serum metabolome in this study (Figure 3.14 A).

Lysine concentrations correlated positively with glutamine concentrations in the vehicle samples (r = 0.766, p ≤ 0.05) (Figure 3.12 B), showing significantly greater correlation than for LPS samples (p ≤ 0.05) (for which the relationship did not exist (r= 0.01, p= 0.97)). While glutamine was more abundant than lysine in the sera of vehicle exposed rats (log fold difference of 0.51, p ≤ 0.001) (Figure 3.13 B), lysine concentrations were found to increase considerably (12.86%, p=0.06) following exposure to LPS (Figure 3.14). Together these results indicate that pulmonary exposure to LPS inhibited the usual interactions that existed between glutamine and lysine and that the loss of this metabolic relationship under inflammatory conditions influenced the serum metabolome.
Figure 3. 13: Log fold differences in concentration between glutamine and strongly correlated metabolites in LPS (A) and vehicle (B) exposure samples. The significance of differences between glutamine and correlated metabolite concentrations was assessed by Student’s t-tests, *** p ≤ 0.001. Values display mean values obtained from 18 (LPS) or 8 (vehicle) samples with error bars representing the SEM.
Figure 3. 14: Comparison of serum concentrations of metabolites that display correlating concentrations to glutamine in rats following exposure to LPS (A) or vehicle control (B). Data were included for metabolites that displayed significantly different correlation coefficients when compared between treatment types (as determined by Fisher’s Z tests). Values were obtained by 1H NMR spectroscopy and normalised using the PQN method then significant differences were sought between vehicle and LPS exposure groups using Student’s t-tests with FDR correction; * $p \leq 0.05$, ** $p \leq 0.01$. Values display mean values obtained from 18 (LPS) or 8 (vehicle) samples with error bars representing the SEM.
3.3.4.2: Pulmonary LPS exposure induces relationships between acetate and glutamate and acetate and citrate but disrupts homeostatic relationships between acetate and creatine in the serum of rats.

Acetate concentrations were strongly and positively correlated with glutamate, lysine, alanine, citrate, leucine and creatinine concentrations in the serum of LPS exposed rats (r=0.61, 0.51, 0.61, 0.56, 0.64, 0.69 respectively and p ≤ 0.01) (Figure 3.12 A). In these samples acetate was significantly more abundant than lysine, citrate and leucine (log fold differences of 0.82, 0.55 and 0.47, p ≤ 0.001) and significantly less abundant than alanine (log fold difference of -0.62, p ≤ 0.001) (Figure 3.15 A).

These acetate-metabolite relationships were not significant in the samples of vehicle exposed animals indicating that they developed due to pulmonary exposure to LPS. The correlations between acetate and glutamate, acetate and citrate and acetate and lysine were significantly lower in the vehicle samples than the LPS exposure samples (difference in r= 0.94, 0.69 and 0.73, p ≤ 0.05) (Figure 3.12 B) indicating that these changes in metabolic interactions have potential for use as circulating markers of LPS-induced pulmonary inflammation. Such indications were supported by observations that glutamate, citrate and lysine concentrations were significantly different between LPS and vehicle exposure samples (14.13, 11.54 and 12.86%, p ≤ 0.05 for glutamate and citrate, p = 0.06 for lysine) (Figure 3.16).

Significant exposure-related differences in correlation were also observed between creatine and acetate concentrations. No relationship was observed between these metabolites in LPS samples (r= 0.02, p= 0.93) but the correlation was positive (r= 0.731) in vehicle samples, showing a borderline significant difference to that of the LPS samples (difference in r= 0.71, p= 0.08). Compared with the vehicle control samples (where creatine concentrations were statistically similar to those of acetate (Figure 3.15 B)) a significant increase in serum creatine concentration was observed following LPS exposure (14.51%, p ≤ 0.05) indicating
that LPS-induced break-down of serum acetate-creatinine relationships may have potential as a circulating biomarker.

Strong correlations between acetate and valine (r= 0.661, p = 0.07), acetate and acetoacetate (r= 0.628 p = 0.09) and acetate and phenylalanine (r= -0.644, p= 0.08) that existed in vehicle samples were also weakened to below-threshold strengths in the response to LPS exposure (Figure 3.12). These changes however, did not meet statistical significance using Fisher’s Z tests, indicating that they do not contribute greatly to differences in metabolic pathway activity between LPS and vehicle serum samples and possess limited potential as biomarkers.
Figure 3. 15: Log fold differences in concentration between acetate and strongly correlated metabolites in LPS (A) and vehicle (B) exposure samples. The significance of differences between glutamine and correlated metabolite concentrations was assessed by Student’s T tests, *** p ≤ 0.001. Values display mean values obtained from 18 (LPS) or 8 (vehicle) samples with error bars representing the SEM.
Figure 3.16: Comparison of serum concentrations of metabolites that display correlating concentrations to acetate in rats following exposure to LPS or vehicle control. Data were included for metabolites that displayed significantly different correlation coefficients when compared between treatment types (as determined by Fisher’s Z tests). Values were obtained by 1H NMR spectroscopy and normalised using the PQN method then significant differences were sought between exposure groups using Student’s t-tests with FDR correction; * p ≤ 0.05, ** p ≤ 0.01. Values display mean values obtained from 18 (LPS) or 8 (vehicle) samples with error bars representing the SEM.
3.3.5: miR-34b and 449a activity may regulate transport and metabolism of glutamine and acetate

The mechanistic strength of biomarkers can be enhanced by integrating multiple types of molecular profile. As such, cross-overs were sought between cellular pathways that may have been regulated by miR-34b/449a activity following LPS exposure and those that could have contributed to the observed concentrations of feature metabolites.

Two mechanisms by which serum metabolite concentrations can be altered during a toxicological response are changes in enzyme availability or activity and differences in cellular uptake or export of reaction substrates and products. The molecular functions of miR-34b/449a targets (identified in Chapter 2 using miRWalk algorithms) were sought using the Molecular Function module of Panther Classification System. This analysis indicated that 43% of the miRNA targets possessed enzymatic or enzyme regulatory activity while a further 11% of targets were involved in transmembrane transport (Figure 3.17 A).

Further exploration indicated that hydrolases and helicases were the predominant enzymatic targets of the miRNAs, representing 35 and 25% of their enzymatic targets respectively (Figure 3.17 B) and that ion and amino acid transporters represented the majority of transporter protein targets (61 and 31% of total respectively) (Figure 3.17 C. Together these results indicate that miR-34b and 449a have the potential to regulate metabolic processes.

In order to determine whether over-expression of the miRNAs could have contributed to the observed changes in metabolite concentrations following pulmonary LPS exposure, pathway over-representation analyses were performed using the integrative module of IMPaLA. Lists of predicted mRNA targets for miR-34b and 449a (identified from the miRWalk database in Chapter 2) and the LPS-associated feature/correlated metabolites were input into the analysis and pathways that contained a minimum of 3 genes and metabolites (including the feature metabolites) were noted.
This approach indicated that the feature metabolite glutamine and its correlating metabolite glutamate contributed to a common metabolic pathway (glutamine and glutamate metabolism) and that acetate and its correlating metabolites citrate and glutamate were components of carbohydrate metabolism and transmembrane molecular transport pathways (metabolism of carbohydrates, solute carrier (SLC)-mediated transmembrane transport, transmembrane transport of small molecules and glycolysis and gluconeogenesis specifically) (Table 3.2).

Once again, the analysis indicated that the activity of the glutamine and glutamate pathway may be influenced by miR-34b, through its predicted ability to target glutamine dehydrogenase-1 (GLUD1) transcripts. It also suggested that glycolysis and gluconeogenesis pathways may be regulated by miR-449 through its predicted targeting of enolase 3 (ENO3) enzymes and nucleoporin 35 (NUP35).

The metabolism of carbohydrates, SLC-mediated transmembrane transport, transmembrane transport of small molecules pathways were enriched for genes that were predicted to be targeted by both miRNAs. Within the metabolism of carbohydrates pathway miR-34b was predicted to target the enzymes ketohexokinase (KHK), fructose-bisphosphate aldolase A (ALDOA) and β-hexosaminidase (HEXA) and the glycoprotein chondroitin sulphate proteoglycan 4 (CSPG4) while miR-449a was predicted to target KHK, HEXA, ALDOA, glycogenin 1 (GYG1) and ENO3 enzymes, syndecan-4 (SDC4) and biglycan (BGN) glycoproteins and NUP35.

Several members of the SLC-mediated transmembrane transport and transmembrane transport of small molecules pathways were predicted to be targeted by both miRNAs (FXYD domain containing ion transport regulator 3 (FXYD3), SLC7A8 and SLC38A5 while others were targeted by either miR-34b or miR-449a. miR-34b alone was predicted to target SLC29A1, aquaporin-4 (AQP4), SLC15A4, Sodium/potassium-transporting ATPase subunit β-transporter proteins (ATP1B3), SLC6A9, SLC02A1, SLC22A5 and SLC12A2 transporter.
proteins and the enzyme adenylate cyclase (ADCY6). In contrast, miR-449a was predicted to target guanine nucleotide-binding protein subunit γ5 (GNG5), SLC7A5, SLC4A3 and NUP35 (Table 3.2).
Figure 3. 17: Gene ontology classifications for the predicted mRNA targets of miR-34a/449b. Genes are classified based on their molecular function (A) with subcategories being displayed for genes belonging to the enzyme activity (B) and transporter (C) categories. Percentage values refer to the percentage of total genes that belong to each category and were determined using the functional annotation module of the Panther Classification System database. Table 3.2: Integrated pathway over-representation analysis for LPS associated metabolites and predicted miR-34b/449 gene targets. Pathway over-representation analysis was performed using the IMPaLA tool. Metabolite lists consisting of feature and correlating metabolites were input alongside lists of genes that were predicted to be targeted by miR-34b/449a by three or more modules of miRWalk (identified in Chapter 1).
Table 3.2: Integrated pathway over-representation analysis for LPS associated metabolites and predicted miR-34b/449 gene targets. Pathway over-representation analysis was performed using the IMPaLA tool. Metabolite lists consisting of feature and correlating metabolites were input alongside lists of genes that were predicted to be targeted by miR-34b/449a by three or more modules of miRWalk (identified in Chapter 1).

<table>
<thead>
<tr>
<th>Feature metabolite</th>
<th>Pathway name</th>
<th>Overlapping genes (Regulating miRNAs)</th>
<th>Overlapping metabolites</th>
<th>P value</th>
<th>FDR Q value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetate</td>
<td>Metabolism of carbohydrates</td>
<td>HEXA, ALDOA, KHK (miR-34b, 449b), AGRN, CSPG4 (miR-34b), ENO3, GYG1, SDC4, BGN, NUP35 (miR-449a)</td>
<td>Acetate, Citrate, Glutamate</td>
<td>≤ 0.001</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>SLC-mediated transmembrane transport</td>
<td>SLC7A8, SLC38A5 (miR-34b, 449b), SLC6A9, SLC29A1, SLCO2A1, SLC22A5, SLC15A4, SLC12A2 (miR-34b), SLC7A5, SLC4A3, NUP35 (miR-449a)</td>
<td>Acetate, Citrate, Glutamate</td>
<td>≤ 0.001</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>Transmembrane transport of small molecules</td>
<td>FXYD3, SLC7A8, SLC38A5 (miR-34b and 449a), ATP1B3, ADCY6, AQP4, SLC6A9, SLC29A1, SLCO2A1, SLC22A5, SLC15A4, SLC12A2 (miR-34b), SLC7A5, GNG5, NUP35, SLC4A3 (miR-449a)</td>
<td>Acetate, Citrate, Glutamate</td>
<td>≤ 0.001</td>
<td>0.046</td>
</tr>
<tr>
<td>Glycolysis and Gluconeogenesis</td>
<td>NUP35, ENO3 (miR-449)</td>
<td>Citrate, Acetate</td>
<td>≤ 0.001</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>Glutamine</td>
<td>Glutaminolysis</td>
<td>GLUD1 (34b)</td>
<td>Glutamine, Glutamate</td>
<td>≤ 0.001</td>
<td>0.007</td>
</tr>
</tbody>
</table>
3.4: Summary of results

- Serum concentrations of miR-34b and 449a were enhanced following intratracheal exposure to LPS.
- Changes in serum concentrations of miR-34b and 449a are p38 MAPK dependent.
- Intratracheal exposure to LPS induces significant changes in serum concentrations of glutamine and acetate.
- LPS-induced changes to the serum metabolome are also p38 MAPK dependent.
- Gene targets of miR-34b and 449a associate with some serum metabolic pathways that are dysregulated during LPS-induced pulmonary inflammation.
3.5: Discussion

In the context of pulmonary inflammation, the requirement for non-invasively accessible biomarkers is strong. Collection of pulmonary tissue samples by biopsy is uncomfortable meaning that participation rates are low for human studies and raise ethical concerns where samples from healthy subjects are required. For in vivo modelling, collection of pulmonary tissue requires the animals to be euthanased, restricting analyses to a single time point; a major drawback considering that inflammation includes multiple stages of development and resolution.

With this in mind, the current work aimed to determine whether the elevations in miR-34b/449a expression that were observed in rat pulmonary tissue under inflammatory conditions (Chapter 2) translate to circulating fluids where they can be sampled in a non-invasive manner. It also sought to determine whether pulmonary inflammatory responses lead to alterations in the serum metabolome that could be used as accompanying biomarkers for inflammatory pathways within the lungs.

Analyses were performed using a model of intra-tracheal LPS exposure, chosen because much of our understanding of pulmonary inflammatory responses has been gained from equivalent studies (319–321). Furthermore, time-courses of pulmonary inflammatory cell recruitment and cytokine release after LPS exposure have been characterised previously in the rat (328) and suggest that the 4h time point used in this study is suitable for identifying biomarkers for pro-inflammatory response pathways.

This assumption was supported by flow cytometric analysis of BALF which was taken from the rats immediately prior to blood harvest (performed and analysed by Graham Paul at Cardiff University (329)). The analysis showed that the BALF of LPS exposed animals contained approximately 300 and 1300% more white blood cells (WBC) and neutrophils than that of the control animals (Supplementary Figure 3.1) (329), indicating that the endotoxin induced airway infiltration by inflammatory cells. Airway infiltration is a hallmark of pulmonary
inflammation that is propagated by alterations in the activity of many cellular processes (discussed in Chapter 1), thus supporting the use of these animals for the current purpose.

Alongside elevations in the cellular content of BALF, serum concentrations of miR-34b and 449a were significantly elevated in animals that were exposed to LPS (as opposed to control) but remained comparable to control in the presence of the p38/MAPK inhibitor. As flow cytometric analysis confirmed that the inhibitor impaired development of airway inflammation in exposed animals (329), these observations provide evidence that miR-34b/449a could be used as circulating markers of pulmonary inflammation.

Furthermore, the inhibitor study indicates that expression of these miRNAs is representative of p38/MAPK signalling in the lung. As this pathway has been associated with pulmonary inflammatory responses to LPS exposure before (328,330) and miR-449 has been shown to regulate autophagy by modulating MAPK pathways (331), this observation highlights a mechanism that may be represented by miR-34b/449a biomarkers, indicating that they meet the criteria of being mechanistically relevant as well as easily accessible.

Although members of the miR-34/449 family have been associated previously with pulmonary inflammation, their translatability to accessible fluids is novel. Providing one explanation for such translatability, export of miRNAs into circulating fluids is widely hypothesised to be a method of paracrine or endocrine regulation (332,333). In terms of paracrine signalling, export of miR-34b/449a into the pulmonary microvascular may provide a mechanism of propagating protective activities across the lung from the initial site of inflammatory stimulation. In support of this theory, over-expression of miR-34b or 449a has been shown to dampen pro-inflammatory cytokine signalling, promote cilia formation and reduce onset of fibrotic damage in airway models (279,297,331). Support for the miRNAs targeting extra-pulmonary cells arises from the fact that the current measurements were made using systemic blood samples and that validated targets of miR-34b/449a were over-represented in a number of non-pulmonary pathways (including calcium regulation in cardiac
cells, cholesterol biosynthesis and regulation of gene expression in muscle) following AZD2230 exposure (Chapter 2).

Metabolic profiles were collected from the rat serum in order to identify metabolites that could accompany miR-34b/449a as biomarkers for the response to LPS exposure and to enhance our understanding of the molecular interactions that drove the response. A combination of multivariate and univariate statistical analyses indicated that the metabolome of the rat serum was altered considerably following pulmonary exposure to LPS and that the alterations could be characterised by glutamine and acetate content.

Glutamine is the most abundant amino acid, contributing 20% of the amino acid content of plasma. Being conditionally non-essential, it is synthesised from ammonia and glutamate by the enzyme glutamine synthetase and can be produced by almost all tissues including the lungs. Once synthesised, glutamine is used as a substrate for multiple cellular purposes including nucleotide formation, acid-base balance, redox homeostasis and glucose metabolism (334).

Acetate is a short chain fatty acid (SCFA) that is considered a central component of energy metabolism in mammalian cells due to its role as a precursor for acetyl-Coenzyme A (acetyl-CoA). It is produced endogenously under hypoxic conditions via protein acetylation or exogenously by the anaerobic portion of the microbiome (335) and can be metabolised in pulmonary tissue by acetyl-CoA synthetases (336).

The observed changes in serum glutamine and acetate concentrations are consistent with clinical observations for patients with inflammatory respiratory conditions, indicating the validity of their use as accessible biomarkers for pulmonary inflammatory responses. Decreased concentrations of circulating glutamine and increased expiration of acetate have been identified for patients with COPD, emphysema, asthma, pulmonary fibrosis or cystic fibrosis (337–341). In further support of this statement of validity, glutamine has been shown to augment LPS-induced NFκB signalling, neutrophilic infiltration and IL-8 release in rat
pulmonary tissue (342,343) while acetate has been used to discriminate between LPS-exposed and control lung tissue in mice (344).

Importantly, these studies also provide evidence that the changes in serum glutamine and acetate concentrations that were detected in the current model had the potential to arise from pulmonary activity. As blood contacts every tissue, it is possible that the metabolites could have entered the serum from an alternative source (199), potentially during a secondary or artefactual response to pulmonary insult.

Encouragingly, Singh et al. (2015) showed that acetate and glutamine could be used to differentiate the serum metabolome of patients who were undergoing treatment for respiratory illnesses from that of patients who were undergoing the same treatment for non-respiratory conditions (345), indicating that the markers represent pathways that are characteristic of pulmonary pathophysiology specifically. In similarity to the current analysis, Singh et al. identified that glutamate and lysine were also discriminatory for their model (341), supporting the suggestions that these metabolites contribute to the same pathways as acetate and glutamine and that they can be measured together as a biomarker panel. Such ability could be advantageous upon translation of the markers to human studies because despite additional pathophysiology and exposures causing similar changes to acetate or glutamine concentrations (167,346) they do not appear to occur alongside increased glutamine and lysine concentrations elsewhere (341).

Pathway over-representation analysis indicated that the LPS-induced changes in acetate and glutamine concentrations associated with alterations in glycolysis and glutaminolysis activity. Such a result is unsurprising given that many hallmarks of the inflammatory response (including chemotaxis, phagocytosis, cytokine secretion and ROS synthesis) are highly energy dependent (347) and metabolic markers of enhanced glycolysis associate with systemic LPS exposure in mice (297).
Although the contributions that glutamine and acetate make to energy metabolism (as precursors to citrate and acetyl-CoA) are well characterised (335,348), the impacts that miR-34b/449a have on their pathways remain to be explored. Inclusion of predicted miR-34b/449a targets in the over-representation analysis indicated that LPS-induced decreases in serum glutamine concentrations (and strongly correlated increases in glutamate concentrations) may have been influenced by interactions between miR-34b and GLUD1 transcripts which encode glutamate dehydrogenase; a rate limiting enzyme of glutaminolysis that catalyses oxidative deamination of glutamate to α-ketoglutarate and ammonium (349).

Similarly the analysis associated miR-449a with glycolysis, suggesting that the miRNA could have regulated activity of the pathway at two separate stages by altering expression of enolase 3 (the enzyme responsible for catalysing the penultimate step of glycolysis) and nucleoporin 35 (a regulator of glucokinase activity).

Serum metabolite concentrations are contributed to by the rates at which molecules are secreted from cells into the blood, the rates at which they are excreted from the blood into the urine and the rates at which they are taken up from the blood into cells (199). As well as targeting glutaminolysis and glycolysis directly, the over-expression analysis indicated that both miR-34b and 449a could have altered serum concentrations of energy metabolites by altering the expression of amino acid transporter molecules, particularly those from the (SLC family. Supporting this suggestion, members of the SLC transporter family have been widely associated with trans-membrane transport of glutamine previously (350,351) and retinoblastoma protein (a downstream product of miR-449 activity (291)) is shown to alter glutamine transport through E2F transcription factor 3-mediated regulation of SLC1A5 expression (352).

Whilst providing strong mechanistic context for the identified biomarkers of pulmonary inflammation, the integrative pathways analysis approach may be criticised for its exclusion of pathways that were not regulated by miR-34b/449a. Metabolic pathways are governed by a highly integrative network of signalling cascades which in turn are fine-tuned by the activity
of multiple miRNAs (not just one family) and can be co-regulated by miRNA-independent mechanisms too (353). As such, the targeted miRNA approach that was used may have masked considerable amounts of this regulatory information, limiting the benefits of using a global approach to detect the metabolite markers.

As an example of this limitation, alterations in glutamine and glutamate concentration could also have been indicative of changes in glutathione synthesis (354). Glutathione plays a key role in pulmonary responses to inflammatory stimuli (including mitochondrial respiration) and its rate of synthesis may be expected to alter in response to LPS exposure (355) but the genes that facilitate its synthesis (γ-glutamylcysteine synthetase and glutathione synthetase) are not predicted targets of miR-34b/449a activity, thus excluding the process from the analysis. With the aim of maximising the hypothesis-generating potential of omics-originated biomarkers, a less conservative approach may be to include metabolite-only and integrated analyses in future work. This would promote identification of pulmonary response pathways regardless of whether they are regulated by miR-34b/449a activity.

