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DIMENSION PARADOX OF IRRATIONALLY INDIFFERENT ATTRACTORS

DAVOUD CHERAGHI, ALEXANDRE DEZOTTI, AND FEI YANG

ABSTRACT. In this paper we study the geometry of the attractors of holomorphic maps with an irrationally
indifferent fixed point. We prove that for an open set of such holomorphic systems, the local attractor
at the fixed point has Hausdorff dimension two, provided the asymptotic rotation at the fixed point is of
sufficiently high type and does not belong to Herman numbers. As an immediate corollary, the Hausdorff
dimension of the Julia set of any such rational map with a Cremer fixed point is equal to two. Moreover,
we show that for a class of asymptotic rotation numbers, the attractor satisfies Karpinska’s dimension
paradox. That is, the the set of end points of the attractor has dimension two, but without those end
points, the dimension drops to one.

1. INTRODUCTION

Let f be a holomorphic map with an irrationally indifferent fixed point at 0, that is,
f(Z) _ e27riaz 4 0(22)

is defined near 0, and o € R\ Q. The dynamics of such systems have been extensively studied for more
than a century, with innovative methods often addressing particular arithmetic classes of the rotation «,
see for instance [Cre38, Sie42, Brj71, Her, Yoc95, PM97a, McM98, GS03, PZ04], and the references therein.

By classic works of Fatou and Mané [Fat19, Man93], if f is a rational map of the Riemann sphere of
the above form, there is a recurrent critical point of f which plays a prominent role in the local dynamics
of f near 0. More precisely, if f is not topologically conjugate to a linear map near 0, then the orbit of a
recurrent critical point accumulates on 0, and if f is topologically conjugate to a linear map near 0, then
the orbit of a recurrent critical point accumulates on the boundary of the maximal linearisation domain
of f at 0. The closure of the orbit of that critical point is part of the post-critical set of the globally
defined map f. The key step towards explaining the global dynamics of f is to understand the topology
and geometry of the post-critical set of f.

Major progress in explaining the dynamics near an irrationally indifferent fixed point is being made
recently using the near-parabolic renormalisation scheme of Inou and Shishikura [IS06]; [BC12, Chel3,
CC15, Chel7, AC18, SY18, Chel9]. This applies to an infinite dimensional class F of maps of the above
form, provided the rotation number « is of sufficiently high type. That is, a belongs to the class of irrational
numbers

(11) HTN = {a_1 +€0/(CLO+€1/(CL1 +52/(a2+))) | a; Z N,&‘l‘ = :tl},

for a sufficiently large integer N > 1. In particular, thanks to this renormalisation scheme, we have gained
an understanding of the dynamics of some simple looking non-linearisable maps, such as the quadratic
polynomials

Po(2) =™ 4+ 22.C— C
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for the first time. Elements of the class F have a preferred critical point, which are recurrent and interact
with the fixed point at 0. Let A(f) denote the closure of the orbit of that critical point.

A complete description of the topological structure of A(f) is recently established in [Chel7], for f € F
and a € HTy. There are three possibilities for the topology of A(f), depending on whether « belongs to
the set of Herman numbers .7 and Brjuno numbers %.1 More precisely, one of the following holds:

(i) @ € S, and A(f) is a Jordan curve,
(il) o € B\ A, and A(f) is a one-sided hairy Jordan curve,
(i) o ¢ B, and A(f) is a Cantor bouquet.

Roughly speaking, in case (iii) A(f) consists of a collection of Jordan arcs (hairs) growing out of a
single point with the additional property that each hair is approximated from both sides by hairs in A(f).
Similarly, in case (ii) A(f) consists of a collection of Jordan arcs growing out of a Jordan curve, with the
addition property that each arc is approximated from both sides by arcs in A(f). See Section 5.1 for the
precise definition of these objects. In cases (i) and (ii), the region enclosed by the Jordan curve is the
maximal domain on which f is linearisable, that is, the Siegel disk of f. Evidently, in case (iii) f is not
linearisable at 0.

In this paper we explain a peculiar aspect of the geometry of the set A(f) in cases (ii) and (iii).

Theorem A. There is N > 1 such that for every o € HTx \ # and every f € F with f'(0) = e2™, A
has Hausdorff dimension two.

In contrast, it is prove in [Chel3, Chel9] that for every o € HTx and every f € F with f/(0) = €27,
A(f) has zero area.

Corollary B. For every « € HTy \ S and every rational function f in F with f'(0) = e?™®, the Julia
set of f has Hausdorff dimension two.

In [Shi98], Shishikura proves that for a residual set of « in R/Z the Julia set of the quadratic polynomial
P, has Hausdorff dimension two. But an arithmetic characterization leading to this result was not available.
On the other hand, in [McM98], McMullen proved that for any « of bounded type, the Hausdorff dimension
of the Julia set of P, is strictly less than two. All the results stated in this introduction also apply to the
quadratic polynomials P,.

For oo € #\ A, let C; denote the base Jordan curve in A(f), that is, the boundary of the Siegel disk of
f, and for a ¢ A, we let Cy denote the single point 0. By the above classification of the topology of A(f),
in cases (ii) and (iii) the set Ay \ Cy consists of uncountably many Jordan arcs (hairs). Let &y denote the
set of all the end points of A(f).

Theorem C. There are sets of irrational numbers J and S, with J C B\ A and SNAB =, such that
for every a € JUS and every f € F with f'(0) = e*™ we have

The sets J and S are uncountable, and are determined by explicit arithmetic conditions.

Theorem C is surprising; the set of end points of a collection of disjoint curves occupies more space than
the set of those curves without their end points. This phenomena is due to the highly distorting nature of
the large iterates of f near 0. This remarkable paradoxical feature was first observed by Karpinska in her
study of the dynamics of the exponential maps E)(z) = Ae?, for 0 < A < 1/e, [Kar99a, Kar99b]. In those
papers, the especial form of the exponential map plays a prominent role, while in this paper, we exploit
the complicated relations between the arithmetic of the rotation and the nonlinearities of the large iterates

of f.

INote that 4 C .
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Our results has applications to hedgehogs introduced by Pérez-Marco [PM97a] in order to explain the
local dynamics of holomorphic germs with an irrationally indifferent attractors. These are locally invariant
compact sets where both f and f~! are injective on a neighbourhood of f. It turns out that when f € F
with f/(0) = €2™* and a € HTy, every hedgehog of f is contained in A(f), see [AC18] for details. For

instance, this holds for the quadratic polynomials e?™*®z + 22.

Corollary D. For every a € S and every f € F with f'(0) = e*™<, every hedgehog of f has Hausdorff
dimension one.

For an arbitrary germ of a holomorphic map with an irrationally indifferent fixed point, it is likely that
hedgehogs come in variety of topologies and geometries. A general strategy to build germs of holomorphic
maps with nontrivial hedgehogs is developed by Perez-Marco and Biswas in [PM97b] and [Bis08], see also
[Chell]. In particular, examples of hedgehogs of dimension one and positive area have been presented in
[Bis08] and [Bis16]. However, those examples have a very different nature, and are not likely to occur for
a rational map of the Riemann sphere or an entire holomorphic map of the complex plane.

Notations. Here, N, Z, Q, R and C denote the set of all natural numbers (including 0), integers, rational
numbers, real numbers and complex numbers, respectively. The Riemann sphere and the unit disk are
denoted by C = C U {00} and D = {z € C : |z| < 1}, respectively. An open disk of radius r centred
at z € C is denoted by D(a,r) = {z € C: |z —a| < r}. In the same fashion, given Z C C and J > 0,
Bs(Z) := U,z D(2,9).

ForyeR,weset Ly ={z€C:Imz =y} and H, = {z € C:Imz > y}. For a € C and the sets Z and
WinC,weletaZ:={az:2€Z}, Zta:={zta:z€Z},and Z+ W :={z4+w:z€ Z,w e W}

For © > 0, |z]| denotes the integer part of z. Finally, diam(Z) denotes the Euclidean diameter of a
given set Z C C.
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2. ARITHMETIC OF IRRATIONAL ROTATION NUMBERS

We work with a slightly modified notion of continued fractions, which is more suitable for employing
renormalisation algorithm later in Section 4. The modified continued fraction algorithm is defined as
follows. For z € R, let d(x,Z) = min{|z — n|,n € Z} € [0,1/2]. Fix an irrational number «, and let

ap = d(a, Z).
Then there is a unique a_; € Z and ¢¢ € {£1} such that @ = a_1 +epag. We define the sequence (a,)n>0
according to
Anpt1 = d(l/anv Z)v
and then identify a,, € Z and €,41 € {£1} such that

(2.1) 1/an = an + ent10m11-

It follows that 0 < o, < 1/2 and a,, > 2, for all n > 0. These sequences provide the continued fraction in
Equation (1.1).
Let S_1 =1 and for n > 0, define 3, = [, a;. Yoccoz in [Yoc95] introduced the Brjuno function

= 1
B(a) = Z Bn_1log o
n=0 n

This is defined for irrational values of «. He showed that the difference

|
B(a) — Z — log gn41
n=1 1"
is uniformly bounded over the set of irrational numbers «. Thus, for any o € R\ Q,
a€ B Bla) < oco.

By the work of Yoccoz the Brjuno condition is optimal for the linearisation of holomorphic maps with
an irrationally indifferent fixed point.

In [Yoc02], Yoccoz introduced the optimal arithmetic condition for the linearisation of orientation
preserving analytic circle diffeomorphisms. However, he only presents the arithmetic condition in terms
of the standard continued fraction algorithm. Below we present this arithmetic condition in terms of the
modified continued fraction algorithm. The equivalence of the two conditions is proved in [Chel7].

Let 0 < @ < 1/2 and define the function h, : R — R as

al(y+1—loga™? if y >loga™t,
h@(y){ (y ga™') ify>log

e¥ if y <loga~!.

The function h, is C' and satisfies
ho(loga™) =h/ (loga™) =a™};
e’ > ho(y) > y+1,Vy € R;
ho(y) =1, Wy > 0.

Definition 2.1. The irrational number « is of Herman type, if for any n > 0 there exists an integer p > 1
such that

h 0+ 0hq,(0) 2 Blanip).

Qptp—1

In particular, any irrational number of Herman type belongs to 4.
Below, we define two classes of irrational numbers for which the conclusions of Theorem C hold. For
x>0, let
] =max{n e N:n <z}
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denote the integer part of x.

Definition 2.2. An irrational number « is called a jagged number, if « is of the form
1

a=a_j —
ag —
a; —
ay —
where there is a sequence of positive numbers (uy, ), >0 such that
(1) ano UQ * -+ * Up = +00;

(ii) for all m >0, apy1 > alno +1/2;

(iii) lim,,— 0 a, = 00; and

(iv) uy,loga, — 400 as n — oo.

For example, an irrational number whose continued fraction coefficient satisfy ag = 2 and a1 = Leea"J
is an irrational number of jagged type.

Lemma 2.3. Any jagged number is of non-Brjuno type.

Proof. By construction, for all n > 0 we have

1 1
(22) an — 5 < ;n < Qp.
In particular,
1 Lyan
g s (L)
Qp41 Qp,
Thus, for all n > 0, we have log = L > Un log L Tt follows that
n+1 Qn Qn
Qg - - - o log > UpQg -+ Q1 log —.
Ant1 Qp
By induction, we get
1 1
Zﬂn,llog— > log—(l—i—ZuOnun) = +o0.
(70 %))
n>0 n>0
This means that any jagged number is not of Brjuno type. (]

Definition 2.4. An irrational number « is called a spiky number if it is of the form
1

O =a_1 —
apg —
a; —
ags — '
where there are a sequence of positive numbers (v, ), >0 and a uniformly bounded sequence of real numbers
(Mn)n>o0 such that
(i) v, — o0, as n — +00;
(ii) for all m > 0, apy1 = €' +n,; and
(iii) >2,51 vn/(ag - an-1) < +oo0.

For example if (a,)n>1 satisfies ap = 2 and ap41 = Le2"anJ + 1, then the corresponding irrational
number is of spiky type.
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Lemma 2.5. Any spiky number is of Brjuno type, but not of Herman type.
Proof. Using inequality (2.2), for all n > 0, we have

e’l}n/an + 1 — 1/2 < < evn(l/anJrl/z) + 1.