3.6: Conclusion

This work provided novel evidence that mechanistically relevant markers of pulmonary activity can be detected in accessible fluids during a typical inflammatory response. The study found that elevations in miR-34b and 449a expression that are detectable within pulmonary tissue during inflammatory insult translate to serum under similar conditions. This presents the miRNAs as circulating biomarkers for pulmonary inflammation, indicating their potential for use in place of biopsies in human studies and for investigating multiple time-points in animal models.

Metabolomic profiling determined that these changes in miRNA concentration were accompanied by alterations to the serum metabolome, yielding acetate and glutamine as further circulating biomarkers of pulmonary inflammatory responses and suggesting that
their specificity to pulmonary-specific pathophysiology may be enhanced through concurrent measurement of additional metabolites for which they share pathways.

Achieving the aim of seeking mechanistically relevant markers of pulmonary inflammatory responses in the serum, pathway analysis indicated that the changes in metabolic marker concentration could be attributed to alterations in energy metabolism and/or the provision of substrates for those pathways. Importantly, the analysis indicated that these pathways could have been regulated by miR-34b/449a, adding weight to the conclusions that were drawn from each analytical platform and highlighting the value of integrative analyses.

Whether these markers can be used to investigate and monitor adverse pulmonary responses to TRPM remains to be determined. However, with evidence that endotoxins contribute to the composition of ambient particles (356) and titanium particles (shown to induce miR-449 over-expression in Chapter 2) stimulate the same receptors as LPS (357), this work provided the rationale for further investigation.
Chapter 4: Extracellular markers of pulmonary inflammation induced by traffic-related particulates

Overview

This collection of work characterised the physiochemical properties of two major traffic related particulates; diesel exhaust particles (DEP) and brake abrasion dust (BAD) and assessed their influence on human macrophage health and function using hypothesis-driven toxicological approaches. Biomarkers for the mechanisms of toxicity that the particles induced were sought and compared using metabolomics approaches, targeted quantification of inflammatory miRNAs (miR-34b/449a) and integrated pathway enrichment analyses.

4.1: Introduction

Exposure to traffic-related PM (TRPM) is considered an important cause of pulmonary inflammation due to the ubiquitous presence of the particles in ambient air (358,359), their concentration in populated and commuted areas (360) and the breadth of sub-populations that are susceptible to their pro-inflammatory effects (361–365).

In general, circulating biomarkers for pulmonary responses to TRPM exposure have been pursued in a targeted and hypothesis-driven manner, directed by well characterised pulmonary reactions to exhaust PM exposure that have been established through in vitro and in vivo modelling. As such, increases in plasma concentrations of neutrophils and platelets, pro-inflammatory cytokines (IL-6 and IL-1β), endothelial cell adhesion molecules (I-CAM1 and V-CAM1) and neutrophilic response proteins (matrix-metalloproteinase-9 and myeloperoxidase) have all been associated with exhaust PM exposure in human cohorts (366–370).

In contrast, the responses that non-exhaust particulates (such as brake, clutch or tyre wear particles) induce in pulmonary systems are yet to be characterised (either in vitro or in vivo) with very few studies existing that could direct hypotheses for biomarker identification in
human bio-fluids (371). BAD for example, is the most abundant non-exhaust particulate species found in urban areas (contributing up to 25% of total TRPM (28)) but no further investigations have been made into its toxic potential since the discovery that it induces ROS and cytokine secretion in A549 epithelial cells (371). This lack of research interest is surprising since non-exhaust PM contributes up to 50% of total TRPM (25,28), has a respirable size range and is often rich in pro-inflammatory and oxidative stress-inducing metallic species (372).

As the toxicity of TRPM is repeatedly attributed to its metallic content (51,373,374) it is possible that non-exhaust PM induces different or additional cellular pathways to carbonaceous and PAH-rich exhaust PM. Indeed, BAD-induced ROS synthesis was shown to occur in a metal-dependent manner in A549 cells (371). This indicates that existing biomarkers of TRPM exposure that originated from exhaust PM exposure studies may not fully represent the impacts that non-exhaust particles have on pulmonary systems. Thus, easily accessible biomarkers that relate specifically to non-exhaust particle toxicity must be found before we can quantify the effects that these particles have on public health and understand the mechanisms by which they impact the lungs.

Metabolomic and high throughput miRNA quantification approaches are emerging as successful methods for detecting novel and accessible biomarkers of pulmonary responses to different TRPM components. Microarray analyses have associated metallic particle exposure with differentially expressed miRNA panels in circulating cells and microvesicles (251,375) while metabolic profiling has identified links between exhaust PM exposure and decreased ATP synthesis, increased degradation of airway structural lipids, heightened availability of pro-inflammatory lipid mediators and enhanced anti-oxidant molecule production in accessible human BALF and mouse serum samples (185,376).

While the characterised inflammatory relevance of the early, hypothesis-driven, circulating markers of exhaust particle toxicity made them epidemiologically useful, (366–370), those
found through metabolite and miRNA profiling have better enhanced our knowledge of exhaust PM-induced mechanisms of toxicity. Rather than simply demonstrating that a known pro-inflammatory molecule was produced in response to exposure, they have indicated which pathways lead to the production of that molecule, whether additional pathways intersected with the characterised inflammatory process and that novel inflammatory molecules were involved too. Such an approach may prove invaluable for furthering our understanding of whether and how non-exhaust PM impacts the lungs and for detecting or monitoring these toxicities in exposed populations.
4.1.1: Hypothesis and aims

Given the nature of non-exhaust PM toxicity is largely uncharacterised, this body of work combined hypothesis-driven assessments of cellular health and function with data-driven 1H NMR based metabolic profiling to evaluate the hypothesis that exposure to BAD induces mechanistically relevant and extracellularly detectable changes in the metabolic activity of human macrophages. Targeted quantifications of miR-34b and 449a were performed alongside these analyses to explore the hypothesis that these circulating markers of pulmonary inflammation are applicable to TRPM- induced responses.

Specifically the study aimed to characterise BAD induced toxicity in cultures of U937 monocyte-derived macrophages (a human cell line that is commonly used to characterise inflammatory responses to ambient PM exposure (377,378)) and identify mechanistically relevant, metabolite and miRNA biomarkers for the toxicity in the cellular supernatants that could be measured in human biofluids during future work.

In addition, the study sought to compare the mechanisms and biomarkers of BAD induced toxicity with those induced by exposure to SRM-2975; a well characterised and frequently studied exhaust particle obtained from the diesel engine of a forklift truck. As DEP have already been shown to influence the key inflammatory and phagocytic functions of human macrophages (94,379–383) this aim sought to establish whether BAD and DEP do so via similar or distinct pathways.
4.2: Materials and methods

4.2.1: Nanoparticles: SRM-2975 DEPs, purchased from the National Institute of Standards and Technology were kindly provided by Dr Mudway (King’s College, London) along with BAD that had been extracted from the filters of a ventilation duct at a brake pad test rig (SMP Svensk Maskinprovning machinery testing plant, Sweden). Each filter represented a yearly collection of abrasion dusts that were produced from the brake pads of European trucks and buses. BAD had been harvested previously by Dr Mudway through methanol extraction; 1cm³ sections of filter were submerged in high performance liquid chromatography grade methanol, vortexed for 10 minutes and sonicated for a further 10 minutes at an amplitude of 15 microns. After decanting the methanol into a fresh tube, vortexing and sonication were repeated and the resulting extracts were dried under a stream of nitrogen gas at 37°C. Both particle types were stored at -80°C as stock solutions of 1mg/ml in phosphate buffered saline (PBS).

4.2.2: Particle size measurement using dynamic light scattering (DLS): Solutions of BAD and SRM-2975 (14 µg/ml) were made in culture medium (CM); RPMI 1640 medium containing 10% foetal bovine serum, 1% L-Glutamine and 1% Penicillin-Streptomycin. The particle solutions were incubated at 37°C in humidified 5% CO2, 95% atmospheric air (standard conditions) for 0, 4 or 24h. The hydrodynamic diameters of the particles were measured using a Malvern Zetasizer Nano ZS (Malvern Instruments, UK) with 3 runs of 6 measurements being produced per sample.

4.2.3: Measurement of particulate oxidative potential: Solutions of BAD and SRM-2975 (55.5 µg/ml in chelator treated H₂O (chH₂O)) were incubated 9:1 with an antioxidant cocktail (2mM ascorbic acid (AA) and 2mM glutathione (GSH) in chH₂O for 4h at 37°C. Particles were removed from the solution through centrifugation for 1h at 13 rpm, 4°C to avoid signal interference during detection. Samples were diluted 1:60 in phosphate buffer for GSH
measurement or diluted and acidified 1:1:8 in metaphosphoric acid and ultrapure H₂O for AA measurement. Antioxidant concentrations were determined as described by Mudway et al. (2001), using high performance liquid chromatography for AA and a variety of the glutathione disulphide-reductase- 5,5′-dithio-bis(2-nitrobenzoic acid) recycling assay for GSH (384).

4.2.4: U937 culture and differentiation: U937 monocytes were grown and maintained in CM under standard conditions. Cells were seeded at densities of 1 x 10⁶ and 1.25 x 10⁶ cells in 12 and 96 well plates (respectively) in CM containing 4nM phorbol 12-myristate 13-acetate (PMA) to stimulate differentiation into adherent macrophages. After 96h culture in the presence of PMA, cells were rested in CM without PMA for 24h prior to experimentation.

4.2.5: Particle exposure: BAD and SRM-2975 stocks were probe sonicated for 2 minutes at 70 Hz to disperse agglomerated particles then diluted to 4-25 µg/ml in CM. Particles were applied to cells in 1ml and 200 µl volumes for 12 and 96 well plates (respectively) and incubated for 4-48h under standard conditions. Light microscopy was used to confirm even dispersion of the particles. Where appropriate, 1 µg /ml LPS was applied to particle-free cells as a pro-inflammatory positive control or 380 µM desferroxamine added alongside the particles to characterise the impact of metal chelation.

4.2.6: Quantification of intra and extracellular metals by inductively coupled plasma mass spectroscopy (ICP-MS): Cells were exposed to 4-25µg/ml BAD or DEP as described above. After 24 hours the cellular supernatants were harvested and the cells were lysed in sterile chH₂O. Supernatants and lysates were transferred to Dr Mudway who combined the samples with a yttrium internal standard (stock solution, 1ppm, SCP Science, France) and digested them in aqua regia solution (1:3 HNO₃ (60%): HCl (30%) (Merck, UK)) for 90 minutes at 100° C. Cooled digests were transferred to the Mass Spectrometry Unit at KCL for quantification of Al (isotope 27; natural abundance 100%), As (75, 100%), Ba (135; 6.95%), Cu (63; 69.17%), Fe (56; 91.75%), Mn (55; 100%), Mo (95; 15.92%), Ni (60;
26.22%), Cr (52; 83.79%), V (51; 99.75%), Sb (121; 57.21%), Zn (66; 27.90%), Cd (111, 12.80%), Ti (47, 7.44%), Ca (44, 2.08%), W (184, 30.64%), Sn (118, 24.22%) and Y (89, 100%) by ICP-MS using a NexION 350D ICP-MS (PerkinElmer, UK). These measurements were acquired by Mr Cakebread (King’s College, London). Elemental concentrations (representing the means of 5 injections and corrected for background concentrations in chH2O) were determined by Dr Mudway with reference to a standard curve produced using an ICP multi element standard solution VI CertiPUR (Merck, Lot. No. OC529648).

4.2.7: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay:
Mitochondrial oxidoreductase activity was measured post-particulate exposure and used as an indication of cell viability. Cells were incubated with 2.5 µg/ml MTT reagent in CM for 4 hours and the formazan crystals dissolved in a 1:1 solution of 20% sodium dodecyl sulphate and dimethylformamide. Signal was measured at a wavelength of 570 nm using a microplate reader (SpectraMax 190).

4.2.8: Cytokine enzyme linked immunosorbent assays (ELISAs): Supernatants were collected post-challenge and centrifuged at 16000 xg for 10 minutes to remove extracellular particles. Cytokine concentrations were measured using Human IL-10, TNF-α and IL-8 ELISA Ready-SET-Go! kits (eBioscience, San Diego, CA) in accordance with the manufacturer’s instructions.

4.2.9: Maintenance of bacterial stocks: Müeller Hinton (MH) broth (g/ml in deionised H2O) was inoculated with a Newman strain of Staphylococcus aureus (S. aureus) (K. Bruce, KCL) and incubated overnight at 37°C before being streaked onto MH agar (MH broth supplemented with 0.01g/ml agar) and incubated once more overnight at 37°C. Live cultures were stored at 4°C and fresh plates were produced every 4 weeks. For experiments, a single, isolated colony was grown overnight at 37°C in MH broth. The optical density of the overnight culture was ascertained using a Jenway 6300 Visible Range Spectrophotometer.
set to a wavelength of 600 nm and working cultures were produced by diluting the overnight culture to 1x10^4 colony forming units (CFU)/ml in MH broth.

4.2.10: Quantification of bacterial phagocytosis behaviour: Working cultures of *S. aureus* were centrifuged at 5000 xg for 15 minutes and re-suspended in CM without antibiotics. Particulate-challenged U937s were washed 3 times with PBS and inoculated with 1ml of the *S. aureus* solution, producing a multiplicity of infection of 0.01. Contact between the macrophages and bacteria was encouraged by centrifuging the plates at 2700 xg for 10 minutes prior to incubation under standard conditions for 2h. Bacteria that were not ingested by the macrophages were removed by washing the cells 3 times with PBS and incubating them with 50 µg/ml gentamicin for 10 minutes. Sterile deionised H₂O was used to lyse the U937s and release their internalised bacteria into the supernatant. The supernatants were diluted 1:10 in MH broth and grown overnight at 37° C on MH agar in duplicate. *S. aureus* colonies were counted manually. Experiments were also performed following 24h exposures to 1 µg/ml benzo[a]pyrene.

4.2.11: Bacterial growth curves: Working cultures of *S. aureus* were produced using particle-free MH broth or MH broth spiked with 25 µg/ml BAD, DEP or gentamicin (as a positive control for antibacterial activity). Cultures were incubated at 37°C with 50 µl aliquots being plated in duplicate on MH agar after 0, 1, 2 and 3 hours. Plates were incubated overnight at 37° C then *S. aureus* colonies were counted manually.

4.2.12: Bicinchoninic acid (BCA) protein quantification assay: The Bicinchoninic Acid Protein Assay Kit (Sigma) was used to quantify total cellular protein concentrations for U937s after 4 and 24h exposures to particles. Assays were performed in accordance with the manufacturer’s instructions.
4.2.13: Univariate statistical analysis of toxicological data: Using Microsoft Excel, raw data was normalised using total cellular protein (obtained by BCA assay) and expressed as percentages of particle-free controls. These stages were designed to exclude the influence of cytotoxicity that may have been caused by the particles and to enhance comparability between experimental repeats. Identification of significant differences between treatment types were made using GraphPad Prism (Graphpad Software, San Diego). Statistical assessment was via 1-Way ANOVA tests for DLS, oxidative potential, ICP-MS, ELISA, cell staining and bacterial phagocytosis assays and 2-Way ANOVA tests for MTT, metal chelator and bacterial growth assays. Bonferroni corrections were performed where ANOVAs found differences between treatment types with p values ≤ 0.05. Differences between values were considered statistically significant where their p value remained ≤ 0.05 after post-hoc testing.

4.2.14: RNA extractions: U937 supernatants were exposed to 1 μg/ml LPS or 4-14 μg/ml BAD or SRM-2975 for 24h. RNA was extracted from the supernatants which were harvested immediately following the 24h exposure period and from cells following three washed in PBS.

4.2.14.1: RNA extraction from U937 lysates: Total RNA containing miRNA was extracted from U937 cells using an RNeasy Plus Mini Kit (QIAGen). In accordance with a modified protocol that was provided by the manufacturer, the cells were lysed in RLT buffer Plus. As for the LPS treated rat plasma samples used in Chapter 3, 8.1x105 copies/μl of cel-miR-39 were added to the lysates (for use as an exogenous control) then genomic DNA was removed by passing the lysate through a genomic DNA Eliminator spin column by centrifugation (≥8,000 x g, RT, 30 s). The flow through was mixed with 1.5 volumes of 100% ethanol and passed through an RNeasy Mini spin column via centrifugation (≥8,000 x g, RT, 15 s). The spin column containing captured RNA was washed twice with Buffer RPE by centrifugation (≥8,000 x g, RT, 15 s) then dried by centrifuging for a further minute (≥8,000 x g, RT) before captured RNA was eluted in 40 μl nuclease free H2O.
4.2.14.2: RNA extraction from U937 supernatants: Total RNA was extracted from the U937 lysates using the TRizol LS method and spiked with cel-miR-39 (an exogenous control used for target data normalisation) as described in Chapter 3.2.2-3.

4.2.14.3: RNA quantification: Total RNA and miRNA concentrations were determined using the nanodrop spectrophotometry and bioanalyzer small RNA kit protocols described in Chapter 3.2.4.

4.2.15: cDNA synthesis: cDNA was produced using primers for hsa-miR-34b, hsa-miR-449a and cel-miR-39 using the protocol described in Chapter 3.2.5.

4.2.16: RTqPCR data acquisition and analysis: hss-miR-34b, 449a and cel-miR-39 were quantified and the resulting data analysed using the methods described in Chapter 3.2.6.

4.2.17: 1H NMR spectroscopy: The supernatants of cells treated with 4 or 14 μg/ml BAD or DEP were centrifuged for 10 minutes at 16000 x g to remove suspended particulate matter then combined with 10mM TSP in D$_2$O and transferred to 5 mm NMR tubes. 1H NMR spectra were acquired for the samples using a Bruker AVANCE 600 spectrometer (Bruker, Biospin, Rheinstetten, Germany) fitted with a Bruker TXI probe and an automated sample handling carousel (Bruker) at a frequency of 600.29 MHz and at a temperature of 300K. One dimensional NMR spectra were obtained using a CPMG spin-echo pulse sequence. Following 4 dummy scans, 32 transient scans were collected into 30,000 data points with a spectral width of 20 ppm, acquisition time of 3.07 seconds and relaxation delay of 4.00 seconds. Prior to Fourier transformation, a line broadening factor of 0.3 Hz was applied to all spectra.

4.2.17.1: Processing of 1H NMR spectroscopic data: Spectra were imported into MATLAB R2013a (Mathworks, USA) where automatic phasing, referencing of chemical shifts to the resonance of the TSP internal standard (δ 0) and baseline correction were performed using an in-house code. Prior to peak alignment the residual water resonance (δ
4.40- 5.00 ppm), ethanol resonances (δ 1.10-1.24, 3.61-3.68 ppm) and TSP resonance (δ 0.00 ppm) were removed) and spectra exhibiting low signal: noise ratios were excluded from the analysis. The remaining data was normalised to complimentary values for total cellular protein to remove the influence of differences in cell number between cell cultures.

Spectra were analysed at a reduced resolution (46 data points). To obtain the reduced resolution data, metabolite peaks were assigned using Chenomx software version 7.7 (Chenomx Inc, Canada) and the Human Metabolome Database Version 3.6. These assignments directed selection of representative peaks for each metabolite from which peak areas were integrated based on manually assigned minima and maxima. Where metabolites contributed peaks at multiple resonances, the least overlapped peaks were selected for integration to produce the cleanest values.

4.2.17: Feature identification from 1H NMR spectroscopic data: Feature metabolites were identified using Student’s t-tests with FDR corrections which looked for significant differences in metabolite concentrations between control and exposure groups. Any differences in peak area with p values ≤ 0.05 and a FDR ≤ 20% were considered to be significant.

4.2.18: Over-representation analysis of metabolite and transcriptomic datasets:

Cellular pathways that may have been represented by the feature metabolites and the potential for their regulation by miR-34b/449a were identified using the over-enrichment analysis module of IMPaLA. As described in Chapter 3, lists of feature metabolites and predicted gene targets of miR-34b/449a were included in the analysis and pathways were considered to be significantly over-represented if their joint overlap was assigned a p value ≤ 0.05 with a FDR of ≤ 20%.
4.3: Results

4.3.1: Physicochemical characteristics of BAD and SRM-2975 particles

The compositional and physical properties of traffic-related PM may vary between sources as a result of differences in driving behaviour, vehicle condition and environmental factors such as temperature and the presence of airborne chemicals (28). Although SRM-2975 is a well characterised, commercially available particle (385), the BAD particles that were used in this study required preliminary physicochemical characterisation prior to use.

As cells were exposed to BAD and SRM-2975 in the presence of CM, the particles were sized based on their hydrodynamic diameter (diameter when suspended in a liquid) in CM. The degree to which both particle types might agglomerate during exposure to cells was assessed by measuring the particles over a time-course equivalent to the cellular exposure experiments.

At time 0, BAD had an average hydrodynamic diameter of 0.61 ± 0.07µm and a high polydispersity index (PDI) of 0.72 ± 0.05. SRM-2975 was also highly polydisperse with a PDI of 0.76 ± 0.19 but was considerably larger than the BAD (1.21 ± 0.11µm). Neither the size nor the polydispersity (distribution of hydrodynamic diameters) of either particle altered significantly across the time-course indicating that particular agglomeration or dispersion would likely be minimal during cellular exposures (Table 4.1).