Q41
Hence

< Br-1(vn(1 + 0 /2) 4 log(1 + C)),
Qp 41

with C,, — 0 as n — oco. Then, there exists a constant M > 0 such that

Qg - -+ ap log

1 3 3
B(«a) <log—+7vo+fzvin+M<+oo.
(67} 2 2n>1 ag - Qp-1
Hence a € A.
Since v, — +00 as n — oo, there exists ng > 0 such that for all n > ng,
L > eZ/an.
anJrl

In order to show that a ¢ /7 it is sufficient to show that for all n > ng and all p > 0, E°?(0) < log 1+ ,
n+p
where E°P is the p-th iterate of the exponential map x — e”.
Note that for p > 1, log ﬁ > —2 _ In particular we have E(0) < 3 < 2/a,, < log ﬁ Moreover
n+p n

— Qnip-—1
1

2
E°%(0) < 2%/ < ——— < log :
On41 Opy2

Similarly one can prove inductively that

o(p— 2
E°?(0) < BSPV(2/a,) < —=— <log
Qnyp—1 Qntp

for all p > 1, where E5® ™Y is the (p — 1)-th iterate of Ey(z) = 2¢°. O

The set of jagged irrational numbers is denoted by J, and the set of spiky irrational numbers is denoted
by §. The terminology, jagged and spiky, reflects the geometric features of the renormalization towers
associated to such rotation numbers. This will be discussed in Section 7.

3. A CRITERION FOR FULL HAUSDORFF DIMENSION

In this section we present a criterion which implies that a nest of measurable sets shrinks to a set of full
Hausdorff dimension in the plane. We shall employ the criterion in Section 6, to prove the lower bound on
the dimension of the post-critical sets. The dimension of the hairs without the end points is investigated
directly using the definition of the Hausdorff dimension. This criterion is also used in [McM87] ? in order
to study the Lebesgue measure and Hausdorff dimension of the Julia sets of some transcendental entire
functions. Below we present the criterion.

For a measurable set KX C C we use area(K) to denote the two-dimensional Lebesgue measure of K. If
K and  are two measurable subsets of C with area(2) > 0, we use

area(K N Q)

dens(K, Q) area(Q)

2We note that although our presentation in Proposition 3.2 and the one in [McM87, Proposition 2.2] appear similar,
there is a minor difference. Our nest starts with g while McMullen’s begins with ;. It seems that the superscript in the
summation in [McM87, Proposition 2.2] should be k (not k 4 1). This difference is not crucial in the study of the iterates of
the exponential maps, but play a distinct role in our cases. For this reason, and for the reader’s convenience, we present a
proof of the criterion here.
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to denote the density of K in .

Definition 3.1 (Nesting conditions). Let KC,,, for n > 1, be a finite collection of measurable subsets of C,
with K, = {K,,; : 1 <14 <I,}, where each K, ; is a measurable subset of C and I, = #K,, < +00. We
say that {IC, }52, satisfies the nesting conditions if for all n > 0 we have

(a) Ko ={Ko}, with K¢y = K1 a bounded connected measurable set;

(b) every K41, € Kpt1 is contained in a K, j € K,,, where 1 <@ <l,1 and 1 < j <lp;

(c) every K, ; € K, contains a Ky 41,; € Kpq1, where 1 <i <1l and 1 < j <l,y1;

(d) area(K, ;NK,;)=0forall<i<j<l,; and

Remark. Note that C,, is a collection of measurable sets for n > 0. For simplicity, sometimes we do not

distinguish KC,, and the union of its elements Ui’;l K, .

Proposition 3.2. Assume that {K,}52, satisfies the nesting conditions, and there are sequences of positive
numbers (0,)n>0 and (dp)n>o0, with d, — 0 as n — oo, such that

(a) form>1and 1 <i<l,, we have
diam K, ; < dp;
(b) for allm >0 and 1 <i<1,, we have

ln+1
dens(KCp 41, Kp i) = dens( U KnJrl,j,Kn’i) > pa1-
j=1
Then,
. D | log bl
3.1 dim ( lCn) > 2 — limsup =“=—7—>—
3.1) " m ol [log dy|

n>0

Proof. By employing a rescaling, we may assume that area(Kg) = 1. Let ug be the restriction of the
two-dimensional Lebesgue measure on Kg. Then po(Kp) = 1. Let pug be the probability measure on K4
such that on each K ;, with 1 <4 < l;, p; is a constant multiple of the Lebesgue measure, with the

constants chosen according to
area(K ;)
; .
Y opeq area(Ky k)
Inductively, for n > 1, we define the probability measure p,11 on K, 41 such that on each K, 1 ;, with

1 <4 <lp41, p1 is a constant multiple of the Lebesgue measure, with the constants satisfying the following:
whenever K, 41; C K, ; for some 1 <7 <1l,47 and 1 < j <, then,

pi(Ki,) =

area(K,11,)

Z{kghKHl,chn,_,»} area(Kni1,k)

U7L+1(K7L+1,i) = ,ttn(ij)

The sequence of the measures (tn|ic, Jnen forms a martingale, that is, for alln >0 and 1 < j <1,

;U'n+1( U K”“’k) = Hn(Hng).
{k>1:Kpn 1 6 CKn j}

Let p denote the unique weak limit of u,, as n — oco. It follows that u is a probability measure supported
on K ={,>0Kn-

We employ Frostman’s lemma [Mat95, Theorem 8.8, p. 112], to obtain lower bounds on the dimension
of KC. To conclude that dimgy K > s, it is sufficient to prove that there is a number C(s) such that for all
a € Candr >0, u(D(a,r)) < C(s)r®. Indeed, we only need to consider this for small enough values of
r > 0. Without loss of generality, we assume that d,,+1 < d,,, for n > 0.
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Choose n > 0 such that d,+1 < r < d,, and let £,,41 be the union of all K,,1;,; € K, 41 which meet
D(a,r). Then, L,41 C D(a,2r), and we have
area(Ly11) d>=s
D(a,r)) < u(L, < — 5 <A4prf s —2—
M( ( )) /’[/( +1> 5152"'6”_;,_1 5162.”57“’_1
Define b, = d27%/(6102 -+ 0p11), for n > 0. If s is a real number smaller than the quantity on the right
hand side of Equation (3.1), then we have limsup,,_, . b, < 1, and hence (by,),>0 is uniformly bounded
from above. This means that K has Hausdorff dimension at least s. O

Remark. If the diameter of each K, ; tends to zero much faster than the product of the densities
0102+ - Opt1, as n — 00, then the superior limit in Equation (3.1) will be equal to zero and the Hausdorff
dimension of ), .y KC;y Will be equal to 2.

4. NEAR-PARABOLIC RENORMALIZATION SCHEME

In the first two subsections, we give the definitions of the Inou-Shishikura class and near-parabolic
renormalization operator. See [IS06] for a slightly different definition (but they produce the same operator).
Then we define the renormalization tower and prepare some useful estimates on the changing of coordinates.

4.1. Inou-Shishikura’s class. Let P(z) = z(1 + 2)? be a cubic polynomial with a parabolic fixed point
at 0 with multiplier 1. Then P has a critical point cpp = —1/3 which is mapped to the critical value
cvp = —4/27. Tt has also another critical point —1 which is mapped to 0. Consider the ellipse

E:{x—i—iyE(C: (x+0'18)2+( i )2§1}

1.24 1.04
and define A
~ z
U =¢1(C\ E), where ¢1(z) = NS

The domain U is symmetric about the real axis, contains 0 and cpp, and U N (—oo, —1] = 0 (see [IS06,
Section 5.A]). For a given function f, we denote by its domain of definition Uy. Following [IS06, Section
4], we define a class of maps
- 0 € Uy is open in C U — Uy is
_ _ 1. f 1% y P f
IS0 = {f =Pop U= C conformal, ¢(0) =0 and ¢'(0) =1 }
Each map in this class has a parabolic fixed point at 0, a unique critical point at cp; = ©(—1/3) € Uy and
a unique critical value at

v = —4/27
which is independent of f.
For a € R, we define
IS0 = {f(2) = fo(e*™z) s e 2™ . Uy — C | fo € IS0}

For convenience, we normalize the quadratic polynomials to
. o7
Qa(z) — 627r1az + 764maz2
16
such that all @, have the same critical value —4/27 as the maps in ZS,. In particular, Q, = Qo © Ra,

where R, (z) = e*™z.

Let f € IS, U{Qn} with a € R. If @ # 0 is small, besides the origin, the map f has another fixed
point oy # 0 near 0 in Uy. The fixed point oy depends continuously on f.
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Proposition 4.1 ([IS06], see Figure 1). There exist an integer k > 1 and a constant r1 € (0,1/2) satisfying
1/r1 — k > 2 such that for all f € IS, U{Qa} with o € (0,71], there exist a domain Py and a univalent
map ¢ : Py — C satisfying the following:
(a) Py is a simply connected domain bounded by piece-wise analytic curves which is compactly contained
in Uy and Py contains cpg, 0 and oy;
(b) @ is normalized by ®;(cv) =1 and

Dp(Pr)={Ce€C:0<Re(<1l/a—k}
with Im ®¢(z) = +00 as z = 0 and Im P ;(z) - —o0 as z — oy in Py;

(c) @y satisfies the Abel equation ®;(f(2)) = ®s(2) +1 if 2z, f(2) € Py; and
(d) The normalized ®y is unique and depends continuously on f.

Cpf

=)

1
123 4 1k

of Py

FIGURE 1. The domain P; and the Fatou coordinate ®¢. The image of P¢ under ®; has
been coloured accordingly by the same color on the right.

The statement of Proposition 4.1 in [IS06] is in another form. One can refer to Main Theorems 1
and 3 there for further details. See [BC12, Proposition 12] for the present form of Proposition 4.1 (see
also [Chel9, Proposition 2.4]). The map ®; is called the (perturbed) Fatou coordinate and Py is called a
(perturbed) petal.

4.2. Near-parabolic renormalization. Let f € ZS, U {Q,} with o € (0,r1], where ; > 0 is the
constant introduced in Proposition 4.1. Define
Cr={2€P;:1/2<Re®y(z) <3/2and —2 <ImPs(z) <2}, and

4.1
(4.1) Cfc:{zeple/2§Re<I>f(z)§3/2 and 2 < Im ®¢(2)}.

Note that cv = —4/27 € int C;y and 0 € 8C§c. Assume for the moment that there exists an integer ky > 1,
depending on f, with the following properties:

(a) For all 1 <k < ky, there is a unique component (Cff)’k of f*k(Cﬁ) containing 0 in its closure such
that foF : (C;)_k — Cfc is an isomorphism;

(b) There is a unique component C]Tk of f7%(Cy) intersecting (Cff)’k such that foF : C]Tk — Cyis a
covering of degree two ramified above cv.

(c) C;kf U (C]ﬁc)*kf is contained in {z € Py :1/2 < Re®s(z) <ot — k—1/2}.
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Moreover, for all k=1, ---, kg, the set (C;)~F U (Cf,)”C is compactly contained in Uy.

Let k; be the smallest positive integer satisfying the above properties. We now give the definition of
near-parabolic renormalization.

Definition 4.2 (Near-parabolic renormalization, see Figure 2). Define
—k _k
5= Ui,
and consider the map
Ppo fokro (I);l : Ps(Sy) = C.
This map commutes with the translation by one. Hence it projects by the modified exponential map
Exp(¢) = —g7 €*™¢

to a well-defined map R f which is defined on a set punctured at zero. One can check that Rf extends
across zero and satisfies Rf(0) = 0 and (Rf)'(0) = e~ 2™/, The map Rf, restricted to the interior of
Exp(®#(Sy)), is called the near-parabolic renormalization of f.

2
P
4
0
—2

FIGURE 2. The sets Cy, Cfc and some of their preimages. The images of Cy U Cfp and
S¢ under the perturbed Fatou coordinate ®¢ have been shown and the induced map
Drof oky oCI>JZ1 projects to the near-parabolic renormalization map R f under the modified
exponential map Exp.

Recall that P(z) = 2z(1 + 2)? is the cubic polynomial defined at the beginning of the last subsection.
Define
U' = P_l(]D)(O7 %e‘m)) \ ((_007 _1] UE),

where B is the connected component of P~!(ID(0, e ~%7)) containing —1. By an explicit calculation, one

can prove that U C U’ (see [IS06, Proposition 5.2]).

Theorem 4.3 ([IS06, Main Theorem 3]). For all f € IS, U {Qu} with a € (0,71], the renormalization
map Rf is well-defined so that Rf = Poy~! € IS8 1/ and ¢ extends to a univalent function from U’ to
C.
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For f € I8, U{Qu} with a € [—r1,0), the conjugated map f: so fos satisfies f(O) =0 and ]?/(0) =
e?™(=) where s : z — Z is the complex conjugacy. According to the structure of ZSy (U is symmetric

about the real axis), we know that ZS is invariant under complex conjugacy and f €ZS8_,U{Q_n}. Hence
we can extend the domain of definition of the near-parabolic renormalization operator R to f € ZS,U{Q4}
with o € [—71,0) U (0, r4].