ICP-MS was employed to measure the concentrations of 18 metals/metalloids within the particle samples. BAD was richly metallic containing 14 of the metallic species tested. Of these, Fe, Ca, Ti and Ba were most abundant (77.03 ± 0.61, 18.34 ± 0.37, 16.65 ± 0.33 and 11.79 ± 0.06 ng/µg respectively). In contrast, SRM-2975 particles contained far fewer metallic species with only Ti (17.34 ± 0.34 ng/µg), As (5.73 ± 0.14 ng/µg), V (0.05 ± 0.00 ng/µg) and Sb (0.01 ±0.00 ng/µg) being detected in the samples. While BAD and SRM-2975 contained equivalent concentrations of Ti, As and V, Sb was significantly enriched in BAD (p ≤ 0.001) (Table 4.2).
Many of the metals detected within BAD and SRM-2975 induce oxidative stress in biological systems (59,60,386) by producing ROS through redox cycling (Fe, Cu, Cr, V, Co), depleting cellular GSH (Cd) or directly binding to thiols (As) (387). As BAD and SRM-2975 differed greatly in content of these metals, the oxidative potentials of the two particles were determined based on their ability to deplete glutathione and ascorbate from a simulated respiratory tract lining fluid. In comparison to the particle free control, and consistent with an urban dust positive control particle (SRM-1648a), both BAD and SRM-2975 significantly depleted ascorbate (44 and 55% respectively, \(p \leq 0.001 \)) after the 4 h incubation period. Significant oxidation of glutathione occurred after incubation with BAD (12%, \(p \leq 0.05 \)) but not with SRM-2975 (Figure 4.1) indicating that while both particles possessed oxidative potential, their affinity for specific antioxidants may differ.
Table 4. 1: Hydrodynamic diameter of BAD and SRM-2975 as determined by DLS. Average hydrodynamic diameters (± SEM) and PDI (± SEM) of BAD and SRM-2975 samples (14 µg/ml) ascertained using dynamic light scattering after 0, 4 or 24 h incubation in CM at 37°C. Measurements were made at 25°C and values were produced over 3 runs consisting of 6 readings each.

<table>
<thead>
<tr>
<th>Particle</th>
<th>Dispersant</th>
<th>Time point (hours)</th>
<th>Average diameter (nm)</th>
<th>Average PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAD</td>
<td>CM</td>
<td>0</td>
<td>610.32 ± 72.71</td>
<td>0.72 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>617.53 ± 119.01</td>
<td>0.69 ± 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>616.22 ± 1.59</td>
<td>0.60 ± 0.09</td>
</tr>
<tr>
<td>SRM 2975</td>
<td>CM</td>
<td>0</td>
<td>1214.33 ± 108.59</td>
<td>0.76 ± 0.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1179.53 ± 269.35</td>
<td>0.85 ± 0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>1228.23 ± 115.79</td>
<td>0.90 ± 0.11</td>
</tr>
</tbody>
</table>
Table 4. 2: Metal and metalloid content of BAD and SRM-2975 as determined by ICP-MS. Values represent the mean ± SEM for three biological replicates. n.d = non-detected.

<table>
<thead>
<tr>
<th>Metal</th>
<th>SRM 2975 concentration (ng/μg)</th>
<th>BAD concentration (ng/μg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>n.d.</td>
<td>77.03 ± 0.61</td>
</tr>
<tr>
<td>Ca</td>
<td>n.d.</td>
<td>18.34 ± 0.37</td>
</tr>
<tr>
<td>Ti</td>
<td>17.34 ± 0.34</td>
<td>16.65 ± 0.33</td>
</tr>
<tr>
<td>Ba</td>
<td>n.d.</td>
<td>11.79 ± 0.06</td>
</tr>
<tr>
<td>Al</td>
<td>n.d.</td>
<td>5.80 ± 0.10</td>
</tr>
<tr>
<td>As</td>
<td>5.73 ± 0.14</td>
<td>4.63 ± 0.37</td>
</tr>
<tr>
<td>Zn</td>
<td>n.d.</td>
<td>2.12 ± 0.02</td>
</tr>
<tr>
<td>Mn</td>
<td>n.d.</td>
<td>0.73 ± 0.01</td>
</tr>
<tr>
<td>Cu</td>
<td>n.d.</td>
<td>0.14 ± 0.01</td>
</tr>
<tr>
<td>V</td>
<td>0.05 ± 0.00</td>
<td>0.06 ± 0.00</td>
</tr>
<tr>
<td>Mo</td>
<td>n.d.</td>
<td>0.08 ± 0.00</td>
</tr>
<tr>
<td>Sb</td>
<td>0.01 ± 0.00</td>
<td>0.05 ± 0.00</td>
</tr>
<tr>
<td>Cd</td>
<td>n.d.</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>W</td>
<td>n.d.</td>
<td>0.02 ± 0.00</td>
</tr>
<tr>
<td>Cr</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Ni</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Sn</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Y</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>
4.3.2: U937 macrophages ingest BAD and SRM-2975 particles

The ability of U937s to ingest BAD and SRM-2975 during a 24 h exposure period was demonstrated using light microscopy. While intracellular accumulations of PM were visible after exposure to either particle type at dosages as low as 4 μg/ml, this was more pronounced for SRM-2975 than for BAD (Figure 4.2).

Whilst not statistically significant using three biological replicates, cells challenged with BAD for 24 h also had enriched metal content when compared with particle-free controls. They showed dose dependent increases in Ba, Mn and Fe content across the 0-25 μg/ml exposure range (up to 1379, 200, and 265 % of particle-free control, respectively). Minor dose dependent uptake was also observed for Al and Ca across the 0-14 μg/ml exposure range (up to 245 and 126 % of particle-free control, respectively) and for As, V, Zn, Cu and Ti across the 0-8 μg/ml exposure range (up to 155, 248, 122 and 120 % of particle-free control, respectively). Contrastingly, intracellular concentrations of Cr and Ni displayed dose-dependent decreases in concentrations following BAD exposure, reducing by up to 64 and 16% (compared with particle-free controls) over the 0-25 μg/ml exposure range (Table 4.3).

Despite SRM-2975 being of low metal content, an increase in intra-cellular metal concentrations was also seen following 24h exposure to this particle (also non-significant in terms of statistical testing). Dose dependent increases in intracellular vanadium concentration were observed across the 0-25 μg/ml exposure range (up to 372 % of particle-free control) while minor dose-dependent increases in intracellular As and Ti concentrations were visible across the 0-8 μg/ml exposure range (up to 144 and 128 % of particle-free control respectively) (Table 4.3).
Figure 4.1: The oxidative potential of SRM-2975 and BAD. Depletion of (A) ascorbate and (B) glutathione from an antioxidant cocktail (2mM) following 4h incubations with BAD, SRM-2975 or SRM-1648a (55.5µg in chH2O). Values are displayed as percentages of a particle-free control and represent the SEM for 3 biological replicates, each composed of 3 technical replicates.
4.3.3: BAD and SRM-2975 are not cytotoxic to U937 macrophages but cause mitochondrial dysfunction

The cytotoxic potential of the particle-cell interactions was assessed via MTT assay, using mitochondrial oxidoreductase activity as a proxy for cell viability. Over time-courses of 4-48h, neither BAD nor SRM-2975 reduced U937 viability to a statistically significant extent when dosed at 4 – 25 μg/ml (Figure 4.3). This indicated that the degree of cytotoxicity that was induced by ingestion of the particles did not impact strongly on the viability of the U937 cultures.

As a degree of inter-sample variability was observed in the data collected from the MTT assay (which may have contributed to acquisition of a non-statistically significant result), this result was validated by staining the nucleus and cytoplasm of the cells with fluorescent dyes. This approach sought to examine changes in nuclear or cellular area that represent necrosis or apoptosis following particulate challenge. In agreement with the MTT assay, neither particle type significantly altered the nuclear or cellular areas of the U937s (as compared with particle-free controls), even at the highest dosages (25 μg/ml), indicating that the cells had not entered into necrotic or apoptotic states (Figure 4.4A–D). The cells did however display dose-dependent decreases in Mitotracker Red signal after exposure to BAD (7.2 ± 2.9 – 64.9 ± 1.0%) and SRM 2975 (30.5 ± 6.1 – 57.3 ± 1.3%). As this dye is selectively retained within healthy mitochondria, this result is indicative of mitochondrial dysfunction (Figure 4.4 E-F).
Figure 4.2: Light micrographs of U937s following 24 h exposures to particle-free medium (A), 4 μg/ml BAD (B) or 4 μg/ml SRM-2975 (C) at 1000 X magnification.
Table 4. Metal and metalloid content of U937 lysates following 24 h exposure to 4-25 μg/ml BAD or SRM-2975. Data were acquired by ICP-MS, normalised to total cellular protein (determined by BCA assay) and displayed as a percentage of a particle-free control. Values were produced using the average of three experimental replicates.

<table>
<thead>
<tr>
<th></th>
<th>BAD</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>SRM-2975</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 μg/ml</td>
<td>8 μg/ml</td>
<td>14 μg/ml</td>
<td>25 μg/ml</td>
<td></td>
<td>4 μg/ml</td>
<td>8 μg/ml</td>
<td>14 μg/ml</td>
<td>25 μg/ml</td>
</tr>
<tr>
<td>Al</td>
<td>146</td>
<td>176</td>
<td>246</td>
<td>178</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>As</td>
<td>114</td>
<td>121</td>
<td>120</td>
<td>96</td>
<td></td>
<td>136</td>
<td>145</td>
<td>143</td>
<td>117</td>
</tr>
<tr>
<td>Ba</td>
<td>599</td>
<td>712</td>
<td>935</td>
<td>1379</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Mn</td>
<td>136</td>
<td>140</td>
<td>153</td>
<td>200</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>V</td>
<td>182</td>
<td>242</td>
<td>220</td>
<td>222</td>
<td></td>
<td>102</td>
<td>190</td>
<td>285</td>
<td>363</td>
</tr>
<tr>
<td>Sb</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Cd</td>
<td>103</td>
<td>72</td>
<td>70</td>
<td>121</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Cr</td>
<td>85</td>
<td>71</td>
<td>56</td>
<td>36</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Cu</td>
<td>114</td>
<td>122</td>
<td>103</td>
<td>111</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Mo</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Ni</td>
<td>94</td>
<td>94</td>
<td>88</td>
<td>84</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Zn</td>
<td>117</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Ca</td>
<td>111</td>
<td>116</td>
<td>126</td>
<td>109</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Fe</td>
<td>147</td>
<td>160</td>
<td>195</td>
<td>266</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Y</td>
<td>119</td>
<td>122</td>
<td>116</td>
<td>119</td>
<td></td>
<td>nd</td>
<td>Nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>Ti</td>
<td>110</td>
<td>120</td>
<td>118</td>
<td>110</td>
<td></td>
<td>122</td>
<td>128</td>
<td>127</td>
<td>99</td>
</tr>
</tbody>
</table>
Figure 4.3: Viability of U937s following exposure to 4-14 µg/ml BAD or SRM-2975. Measurements were made following 4-48h exposures to 4-25 µg/ml BAD (A) or SRM-2975 (B). Values are displayed as percentages of a particle-free control and represent the mean ± SEM of 6 individual measurements, each consisting of 6 technical replicates.
Figure 4. The influence of particle exposure on metrics of cellular health. Fluorescent intensities of Hoechst nuclear stain (A and B) CellMask Deep Red cytoplasmic stain (C and D) and Mitotracker Red stain for intact mitochondrial membrane potential (E and F) in U937s after 24h exposure to 4-25 μg/ml BAD or SRM-2975. Fluorescent intensities were measured using an INCELL analyzer 2200 and are displayed as a percentage of a particle-free control showing the mean ± SEM values produced during 2 biological replicates (composed of ~1x10⁶ single cell measurements). Significant differences in the fluorescence intensities of staining were identified between control and particle-treated cells using 1-way ANOVA tests with Bonferroni correction. ** p <0.01, *** p < 0.001
4.3.4: BAD and NIST induce inflammatory responses in U937

Inhaled particles are commonly hypothesised to exert pulmonary toxicity via inflammatory mechanisms. As such, concentrations of IL-8, IL-10 and TNF-α were measured in U937 supernatants following 24h challenges with BAD or SRM-2975. In comparison to the particle-free control, BAD exposure significantly increased IL-8 secretion by 42.7-171.2% from concentrations as low as 4 µg/ml (p ≤ 0.01- < 0.001) and IL-10 secretion by 144.8 -185.3% at concentrations ≥14 µg/ml (p ≤ 0.01- < 0.001) (Figure 4.5A and C). SRM-2975 also induced significant increases in IL-8 secretion (55.2-133.7%, p ≤ 0.001) from concentrations ≥ 4 µg/ml (Figure 4.5B). IL-10 secretion increased in a dose-dependent manner following SRM-2975 exposure reaching statistical significance at 25 µg/ml (216.2%, p ≤ 0.05) (Figure 4.5D). Exposure to 4-25 µg/ml SRM-2975 significantly increased TNF-α secretion by 137.5, 167.5, 149.5 and 175.8% in comparison to the particle-free control (p ≤ 0.01, 0.001, 0.001 and 0.001 respectively) (Figure 4.5E). In comparison, BAD exposure only induced significant increases in TNF-α secretion at the 25 µg/ml dosage (154.5%, p ≤ 0.01) (Figure 4.5F). Such data indicate that both particles induce pro-inflammatory responses in U937s that are accompanied by anti-inflammatory activity at higher doses.

In order to determine whether the inflammatory responses were stimulated by the metallic portions of the particles, the cytokine measurements were repeated using the supernatants of U937s exposed to BAD or SRM-2975 (4- 25 µg/ml, 24 h) in the presence of desferroxamine (a non-specific metal ion chelator). In this system, secretion of IL-8 and TNF-α remained equivalent to the particle free control for both exposure types (Figure 4.6 A-D). In contrast, IL-10 secretion was elevated in comparison to controls following exposure to BAD at doses ≥ 8 µg/ml (172.0-201.4%) or to 25 µg/ml DEP (222.4%) (Figure 4.6 E-F)
Figure 4.5: Particle-induced cytokine secretion. Concentrations of IL-8 (A, B), TNF-α (C, D) and IL-10 (E, F) measured within the supernatants of U937s after 24h exposure to BAD (A, C, E) and SRM-2975 (B, D, F). Values are expressed as percentages of particle-free controls with error bars depicting the SEM generated during 5-7 replicates. Significant differences in cytokine concentration were identified between control and particle-treated cells using 1-way ANOVA tests with Bonferroni correction. * p ≤0.05, ** p ≤0.01, *** p ≤0.001.
Figure 4.6: The influence of metals on cytokine secretion. Concentrations of IL-8 (A, B), TNF-α (C, D) and IL-10 (E, F) measured within the supernatants of U937s after 24h exposure to BAD (A, C, E) and SRM-2975 (B, D, F) in the presence of 380 μM desferroxamine. Values are expressed as percentages of particle-free controls with error bars depicting the SEM generated during 5-7 replicates. Significant differences in cytokine concentration were identified between control and particle-treated cells using 1-way ANOVA tests with Bonferroni correction. *** p ≤0.001.
4.3.5: BAD and SRM-2975 inhibit phagocytic function in U937

As IL-10 is a regulator of phagocytosis behaviour in macrophages and neutrophils (388,389), the impact that BAD and SRM-2975 exposure had on U937 phagocytic capability was assessed through measurement of the cell’s capacity to ingest the respiratory pathogen S. aureus subsequent to particle treatment. After 24h of exposure to 4 and 8 µg/ml BAD, the number of S. aureus that the U937s ingested reduced by 30.0 and 29.5 % when compared with a particle-free control (p <0.001 and p<0.01). When BAD dosage was increased to 14 or 25 µg/ml, the number of bacteria ingested by the macrophages was further reduced to 27.9 or 26.5% of the particle-free control (p <0.001) (Figure 4.7 A). SRM-2975 exposure induced a similar response with the 4 µg/ml treatment reducing S. aureus ingestion by 43.5% (p <0.001) in comparison to the particle-free control and dosages of 8, 14 and 25 µg/ml reducing bacterial ingestion by 52.0, 64.1 and 67.8%, respectively (p <0.001) (Figure 4.7 B). Such observations indicate that exposure to BAD or SRM-2975 can inhibit bacterial phagocytosis in U937s. S. aureus growth curves, produced in the presence or absence of BAD or SRM 2975, confirmed that this result was not the product of direct bactericidal or bacteriostatic interactions between the particles and bacteria (Figure 4.8).

Bacterial phagocytosis behaviour was quantified in the presence of desferroxamine to identify the contribution that the metallic portions of BAD and SRM-2975 had on inhibition of U937 bacterial phagocytosis behaviour. Ingestion of S. aureus was increased by 41.3 and 30.8% in U937s treated with 14 and 25 µg/ml BAD in the presence of desferroxamine when compared with those treated with the particles in the absence of the chelator. S. aureus uptake was also increased by 31.0, 24.8 and 14.8% in U937s treated with 8, 14 and 25 µg/ml SRM-2975 in the presence of desferroxamine when compared with that of U937s treated with the particles only (Figure 4.7 C and D). This observation indicates that metal ions within the particles may be key inhibitors of phagocytic behaviour.
In addition to metals, particle-bound endotoxins and PAHs contribute to particulate toxicity (60,390). As such the impact that 24 h exposures to LPS (an endotoxin) or benzo[a]pyrene (an ambient PAH) had on the phagocytic activity of U937s was investigated. At a dosage of 1 μg/ml, benzo[a]pyrene did not significantly reduce the number of *S. aureus* that the U937s ingested, suggesting that PAH were unlikely to have contributed to the anti-phagocytic behaviours of the particles. In contrast, treatment with 1 μg/ml LPS significantly reduced the number of *S. aureus* that the U937s ingested (14.4% p ≤ 0.05) indicating that surface-bound endotoxins may have contributed to the functional toxicity of BAD and SRM-2975.
Figure 4.7: The influence of particles on phagocytosis behaviour. Number of *S. aureus* ingested by U937s over a 2h period subsequent to 24h incubation with 4-25 µg/ml BAD (A) or SRM-2975 (B), 4-25 µg/ml BAD (-chelator) or 4-25 µg/ml BAD spiked with 380 µM desferroxamine (+chelator) (C) and 4-25 µg/ml SRM-2975 (-chelator), 4-25 µg/ml SRM-2975 spiked with 380 µM desferroxamine (+chelator) (D) and 1 µg/ml LPS or benzo[a]pyrene (E). Values were normalised to concentrations of total cellular proteins, are presented as percentages of a particle-free control and represent the mean ± SEM of 4-6 biological repeats. Significant differences in CFU were identified between control and particle-treated cells using 1-way ANOVA tests with Bonferroni correction.
Figure 4.8: Influence of particle exposure on bacterial growth. Number of *S. aureus* grown in the presence of 25 μg/ml BAD (A) or DEP (B) over a 3 h incubation period. Values are presented as percentages of a particle free control and represent the mean ± SEM of 4 biological repeats. Particle-induced differences in quantities of CFU were assessed at each time point using 2-way ANOVA tests with Bonferroni correction.
4.3.6: TRPM-induced up-regulation of miR-449a is detectable within U937 supernatants

Following the observations that serum concentrations of miR-34b and 449a are significantly enhanced under conditions of pulmonary inflammation (Chapter 2) and that BAD and DEP induce inflammatory responses in U937 macrophages (described above), it was hypothesised that the U937s would increase secretion of the miRNAs into their external environment following exposure to the particles. Following exposure to the particles (or to LPS as a positive control for inflammation), the hypothesis was tested through targeted quantification of miR-34b and 449 expression. Measurements were made firstly within macrophage lysates to establish cellular expression of the targets and secondly within the cellular supernatants to compare levels of target miRNA secretion with particle-free controls.

Prior to performance of the targeted quantifications, total RNA and miRNA concentrations were measured in the U937 lysates and supernatants using Nanodrop 2000 and Bioanalyzer 2100 technology. This aimed to clarify that the RNA isolation procedure had been successful and that miRNA exists within the supernatants of U937s. The analysis indicated that the RNA isolation procedure had been successful, with peaks visible at 260 nm on the Nanodrop spectra (representing total RNA) and between 20 and 40 nt on the Bioanalyzer spectra (representing miRNA) for both sample types (Figure 4.9).

The total RNA and total miRNA yields ranged between 40.4 - 307.3 ng/µl and 0.7 - 5.5 ng/µl (respectively) for lysate samples (Table 4.3) and 8.4 - 41.0 ng/µl and 1.2 - 16.0 ng/µl for supernatants (Table 4.4). No significant differences in total RNA yield, miRNA yield or miRNA: total RNA ratios were detected between treatment groups (Tables 4.3-4.4), indicating that the exposures had no notable impact on RNA expression.

RTqPCR measurements detected miR-449a but not mir-34b in the lysates of U937s, suggesting that the latter is not expressed by this cell line even during an inflammatory response. In contrast, the U937 responses to BAD or DEP exposure were accompanied by
significant increases in miR-449a expression. Compared with control samples, exposure to 4 or 14 µg/ml BAD induced dose-dependent 1.4 ± 0.1 and 1.7 ± 0.3 fold increases in miR-449a expression (p ≤ 0.1 for higher dose) while exposure to 4 or 14 µg/ml SRM-2975 induced 1.9 ± 0.1 and 2.0 ± 0.2 fold increases in expression of the miRNA (p ≤ 0.05). These changes were statistically similar to the 1.6 ± 0.2 fold increase in miR-449a expression that was induced by the LPs positive control (Figure 4.10 A-B).