The following result shows that k¢ has a uniform upper bound which is independent of f.

Proposition 4.4 ([Chel9, Proposition 2.7]). There exists an integer ky > 1 such that for all f € IS, U
{Qo} with o € (0,71], then ky < k.

For another proof of Proposition 4.4, see [BC12, Proposition 13]. For the corresponding statements of
Propositions 4.1 and 4.4 with o € C (specifically, | arg | < 7/4 and |a] is small), see [CS15, Section 2.

4.3. Renormalization tower. Let f € ZS, U {Q.} with a = [(a_1,¢0); (a0,€1), -, (An,Ent1), - -] €
HTy, where N > 1/ry + 1/2. Recall that s(z) =Zz. We define
f if g = +1,
fo= { oo
sofos if gg=-1.

Then the rotation number of fy at the origin belongs to (0,71]. By (2.1), for all n € N one has?

al =an Feppioni >N —1/2>1/r;.
By Theorem 4.3, for n > 1, the following sequence of maps can be defined inductively:

_ R(fn—l) if En = —1,
Jn = $0R(fn-1)0s if &, =++1.

Let U,, = Uy, be the domain of definition of f,, for n > 0. Then for all n > 1, we have
fn €ZSa,, [n:Un—C, f,(0)=0, f.(0) =e>™* and cvy, = —4/27.

For n > 0, let ®, = ®_  be the Fatou coordinate of f, : U, — C defined on the petal P, = Py, and
let C,, =Cy, and ct = Cﬂ be the corresponding sets for f,, defined in (4.1). Let k,, = ky, be the smallest
integer appeared in the deﬁmtlon of the renormalization operator R such that

(4.2) S, =C kU c{zePn:1/2<Re®,(2) <o, —k—1/2}.
We use 0, = 0y, to denote the non-zero fixed point of f,, on the boundary of P,. It is known that |o,| is
comparable to o, and the comparable constants are independent of n (see [CS15, Equation (14)]).
4.4. Changes of the coordinates. Recall that the integer part of > 0 is denoted by |x]| € (x — 1,z].
For n > 0, we denote

M, ={¢eC:—-1/(2a,) <Re( <0, Im¢ > 0}

kn“’“/(zan)J
(43) Ue,(P)U | (®n(Sn) +1).

i=0
The univalent map ®, ! : ®,(P,) — P, can be extended to a holomorphic map
o110, — U, \ {0}

3Moreover, a_1=a=a_1 +egag. See (1.1).
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such that ®,1(( +1) = f,, 0 ®,,1(¢) if ¢, ( +1 € II,,. Note that the exponential map Exp : C — C\ {0} is
a covering map. Recall that s(z) = z. The maps ®,! : II,, — C\ {0} and so ®; ! : II,, — C\ {0} can be
lifted to obtain a holomorphic or an anti-holomorphic map x,, : I, — C such that

EXpOXn(C)Z(I)T_Ll(C) if e, =-1,
(4.4) V(¢ e 11, . ]

Exp o xn(¢) =s0o @, (C) it e,=+L
The map ., is holomorphic if €,, = —1 while it is anti-holomorphic if €, = +1. Moreover, x,, : II,, — C is
an injection and we assume that Y, is chosen so that*

xn(1) = 1.
For j € Z we define
Xn,j = Xn T J.

4.5. Some estimates on the changes of coordinates. Recall that o,, # 0 is another fixed point of f,
near 0 which is contained in 9P,,. Let
on

Tn (U}) = 1 — e—2miapw

be a universal covering from C to C \ {0,0,} with period 1/a;,,. Then 7,(w) — 0 as Imw — 400 and
Tn(w) — 0, as Imw — —oo. The basic idea to study the Fatou coordinate ®,, is to compare the inverse
®, ! with 7,,. There exists a unique lift F, of f,, under 7,, such that

fnomh(w) =7, 0 Fp(w) with  lim  (F,(w) —w) = 1.
Im w—+o00

Since the critical points of F, are periodic with period 1/a;,,. We use ¢p,, to denote the one which is
closest to the origin. The set 7,,!(P,) has countably many simply connected components. Each of these
components is bounded by piecewise analytic curves going from —ico to +ico and it contains a unique
critical point of F,, on its boundary. Let P,, be the component containing cp,, on its boundary. Define the
univalent map
L,=®,07,:P, > C.

This map is the Fatou coordinate of F;, since L,, 0 F,, (w) = L, (w)+1 when w and F},(w) are both contained
in 7571 _

The inverse L. 1.3, (Pn) — Py, can be extended to a holomorphic function on a larger domain II,,
(see (4.3) and [Chel9, Section 6]). The main work on L; ! in [Chel9, Section 6] is to establish some
quantitative distance estimates between L, ! and the identity. For more details on the study of L,, and
L, see [Chel9, Sections 6.3-6.6] and [CS15, Section 3.5]. The following Lemma 4.5 and Proposition 4.6
are obtained from studying L' and a direct calculation.

Lemma 4.5 ([SY18, Lemma 2.11]). For all Dy > 0, there exists two constants My, Mg > 0 such that for
all n > 1, we have

(a) If ¢ € II,, withIm( > Do/, then
1 1
- ~log — )| < M.
1m0 X (Q) = (e Im ¢+ 5 log - )| < My
(b) If ¢ € II,, with Im( € [—2, Dy/aw,], then

[1m X (€) = ok min { log(1 + [¢), log(1 + ¢ = 1/an])}| < Mo.

4Note that Exp(Z) = cv and ®,(cv) = 1 for all n € N.
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Note that My > 0 in Lemma 4.5(a) can be chosen such that it decreases as Dy increases. Partial
estimation of Lemma 4.5 can be also found in [Chel9, Proposition 5.4]. When one applies x,, : I, = C,
Lemma 4.5 gives an estimation on the imaginary part of x,(¢) for ( € I, N{¢ € C: Im{ > —2}. We will
use the following result to study the real part of x,,(¢) for some ¢ € II,, and estimate the diameter of some
boxes when we go up the renormalization tower (see Section 5).