These patterns of expression translated into the supernatant samples with BAD exposure inducing 1.3 ± 0.2 and 2.1 ± 0.3 fold increases in extracellular miR-449a concentrations (for 4 and 14 µg/ml dosages respectively, p ≤ 0.05) and SRM-2975 exposure increasing the concentrations from control level by 2.8 ± 0.7 and 2.7 ± 0.7 fold concentrations (for 4 and 14 µg/ml dosages respectively, p ≤ 0.05). Once again, these increases were statistically similar to the 1.5 ± 0.2 fold increase in miR-449a expression that was induced by LPS exposure (Figure 4.10 C-D).
Figure 4. 9: RNA content of supernatant samples. Spectra display the quantities of total RNA (A, C) and total miRNA (B, D) detectable in representative samples of U937 lysates (A, B) and supernatants (C, D). Spectra were acquired using Nanodrop 2000 and Bioanalyzer 2100 (with Small RNA Kit) instruments respectively.
Table 4. 4: Average concentrations of total RNA and total miRNA detected in the lysates of U937s by nanodrop spectroscopy and Bioanalyzer small RNA assays. Values represent the mean ± SEM of six biological replicates.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Total RNA (ng/μg)</th>
<th>Total miRNA (ng/μg)</th>
<th>Total miRNA: Total RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>117.80 ± 34.46</td>
<td>2.02 ± 0.60</td>
<td>0.02</td>
</tr>
<tr>
<td>LPS</td>
<td>132.27 ± 25.22</td>
<td>3.66 ± 1.18</td>
<td>0.03</td>
</tr>
<tr>
<td>4 μg/ ml BAD</td>
<td>107.83 ± 56.87</td>
<td>2.40 ± 1.24</td>
<td>0.02</td>
</tr>
<tr>
<td>14 μg/ ml BAD</td>
<td>130.70 ± 46.85</td>
<td>2.47 ± 1.10</td>
<td>0.02</td>
</tr>
<tr>
<td>4 μg/ ml SRM-2975</td>
<td>180.80 ± 66.3</td>
<td>2.61 ± 1.36</td>
<td>0.01</td>
</tr>
<tr>
<td>14 μg/ ml SRM-2975</td>
<td>163.67 ± 41.22</td>
<td>3.26 ± 1.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table 4. 5: Concentrations of total RNA and total miRNA detected in the supernatants of U937s by Nanodrop spectroscopy and Bioanalyzer small RNA assays. Values represent the mean ± SEM of six biological replicates.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Total RNA (ng/ μg)</th>
<th>Total miRNA (ng/ μg)</th>
<th>Total miRNA: Total RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>15.88 ± 6.21</td>
<td>5.12 ± 1.65</td>
<td>0.33</td>
</tr>
<tr>
<td>LPS</td>
<td>15.95 ± 1.50</td>
<td>6.611 ± 2.80</td>
<td>0.30</td>
</tr>
<tr>
<td>4 μg/ ml BAD</td>
<td>16.4 ± 1.66</td>
<td>3.63 ± 1.12</td>
<td>0.22</td>
</tr>
<tr>
<td>14 μg/ ml BAD</td>
<td>19.97 ± 2.04</td>
<td>3.94 ± 0.86</td>
<td>0.21</td>
</tr>
<tr>
<td>4 μg/ ml SRM-2975</td>
<td>14.78 ± 0.62</td>
<td>3.21 ± 1.18</td>
<td>0.21</td>
</tr>
<tr>
<td>14 μg/ ml SRM-2975</td>
<td>15.80 ± 3.50</td>
<td>4.13 ± 3.23</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Figure 4. 10: Fold increases in miR-449a concentrations in the cellular lysates (A,B) and supernatants of U937s following 24h exposures to 1 μg/ml LPS 0.4-14 µg/ml BAD or SRM-2975 (compared with that of cells exposed to particle free media). Data were acquired by RTqPCR, normalised to exogenous cel-miR-39 concentrations and analysed using the 2^(-ΔΔ CT) method. Values represent the mean ± SEM of 3-6 biological replicates, obtained from 3 technical replicates for each. Significant differences were detected between treatment groups using Student’s t-tests, # p≤ 0.1 * p ≤ 0.05.
4.3.7: U937 metabolic profiles are altered in response to pro-inflammatory stimuli

Metabolic profiling by 1H NMR was performed using the supernatants of particle challenged U937s. The analysis aimed to identify metabolic pathways that were altered during BAD and SRM-2975 induced toxicity and to find metabolite markers for them. By including LPS exposures in the model, it also sought to determine whether these markers were specific to particle – induced inflammatory responses or whether they are relevant to inflammatory responses in general.

Interrogation of spectral data from CPMG experiments confirmed the presence of 29 readily annotatable metabolites in the media (Figure 4.11). The spectral data was compared between treatment groups to identify significant changes in metabolite concentrations. Rather than employing the multivariate techniques used in Chapter 3, data were interrogated using univariate statistics to minimise influence from the high intrinsic variance between values that existed within the treatment groups (potentially due to the usage of fresh bottles of media for each experimental repeat).

Following exposure to 1 µg/ml LPS, the metabolic profiles of U937 were characterised by a generalised decrease in metabolite uptake from the media (represented by concentrations that increased after treatment but remained lower than the values for cell-free media). Extracellular concentrations of p-aminobenzoate, succinate, valine, citrate, glucose, glutamine and isoleucine were 59, 61, 58, 58, 49, 50 and 50% greater than for control samples (respectively) ($p \leq 0.05-0.01$).

Accumulation or secretion of metabolites into the media was also influenced by LPS exposure (represented by concentrations greater than the cell-free medium baseline). Extracellular concentrations of cystine and arginine increased by 272 and 27% ($p \leq 0.05$) while extracellular pyruvate concentrations decreased by 37% when compared with controls (but remained above baseline) ($p \leq 0.01$). Finally, extracellular concentrations of leucine
Figure 4.1: Exemplar 1H NMR spectra generated from the supernatants of U937 macrophages cultured in RPMI 1640 medium. Chemical shift regions containing resonances of residual water (4.40-5.00 ppm) and ethanol contaminant (1.10-1.24 and 3.61-3.68 ppm) have been removed.
increased by 190% (compared with control) \((p \leq 0.05) \), increasing from values below the cell-free medium baseline to values above the baseline. This suggests that uptake of the metabolite was impaired or that net efflux occurred.

In similarity to the media of LPS treated cells, decreased uptake of \(p \)-aminobenzoate, valine and isoleucine, and increased accumulation or secretion of cystine, arginine and leucine were detected in the media of cells that were exposed to BAD (in comparison to control). Differences of 44, 47, 35, 328, 52 and 58\% were detected for these metabolites (respectively) following exposure to the low dose (4 \(\mu \)g/ml) \((p \leq 0.05-0.01) \) and differences of 55, 57, 38, 321, 80 and 58 \% were detected following exposure to the larger dose (14 \(\mu \)g/ml) \((p \leq 0.05-0.01) \). A 34 \% decrease in extracellular citrate uptake was also detected following exposure to 14 \(\mu \)g/ml BAD \((p \leq 0.05) \).

In contrast to LPS treatment, exposure to BAD induced increases in the extracellular accumulation or secretion of histidine, asparagine and threonine \((46, 41 \text{ and } 31 \% \) respectively for 4 \(\mu \)g/ml exposure and 38, 49 and 23 \% for 14 \(\mu \)g/ml exposures) \((p \leq 0.05-0.01) \), decreased uptake of lactate \((38 \text{ and } 48\% \text{ for } 4 \text{ and } 14 \text{ } \mu \text{g/ml } \text{dosages, } p \leq 0.05) \) and enhanced uptake of myo-inositol by 50\% at the 14 \(\mu \)g/ml dose \((p \leq 0.05) \).

DEP induced similar changes to the U937 extracellular metabolome when compared with BAD. Compared with control samples, uptake of \(p \)-aminobenzoate and citrate decreased by 70 and 79\% following low DEP exposures \((4 \mu \text{g/ml, } p \leq 0.05) \) and 51 and 68 \% after higher exposure \((14 \mu \text{g/ml, } p \leq 0.05) \). As for BAD exposure, uptake of myo-inositol increased by 202 and 222\% following exposures to the low and higher doses \((\text{ns and } p \leq 0.05) \) and accumulation or secretion of cystine, arginine, histidine, threonine, asparagine and leucine increased by 531, 207, 164, 149, 166 and 139 \% for 4 \(\mu \)g/ml exposures \((p \leq 0.05-0.01) \) and 550, 214, 149, 155, 159 and 282\% for 14 \(\mu \)g/ml exposures \((p \leq 0.05-0.01) \).

Unlike responses to BAD exposure but consistent with the response to LPS, glucose uptake was decreased by 66\% and 68\% following 4 and 14 \(\mu \)g/ml DEP exposures \((p \leq 0.05) \).
Uptake of glutamate was also increased (by 131 and 162%) for 4 and 14 μg/ml exposures (p ≤ 0.05, ns) but this response was specific to DEP exposure (Figure 4.12).

4.3.8: Inflammatory stimuli induce alterations in common metabolic pathways in U937 macrophages

Using the features derived from the 1H NMR analysis, pathways that the BAD, DEP and LPS- associated metabolic features may represent were explored by over-representation analysis using the web tool IMPaLA. Interrogation of the output (displayed in Supplementary tables 4.1-4.3) showed that all three inflammatory stimuli could have altered the activity of common gene expression, inflammation/immunity, oxidative stress, general metabolism and molecular transport pathways (Table 4.6), indicating that they are common to inflammatory responses, independent of the stimulus.

In contrast, stimulus dependent associations were observed for amino acid, nitrogen and energy metabolism pathways and cellular signalling events. Focusing on pathways of amino acid metabolism, changes in amino acid interconversion, cysteine and methionine metabolism, S-methyl-5-thio-α-D-ribose 1-phosphate activity and branched chain amino acid metabolism pathway activities associated with all three stimuli but asparagine and histidine metabolism associated with DEP exposure specifically and threonine metabolism was shown to be altered by particles only.
Figure 4.1: Quantities of feature metabolites detected within the supernatant of U937 macrophages following 24 h incubations with media control, 1 μg/ml LPS or 4–14 μg/ml BAD or SRM-2975. Measurements were made using 1H NMR spectroscopy with values normalised to total cellular protein content and presented as a percentage of a cell-free medium control. Error bars represent SEM of 4–6 biological repeats. Significant differences between treatment groups were detected using 1 Way ANOVA tests with Bonferroni correction. *p ≤ 0.05, ** p ≤ 0.01.
In the context of energy metabolism, all three stimuli associated with alterations in glutaminolysis, glycolysis and gluconeogenesis but LPS exposure alone was linked with the citric acid and Cori cycles.

In contrast, LPS exposure was excluded from associations with nitrogen metabolism pathways, with ammonia recycling associating with both BAD and DEP and biogenic amine synthesis associating with DEP only (Table 4.6). Together these observations indicate that inflammatory responses may be contributed to by a combination of composition dependent and composition independent metabolic changes.

4.3.9: miR-34b/449a activity may influence inflammatory responses to particle exposure in U937 cells

Continuing with the rationale that integration of multiple molecular profiles enhances the mechanistic strength of biomarkers, integrative over-representation analyses were performed to determine whether miR-449a activity could have influenced activity of the metabolic pathways that associated with inflammatory exposures. As with the serum based analysis in Chapter 3, lists of predicted gene targets for miR-449a were input into IMPaLA alongside lists of feature metabolites for each exposure. The webtool searched a bank of curated pathways for those that displayed statistically significant (p<0.05) enrichment for both the 1H NMR-derived metabolite features and gene targets of miR-34b/449a.

Comparison of the output of this integrated approach (Supplementary tables 4.4-4.6) with the output of the metabolite-only analysis identified numerous common results. These included associations with molecular transport mechanisms, gene expression and amino acid metabolism for all exposures and mechanisms of nitrogen metabolism for the particle exposures. In addition, several differences were identifiable between the outputs. Of these, most notable were the inclusion of lipid metabolism pathways in responses to each stimulus
and the exclusion of oxidative stress and general metabolism pathways in the output for the integrated analysis (Table 4.6-4.7).

In addition to those identified in the metabolite only analysis (5′-adenosine monophosphate-activated protein kinase (AMPK), FOXO and hypoxia-inducible factor-1 (HIF-1)), an additional five cellular signalling pathways were associated with LPS or DEP exposure following the integrated analysis. Furthermore, with the inclusion of transcriptomic information, the AMPK, FOXO and HIF-1 signalling pathways met the criteria for association with responses to all three stimuli, rather than single stimuli as previously indicated. Surprisingly, DEP exposure alone was associated with cytokine and interleukin signalling in this analysis.

In terms of energy metabolism, the addition of transcriptomic data expanded associations between exposure and the citric acid cycle, conversion of glucose to acetyl-CoA and the Cori cycle to include BAD or both particle types as stimuli. Adding to the associations that existed between all three exposures and glucose and glutamine metabolism, incorporation of the miRNA target genes indicated that the process of carbohydrate metabolism may be regulated by carbohydrate-responsive element-binding protein (ChREBP) activity (Table 4.7). Together these data indicate that miR-449a activity had the potential to influence the concentrations of feature metabolite usage or production in U937s following LPS or particle exposure.
Table 4. 6: Metabolic pathways enriched in the media samples of U937s following particle or endotoxin exposure. ORA was performed by entering metabolite features (detected by univariate analysis of 1H NMR data) into IMPALA.

<table>
<thead>
<tr>
<th>Pathway type</th>
<th>Pathway</th>
<th>LPS</th>
<th>BAD</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid metabolism</td>
<td>Amino acid interconversion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Asparagine metabolism</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threonine metabolism</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Histidine metabolism</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cysteine and methionine metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>S-methyl-5-thio-α-D-ribose 1-phosphate activity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Valine, leucine and isoleucine catabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cellular signalling</td>
<td>AMPK signalling pathway</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FOXO signalling pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HIF-1 signalling pathway</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Energy metabolism</td>
<td>Central carbon metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Glycolysis and gluconeogenesis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Conversion of glucose to acetyl CoA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Triosephosphate isomerase</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cori Cycle</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TCA cycle and pyruvate metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Glutaminolysis</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene expression</td>
<td>Gene expression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>tRNA aminoacylation</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inflammation and immunity</td>
<td>Class I MHC mediated antigen processing & presentation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Leukotriene biosynthesis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oxidative stress</td>
<td>γ-glutamyl cycle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Biochemical pathways part I</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Phase II conjugation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Molecular transport</td>
<td>ABC transporters</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>SLC-mediated transmembrane transport</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Transmembrane transport of small molecules</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nitrogen metabolism</td>
<td>Ammonia recycling</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Biogenic amine synthesis</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Table 4. 7: Cellular pathways that were enriched for exposure-associated feature metabolites and predicted mRNA targets of miR-449a. ORA was performed by entering metabolite features (detected by univariate analysis of 1H NMR data) and predicted miR-449a targets (identified using the MirWalk database) into IMPALA.

<table>
<thead>
<tr>
<th>Pathway type</th>
<th>Pathway</th>
<th>LPS</th>
<th>BAD</th>
<th>DEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid metabolism</td>
<td>Amino acid interconversion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cysteine and methionine metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Threonine metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Histidine metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Lysine degradation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Valine, leucine and isoleucine degradation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cell signalling</td>
<td>AMPK signalling pathway</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>cAMP signalling pathway</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>FOXO signalling pathway</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>HIF-1 signalling pathway</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>IGF1R signalling cascade</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Phospholipase D signalling pathway</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>SREBP signalling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>TP53 regulates metabolic genes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Energy metabolism</td>
<td>Central carbon metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>ChREBP regulation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Cori cycle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Glutaminolysis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Glycolysis and gluconeogenesis</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Conversion of glucose to acetyl CoA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>TCA cycle and pyruvate metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gene expression</td>
<td>Gene expression</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>tRNA aminoacylation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Inflammation and immunity</td>
<td>Cytokine signalling in immune system</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signalling by interleukins</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td>Fatty acid, triacylglycerol and ketone metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Glycerophospholipid metabolism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Import of palmitoyl-CoA into the mitochondrion</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metabolism of lipids and lipoproteins</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Triosephosphate isomerase</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Molecular transport</td>
<td>ABC transporters</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>SLC-mediated transmembrane transport</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Transmembrane transport of small molecules</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nitrogen metabolism</td>
<td>Ammonia recycling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Urea cycle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
4.4: Results summary

- Despite possessing considerable differences in metal ion content, BAD and DEP both caused significant reduction of antioxidant species in cell-free systems.

- Neither particle reduced U937 viability but both induced an inflammatory response whilst reducing mitochondrial membrane integrity and phagocytic capacity.

- Alterations in cytokine secretion and bacterial phagocytosis activity occurred in a metal dependent manner.

- Both particles induced increases in the expression and release of miR-449a by U937s.

- Stimulus independent and particle-specific changes were detectable in the extracellular metabolome following exposure to BAD, DEP or LPS but alterations to the metabolome could not be distinguished between particle species.

- Based upon in silico predictions of miRNA-mRNA pairings, integrated ORA indicated that miR-449a dysregulation could have contributed to alterations in molecular transport, amino acid metabolism and nitrogen metabolism.

- Compared with single-omics ORA, integrative analysis of metabolomics and transcriptomic datasets identified additional putative associations between particle exposure and dysregulation of cell signalling and energy metabolism pathways.
4.5: Discussion

With the aims of identifying mechanistically relevant biomarkers of non-exhaust PM induced pulmonary toxicity and comparing them with those produced by exhaust PM exposure, this study characterised and compared the impacts that BAD and DEP (major contributors to urban TRPM) exerted upon the health and function of U937 human macrophages. Despite the two particles being physicochemically distinct, integration of hypothesis driven toxicological approaches with hypothesis-generating metabolomics analysis and miRNA quantifications demonstrated that their toxicological signatures were strongly comparable at both functional and molecular levels. This indicates that common metabolite and miRNA markers could be used to detect macrophage responses to both types of exposure.

Targeted cytokine quantifications confirmed the appropriateness of the U937 exposure model as a source of biomarkers for TRPM-induced inflammatory mechanisms. Both particles were found to induce secretion of pro-inflammatory IL-8 (a neutrophil chemoattractant (391)) and TNF-α (an orchestrator of pro-inflammatory cascades (392)) at concentrations as low as 4 μg/ml. They also induced secretion of pro-resolving (393) IL-10 at higher doses (14 μg/ml for BAD and 25 μg/ml for DEP). Enhanced secretion of these cytokines is commonly considered representative of pulmonary inflammation (394), and the results agree with previous observations that DEP induces IL-8 and TNF-α in macrophages and epithelial cells (395,396) and that BAD enhances IL-8 secretion in A549 cell lines (371).

In agreement with these increases in typical inflammatory markers, miR-449a expression was found to be significantly enhanced by the U937s following exposures to 4 or 14 μg/ml BAD or DEP, echoing the response to LPS treatment and findings of Chapter 2. This outcome is novel in relation to particle toxicology but is not surprising given that both DEP and metallic PM have been shown to impact broadly on the expression of inflammation-associated miRNAs in human airway cells and monocytes (104,397).
Importantly this indicates that the associations that this project has found between miR-449 and pulmonary inflammation appear to be translatable to the context of TRPM exposure, meaning that the potential for miR-449a to be used as a biomarker of pulmonary inflammatory responses may extend to those responses induced by TRPM. More importantly, the fact that increased concentrations of miR-449 were detectable extracellularly, indicates that the marker could be used to detect the responses in accessible samples.

It may be argued that miR-449 lacks value as a biomarker because it does not distinguish between responses to exhaust and non-exhaust particles or TRPM and canonical inflammatory pathways. However, due to advances in our understanding of miRNA activity, it does offer the novel suggestion that common mechanisms underlie responses to BAD, DEP and LPS at the level of post-transcriptional regulation. Furthermore, real world exposures to TRPM refer to the inhalation of particle mixtures (including endotoxins) (6), meaning that markers that respond in the same manner to multiple components of the mixtures could give more accurate representations of the response. This may be particularly relevant given that airborne pollutants are thought to influence pulmonary health in a synergistic manner (398,399).

In contrast to the observations for miR-449a, miR-34b was not expressed by the macrophages under any experimental condition. As miR-34b was found to contribute to the circulating microtranscriptome under inflammatory conditions in the rat (Chapter 3) and is over-expressed in alveolar type II cells in idiopathic pulmonary fibrosis patients (400), this may suggest that alternative cell types (such as pneumocytes or neutrophils) express the miRNA in vivo and that the association with TRPM should be explored in these cellular systems as well. Alternatively, the phenomenon may be an artefact of the cell culture process that can be avoided upon development of in vivo exposure models. Such an idea is supported by observations that 33% of miRNAs (including miR-34b) were differentially
expressed between primary bronchial epithelial cells that were cultured prior to RNA harvest and those that underwent RNA isolation immediately after collection (401).

An overlying theme of this work has been to identify biomarkers that expand our current understanding of inflammatory mechanisms. As such, toxic signatures additional but complimentary to the inflammatory response were characterised in the U937s following particle exposures. High-throughput fluorescence imaging assays indicated that both particles significantly reduced mitochondrial membrane integrity in a dose-dependent manner. Such activity has previously been attributed to the ultrafine components of PM crossing the mitochondrial membrane and releasing redox cycling agents within the organelle (402).

This type of mitochondrial damage often triggers apoptotic or necrotic pathways, disrupting ATP synthesis, releasing caspases and disrupting redox potential (403). Activity of these pathways is recognised through the characteristic swelling or shrinking of cells and through condensation of their nuclei but neither BAD nor DEP induced such changes in this study. Neither did they have a significant impact on the viability of U937 cultures as determined by mitochondrial oxidoreductase activity.

While PM has been shown to induce cell death in pulmonary cells, previous studies have used unrealistically high exposure doses (404,405) meaning that their results are unlikely to reflect in vivo responses as accurately as the lower dose range that was used in this study. In fact, the observation that the U937s triggered protective cytokine secretion rather than cell death in the face of mitochondrial damage indicates a strong advantage of the model. TRPM is hypothesised to induce protective anti-oxidant and inflammatory responses (51) and do not cause disability in all that are exposed, suggesting that biomarkers for the responses should be sought from models that can include adapted or reparative pathways.

Loss of function is a key component of cellular toxicity and fine and ultrafine ambient PM, metallic nanoparticles and DEP have all been shown to reduce the capacity for
macrophages to phagocytose respiratory pathogens (95,379–382). Likewise, BAD and SRM-2975 significantly impaired the ability of U937s to ingest the respiratory pathogen \(S. \) \textit{aureus}, reducing bacterial uptake by up to 73 and 68% respectively.

Following a similar observation, Zhou \textit{et al} (2007) demonstrated that the metallic portions of their PM impaired phagocytosis by exerting oxidative damage on proteins required during internalisation of target material (381). As the BAD and DEP that were used in this study were at least partially metallic and significantly depleted AA and GSH concentrations under acellular conditions, it is possible that their effect on U937 phagocytosis could be driven by metal-induced oxidative damage. Such a notion is supported by the fact that LPS and PAHs (found in both particle types) had minimal impact on \(S. \) \textit{aureus} uptake but metal ion chelators restored phagocytic capacity to control level.

Metabolite biomarkers represent changes in the activity of the pathways for which they are substrates, products or intermediates (168), making them a valuable tool for exploring the mechanisms that underlie the extra-inflammatory toxicity of BAD and DEP exposure. Reflecting the commonality in effect that was seen for the particles at the levels of function and health, BAD and DEP exposure induced highly similar changes in the U937 metabolome.

While this indicates that \(^1 \)H NMR based metabolomic approaches do not distinguish between responses to BAD and DEP, several of the changes (increased extracellular threonine, histidine, asparagine and arginine concentrations and enhanced myo-inositol uptake) were not induced by LPS exposure, indicating that they were specific to PM exposure. Extrapolating further, it may be that these differences were induced by the metallic components of the particles. In addition to the evidence that metal ions drove similar alterations in cytokine secretion and phagocytic function after BAD or DEP exposure here, Oeder \textit{et al} (2015) demonstrated clear differences in the metabolic pathways that were
impacted by metallic and non-metallic shipping exhaust exposures in airway epithelial cells (100).

Preliminary inspection of the metabolic features and the pathways for which they were enriched identified several potential associations with the observed toxicity signatures of particle exposure. For example, myo-inositol (an isomer of glucose and constituent of the phosphatidylinositol second messenger system (406)) has been shown to enhance phagocytic function in macrophages by promoting bacterial attraction and adhesion via depolarisation of the cellular membrane (407). It also decreases intracellularly following exposure to ZnO particles in AT1 cells (408), (which are a known inhibitor of phagocytosis in monocytes (409)) but not in response to gold nanoparticle exposure (which do not inhibit bacterial uptake (410)) in the same cell line (408). In the current study, uptake of myo-inositol from the culture medium was enhanced in response to particle exposure, possibly representing a protective or compensatory mechanism of phagocytic function retrieval. Supporting this suggestion, Kim et al (2005) suggest that a sustained supply of myo-inositol is required for the synthesis of membrane phospholipids in mammalian cells (406); a process that increases linearly following phagocytosis of particles (411). Furthermore, the current work found that extracellular concentrations of myo-inositol remained comparable to that of control cells following exposure to LPS (a treatment that had minimal impact on phagocytic capacity).

Another major example is that of altered mitochondrial pathways. Over-representation analysis indicated that the majority of the particle-influenced metabolite features contribute to pathways of branched chain amino acid (BCAA), glucose and fatty acid degradation or to glutaminolysis- all of which take place within the mitochondria or provide substrates for mitochondrial metabolism. These changes in BCAA metabolism have not been reported previously in the context of PM exposure but enrichment of culture media with BCAAs has been shown to promote phagocytosis in microglial cells (412). As BAD exposure decreased
isoleucine and valine uptake and both particles caused extracellular accumulations of leucine, it may be that reductions in mitochondrial BCAA metabolism contributed to impairment of phagocytic function in this model.

In contrast, several studies have associated PM exposure with alterations in energy metabolism. Oeder et al. (2015), determined that DEP reduce rates of glycolysis and citric acid cycle activity in airway epithelial cells (100) while Brower et al. (2016) associated biodiesel PM exposure with markers of decreased ATP synthesis in mouse serum (99). These changes in energy metabolism are unsurprising given that inflammatory stimuli promote reconfigurations of metabolic activity in macrophages, enabling energy-dependent antimicrobial processes such as cytokine synthesis and secretion (as seen for both particles) to be performed (413).

Less apparent is whether particle-induced mitochondrial dysfunction was the cause of changes in metabolic activity or the result of it. Although the relationship between mitochondrial dysfunction and BCAA metabolism has been explored in microglial phagocytes, results have been inconsistent. One study found that culture in BCAA-enriched media drove mitochondrial depolarisation (412), while others reported that BCAAs had no impact on mitochondrial activity (414), suggesting that the change in BCAA metabolism that was observed in this study could be a result of mitochondrial dysfunction. Similarly, mitochondrial membrane potential is maintained in the presence of products from oxidation pathways such as the citric acid cycle and β-oxidation of fatty acids (415,416) but these themselves take place within the mitochondria and will alter in concentration during adverse responses to mitotoxic stimuli.

Upon incorporation of miR-449a gene targets, output for the over-representation analysis showed a high degree of consistency with that of the metabolite-only analysis. Supported by knowledge that miRNAs can target several hundred genes within a single cell (117), this
indicated that heightened miR-449a activity contributed to the regulation of a great number of the observed metabolic responses. In line with the aim of enhancing characterisations of PM-induced inflammatory mechanisms, the integrated analysis also formed a number of associations between the exposures and pathways or processes that had not been detected in the metabolite-only analysis.

Several of these processes (including cytokine signalling and lipid metabolism) are already known to associate with PM-induced inflammation (94) but others have the potential to enhance our current understanding of TRPM-induced toxicity. When considered in combination with results from the targeted toxicological assays they enable novel links to be explored between features of the U937 responses to PM exposure, highlighting the benefits of integrating biomarkers that are collected via multiple approaches. As an example, AMPK signalling may be a means by which mitochondrial dysfunction contributed to increases in IL-10 expression in this model. This pathway (highlighted by the integrated over-representation analysis) is activated in the absence of ATP (417) (as may be expected in macrophages following loss of mitochondrial membrane potential (418)) and is shown to drive secretion of IL-10 (419) (enhanced by BAD and DEP exposure) and promote its pro-resolving p13K/Akt and STAT3-mediated activities (417). Similarly, changes in SREBP activity may associate with particle-induced impairment of bacterial phagocytosis given that SREBP-mediated lipogenesis is enhanced during phagocytosis (to compensate for donation of membrane segments to phagosomes) (420) and lipid metabolism pathways were altered following both types of particle exposure.
4.6: Conclusion

This body of work determined that exhaust and non-exhaust markers induce common mechanisms of toxicity in macrophages at both the functional and molecular levels and that these mechanisms are represented by changes in miR-449a (a marker of pulmonary inflammation) expression and the extracellular metabolome.

Integration of metabolomic profiling with predicted targets of miR-449a identified a number of cellular pathways and processes that have not previously been associated with TRPM exposure, promoting the suggestion that multi-omics analyses are mechanistically useful and meeting the aim of identifying biomarkers that further our knowledge of how TRPM propagates inflammatory responses in pulmonary cells.

Most importantly, the study identified that TRPM-associated biomarkers (including over-expression of miR-449a) are detectable extracellularly, indicating their candidacy as biomarkers for adverse responses to pollutants in human or animal models. If translatable to human biofluids, such a tool would be of great use for monitoring responses to exposure in high risk populations.
Chapter 5: General discussion, conclusions and possible future directions

5.1: Summary of findings

This work sought to address the hypothesis that mechanistically relevant miRNA and metabolite biomarkers are detectable during pulmonary responses to TRPM exposure. The over-arching aims of the project were to identify mechanistically relevant and non-invasively accessible biomarkers for pulmonary inflammation and to determine whether those biomarkers could be used to explore the adverse effects of TRPM exposure.

To achieve these aims and evaluate the hypothesis, a combination of microtranscriptomic and traditional toxicological approaches identified members of the miR-34/449 gene family as tissue markers for pulmonary inflammatory activity and observed translation of their signature into serum samples. Integration of metabolomic approaches into the workflow identified complimentary changes to the serum metabolome and determined that both the miRNA and metabolite signatures were relevant to exhaust and non-exhaust PM exposure in vitro (Figure 5.1).

5.1.1: Inflammation-associated miR-34b/449a over-expression signatures translate from pulmonary tissue to serum and from macrophages to supernatants

Following observations of their differential expression in response to three physicochemically diverse stimuli (an inhaled pharmaceutical, a metallic nanoparticle and pro-inflammatory IL-13), interrogation of microtranscriptomic profiling data identified miR-34b and miR-449a as stimulus-independent, tissue biomarkers for pulmonary inflammatory responses in vivo. Targeted quantifications determined that over-expression of both miRNAs was detectable in rat serum following a localised inflammatory response to intratracheal LPS instillation,
indicating that both markers could be sought within an accessible fluid as a result of prototypical inflammatory activity within the lungs.

Similarly, exhaust and non-exhaust PM-induced elevations of miR-449 expression in U937 human macrophages were detectable within the cellular supernatants, indicating that production of this marker also translates extracellularly in the context of TRPM exposure. Importantly this observation provides preliminary evidence that miR-34/449 family members could be used to detect adverse responses to TRPM exposure in accessible samples (potentially including those collected from humans). It also provides evidence that elevation of extracellular miR-449a concentrations are contributed to by macrophage behaviour during inflammation.

Whilst novel in terms of the relationship between mir-34b/449a and pulmonary inflammation, it is not surprising that the extracellular miRNA signatures reflected those of their origin tissue/cells. Circulating miRNA signatures are recurrently shown to echo changes in tissue marker expression in cancers (421,422) and miR-34b itself is up-regulated in the serum of patients with Huntington’s Disease, showing the same pattern of expression as neuronal cells that express mutant huntingtin proteins in vitro (423).

Considering that many of the predicted targets for mir-34b and miR-449a were not differentially expressed within the pulmonary tissue of rats treated with AZD2230 and that several extra-pulmonary pathways (including regulation of cholesterol synthesis calcium signalling in cardiomyocytes) were implicated as targets for AZD2230-associated miRNAs, it may be that translation of miR-34b/449a to circulating fluids fulfils an endocrine purpose during pulmonary inflammation. Such functions could include stimulation of auxiliary phagocytes, differentiation of phagocytic pre-cursors or, given the associations between pulmonary inflammation and cardiovascular disease (424); promotion of vascular remodelling- an event that miRNAs have been demonstrated to regulate (425).
Evidence for systemic responses to pulmonary inflammatory activity has been observed under multiple conditions. As examples, hepatic C reactive protein synthesis increases during exacerbation of lung inflammation in COPD (426) and production and release of polymorphonuclear leukocytes from the bone marrow is induced by PM$_{10}$ exposure (427). As circulating miRNAs are widely hypothesised to contribute to inter-cell communication (250), are shown to alter protein expression in target cells (145,428) and can be specifically expressed and sorted for vesicular transport (147,429), it is not unreasonable to speculate that miR-34b/449a could contribute to extra-pulmonary activities.

The value of miR-34b/449a translating to the serum is enhanced by evidence that the miRNAs are significantly enriched in lung tissue (compared with 15 other tissue types), as this suggests that the lungs (and/or inflammatory cells that have migrated into the lungs) would be the most probable source of circulating miR-34b/449a. Care must still be taken however, when interpreting serum concentrations of miR-34b/449a as similar or greater levels of the miRNAs were detected within the bone marrow and testes (respectively). While these tissues are less likely to contribute to in vivo responses to controlled respiratory exposures such as intratracheal instillation, it must be recognised that ultrafine particles and water-soluble metals are capable of translocating to tissues outside of the respiratory tract, (including the heart, liver, spleen and brain) (430–432), where they may induce extracellular release of miRNAs and thus contribute to the circulating pool. Kreyling et al (2002) did observe however, that less than 1% of inhaled PM$_{0.1}$ translocates to secondary organs following deposition in the rat lung (431), suggesting that the influence that secondary organ exposures had on serum miRNA profiles in this study was likely to be minimal in relation to that of the lungs.
Figure 5.1: Key observations made during the search for mechanistically relevant, accessible biomarkers of pulmonary inflammation.
5.1.2: Metabolite markers of pulmonary inflammatory responses distinguished between endotoxin and TRPM-induced responses

In contrast to the stimulus-independent nature of the miRNA markers, *in vitro* analysis indicated that endotoxin and TRPM-induced inflammatory responses could be distinguished at the metabolomic level based upon changes in extracellular concentrations of arginine, asparagine, threonine and histidine. Additional study will be required to determine whether the signature is specific to TRPM or whether other pro-inflammatory particles (such as pharmaceuticals or agricultural dusts) induce similar changes but the extracellular nature of the changes provides preliminary support for the use of this amino acid panel as a biomarker for TRPM-related pulmonary inflammation *in vivo*. If validated in serum they could provide far greater information than the use of miR-34a/449b alone; allowing TRPM-induced responses to be characterised or monitored despite the presence of heterogeneous co-exposures (as may be expected for non-intervention studies).

In this context, the distinction between endotoxin and TRPM-induced responses may be of particular use whilst investigating the role that TRPM exposure plays in bacterial exacerbations of chronic pulmonary conditions such as COPD and CF (433). Impairment of antimicrobial macrophage activities is hypothesised as a mechanism by which TRPM triggers exacerbation of these conditions, causing pathogenic accumulations in the absence of microbial clearance (434). As the U937 exposure model found that inhibition of bacterial phagocytosis is driven by TRPM but only marginally by LPS, it may be that increased extracellular concentrations of arginine, threonine, asparagine or histadine are reflective of this difference. Arginine for example, has been shown to promote phagocytosis via nitric oxide synthetase mediated changes to the cytoskeleton (435) and was differentially metabolised by LPS and TRPM-exposed macrophages, being utilised after endotoxin exposure but accumulating extracellularly during particle-induced responses.

The value of the candidate metabolite markers is enhanced by the fact that their extracellular concentrations increase following exposure. Down-regulated extracellular biomarkers can be
difficult to handle analytically; firstly because they become more difficult to measure accurately as their abundance decreases, and secondly because the measurement of response can only range between unchanged and absent (75). Here, the biomarker concentrations increase with exposure, yielding greater opportunity to assess the magnitude of responses or monitor health deterioration. While this may be advantageous considering the synergistic and heterogeneous nature of TRPM exposures (28,398), it is worth noting that the relationships between biomarker concentrations and PM exposure are not always dose-dependent. Therefore the degree to which the markers are elevated in serum may not be indicative of response severity.

Given that BAD and DEP were shown to induce the same mechanisms of toxicity in U937s, it is not surprising that the accompanying metabolic profiles could not distinguish between BAD and DEP-induced responses. Whilst promoting confidence in the mechanistic relevance of the markers, this is disappointing from a regulatory viewpoint. The contribution that non-exhaust PM (of which BAD is the major contributor (436)) makes to total TRPM emissions is forecast to increase over the coming years (28) as cleaner fuels, improved tailpipe filters and diesel-focused regulations come into play and it would be useful to monitor the effects that this has on pulmonary health. Source-specific biomarkers of pulmonary inflammation would have provided a convenient and high-throughput way to do this (particularly if they could be detected in serum) enabling decisions to be made regarding requirements for regulation of non-exhaust PM emissions.

Based on the evidence gained from this study it is difficult to predict whether the TRPM-associated metabolite signature will translate to serum (or indeed, from rat models to human cohorts). Pathway over-representation analyses indicated that LPS exposure caused the same changes in U937 energy metabolism as were seen in rat serum but also showed that many additional pathways contributed to the response \textit{in vitro}. Such disparity between the analyses is likely to be an artefact of differences in the \textit{in vitro} and \textit{in vivo} environments, contributed to by differences between rat and human cellular responses to exposure,
however it may also have been contributed to by differences between the statistical approaches that were employed to analyse the two datasets.

Different strategies of analysis can be applied to metabolomics data, depending on the research question in hand and the characteristics of the dataset. Multivariate pattern recognition approaches such as PCA and PLS-DA (used here to analyse the serum data) are most commonly applied where biomarkers are sought because they consider covariance between metabolites (the source of most biochemical information), enable multiple variables to be tested simultaneously and identify those that possess the greatest discriminatory strength (437). For the U937 dataset however, intra-group variation was considered too high (relative to the number of samples per class) to perform pattern recognition techniques reliably and a simple univariate approach was employed instead that tested for exposure-associated differences in the concentrations of all identified metabolites. It may be that this univariate approach uncovered associations that contributed more subtly to LPS-induced variations in the metabolome and that application of this approach to the serum dataset would uncover \textit{in vivo} translatability for those metabolites too. If so, this observation might provide support for the translatability of amino acid markers to the serum following TRPM exposure as well.

\subsection*{5.1.3: Multi-omics approaches enhanced the mechanistic value of pulmonary inflammatory biomarkers}

As regulators of the proteome or components of biochemical reactions, omics-gathered miRNA and metabolite biomarkers possess huge mechanistic relevance. Coupled with pathway enrichment algorithms, panels of these markers have the power to generate novel hypotheses regarding the molecular interactions that underlie responses to experimental or environmental exposures. Here for example, microtranscriptomic sequencing provided associations between pulmonary inflammation and altered synaptic signalling while metabolomic profiling indicated that TRPM exposure appears to influence nitrogen
metabolism pathways in macrophages- a phenomenon that has yet to be reported in the literature.

Integration of omics datasets (or 'multi-omics' analysis) has been shown to unlock even greater mechanistic detail than single-omics analysis (100,105). The holistic nature of the approach considers the complex interactions that take place between different molecular networks during biological responses (438) and offers greater statistical support for pathway prediction analyses, helping to validate associations made at individual omic levels. Such validation is particularly important given that most pathway identification algorithms simply assess the proportions of pathway components that are influenced under experimental conditions, regardless of whether there is statistical evidence for their interaction within the system in question (316).

Indeed, focusing on the TRPM exposure model, considerable overlap existed between pathways that were enriched for metabolite features and pathways that were enriched for miR-34b/449a gene targets. This provided confidence in the hypothesis that these pathways contribute to pulmonary responses to TRPM exposure, thereby determining which molecular interactions were represented by the TRPM-associated miRNAs and metabolites. Several of the pathways, including those relating to lipid metabolism and cell signalling (AMPK, cyclic adenosine monophosphate (cAMP), FOXO1, HIF-1α, SREBP) were not implicated by the accompanying metabolome-only analysis but have been associated with pulmonary inflammation elsewhere (439–444), demonstrating the potential that multi-omics analyses have for creating additional and relevant mechanistic associations.

Of course, given that the techniques employed the same computational method, results of this integrative analysis may be subject to the same limitations as single omics pathway analysis, meaning that they require experimental validation to be fully corroborated. Such validation would be unsurprising since FOXO1, AMPK, SREBP and HIF-1α signalling pathways are all validated targets of p38/MAPK phosphorylation (445–448) and LPS-
induced pulmonary inflammation altered serum concentrations of miR-34b/449a and accompanying metabolite markers in a p38/MAPK dependent manner.

Close inspection determined that the glutathione synthesis pathway was excluded from the multi-omics pathway analysis in both the LPS and TRPM exposure models despite metabolite-only analysis indicating its involvement in responses to both stimuli. Considering that glutamate cysteine ligase expression was significantly up-regulated by miR-301b in pulmonary tissue following AZD2230 exposure and that glutathione is a well-characterised component of protective pulmonary responses to oxidative stimuli (449) (including DEP (450) this highlights the degree of mechanistic specificity that can be obtained for individual biomarkers. The disparity between the outputs indicates that anti-oxidant production was a component of macrophage responses to TRPM and LPS exposure but was not regulated or represented by miR-34b/449a over-expression.

5.2: Advantages and limitations of study designs

5.2.1: Use of an in vitro exposure system for TRPM studies

Given that the circulating markers for prototypical pulmonary inflammation were identified using rodent models of pulmonary exposure, a natural progression might have been to explore their associations with TRPM exposure in a rat or mouse model rather than the chosen in vitro system.

Such a model would have included the systemic features that in vitro models are criticised for lacking (451) and inflammatory pulmonary responses are shown to include (such as the interplay between parenchymal and non-resident airway cells (10) and the modification of PM toxicity by the respiratory tract lining fluid (452)). Furthermore, both the internalised TRPM dosage and the downstream concentrations of secreted products would have been influenced by realistic pharmacokinetic factors (such as absorption, distribution and excretion) upon secretion into a circulating matrix (451).
An advantage of omics strategies is their ability to capture a molecular snapshot of a biological system at the time of sampling (453). Unrepresentatively however, the simple cell culture techniques used in this study allowed the U937 secretion products (including miRNAs, metabolites and cytokines) to remain in close proximity to the cells for 24 hours. Upon activation by pro-inflammatory mediators, macrophages undergo rapid metabolic switches that allow them to tailor their responses accordingly to the transient stages of inflammation. As such, allowing the U937 secretion products to accumulate where they may usually be removed from the pulmonary microenvironment by other cell types, molecular reactions, epithelial lining fluids or the microcirculation could have complicated interpretation of the response.

Providing an example of this, significant elevations in both pro and anti-inflammatory cytokines were observed following 24 hour exposures to BAD and DEP. As cytokine synthesis and secretion is a highly ATP dependent process but mitochondrial function and additional energy dependent processes were impaired and energy metabolism altered, it is unclear whether the increase in cytokines represents an early response to exposure that remained visible within the supernatant until sampling or whether the cells used their low energy supplies to fuel cytokine secretion throughout the response, sacrificing other energy-dependent processes for auxiliary phagocyte recruitment.

While development of an in vivo model of TRPM exposure will be a future goal, in vitro systems such as the U937 model used here do enable toxicological responses to be characterised in a defined, controllable and reproducible manner, free from confounding by adaptive or counter-regulatory responses to co-exposures and individual biological variations (453). They also enable the specific responses of individual cell types, or controlled combinations of cell types to be established; information that may be of great importance when studying the toxicity of poorly characterised exposures such as BAD. A simple compromise would be to add additional time points to the assays to determine which stages
of the inflammatory response cause elevations of miR-34b/449a expression and to better characterise the accompanying flux of metabolism.

5.2.2: Choice of methods for data integration

A strong advantage of this study is its employment of phenotypic anchoring. Particularly apparent for the TRPM model, the approach linked omics level changes (miRNA or metabolite profiling) with conventional toxicological parameters (BALF cell counts or measures of cellular health and function), enhancing the mechanistic links between the pathway biomarkers that were discovered and the toxicological endpoints that they create. This approach has been used broadly in the field of toxicogenomics (454) but has been criticised for producing biomarkers that have less prognostic relevance than the phenotype to which they are anchored (455).