Proposition 4.6 ([Chel3, Chel9]). For all Dy > 0, there exists two constants My, M > 1 such that for
all n > 1, we have

() If ¢ € I, M {C: Im¢ > 2} with |¢| > Do/ay and |¢ = 1/ay| > Do/an, then
|X{n(§) - Oén‘ S Mlane—Qﬂ'OlnImC.
(b) If ¢ € Mo N{C: ¢ > =2} with 1 < [(] < Do/ or 1 < |¢ = 1/an| < Do/an, then

Myt < min{[¢|,|¢ = 1/anl} - x5 (O] < M.

Similar to Lemma 4.5(a), the number M; > 0 in Proposition 4.6(a) can be chosen such that it decreases
as Dy increases. Proposition 4.6(a) is proved in [Chel3, Proposition 3.3]. Actually, the latter proves
a stronger statement where the dependence of M7 on Dy is established and the inequality holds in a
larger domain. Proposition 4.6(b) is proved in [Chel9, Proposition 6.18] for ¢ € [1,1/(2a,)] (i-e., ¢ € R).
However, the proof for the complex ¢ is completely similar. See also [SY18, Proposition 2.13(b)] for a
more elaborate estimation for case (b).

In the rest of this article, for a given map f = fo € ZS, U{Qn} with « € HT 5, where N > 1/r; +1/2,
we use f, to denote the map after n-th (normalized) near-parabolic renormalization. We also use U,
P, and ®,, etc to denote the domain of definition, perturbed petal and the Fatou coordinate etc of f,
respectively.

For some recent remarkable applications of near-parabolic renormalization scheme one may refer to
[CC15], [CS15], [AL15], [CP17] etc. Recently, Chéritat generalized the near-parabolic theory to all the
unicritical case for any finite degrees [Chel4]. See also [Yan15] for the corresponding theory of local degree
three. Therefore, there is a hope to generalize the results in this paper to all unicritical polynomials.

5. ALMOST RECTAGULAR PARTITION OF THE POST-CRITICAL SETS

In this section, we first recall two results on the topological structure of the post-critical set Ay of
f€Z8,U{Qu} with a € HT y. Then we define a system satisfying the nesting conditions and use some
estimations between the renormalization levels to estimate the densities and the diameters of some related
sets. In next section we use the criterion established in Section 3 to obtain the full Hausdorff dimension
of Ay under the assumption that « € HTy \ 5.

5.1. Topology of the post-critical sets. A Cantor bouquet is a compact subset of the plane which is
homeomorphic to a set of the form

{re?™® cC|0<r<R(H)}

where R : R/Z — [0, 00) satisfies
(a) R71(0) is dense in R/Z,
(b) (R/Z)\ R71(0) is dense in R/Z,
(c) for each 0y € R/Z we have

limsup R(6) = R(6p) = limsup R(0).

0—0F 0—6y
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A one-sided hairy Jordan curve is a compact subset of the plane which is homeomorphic to a set of the
form

{re*™® cC|1<r<R(®)}
where R : R/Z — [1,00) satisfies
(a) R71(1) is dense in R/Z,
(b) (R/Z)\ R~1(1) is dense in R/Z,
(¢c) for each 6y € R/Z we have
limsup R(6) = R(0y) = limsup R(0).

0—0F 0—65
Let N > 1/r; +1/2. In order to study the Hausdorff dimension of Ay, we also need some topological
properties of Ay.
Theorem 5.1 (Trilogy of the postcritical set [Chel7]). Let f € IS, U{Qa} with « € HTn. Then

(i) if a € A, A(f) is a Jordan curve;
(ii) if « € B\ A, then Ay is a one-sided hairy circle, and the connected component of Ay \ A
containing the critical value of f is a C' curve;
(il) if o« & B, then Ay is a Cantor bouquet, and the connected component of Ay \ {0} containing the
critical value of f is a C* curve.

For the definitions of Cantor bouquet and one-sided hairy circle, one may refer to [Chel7]. In particular,
each connected component of Ay \ Ay is a Jordan arc, where Ay is the Siegel disk of f if « € #\ # while
Ay = {0} is the Cremer point if o & 2.

Definition 5.2 (Critical value curve). For f € ZS, U {Q.} with o € HTy, let I'y be the Jordan arc
connecting the critical value cv = —4/27 with the origin® (not including 0) stated in Theorem 5.1. The
arc I'y is called the critical value curve. It is known that I'y C Py, where Py is the perturbed petal of f.
More precisely, following [Chel7, Lemma 3.4] or [SY18, Proposition 5.3], we have

(5.1) vr=®;T;) cUO={(€C:1/2<Re(<3/2and Im({ > —2}.
We also call vy the critical value curve in the Fatou coordinate plane of f. Let 7} C ®¢(Sf) + k¢ be the
simple arc such that @;1(7}) =Ty.

Theorem B in [Chel7] states that the real part of v; (resp. 7}) tends to a limit as the imaginary part
tends to positive infinity. Indeed, the following result shows that the curves v, and 'y} become more and
more straight as the imaginary part increases.

Proposition 5.3 ([Chel7, Lemmas 4.11 and 4.13]). For anye > 0, there exists a constant M%V: M, (e)>0
such that for all f € I8, U{Qa} with o € HT N, if ¢, (" € v¢ (or}) with Im ¢ > Im (" > M, then
|arg(¢ = ¢') —m/2| <e.
For y € R, we define
L,={z€C:Imz=y} and H,={zc€C:Imz>y}.
By Proposition 5.3, we have the following immediate corollary.

5According to [Chel7], if Ay # @, then I'y = 1"} u F/f', where 1"} is the connected component of Ay \ Ay containing the

critical value cv, and F’f’ is a curve in Zf connecting the origin with one end point of F}. In particular, if F’f = (, then F}’

is a curve in Ay connecting the origin with cv.
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Corollary 5.4. There exists a constant D} > 1 such that for all f € IS, U{Qs} with « € HTy and for
all y > DY, then

Ly N (ys+7) and Ly N (7} +7)
are both singletons for all j € Z.

As before, let f, be the map after n-th (normalized) near-parabolic renormalization of a given map
f €IS, U{Q.} with « € HT . We use T',;, v, and ~,, etc to denote the simple arcs introduced above.