Such criticism however bears little relevance to this study due to the accessible nature of the detected biomarkers. While less well characterised than neutrophilic infiltration of airway tissues or the bronchoalveolar lumen, miR-34b/449a and the accompanying panels of LPS or TRPM-associated metabolites provide evidence of inflammatory pulmonary activity that otherwise rely on invasive procedures to be detected. If translatable to human studies, these new markers will enable inflammatory responses to be detected in more heterogeneous populations; allowing studies to be performed in exposed but ‘healthy’ populations that would not generally undertake pulmonary biopsies.

Multi-omics study designs are becoming increasingly popular due to their ability to generate more mechanistic hypotheses than single-omics approaches (105). Indeed the decision to apply the approach to the context of pulmonary inflammation and TRPM exposure has recently been supported by Oeder et al.’s pathway analysis study (2015) which used transcriptomic, proteomic and metabolomics data to generate novel hypotheses regarding the mechanisms by which epithelial cells respond to shipping fuel exposure (100).
Three ‘taxonomies of data integration’ have been described for use in multi-omics studies; conceptual, statistical and model-based (316). In contrast to the majority of methods that are selected for integrative omics, the pathway over-representation modules of IMPaLA (used throughout this study) employ a simple conceptual approach. Despite using hypergeometric distribution statistics to identify pathways that are enriched for input genes and metabolites, the analysis does not assess statistical relationships between the features themselves, treating them as independent entities.

Such an approach has disadvantages. Although strong correlative relationships were observed between the LPS-associated metabolite features, providing evidence of pathway commonality, these were disregarded by the over-representation algorithm. Similarly the degree to which metabolite features were differentially synthesised or catabolised in response to inflammatory stimuli and their relative concentrations were excluded from the analysis meaning that the direction of pathway regulation (or progression for reversible pathways) was not provided.

While this information may have been used to build a more informative model of metabolic flux during responses to TRPM and LPS exposure, corresponding data was not available for miR-34b/449a activity. The input of these miRNAs to pulmonary response pathways was explored using computationally predicted gene targets and so experimentally validated expression values were not available for advanced pathway analyses. The use of expression values from the AZD2230 study was considered as a proxy but the possibility that miR-34b/449a has extra-pulmonary targets indicated that novel information could be masked if the analysis was restricted to targets that were validated in pulmonary tissue. Through the performance of a simple, conceptual approach, the IMPaLA over-representation module allowed these possibilities to be explored.

Furthermore, the non-statistical approach complimented the biological relationship that exists between gene transcripts and metabolites. It is important to remember that multiple regulatory interactions and cellular processes occur downstream of gene expression before
the product contributes to a biochemical pathway and that changes in the transcriptome will not cause simultaneous changes in the metabolome (316). As such, correlations between metabolites and enzyme or regulator transcripts are not always found (456,457) or are far more variable than correlations between enzymes and substrates (458). As demonstrated with the TRPM exposure model, the hypothesis generating potential of pathway analyses that seek to integrate transcriptomics and metabolomics data is therefore enhanced by the absence of correlative statistics.

5.2.3: Choice of serum as an extracellular matrix for biomarker detection

To fulfil the aim of accessible biomarker detection, a suitable biological matrix had to be selected from which miRNA and metabolite profiling and quantifications could be performed. Circulating fluids (serum or plasma) and urine were both candidates for the study as they each contain a broad range of miRNAs and metabolites (181,199) and can be harvested using minimally invasive techniques.

Urine is a popular matrix for metabolomic assessment as it can be harvested in large quantities (allowing analysis by multiple, complimentary platforms) and is well characterised in terms of metabolite content (181). For toxicological purposes, however, the urine may be best suited to targeted detection of biomarkers of exposure (such as PAH metabolites following exhaust PM exposure (82)). This is because urine is the primary route by which hydrophilic waste products are excreted (181) and so (with the exception of kidney or bladder toxicity) is less likely to contain molecules that regulate or contribute to adaptive or reparative responses in otherwise healthy organisms than serum or plasma.

In comparison to urine, blood functions as a transportation system for regulatory and functional cellular secretion products, thus facilitating the orchestration of physiological and stress response pathways (199). Caution must still be applied when considering the origin of serum/plasma markers but those that are detected are more likely to reflect toxicological
response pathways than urinary markers given the function of their matrix. Indeed, classical inflammatory and oxidative stress markers (including cytokines and lipid peroxidation products) are often detected within the serum following inflammatory pulmonary insults (459), suggesting that this matrix is a good choice for response biomarker detection.

Importantly for this project, the serum also has a richer lipidome than urine, containing >17,000 lipid and fatty acid species compared to the 836 that have been assigned in urine (181). Considering that the miRNA markers of AZD2230-induced pulmonary inflammation were shown to regulate expression of genes that encode lipid metabolism enzymes and circulating products of airway structural lipid catabolism associate with exhaust PM exposure in mice (99), lipidomic exploration may prove a sensible starting point for future expansion of the current biomarker panel.

5.2.4: Absence of a continuous control between studies

Although macroscopic features of tissue inflammation (BALF cell counts) were comparable between the rodent models used in this study (indicating that they shared a common phenotype following their respective exposures), confidence in the translatability of tissue markers into serum could have been enhanced by including a common control exposure in each model. This would have highlighted similarities and discrepancies between the way that the animals (exposed to in different laboratories and heterogeneous in species and strain) responded to inflammatory stimuli, allowing more robust biomarkers to be applied to the TRPM exposure model.

This limitation was unavoidable given that publicly available datasets played a key role in the analysis but conscious efforts were made to minimise its impact, including selection of an exposure model for the serum study that related physicochemically or physiologically with the stimuli of the tissue models and with TRPM. As a prototypical stimulus of pulmonary inflammation, LPS induces NFκB pathways (in similarity to IL-13 (19), activates TLR4 in the
airways (like nano-titanium and DEP (229,230)) and contributes to the composition of TRPM (356). Therefore, it is not unreasonable to predict that its activity may be reflected by biomarkers that associated with nano-titanium exposure and IL-13 activity or that TRPM exposure may induce a similar signature.

Further continuity was produced by including an LPS control in the U937 model during biomarker analyses. This showed that the metabolic changes in U937 cultures were also dominated by energy metabolism pathways, indicating that the cells were responding similarly to pulmonary tissue and that comparisons could be made with greater confidence. Interestingly, the metabolic response to LPS exposure associated with a wider range of cellular pathways in the *in vitro* supernatant than it did in serum. Furthermore, many of these pathways (including cell signalling and amino acid catabolism) were also induced by TRPM exposure.

While these differences could be an artefact of the *in vitro* system (such as metabolite accumulation or phenotypic shift of the cell line), they may also be indicative of responses that occur specifically within immune cells during pulmonary inflammation or were masked by the presence of highly variable energy metabolites in multivariate models. Therefore, inclusion of the LPS control in the U937 model provided evidence that responses to TRPM exposure shared similarities with the prototypical inflammatory response which would not have been identified through direct comparison with the serum metabolome.

5.3: Impacts of findings

5.3.1: Applications for research

The biomarkers detected by this work possess a number of qualities that would benefit the study and characterisation of pulmonary inflammatory responses. Most importantly, the markers can be detected in accessible bio-fluids that are harvested inexpensively and non-invasively. In place of painful, time-consuming and daunting tissue biopsies, they offer the
opportunity to recruit larger study cohorts and perform studies of exposure-response that have greater statistical power and population representation. Of particular relevance to the context of TRPM exposure where exposed individuals often remain ‘healthy’, they offer an ethical method of sampling that would rarely be provided through biopsied tissue. This could allow the impacts of specific exposures or regulatory measures to be monitored in groups that better represent the general population.

The value of the accessible markers is enhanced by their specificity for pulmonary originated responses. miR-34b/449a expression was enriched in pulmonary tissue while altered concentrations of the glutamine, glutamate, acetate and lysine metabolite panel associated with pulmonary-specific inflammation here and in previous studies (345). As such, detection of these markers in place of those that can be produced by multiple tissues or organs (e.g. cytokines or pro-inflammatory lipids) could enable pulmonary-specific responses to be measured in complex in vivo cohorts or models without being confounded by background inflammatory sources such as dietary components (460), stress (461), or physical trauma (462).

The fact that many of the markers appear to be stimulus-independent yet mechanistically representative of prototypical inflammatory pathways indicates their potential for use in widespread contexts. For example, given the simplicity of sample preparation for metabolomic analyses and speed at which 1H NMR spectral features can be measured, the serum metabolite panel could be of use during the detection of adverse pulmonary responses during clinical trials for airway pharmaceuticals. Indeed, this characteristic proved highly beneficial for the AZD2230 study, where the stimulus induced a strong inflammatory response via an unknown mechanism that contrasted with its design as an inhibitor of NFκB signalling.
5.3.2: Applications for policy makers

Despite emerging evidence that non-exhaust particles exert adverse effects on the health and function of pulmonary cells (371), the impacts that these products have on pulmonary health have not been explored in vivo or for human populations. Resultantly, efforts to meet the targets set by the 2008 Ambient Air Quality Directive for airborne PM focus almost exclusively on reducing exhaust emissions (463) (for which we have much evidence of toxicity). Such measures are enforced nationally or locally and include the provision of incentives to purchase hybrid and electric vehicles, expansion of low emission zones (LEZ), surcharges for diesel car owners and advancement of exhaust filtration technologies.

Actions like these have strongly reduced exhaust emissions over past decades with exhaust contributing 80-90% of road emissions in the early 1990s but reducing to approximately 50% today (464). Given the continuing imbalance between exhaust and non-exhaust focussed regulations, it is suggested that airborne concentrations of non-exhaust PM will continue to rise relative to exhaust PM (465). This is concerning given that this study found exhaust (DEP) and non-exhaust particulates (BAD) to be equally toxic upon exposure to pulmonary cells and that the prevalence of allergic and respiratory symptoms did not improve for children in London during the three years following introduction of the exhaust-focused LEZ (466).

The discovery that pulmonary-specific markers that relate to BAD exposure can be detected in serum offers the potential to explore whether non-exhaust PM has adverse effects on respiratory health. Given that no differences were seen between BAD and DEP-associated marker signatures, characterisations of the relationship between BAD exposure and pulmonary responses would need to be made under controlled chamber study conditions, free from confounding by DEP exposure (and potentially other particles of similar composition). Chamber studies have proved instrumental during characterisations of pulmonary responses to air pollutants in humans (467,468). Combined with a panel of
biomarkers that represent augmentation of widespread cellular processes, they could provide the evidence required to determine whether regulations ought to be introduced for non-exhaust emissions too.

5.4: Considerations for future work

5.4.1: In vivo validation of TRPM-associated biomarkers

A major future aim for this work will be to establish whether TRPM-associated response biomarkers are detectable within serum following in vivo exposures. As well as being directly comparable with the current work, rat models would present the advantage of a controlled exposure system, free from confounding by heterogeneous PM exposure or uncharacterised sources of systemic inflammation. Using 1'H NMR spectroscopy and the optimised methods of targeted miRNA quantification that were employed during the LPS rat study, changes in extracellular concentrations of miR-34b/449a and TRPM-associated metabolites could be characterised following specific types of TRPM exposure.

If successfully translated to rat serum, the markers could be sought in healthy human serum collected from A) chamber studies to validate inter-species relevance in a controlled exposure environment or B) non-intervention studies to determine whether the markers remain detectable and dose-relevant upon a background of real-world co-exposures (e.g. wood smoke, gaseous pollutants, bio-aerosols). Indeed, it will be necessary to determine whether real-world exposure doses are sufficient to alter circulating concentrations of the markers. Real world exposure doses are usually much lower than those employed within experimental models (selected to elicit detectable responses) and are cyclical rather than continuous in nature (due to the influence of human behaviours such as commuting) (469) meaning that in vivo human responses may be more subtle. Indeed, complimentary experiments to those presented here indicated that TRPM-induced elevations in cytokine secretion and impairment of bacterial phagocytosis abated in U937s following the introduction of a 24h particle-free ‘rest’ period prior to experimentation (Supplementary figures 5.1 and 5.2). As such, method optimisations such as addition of a targeted pre-
amplification step during RTqPCR may be required for the detection of TRPM-associated biomarkers in human samples.

With regards to exploring the reversible nature of TRPM-induced toxicity, an additional qualitative analysis of cytokine measurements would be informative. What remains to be determined for both particle types, is the relationships that develop between the expressed cytokines as contributors to an inflammatory network. IL-10 for example, is shown to reduce TNF-α production in human alveolar macrophages following LPS exposure (470); a mechanism that is likely to be of relevance to the current model but was not assessable when expressing cytokine release as a percentage of the control samples. In contrast, comparisons of absolute values and their correlations with one another, could uncover further mechanistic detail regarding the inflammatory response to BAD and DEP; perhaps enabling characterisation of the interplay between pro and anti-inflammatory mediators throughout the response and resolution time-courses.

As a more distant idea, it would be interesting to compare serum concentrations of TRPM-associated biomarkers between ‘healthy’ exposed populations and exposed populations who suffer from conditions that have been causally linked with PM exposure. Onset of schizophrenia is related to traffic exposure (471) and associates with increased serum concentrations of miR-449a (472) while development of type II diabetes associates with PM exposure and impacts serum concentrations of glutamine and pyruvate metabolism when accompanied by common cardiovascular complications (415). The proposed comparative studies would help determine the level of biomarker confoundment that can be expected in individuals who have responded to PM exposure in an extra-pulmonary manner, allowing assessment of how representative the biomarkers are for the wider population.
5.4.2: Validation of pathway identifications for biomarkers

As discussed above, a key limitation of this study was its dependence on computational algorithms to identify the mechanistic relevance of the inflammatory biomarkers (particularly the miRNAs). For the miRNAs, much of this limitation can be remedied *in vitro* by simply over-expressing or repressing mir-34b/449a expression in U937s (and potentially an epithelial cell line such as transformed type 1) and studying changes in the expression of target genes and proteins using a custom microarray and protein MS.

Making use of the hypothesis-generating nature of omics approaches, the same model could be used to explore the putative association between miR-34b/449a over-expression and p38/MAPK mediated alterations in cell signalling activities. Using phospho-specific western blotting it would be possible to explore the impact that miR-34b/449a has on SREBP, AMPK, HIF-1a and FOXO1 activation in pulmonary cells. Further measurement of p38/MAPK target phosphorylation could be performed following TRPM or LPS exposure in wild-type cells to validate the association under inflammatory conditions.

Before embarking upon such studies, it would be prudent to confirm the specificity of the small molecule inhibitor (GSK) that was used to produce the association between miR-34b/449a expression and the p38 MAPK pathway using a kinome array. Using this method, Bain *et al* showed that one third of small molecule inhibitors (across a panel of 60 that are commonly employed) influenced the activity of multiple non-target kinases, and suggested that conclusions drawn from studies that used these inhibitors could no longer be considered valid (473). Given that the rat genome encodes approximately 600 kinases (500 of which are orthologous to those of humans) (474), it would be informative to establish which non-target kinases (if any) were influenced by GSK in the present study as this could confirm which kinase-mediated pathways contributed to the expression of miR-34b/449a during pulmonary inflammation.

Similarly, associations between feature metabolites and the cellular processes to which they were phenotypically anchored (cytokine secretion, bacterial phagocytosis and mitochondrial
membrane depolarisation) could be explored by monitoring flux of the metabolites in the
presence of agonists and inhibitors for the processes. Latrunculin A for example, is a potent
inhibitor of phagocytosis that disrupts microfilament organisation in macrophages (334) while
antimycin A, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, oligomycin and
attractyloside have all been shown to disrupt mitochondrial function via mechanisms that
disrupt mitochondrial membrane potential (475).

5.4.3: Untargeted lipidomics analysis
In this study, associations between pulmonary inflammation, miRNA regulation and
dysregulated lipid metabolism were alluded to during responses to AZD2230, LPS and
TRPM exposure, indicating that this process is a key contributor to pulmonary inflammation
(irrespective of the stimulus) and that the lipidome may prove an additional source of
biomarkers for pulmonary inflammatory responses.

Supporting this suggestion and the hypothesis that SREBP signalling and cholesterol
biosynthesis contributed to TRPM-induced responses, PM$_{10}$ has been observed to enhance
the phospholipid and cholesterol content of murine pulmonary tissue (476) while evidence of
airway lipid catabolism has been detected in mouse serum following DEP exposure (99).
Lipid products such as prostaglandins and leukotrienes are widely associated with
propagation and resolution of inflammatory responses in general (477) but these
observations indicate that tissue-specific lipid biomarkers may be detectable extracellularly
during pulmonary inflammation.

The CPMG sequence that was used to acquire 1H NMR data during the LPS and TRPM
exposure studies was designed to exclude broad peaks (including lipid peaks) from the
spectra as they would have masked the presence of smaller metabolite peaks and restricted
their quantification (478). As such, additional lipidomic profiling using untargeted MS
methods should be applied to the serum and supernatant samples that were used in the LPS
and TRPM exposure studies to determine whether the exposures can be represented by lipid metabolism products. An exceptional bonus would be the discovery of lipid products that differentiate between BAD and DEP-induced responses, as these would allow the contributions that non-exhaust particles make to TRPM-induced pulmonary responses to be characterised in observational human studies.

5.5: Conclusion

Evaluating the hypothesis that **mechanistically relevant miRNA and metabolite biomarkers are detectable during pulmonary responses to TRPM exposure and can be measured in extracellular samples**, this body of work identified two miRNAs (miR-34b/449a) that are enriched specifically in pulmonary tissues, over-expressed in response to pro-inflammatory insults, detectable in serum and relatable to exhaust and non-exhaust-PM exposures. Furthermore, it demonstrated that both particle types induce characteristic alterations in concentrations of *in vivo* relevant biomarkers of energy metabolism following pulmonary insult and that additional, particle-specific metabolite signatures could be detected in biofluids.

Further experimentation is required to translate the relevance of these biomarkers to situations of human exposure but their mechanistic relevance and specificity for the pulmonary response indicates their potential as tools for monitoring and characterising pulmonary responses to TRPM exposure *in vivo*. Such opportunity could have a significant impact on air quality policies, in particular it could provide the evidence required to encourage regulation of toxic non-exhaust PM emissions.

Given that much of the work was performed using diverse and prototypical inflammatory stimuli (pharmaceuticals, metallic nanoparticles, endogenous cytokines and LPS) and are validated as applicable *in vivo*, these biomarkers may also be used to characterise or monitor other causes of pulmonary exposure. While traffic is the major environmental source
of airborne PM, adverse respiratory effects have also been associated with those produced by agricultural and industrial activity, fire burning and waste incineration (to name but a few) (479–481).

The integrated approach used here to explore the interplay between miRNA and metabolite biomarkers provided superior mechanistic detail regarding the pathways that underlie responses to LPS and TRPM exposure. This indicates that application of miR-34b/449a and metabolic profiling approaches to these additional contexts may further our understanding of them too.
References

29. Boulter P, Waymon M, harrison R. a review of abatement measures for non-exhaust particulate matter from road vehicles [Internet]. 2006. Available from: https://uk-

53. Kelly FJ. Oxidative stress: Its role in air pollution and adverse health effects. [cited 2017 Jul 22]; Available from: http://oem.bmj.com/content/oemed/60/8/612.full.pdf

54. Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM. Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology

Xiao GG, Wang M, Li N, Loo JA, Nel AE. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J Biol Chem [Internet]. 2003;278. Available from: http://dx.doi.org/10.1074/jbc.M306423200

78. Ulvestad B, Randem BG, Andersson L, Ellingsen DG, Barregard L. Clara Cell Protein

19. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-

http://www.tandfonline.com/doi/pdf/10.4161/fly.3.3.9025

151. Rodosthenous RS, Coull BA, Lu Q, Vokonas PS, Schwartz JD, Baccarelli AA. Ambient particulate matter and microRNAs in extracellular vesicles: a pilot study of

168. Nicholson JK. Global systems biology, personalized medicine and molecular

242

243

primary human versus mouse macrophages. Proc Natl Acad Sci U S A [Internet].

225. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell
characteristics of the normal human lung. Am Rev Respir Dis [Internet]. 1982 Jun
[cited 2017 Jun 26];125(6):740–5. Available from:

226. Krombach F, Münzing S, Allmeling AM, Gerlach JT, Behr J, Dörger M. Cell size of
alveolar macrophages: an interspecies comparison. Environ Health Perspect
[Internet]. National Institute of Environmental Health Science; 1997 Sep [cited 2017
Jun 28];105 Suppl 5(Suppl 5):1261–3. Available from:

227. Slade R, Crissman K, Norwood J, Hatch G. Comparison of Antioxidant Substances in
Bronchoalveolar Lavage Cells and Fluid from Humans, Guinea Pigs, and Rats. Exp

228. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and
functionality in different animal species. Front Immunol [Internet]. Frontiers Media SA;
2014 [cited 2017 Aug 9];5:316. Available from:

229. Islam AS, Beidelschies MA, Huml A, Greenfield EM. Titanium particles activate toll-
like receptor 4 independently of lipid rafts in RAW264.7 murine macrophages. J

of toll-like receptor 4 in airway inflammation induced by diesel exhaust particles. Arch
Toxicol [Internet]. 2006;80(5):275–9. Available from: http://dx.doi.org/10.1007/s00204-
005-0040-6

Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model.
Allergy Asthma Immunol Res [Internet]. Korean Academy of Asthma, Allergy and
Clinical Immunology and Korean Academy of Pediatric Allergy and Respiratory
Disease; 2016 May [cited 2017 Jul 1];8(3):246–56. Available from:

249

264. Gori M, Arciello M, Balsano C. MicroRNAs in nonalcoholic fatty liver disease: novel

Available from: http://ajplung.physiology.org/cgi/doi/10.1152/ajplung.00348.2013

http://linkinghub.elsevier.com/retrieve/pii/S0003269710004616

http://doi.wiley.com/10.1111/cea.12089

http://dx.doi.org/10.1093/bib/bbv090

262

383. Yin XJ, Dong CC, Ma JYC, Roberts JR, Antonini JM, Ma JKH. Suppression of Phagocytic and Bactericidal Functions of Rat Alveolar Macrophages by the Organic
from: http://www.tandfonline.com/doi/abs/10.1080/15287390701209766

Differences in basal airway antioxidant concentrations are not predictive of individual
responsiveness to ozone: a comparison of healthy and mild asthmatic subjects. Free
http://linkinghub.elsevier.com/retrieve/pii/S0891584901006712

coloration of automobile and forklift diesel exhaust particles and comparative
pulmonary toxicity in mice. Environ Health Perspect [Internet]. 2004 Jun [cited 2017

[Internet]. 2005 [cited 2017 Aug 13];12(10):1161–208. Available from:

388. Capsoni F, Minonzio F, Ongari AM, Carbonelli V, Galli A, Zanussi C. IL-10 up-
regulates human monocyte phagocytosis in the presence of IL-4 and IFN-gamma. J

389. Laichalk LL, Danforth JM, Standiford TJ. Interleukin-10 inhibits neutrophil phagocytic

390. Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of
nanosafety studies. Nanomedicine [Internet]. Future Medicine Ltd London, UK ; 2016
http://www.futuremedicine.com/doi/10.2217/nnm.15.196

391. Reynolds HY. Lung infammation: role of endogenous chemotactic factors in attracting
polymorphonuclear granulocytes. Am Rev Respir Dis [Internet]. 1983 Feb [cited 2017

392. Sibille Y, Reynolds HY. Macrophages and Polymorphonuclear Neutrophils in Lung

269

408. Wong D. Exploring the small molecule effects of gold nanoparticle and ZnO exposure in human lung epithelial cells through NMR-based metabolomics. Imperial College, London; 2016.

424. Van Eeden S, Leipsic J, Paul Man SF, Sin DD. The Relationship between Lung

273

Lee JS, Park SJ, Cho YS, Huh JW, Oh Y-M, Lee S-D. Role of AMP-Activated Protein Kinase (AMPK) in Smoking-Induced Lung Inflammation and Emphysema. Tuberc Respir Dis (Seoul) [Internet]. The Korean Academy of Tuberculosis and Respiratory

278

Supplementary material

Supplementary figure 3.1: Total white blood cell (A) and neutrophil (B) counts taken from the BALF of rats following exposure to LPS, 0.3-30.0 µg/kg GSK or a vehicle control. BALF was harvested 4h after exposure and total WBC were counted using an Advia 2120 analyser. To avoid miss-gating of WBC species, ‘Absolute neutrophil counts’ were determined by manually counting the number of neutrophils per 100 cells and applying those percentages to the total WBC counts for each sample. Statistically significant differences in WBC and neutrophil counts were sought between exposure types using 1-Way ANOVA tests with Bonferroni corrections for multiple testing. P values ≤ 0.05 were considered indicative of a significant difference. Values represent the mean and SEM of 18 and 8 samples for LPS and vehicle treated groups and 6 samples per GSK group. All sample processing and data preparation was performed by Graham Paul (University of Cardiff) (329).
Supplementary figure 4.1: PCA scores plot displaying intrinsic variation between the metabolomes of U937 macrophages following 24h exposures to TRPM (4-14 µg/ml BAD or SRM-2975). Data was acquired using 1H NMR, normalised to cellular protein content and Pareto scaled for multivariate analysis. The data display high intra-group variance, causing considerable overlap of clustering.
Supplementary table 4.1: Output from the pathway over-representation analysis module of IMPaLA using LPS- associated feature metabolites as input and excluding pathways that were assigned p values ≥ 0.05 or FDR values ≥ 20%

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Over-represented metabolites</th>
<th>P value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central carbon metabolism</td>
<td>Citrate, glucose, valine, isoleucine, succinate, pyruvate, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>SLC-mediated transmembrane transport</td>
<td>Citrate, pyruvate, valine, isoleucine, cystine, succinate, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Amino Acid interconversion</td>
<td>Cystine, pyruvate, valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>Citrate, pyruvate, valine, isoleucine, cystine, succinate, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>Pyruvate, valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Biochemical Pathways Part I</td>
<td>Citrate, glucose, valine, isoleucine, cystine, succinate, pyruvate, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>S-methyl-5-thio-α-D-ribose 1-phosphate metabolism</td>
<td>Pyruvate, valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>Valine, glucose, cystine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Alanine and aspartate metabolism</td>
<td>Citrate, succinate, pyruvate</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Gene Expression</td>
<td>Succinate, pyruvate, valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Transfer of Acetyl Groups into Mitochondria</td>
<td>Citrate, pyruvate, glucose</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Leukotriene biosynthesis</td>
<td>Valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Class I MHC mediated antigen processing</td>
<td>Valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Conversion of glucose to acetyl CoA</td>
<td>Succinate, citrate, pyruvate</td>
<td>≤ 0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine degradation</td>
<td>Valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>γ-glutamyl cycle</td>
<td>Valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>HIF1A and PPARG regulation of glycolysis</td>
<td>Glucose, pyruvate</td>
<td>≤ 0.001</td>
<td>0.006</td>
</tr>
<tr>
<td>Glyoxylate and dicarboxylate metabolism</td>
<td>Citrate, succinate, pyruvate</td>
<td>≤ 0.01</td>
<td>0.007</td>
</tr>
<tr>
<td>Phase II conjugation</td>
<td>Valine, Isoleucine, Leucine, p-aminobenzoate</td>
<td>≤ 0.01</td>
<td>0.008</td>
</tr>
<tr>
<td>tRNA Aminoacylation</td>
<td>Valine, isoleucine, leucine</td>
<td>≤ 0.01</td>
<td>0.009</td>
</tr>
<tr>
<td>Cori Cycle</td>
<td>Pyruvate, glucose</td>
<td>≤ 0.01</td>
<td>0.012</td>
</tr>
<tr>
<td>HIF-1 signaling pathway</td>
<td>Pyruvate, glucose</td>
<td>≤ 0.01</td>
<td>0.012</td>
</tr>
<tr>
<td>Glycolysis and Gluconeogenesis</td>
<td>Pyruvate, glucose</td>
<td>≤ 0.01</td>
<td>0.014</td>
</tr>
<tr>
<td>Pathway</td>
<td>Metabolites</td>
<td>p-value</td>
<td>q-value</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>AMPK signaling pathway</td>
<td>Glucose, pyruvate</td>
<td>≤ 0.01</td>
<td>0.029</td>
</tr>
<tr>
<td>TCA cycle and pyruvate metabolism</td>
<td>Succinate, citrate</td>
<td>≤ 0.01</td>
<td>0.029</td>
</tr>
<tr>
<td>Pyruvate metabolism</td>
<td>Succinate, pyruvate</td>
<td>≤ 0.01</td>
<td>0.049</td>
</tr>
<tr>
<td>Glutaminolysis</td>
<td>Succinate, pyruvate</td>
<td>≤ 0.01</td>
<td>0.054</td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>Glucose, pyruvate</td>
<td>≤ 0.01</td>
<td>0.054</td>
</tr>
<tr>
<td>Lysine degradation</td>
<td>Citrate, succinate</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Methionine Cysteine metabolism</td>
<td>Pyruvate, cysteine</td>
<td>≤ 0.01</td>
<td>0.091</td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>Citrate, pyruvate</td>
<td>≤ 0.01</td>
<td>0.098</td>
</tr>
</tbody>
</table>
Supplementary table 4.2: Output from the pathway over-representation analysis module of IMPaLA using BAD-associated feature metabolites as input and excluding pathways that were assigned p values ≥ 0.05 or FDR values $\geq 20\%$

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Over-represented metabolites</th>
<th>P value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acid interconversion</td>
<td>Threonine, asparagine, valine, isoleucine, cystine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>tRNA aminoacetylation</td>
<td>Threonine, asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Leukotriene biosynthesis</td>
<td>Threonine, asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Class I MHC mediated antigen processing & presentation</td>
<td>Threonine, asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>S-methyl-5-thio-α-D-ribose 1-phosphate metabolism</td>
<td>Threonine, asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Central carbon metabolism</td>
<td>Citrate, asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>γ-glutamyl cycle</td>
<td>Threonine, asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>SLC-mediated transmembrane transport</td>
<td>Citrate, asparagine, valine, isoleucine, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>Citrate, asparagine, valine, isoleucine, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>Threonine, valine, isoleucine, cystine, myo-inositol, leucine, histidine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase II conjugation</td>
<td>Threonine, Asparagine, Valine, Isoleucine, p-minobenzoate, Leucine, Histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Biochemical pathways part I</td>
<td>Citrate, threonine, asparagine, valine, isoleucine, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>Valine, isoleucine, leucine, threonine</td>
<td>≤ 0.001</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>Gene expression</td>
<td>Asparagine, valine, isoleucine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Glucose homeostasis</td>
<td>Valine, isoleucine, histidine</td>
<td>≤ 0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Valine Leucine Isoleucine degradation</td>
<td>Valine, isoleucine, leucine</td>
<td>≤ 0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>Alanine and aspartate metabolism</td>
<td>Citrate, asparagine</td>
<td>≤ 0.001</td>
<td>0.031</td>
</tr>
<tr>
<td>Ammonia recycling</td>
<td>Asparagine, histidine</td>
<td>≤ 0.01</td>
<td>0.080</td>
</tr>
<tr>
<td>Glutaminolysis</td>
<td>Citrate, leucine</td>
<td>≤ 0.01</td>
<td>0.178</td>
</tr>
<tr>
<td>Pathway</td>
<td>Over-represented metabolites</td>
<td>P value</td>
<td>FDR</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Central carbon metabolism</td>
<td>Citrate, glucose, glutamate, asparagine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Amino Acid interconversion</td>
<td>Threonine, asparagine, glutamate, cystine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>tRNA Aminoacylation</td>
<td>Asparagine, histidine, glutamate, leucine, threonine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>Threonine, glucose, glutamate, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Leukotriene biosynthesis</td>
<td>Asparagine, threonine, glutamate, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Class I MHC mediated antigen processing</td>
<td>Asparagine, histidine, glutamate, leucine, threonine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>S-methyl-5-thio-α-D-ribose 1-phosphate metabolism</td>
<td>Asparagine, threonine, glutamate, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>SLC-mediated transmembrane transport</td>
<td>Citrate, asparagine, glutamate, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Biochemical pathways part I</td>
<td>Citrate, threonine, asparagine, glutamate, glucose, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>γ-glutamyl cycle</td>
<td>Asparagine, threonine, glutamate, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Metabolic Pathway</td>
<td>Metabolites</td>
<td>p-value</td>
<td>q-value</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>Citrate, asparagine, glutamate, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Phase II conjugation</td>
<td>Threonine, Asparagine, Glutamate, p-Aminobenzoate, Leucine, Histidine</td>
<td>≤ 0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>Citrate, asparagine, glutamate</td>
<td>≤ 0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Ammonia recycling</td>
<td>Asparagine, glutamate, histidine</td>
<td>≤ 0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>FOXO signaling pathway</td>
<td>Glucose, glutamate</td>
<td>≤ 0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Glutaminolysis</td>
<td>Citrate, glutamate, leucine</td>
<td>≤ 0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>Gene expression</td>
<td>Asparagine, glutamate, leucine, histidine</td>
<td>≤ 0.001</td>
<td>0.010</td>
</tr>
<tr>
<td>Asparagine metabolism</td>
<td>Asparagine, glutamate</td>
<td>≤ 0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>Methionine and cysteine metabolism</td>
<td>Asparagine, cystine, glutamate</td>
<td>≤ 0.001</td>
<td>0.027</td>
</tr>
<tr>
<td>Biogenic amine synthesis</td>
<td>Glutamate, histidine</td>
<td>≤ 0.001</td>
<td>0.028</td>
</tr>
<tr>
<td>Glycine, serine, alanine and threonine metabolism</td>
<td>Asparagine, glutamate, threonine</td>
<td>≤ 0.001</td>
<td>0.034</td>
</tr>
<tr>
<td>Transfer of acetyl groups into mitochondria</td>
<td>Citrate, glucose</td>
<td>≤ 0.001</td>
<td>0.043</td>
</tr>
<tr>
<td>Histidine catabolism</td>
<td>Glutamate, histidine</td>
<td>≤ 0.001</td>
<td>0.046</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>Leucine, threonine</td>
<td>≤ 0.001</td>
<td>0.046</td>
</tr>
<tr>
<td>Glycolysis gluconeogenesis</td>
<td>Glucose, glutamate</td>
<td>≤ 0.01</td>
<td>0.085</td>
</tr>
<tr>
<td>Amino Acid Degradation</td>
<td>Metabolite</td>
<td>≤ 0.01</td>
<td>0.092</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Lysine degradation</td>
<td>Citrate, glutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine Leucine Isoleucine degradation</td>
<td>Glutamate, leucine</td>
<td>≤ 0.01</td>
<td>0.109</td>
</tr>
</tbody>
</table>
Table S4.4: Output from the integrated pathway over-representation analysis module of IMPaLA using LPS-associated feature metabolites and predicted targets of miR-34b/449a as input and excluding pathways that were assigned p values ≥ 0.05 or FDR values ≥ 20%

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Over-represented genes</th>
<th>Over-represented metabolites</th>
<th>P value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central carbon metabolism</td>
<td>MYC, LDHA, PDGFRA, PDGFRB, SLC7A5, SLC2A2, TP53, MAP2K1</td>
<td>Citrate, glucose, glutamate, asparagine, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>SLC-mediated transmembrane transport</td>
<td>SLC6A1, SLC7A8, SLC6A9, SLC36A1, SLC12A2, SLC18A1, SLC18A2, SLC15A4, SLC2A1, SLC22A5, SLC7A5, SLC13A5, SLC2A13, SLC30A3, SLC4A3, SLC29A1, SLC36A2, SLC2A2, SLC2A4, NUP35, SLC12A5</td>
<td>Citrate, asparagine, glutamate, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>SLC6A1, SLC7A8, SLC6A9, TRPV1, SLC36A1, SLC12A2, ABCB9, SLC18A1, SLC18A2, SLC15A4, SLCO2A1, ATP4B, SLC22A5, SLCO4A1, SLC38A5, SLC7A5, SLC2A4, NUP35</td>
<td>Citrate, asparagine, glutamate, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>tRNA charging</td>
<td>SLC13A5, GNG5, SLC2A13, AQP8, SLC30A3, ABCD2, ATP1B3, FXYD3, AQP4, SLC4A3, ATP2B4, SLC29A1, ADCY6, SLC36A2, SLC2A2, SLC2A4, ADD1, NUP35, SLC12A5</td>
<td>Asparagine, threonine, glutamate, leucine, histidine</td>
<td>≤ 0.001</td>
<td></td>
</tr>
<tr>
<td>ABC transporters</td>
<td>ABCB9, ABCD2</td>
<td>Threonine, glucose, glutamate, cystine, myo-inositol, leucine, histidine</td>
<td>≤ 0.001</td>
<td></td>
</tr>
<tr>
<td>FOXO signaling pathway</td>
<td>TGFB3, MAP2K1, MAPK13, PCK1, PRKAG1, SLC2A4, SMAD3, PRKAA2, PRKAB2, GRM1</td>
<td>Glucose, glutamate</td>
<td>≤ 0.001</td>
<td></td>
</tr>
<tr>
<td>Glutaminolysis</td>
<td>SLC38A5, GLUD1, LDHA, MYC, SDHC</td>
<td>Citrate, glutamate, leucine</td>
<td>≤ 0.001</td>
<td></td>
</tr>
<tr>
<td>Ammonia recycling</td>
<td>GLUD1</td>
<td>Asparagine, glutamate, histidine</td>
<td>≤ 0.001</td>
<td></td>
</tr>
<tr>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>GLUD1</td>
<td>Citrate, asparagine, glutamate</td>
<td>≤ 0.001</td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>p-value 1</td>
<td>p-value 2</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Amino acid synthesis and interconversion (transamination)</td>
<td>PSAT1, GLUD1, SERINC1, SERINC2</td>
<td>Asparagine, glutamate</td>
<td>≤ 0.001</td>
<td>0.025</td>
</tr>
<tr>
<td>Glycine, serine, alanine and threonine metabolism</td>
<td>SLC22A5, NUP35, CHDH, SLC36A1, SLC38A5</td>
<td>Asparagine, glutamate, threonine</td>
<td>≤ 0.001</td>
<td>0.027</td>
</tr>
<tr>
<td>Glycolysis gluconeogenesis</td>
<td>ALDOA, LDHA, BPGM, ENO3</td>
<td>Glucose, glutamate</td>
<td>≤ 0.001</td>
<td>0.038</td>
</tr>
<tr>
<td>chrebp regulation</td>
<td>AGT, PRKAA2, PRKAB2, PRKAG1, CXCL12</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>AMP-activated protein kinase (AMPK) signaling</td>
<td>PRKAG1, SLC2A4, LIPE, PRKAA2, PRKAB2, TP53</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Methionine and cysteine metabolism</td>
<td>NUP35, SLC7A8, ACY1</td>
<td>Asparagine, cystine, glutamate</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>PCK1, SLC2A2, ALDOA, BPGM</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>GYG1, PCK1, ALDOA, ENO3, BPGM</td>
<td>Citrate, glutamate</td>
<td>≤ 0.01</td>
<td>0.065</td>
</tr>
<tr>
<td>HIF-1 signaling pathway</td>
<td>ALDOA, IFNGR1, MAP2K1, ENO3, EGLN3, LDHA, BCL2, SERPINE1</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.068</td>
</tr>
<tr>
<td>Lactic acid cycle</td>
<td>SLC2A2, LDHA, SLC2A4</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.070</td>
</tr>
<tr>
<td>Metabolic Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>P-values</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Fatty acid, triacylglycerol, and ketone body metabolism</td>
<td>ACADL, GPD1, ACSL1, ACADVL, ACSL4, DGAT2, AGPAT1, HSD17B8, DGAT1, PPARD, PRKAA2, PRKAB2</td>
<td>Citrate</td>
<td>≤ 0.01 0.071</td>
<td></td>
</tr>
<tr>
<td>AMPK signaling pathway</td>
<td>RAB14, PRKAG1, PCK1, SLC2A4, LIPE, RAB8A, PRKAA2, CREB3L2, PRKAB2</td>
<td>Glucose</td>
<td>≤ 0.01 0.083</td>
<td></td>
</tr>
<tr>
<td>Sterol Regulatory Element-Binding Proteins (SREBP) signalling</td>
<td>SAR1A, PRKAA2, PRKAG1, PRKAB2, FDFT1</td>
<td>Glucose</td>
<td>≤ 0.01 0.091</td>
<td></td>
</tr>
<tr>
<td>TP53 regulates metabolic genes</td>
<td>PRKAG1, DDIT4, YWHAZ, CYCS, TP53, PRKAA2, PRKAB2</td>
<td>Glutamate</td>
<td>≤ 0.01 0.095</td>
<td></td>
</tr>
<tr>
<td>IGF1R signaling cascade</td>
<td>ARRB2, DAB2IP, PRKAG1, MAP2K1, CSK, PDGFRB, PEA15, PTPN11, DUSP5, IGF2, PRKAA2, DUSP9, PRKAB2, PDGFRA</td>
<td>Glutamate</td>
<td>≤ 0.01 0.095</td>
<td></td>
</tr>
<tr>
<td>Histidine metabolism</td>
<td>HNMT, CNDP1</td>
<td>Glutamate, histidine</td>
<td>≤ 0.01 0.098</td>
<td></td>
</tr>
<tr>
<td>Methionine cysteine metabolism</td>
<td>LDHA, MTR</td>
<td>Cystine, glutamate</td>
<td>≤ 0.01 0.100</td>
<td></td>
</tr>
<tr>
<td>Valine leucine isoleucine degradation</td>
<td>BCAT1, ALDH1A2</td>
<td>Glutamate, leucine</td>
<td>≤ 0.01 0.104</td>
<td></td>
</tr>
<tr>
<td>Glycerophospholipid metabolism</td>
<td>GPD1, DGAT2, PLA2G5, DGAT1, SLC38A5, SLC22A5, NUP35, AGPAT1</td>
<td>Cystine, threonine</td>
<td>≤ 0.01 0.104</td>
<td></td>
</tr>
<tr>
<td>Metabolism of lipids and lipoproteins</td>
<td>HEXA, GPD1, ACSL1, ACSL4, AP2S1, LIPE, SLC10A1, SLC10A2,</td>
<td>Citrate, glutamate, myo-inositol</td>
<td>≤ 0.01 0.106</td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Pathway Activity</td>
<td>p-Value</td>
<td>q-Value</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Urea cycle</td>
<td>AP2A2, ACADVL, DGAT2, SC5D, FDT1, INPP4A, DPEP3, CHDH, AGPAT1, PRKAA2, PRKAB2, DHCR7, NFYB, ACADL, PLA2G5, PPARD, CHKA, RAB14, PPP1CC, HSD17B8, DGAT1, ARF3, SACM1L, HRASLS5</td>
<td>Asparagine, glutamate</td>
<td>≤ 0.01</td>
<td>0.106</td>
</tr>
<tr>
<td>Cytokine Signaling in Immune system</td>
<td>SLC6A1, SLC38A5, SLC36A1, NUP35, GLUD1, SFXN3, ACY1</td>
<td>Glutamate</td>
<td>≤ 0.01</td>
<td>0.113</td>
</tr>
<tr>
<td>Signaling by Interleukins</td>
<td>DAB2IP, IFNGR1, IL13RA1, PTPN11, ARRB2, IL22RA2, CSF1R, PDGFRA, CSK, PDGFRB, DUSP5, DUSP9, CASP3, BIRC3, NFKB2, PRKCD, LTA, IL1RL1, MAP2K1, IL1RN, PEA15, YWHAZ, PPM1B</td>
<td>Glutamate</td>
<td>≤ 0.01</td>
<td>0.121</td>
</tr>
<tr>
<td>Phospholipase D signaling pathway</td>
<td>RRAS2, PDGFRA, PDGFRB, ADCY6, PTPN11, MAP2K1, AGPAT1, GRM1</td>
<td>Glutamate</td>
<td>≤ 0.01</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Supplementary table 4.5: Output from the integrated pathway over-representation analysis module of IMPaLA using BAD-associated feature metabolites and predicted targets of miR-34b/449a as input and excluding pathways that were assigned p values ≥ 0.05 or FDR values ≥ 20%