5.2. Going down the renormalization tower. For each n > 0, from the definition of v, and 7, we
have ®,1(v,) =T, = ®,1(7}). Recall that U is an half-infinite trip defined in (5.1). Forn > 1 and j € Z
we have

b, 0o Exp(yp—1+7j) = D,(T) =, CO.
Recall that D) > 1 is the constant introduced in Corollary 5.4. For all n > 0, we define
The closure of the connected component of
_ AN /
(5.2) Yo =Yn(Dp) = { C\ (9w Un, ULp,) containing 2 + (D5 + 1)1 } \ -

Then Y, is simply connected and very ‘close’ to a half-infinite strip with width 1/a,, and it is ‘bottom
left’ closed and ‘right’ open. We use Y;, o C Y, to denote the ‘bottom left’ closed and ‘right’ open domain
bounded by vpn, 7, + 1 and Lpy:

- /v | The closure of the connected component of
Yo =Yao(Dz) = { C\ (v U (v + 1) ULp,) containing 2 + (D5 + 1) i \ O+ 1).

For j € Z, we denote
(5.3) Y. =Y,0+7

By (2.1), if ep41 = —1, then a,, — 1/2 < 1/, < ay. If €441 = +1, then a, < 1/a,, < ap, +1/2. For
n € N, we define an index set

) . ) N
(5.4) Jo={jeN:0<j<J,—1} with J,=a,+ ==t
and a half-infinite strip (see Figure 3)
Yn,* = Yn\ U ij.
jeﬂ]]'ll
Note that Y, . C Y, ...
For n > 0, we define

v - The closure of the component of C\ (v;, U (7, — 1) ULp;) ,
e which is contained in U2=_1(‘I’n(5n) +kn+7) \ e

Note that all the sets Y;,, Y, j, Y, « and Y, o depend on the given height D5 > 1. Recall that II,, is defined
in (4.3) and we have Y,, C II,,. Therefore, Xn,j is well defined on Y, for all j € Z. See Section 4.4 for the
definition of xp ;.
Lemma 5.5. There is a number Dy > 0 such that for alln > 1 and y,_1 = % log (% + Dy, we have
(a) Ife,, = —1, forall j € J,,—1 then
X”vj ()/"L) N Hynfl = n—1,3 N Hyn—l

and
Xn,Jnfl(Yn \ Yn,<>) NHy, , =Yo—1.NHy, .
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FIGURE 3. Some sets in the Fatou coordinate plane of f,,. The critical value curve v, its
translations and «,, have been drawn. Some useful heights are marked. Moreover, several
packed boxes are also shown (in gray, see Section 5.3).

(b) Ife, =+1, for all j € J,—1 then

Xng+1(Yn \ ) NHy, , =Y, 1;NH,,
and
X"y‘]n—l"!‘l(?"’ho \ (V:’L - 1)) N Hyn—l = In—1x% N Hyn—l'

Proof. We only prove case (a) since the proof of case (b) is completely similar. If ¢,, = —1 then x,, : I,, - C
is holomorphic (see (4.4)). The first statement follows from Lemma 4.5 and the facts that x,(vn) = Yn—1,
Xn(7,) = Yn—1 + 1 and the definition of x,, ; with j € J,,_;.

By the definition of near-parabolic renormalization, we have f,,(Exp(v),_1)) = Exp(Yn—1 + Jn-1) = Ty.
This means that Exp(y],_;) is the critical point curve T'SP of f,, i.e., the union of cp,, and the component
of f,1(I'y, \ {cv}) with endpoints 0 and cp,,. If we consider ®,% : I, — C, it is easy to see that
O, 1(v,) =Ty, and ®,1(7/, — 1) = T. In particular, by Lemma 4.5 if Dy > 0 is large then we have
Xn,Jn-1 (Yn \ Yn,o) N Hyn,l =Yp_10N Hyn,l . O

Remark. In the case ¢, = —1, the images of Y,, under x,, ; with j € J,_1, and the union of the image of
Y, \ Y, o under x,, 5, , will cover the whole upper end of Y,,_; since

(YH,* v U Yn,l,j) NH,, , =Y,_1NH, ,.

JE€In -1

One can have the similar observation for &, = +1.
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In order to simplify notations, for n > 1 and j € Z, we denote by®

Xnx = Xn,Jn_y a0 X stj = Xn,Jp_1+j-
For n > 1, we define (compare Lemma 5.5):

U (Xn g (Yn) N Yn1) if e, =-1,
)(n_1 _ JEIn—1U{*} B
U (XTLJJrl(Yn) n Ynfl,j)) if g, =+1.
JEIn_1U{*}

It is straightforward to verify that X,,_; is connected. Note that the restriction of x, ; on Y, is injective
for every j € Z.

Definition 5.6 (The inverse of x, ;). For n > 1, we define a map &, : X,,_1 — Y,,, which is the inverse
of Xn,;, as following:

o ife, = —1, for ¢ € xp;(Yn)NY,_1; with j € J,_1 U {x}, define

(5.5) &n(Q) = X 5(0).
o if g, = 41, for j € J,—1 U {x}, define

&) = {X;’%(O ¢ xnaTn) N,

Xoj1(€) i CEXngr1 (Vo) \ (s + ).

By definition, the map &, : X,_1 — Y, is a periodic function with period one. However, it is not
continuous on the arc (v,—1 + j) N X, 1, where 1 < j < J,,_;. For example, ¢ € (y,—1+1)N X, is a
boundary point of Y,,_1 ¢ and is also a boundary point of ¥;,_1 1. If €, = —1, then by definition we have
£n(C) € v, But there exists a sequence ((x)ren C Yn—1,0 which converges to ¢ such that &,((x) converges
to a point on v/, as k — oo.