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Over-represented genes</th>
<th>Over-represented metabolites</th>
<th>P value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central carbon metabolism in cancer</td>
<td>MYC, LDHA, PDGFRA, PDGFRB, SLC7A5, SLC2A2, TP53, MAP2K1</td>
<td>Citrate, Glucose, Valine, Isoleucine, Succinate, Pyruvate, Leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>SLC6A1, SLC7A8, SLC6A9, TRPV1, SLC36A1, SLC12A2, ABCB9, SLC18A1, SLC18A2, SLC15A4, SLC22A5, SLC2A2, SLC2A4, SLC2A5, SLC4A1, SLC38A5, SLC7A5</td>
<td>Citrate, Pyruvate, Valine, Isoleucine, Cystine, Succinate, Leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>p-value 1</td>
<td>p-value 2</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Amino acid transport across the plasma membrane</td>
<td>SLC38A5, SLC7A8, SLC7A5, SLC36A1, SLC36A2</td>
<td>Valine, Cystine, Isoleucine, Leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Glucagon signaling pathway</td>
<td>LDHA, PCK1, SLC2A2, PRKAG1, PRKAA2, CREB3L2, PRKAB2</td>
<td>Citrate, Succinate, Glucose, Pyruvate</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Glutaminolysis and cancer</td>
<td>SLC38A5, GLUD1, LDHA, MYC, SDHC</td>
<td>Citrate, Succinate, Pyruvate, Leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine biosynthesis</td>
<td>BCAT1</td>
<td>Pyruvate, Valine, Isoleucine, Leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Valine, leucine and isoleucine degradation</td>
<td>BCAT1, ALDH1A2</td>
<td>Succinate, Valine, Isoleucine, Leucine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>ABCB9, ABCD2</td>
<td>Valine, Glucose, Cystine, Isoleucine, Leucine</td>
<td>≤ 0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Products</td>
<td>p-values</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Glycolysis and Gluconeogenesis</td>
<td>ALDOA, LDHA, ENO3, PCK1, SLC2A2, SLC2A4</td>
<td>Pyruvate, Glucose</td>
<td>≤ 0.001 0.001</td>
<td></td>
</tr>
<tr>
<td>Conversion of glucose to acetyl CoA</td>
<td>ALDOA, ENO3, BPGM, SDHC</td>
<td>Succinate, Citrate, Pyruvate</td>
<td>≤ 0.001 0.001</td>
<td></td>
</tr>
<tr>
<td>HIF-1 signaling pathway</td>
<td>ALDOA, IFNGR1, MAP2K1, ENO3, EGLN3, LDHA, BCL2, SERPINE1</td>
<td>Pyruvate, Glucose</td>
<td>≤ 0.001 0.002</td>
<td></td>
</tr>
<tr>
<td>Cori cycle</td>
<td>SLC2A2, LDHA, SLC2A4</td>
<td>Pyruvate, Glucose</td>
<td>≤ 0.001 0.002</td>
<td></td>
</tr>
<tr>
<td>Gene expression</td>
<td>MYC, CCNG1, ERCC3, DDIT4, ATP1B4, GTF2F2, POLR3D, MED4, BTG2, PUS1, NDRG1, ARID4B, EIF2B4, PRKAA2, CYCS, BUD31, TSEN34, PRKAG1, RNF34, NARS, PRKCD, PLAGL1, CNOT8, PPARD, CDC5L, SEC61A1, SMAD7, YWHAZ, PRKAB2, GATAD2B, TP53, SMAD3, NUP35, TBP, MEN1, TGFA</td>
<td>Succinate, Pyruvate, Valine, Isoleucine, Leucine</td>
<td>≤ 0.001 0.003</td>
<td></td>
</tr>
<tr>
<td>Gluconeogenesis</td>
<td>PCK1, SLC2A2, ALDOA, BPGM</td>
<td>Glucose, Pyruvate</td>
<td>≤ 0.001 0.003</td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>p-value</td>
<td>q-value</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>PCK1, SLC2A2, ALDOA, BPGM</td>
<td>Glucose, Pyruvate</td>
<td>≤ 0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>AMPK signaling pathway</td>
<td>RAB14, PRKAG1, PCK1, SLC2A4, LIPE, RAB8A, PRKAA2, CREB3L2, PRKAB2</td>
<td>Glucose, Pyruvate</td>
<td>≤ 0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>tRNA charging</td>
<td>NARS</td>
<td>Valine, Isoleucine, Leucine</td>
<td>≤ 0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>Pyruvate metabolism and citric acid (TCA) cycle</td>
<td>PPARD, LDHA, SDHC</td>
<td>Citrate, Succinate, Pyruvate</td>
<td>≤ 0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>GLUD1</td>
<td>Citrate, Succinate, Pyruvate</td>
<td>≤ 0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Fatty acid, triacylglycerol, and ketone body metabolism</td>
<td>ACADL, GPD1, ACSL1, ACADVL, ACSL4, DGAT2, AGPAT1, HSD17B8, DGAT1, PPARD, PRKAA2, PRKAB2</td>
<td>Succinate, Citrate</td>
<td>≤ 0.001</td>
<td>0.009</td>
</tr>
<tr>
<td>FOXO signaling pathway</td>
<td>TGFB3, MAP2K1, MAPK13, PCK1, PRKAG1, SLC2A4, SMAD3, PRKAA2, PRKAB2, GRM1</td>
<td>Glucose</td>
<td>≤ 0.001</td>
<td>0.011</td>
</tr>
<tr>
<td>Glycolysis / gluconeogenesis</td>
<td>PCK1, ALDOA, LDHA, BPGM, ENO3</td>
<td>Glucose, Pyruvate</td>
<td>≤ 0.001</td>
<td>0.016</td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>p-Value</td>
<td>Adjusted p-Value</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>----------------------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>The citric acid (TCA) cycle and respiratory electron transport</td>
<td>LDHA, SLC25A27, PPARD, CYCS, SDHC</td>
<td>Citrate, Succinate, Pyruvate</td>
<td>≤ 0.001</td>
<td>0.018</td>
</tr>
<tr>
<td>Import of palmitoyl-CoA into the mitochondrial matrix</td>
<td>PPARD, PRKAA2, PRKAB2</td>
<td>Citrate</td>
<td>≤ 0.01</td>
<td>0.022</td>
</tr>
<tr>
<td>cAMP signaling pathway</td>
<td>RRAS2, ATP1B3, MAP2K1, ADORA2A, PLCE1, ATP2B4, ATP1B4, ADCY6, NPR1, GNAI2, TSHR, LIPE, CREB3L2, PPP1CC</td>
<td>Succinate</td>
<td>≤ 0.01</td>
<td>0.026</td>
</tr>
<tr>
<td>Insulin signaling pathway</td>
<td>PRKAG1, MAP2K1, PPP1CC, FLOT2, PCK1, SLC2A4, LIPE, PRKAA2, PRKAB2</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.028</td>
</tr>
<tr>
<td>chrebp regulation by carbohydrates and camp</td>
<td>AGT, PRKAA2, PRKAB2, PRKAG1, CXCL12</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.029</td>
</tr>
<tr>
<td>AMP-activated protein kinase (AMPK) signaling</td>
<td>PRKAG1, SLC2A4, LIPE, PRKAA2, PRKAB2, TP53</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.032</td>
</tr>
<tr>
<td>Sterol regulatory element-binding proteins (SREBP) signalling</td>
<td>SAR1A, PRKAA2, PRKAG1, PRKAB2, FDFT1</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.064</td>
</tr>
<tr>
<td>Metabolism Type</td>
<td>Genes/Proteins</td>
<td>Product(s)</td>
<td>Pr[0.05]</td>
<td>Pr[0.01]</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Lactose degradation</td>
<td>SLC2A2, ATP1B3</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.085</td>
</tr>
<tr>
<td>Urea cycle and metabolism of arginine, proline, glutamate, aspartate and asparagine</td>
<td>SLC6A1, SLC38A5, SLC36A1, NUP35, GLUD1, SFXN3, ACY1</td>
<td>Succinate, Pyruvate</td>
<td>≤ 0.01</td>
<td>0.089</td>
</tr>
<tr>
<td>Cysteine and methionine metabolism</td>
<td>BCAT1, LDHA, MTR</td>
<td>Pyruvate, Cystine</td>
<td>≤ 0.01</td>
<td>0.105</td>
</tr>
<tr>
<td>Amino acid interconversion</td>
<td>PSAT1, GLUD1, SERINC1, SERINC2</td>
<td>Pyruvate</td>
<td>≤ 0.01</td>
<td>0.115</td>
</tr>
<tr>
<td>Lysine degradation</td>
<td>ALDH1A2</td>
<td>Citrate, Succinate</td>
<td>≤ 0.01</td>
<td>0.121</td>
</tr>
<tr>
<td>Glutaminolysis</td>
<td>GLUD1</td>
<td>Succinate, Pyruvate</td>
<td>≤ 0.01</td>
<td>0.123</td>
</tr>
<tr>
<td>Leucine stimulation on insulin signaling</td>
<td>SLC7A5</td>
<td>Leucine</td>
<td>≤ 0.05</td>
<td>0.141</td>
</tr>
<tr>
<td>Metabolism of lipids and lipoproteins</td>
<td>HEXA, GPD1, ACSL1, ACSL4, AP2S1, LIPE, SLC10A1, SLC10A2, AP2A2, ACADVL, DGAT2, SC5D, FDFT1, INPP4A, DPEP3, CHDH, AGPAT1, PRKAA2, PRKAB2, DHCR7, NFYB, ACADL, PLA2G5, PPARD,</td>
<td>Succinate, Citrate</td>
<td>≤ 0.05</td>
<td>0.198</td>
</tr>
<tr>
<td>CHKA, RAB14, PPP1CC, HSD17B8, DGAT1, ARF3, SACM1L, HRASLS5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary table 4.6: Output from the integrated pathway over-representation analysis module of IMPaLA using DEP-associated feature metabolites and predicted targets of miR-34b/449a as input and excluding pathways that were assigned p values ≥ 0.05 or FDR values ≥ 20%

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Over-represented genes</th>
<th>Over-represented metabolites</th>
<th>P value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central carbon metabolism</td>
<td>MYC, LDHA, PDGFR-A, PDGFR-B, SLC7A5, SLC2A2, TP53, MAP2K1</td>
<td>Citrate, Glucose, Glutamate, Asparagine, Leucine, Histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Transmembrane transport of small molecules</td>
<td>SLC6A1, SLC7A8, SLC6A9, TRPV1, SLC36A1, SLC12A2, ABCB9, SLC18A1, SLC18A2, SLC15A4, SLC2A1, ATP4B, SLC22A5, SLCO4A1, SLC38A5, SLC7A5, SLC12A5</td>
<td>Citrate, Asparagine, Glutamate, Cystine, Myo-Inositol, Leucine, Histidine</td>
<td>≤ 0.001</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Metabolites</td>
<td>p-values</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>tRNA charging</td>
<td>SLC13A5, GNG5, SLC2A13, AQP8, SLC30A3, ABCD2, ATP1B3, FXYD3, AQP4, SLC4A3, ATP2B4, SLC29A1, ADCY6, SLC36A2, SLC2A2, SLC2A4, ADD1, NUP35, SLC12A5</td>
<td>Asparagine, Threonine, Glutamate, Leucine, Histidine</td>
<td>≤ 0.001 ≤ 0.01</td>
<td></td>
</tr>
<tr>
<td>ABC transporters</td>
<td>ABCB9, ABCD2</td>
<td>Threonine, Glucose, Glutamate, Cystine, Myo-Inositol, Leucine, Histidine</td>
<td>≤ 0.001 ≤ 0.01</td>
<td></td>
</tr>
<tr>
<td>FOXO signaling pathway</td>
<td>TGFB3, MAP2K1, MAPK13, PCK1, PRKAG1, SLC2A4, SMAD3, PRKAA2, PRKAB2, GRM1</td>
<td>Glucose, Glutamate</td>
<td>≤ 0.001 ≤ 0.01</td>
<td></td>
</tr>
<tr>
<td>Glutaminolysis</td>
<td>SLC38A5, GLUD1, LDHA, MYC, SDHC</td>
<td>Citrate, Glutamate, Leucine</td>
<td>≤ 0.001 ≤ 0.01</td>
<td></td>
</tr>
<tr>
<td>Ammonia recycling</td>
<td>GLUD1</td>
<td>Asparagine, Glutamate, Histidine</td>
<td>≤ 0.001 0.007</td>
<td></td>
</tr>
<tr>
<td>Pathway</td>
<td>Enzymes/Proteins</td>
<td>Product</td>
<td>p-value</td>
<td>Fold-change</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Alanine, aspartate and glutamate metabolism</td>
<td>GLUD1</td>
<td>Citrate, Asparagine, Glutamate</td>
<td>≤ 0.001</td>
<td>0.011</td>
</tr>
<tr>
<td>Amino acid synthesis and interconversion (transamination)</td>
<td>PSAT1, GLUD1, SERINC1, SERINC2</td>
<td>Asparagine, Glutamate</td>
<td>≤ 0.001</td>
<td>0.025</td>
</tr>
<tr>
<td>Glycine, serine, alanine and threonine metabolism</td>
<td>SLC22A5, NUP35, CHDH, SLC36A1, SLC38A5</td>
<td>Asparagine, Glutamate, Threonine</td>
<td>≤ 0.001</td>
<td>0.027</td>
</tr>
<tr>
<td>Glycolysis Gluconeogenesis</td>
<td>ALDOA, LDHA, BPGM, ENO3</td>
<td>Glucose, Glutamate</td>
<td>≤ 0.001</td>
<td>0.038</td>
</tr>
<tr>
<td>chrebp regulation</td>
<td>AGT, PRKAA2, PRKAB2, PRKAG1, CXCL12</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>AMP-activated protein kinase (AMPK) signaling</td>
<td>PRKAG1, SLC2A4, LIPE, PRKAA2, PRKAB2, TP53</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Methionine and cysteine metabolism</td>
<td>NUP35, SLC7A8, ACY1</td>
<td>Asparagine, Cystine, Glutamate</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Triosephosphate isomerase</td>
<td>PCK1, SLC2A2, ALDOA, BPGM</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.059</td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>GYG1, PCK1, ALDOA, ENO3, BPGM</td>
<td>Citrate, Glutamate</td>
<td>≤ 0.01</td>
<td>0.065</td>
</tr>
<tr>
<td>HIF-1 signaling pathway</td>
<td>ALDOA, IFNGR1, MAP2K1, ENO3, EGLN3, LDHA, BCL2, SERPINE1</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.068</td>
</tr>
<tr>
<td>Lactic acid cycle</td>
<td>SLC2A2, LDHA, SLC2A4</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.070</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Genes</td>
<td>Product</td>
<td>p-value</td>
<td>q-value</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Fatty acid, triacylglycerol, and ketone body metabolism</td>
<td>ACADL, GPD1, ACSL1, ACADVL, ACSL4, DGAT2, AGPAT1, HSD17B8, DGAT1, PPARD, PRKAA2, PRKAB2</td>
<td>Citrate</td>
<td>≤ 0.01</td>
<td>0.071</td>
</tr>
<tr>
<td>AMPK signaling pathway</td>
<td>RAB14, PRKAG1, PCK1, SLC2A4, LIPE, RAB8A, PRKAA2, CREB3L2, PRKAB2</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.083</td>
</tr>
<tr>
<td>Sterol regulatory element-binding proteins (SREBP) signalling</td>
<td>SAR1A, PRKAA2, PRKAG1, PRKAB2, FDFT1</td>
<td>Glucose</td>
<td>≤ 0.01</td>
<td>0.091</td>
</tr>
<tr>
<td>TP53 regulates metabolic genes</td>
<td>PRKAG1, DDIT4, YWHAZ, CYCS, TP53, PRKAA2, PRKAB2</td>
<td>Glutamate</td>
<td>≤ 0.01</td>
<td>0.095</td>
</tr>
<tr>
<td>IGF1R signaling cascade</td>
<td>ARRB2, DAB2IP, PRKAG1, MAP2K1, CSK, PDGFRB, PEA15, PTPN11, DUSP5, IGF2, PRKAA2, DUSP9, PRKAB2, PDGFRA</td>
<td>Glutamate</td>
<td>≤ 0.01</td>
<td>0.095</td>
</tr>
<tr>
<td>Histidine metabolism</td>
<td>HNMT, CNDP1</td>
<td>Glutamate, Histidine</td>
<td>≤ 0.01</td>
<td>0.098</td>
</tr>
<tr>
<td>Methionine cysteine metabolism</td>
<td>LDHA, MTR</td>
<td>Cystine, Glutamate</td>
<td>≤ 0.01</td>
<td>0.100</td>
</tr>
<tr>
<td>Pathway</td>
<td>Gene Symbols</td>
<td>Metabolites</td>
<td>q-value</td>
<td>FDR</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------------------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Valine Leucine Isoleucine degradation</td>
<td>BCAT1, ALDH1A2</td>
<td>Glutamate, Leucine</td>
<td>≤ 0.01</td>
<td>0.104</td>
</tr>
<tr>
<td>Glycerophospholipid metabolism</td>
<td>GPD1, DGAT2, PLA2G5, DGAT1, SLC38A5, SLC22A5, NUP35, AGPAT1</td>
<td>Cystine, Threonine</td>
<td>≤ 0.01</td>
<td>0.104</td>
</tr>
<tr>
<td>Metabolism of lipids and lipoproteins</td>
<td>HEXA, GPD1, ACSL1, ACSL4, AP2S1, LIPE, SLC10A1, SLC10A2, AP2A2, ACADVL, DGAT2, SC5D, FDFT1, INPP4A, DPEP3, CHDH, AGPAT1, PRKAA2, PRKAB2, DHCR7, NFYB, ACADL, PLA2G5, PPARD, CHKA, RAB14, PPP1CC, HSD17B8, DGAT1, ARF3, SACM1L, HRASLS5</td>
<td>Citrate, Glutamate, Myo-Inositol</td>
<td>≤ 0.01</td>
<td>0.106</td>
</tr>
<tr>
<td>Urea cycle</td>
<td>SLC6A1, SLC38A5, SLC36A1, NUP35, GLUD1, SFXN3, ACY1</td>
<td>Asparagine, Glutamate</td>
<td>≤ 0.01</td>
<td>0.106</td>
</tr>
<tr>
<td>Cytokine signaling in immune system</td>
<td>DAB2IP, IFNGR1, IL13RA1, PTPN11, ARRB2, IL22RA2, CSF1R, PDGFRA,</td>
<td>Glutamate</td>
<td>≤ 0.01</td>
<td>0.113</td>
</tr>
<tr>
<td>Pathway</td>
<td>Genes</td>
<td>Signaling Molecule</td>
<td>p-Value</td>
<td>Signaling Molecule Value</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--------------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Signaling by interleukins</td>
<td>CSK, PDGFRB, DUSP5, DUSP9, CASP3, BIRC3, NFKB2, PRKCD, LTA, IL1RL1, MAP2K1, IL1RN, PEA15, YWHAZ, PPM1B</td>
<td>Glutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phospholipase D signaling pathway</td>
<td>RRAS2, PDGFRA, PDGFRB, ADCY6, PTPN11, MAP2K1, AGPAT1, GRM1</td>
<td>Glutamate</td>
<td>≤ 0.05</td>
<td>0.150</td>
</tr>
</tbody>
</table>
Supplementary figure 5.1: Quantities of *S. aureus* ingested by U937s over a 2h period subsequent to 24h incubation with 4-25 µg/ml BAD (A) or SRM-2975 (B) then 24h incubation in particle-free media. Values were normalised to concentrations of total cellular proteins and are presented as percentages of a particle-free control and represent the mean ± SEM of 4-6 biological repeats. Significant differences in CFU were identified between particle-treated and particle rested cells using 2-way ANOVA tests with Bonferroni correction. *p ≤ 0.05, *** p ≤ 0.001
Supplementary figure 5.2: Concentrations of IL-8 (A, B), TNF-α (C, D) and IL-10 (E, F) measured within the supernatants of U937s after 24h exposure to BAD (A, C, E) and SRM-2975 (B, D, F) then 24h incubation in particle-free media. Values are expressed as percentages of particle-free controls with error bars depicting the SEM generated during 5-7 replicates. Significant differences in cytokine concentration were identified between control and particle-treated cells using 1-way ANOVA tests with Bonferroni correction. * p ≤0.05, ** p ≤0.01, *** p ≤0.001.
Permission for inclusion of third party data: inflammatory cell counts for BALF samples used in Chapter 3.

Wed 23/11/2016, 10:36

Hi Liza,

My supervisors are happy for you to use the cell count data, and commented my data must not appear in your data/results section but in the discussion as a 'discussion point' or as an appendix clearly indicating it is not your work. They agreed that it would be fine as long as:

(1) Data generated during GSK Study No. R30820N, e.g. cell counts in blood and/or bronchoalveolar lavage fluid, are explicitly included as data arising from Graham Paul's thesis. These data would not be included in your results sections, but either as part of your discussion or in an appendix.

(2) It should also be clear that the animal study design and experimental conduct is Graham Paul’s thesis and only the serum taken during this work was released to Imperial College London. The methods for serum analysis would then be part of your methods (but not animal study design and conduct). Methods conducted for GSK Study No. R30820N (e.g. experimental design, sampling and cell counting) may again be addressed by an appendix approach separating them from your methods.

When citing my thesis, please use the following information:

<table>
<thead>
<tr>
<th>Title:</th>
<th>Defining dosimetry and implications for aerosol presentation for non-clinical development of respiratory drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institution:</td>
<td>University of Cardiff, School of Pharmacy & Pharmaceutical Sciences</td>
</tr>
<tr>
<td>Author:</td>
<td>Graham R Paul</td>
</tr>
<tr>
<td>Year:</td>
<td>2017</td>
</tr>
</tbody>
</table>

Kind regards,

Graham Paul

Investigator

Toxicology & Biometabolism UK
Integrated Biological Platform Sciences
R&D Platform Technology & Science