We will use (xn)n>1 and (§,)n>1, respectively, to go up and go down the renormalization tower. For
(o € C and r > 0, we denote by

(5.6) Box(Co,7) = {C € C: [Re (¢ — ¢o)| <7 and [Im (¢ — o) <7}

the closed square with center (y and with side length 2r. For n € N, recall that J,, is defined in (5.4). For
n € N we define a new index set

(5.7) Jn =0, U{Jn}={jeN:0<j < J,}.
Usually we use J,, and :]Tn to mark the translations of Y, o and -y, respectively. In the following, for unifying
notations, for n € N we denote

Totx=7, and Yo+ (x—1)=(m+x)—1=7, -1

For a set X C C and a number § > 0, let Bs(X) = ,cx D(z,6) be the §-neighborhood of X. Recall
that Y,, = Y,,(D}) is a set defined in (5.2). For given positive numbers D3, D5 > D, v € (0,1/2) and all
n € N, we define

En - En(D,‘_I’,vDSaV)
Yn(i log ! + D3) U (Yn(Dg’,) N BV(/-YTL +jn U {*a * — 1}))

Qn+41

(5.8)

and
Enj = En N Yy (D5),

6As before, ‘*’ is just a notation, not equal to J,_1 for n > N. Otherwise, this may cause confusion on Y,_1 « and
Yn_1,7,_,- Indeed, Y1 . is a proper subset of Y,, 1,5, ;.
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where j € J,, U {x}. For given n € N, D§’ > DY > D3 and j € J,, U {*}, we define
(5.9) W j(D5, Dg') = {C € Ynj: Dy <Im( — 5 log 1o < D'}

Qnp41 —

Lemma 5.7. There exist constants D3, D5 > D} and v € (0,1/20] such that for all n > 1, we have
(a) En—1=En-1(D3, D3,10) C Xn—1;
(b) For any Gn—1, (1 € En—1,5 N By (yn-1 + ') with (o1 € o1 +j" and Im(;,_y > Tm ¢,y —wo,
where j € Jp—1 U {*} and j' € J—1 U {x,* — 1}, then

Imgn(dm—l) > %Imgn(Cn—l);

(c) For ¢n—1 € Yn—1 + j' such that Box((n—1,v0) N Yn_1,; # 0, where j € J,—1 U {x} and j' €
jn_l U {#,% — 1}, &, : Box((n—1,70) NY,_1; — Y, can be extended to a univalent (or an anti-
univalent) map” Sw- : Box((n—1,201) — I1L,;;

(d) For any D' > D5 > Ds, &, : Wy_1; N Y1 — Y, can be extended to a univalent (or an anti-
univalent) map En,j : Byy(Wy—1,5) = 1L, where Wy, j = Wy—1 (DY, D5’) and j € J,,—1 U {x}.

Proof. We only prove the case ¢,, = —1 since the proof of the case €, = +1 is completely similar.

(a) Recall that D} > 1 is the constant introduced in Corollary 5.4 and appeared in the definition of Y,
(see (5.2)). Note that 7, is contained in U (see (5.1)). By the pre-compactness of ¢ (g,r] ZSa U{Qa}
and Proposition 4.4, there exists a constant Cj > 0 such that for all n > 0, one has (see also [Chel7,
Lemma 4.13))

(5.10) Re¢ —1/an| < C forall ¢ €n,,.

By Lemma 5.5(a) we have xn.s, ,(v, —1) = 7,,_;. Note that both x», = Xno0 : "n — Yn—1 and
Xn i V5 — Yn—1 + 1 are homeomorphisms. According to Lemma 4.5, there exist two constants Cy > D}
and C] > 0 such that for all n > 1,

® (n—1 € (Yn—1 + 1) NHe, has a unique preimage ¢, € v, N Hypy, under xy,,1;

e (,—1 has a unique preimage (;, € ;, N Hyp, under x, = Xn,0;

® (; 1 €7,—1 NHc, has a unique preimage ¢;; € (v, — 1) N Hyp, under xy s, ,; and
e Imy,(¢) < %logi +Cf forall ¢ € Lp, NY,,.

For ¢, € v, N Hapy, there are two cases. If Im ¢, <1 /au,, we consider the simply connected domain®

Vi ={CeY,:Im{/Im(, € [3/4,4/3] and Re( < Im ((,/2) + 1}.

Note that x,,1 : Y;, — Y,—11 can be extended to map defined in a neighborhood of Y, such that it is
univalent and holomorphic. By Proposition 4.6(b), there exists a constant M; > 1 such that M; ' <
X701 (O)]/Im ¢, < M,y for all ¢ € Vb (note that [(,]/2 < Im(, < |(s]). This means that x,1(V,1) is a

topological disk satisfying
|C - Cnfl‘ >p1 forall e Xn,l(avn+ \'771),
where 0 < p; < 1 is a constant depending only on Ml.

If Im ¢, > 1/a,, we consider the following simply connected domain
Vi={(e€Y,:Im¢—-Im(, € [-3/(4a,),3/(4a,)] and Re¢ < 1/(2cv,) + 1}.
"As before, £, = —1 and +1 correspond to univalent and anti-univalent respectively. Moreover, the coefficient ‘20’ in

‘20vg’ will be used to prove Lemma 5.15.
8We add one in the definition of V,f to guarantee that it is non-empty.
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By Proposition 4.6(a), there is a constant M{ > 1 such that M{~" < |x], 1(¢)|/an < M{ for all ( € V.
This means that x,,1(V,}) is a topological disk satisfying

|C - Cn—1| > 51 for all C € Xn,l(avn+ \’Yn)a
where 0 < 91 < 1 is a constant depending only on Mj.

Similar to the arguments as above, we consider the map x,, : Y, — Y, 1,0, which can be extended to a
map defined from a neighborhood of Y, such that it is univalent. For ¢/, € v/ NHy Dy, there are two cases.
If Im ¢/, < 1/a,, we consider the simply connected domain

V.o ={CeY, :Im¢/Im(, €[3/4,4/3] and Re¢ > 1/ay, —Im(,/2 — 1}.
If Im ¢, > 1/av,, we consider
V.o ={CeY,: Im(—Im(], € [-3/(4an),3/(4a,)] and Re( > 1/(2a,,) — 1}.
By Proposition 4.6, there is a constant 0 < g2 < 1 such that in this case, we have
C—Con| > 00 forall ¢ € xa(8V, \ L)-
Note that 17”,1 = Xn,1(V,;F) Uxn(V,) is a neighborhood of ¢,_1, and for ¢ € 817”,1,
I¢ = Cn1] > o' = min{oy, 01, 02}
Hence if we set D3 = D§ = max{C7,C}} + 1 then we have
Yoo1(k log L + D3) U (Yn_l(D’g) N By (i + Z)) C X

Similarly, by (5.10) and Proposition 4.6, applying a similar arguments as above, there exists a constant
0" > 0 independent on n € N such that

Yn_l(Dé) N Bg”('}/;b—l) C X,—1 and By (’y;_l) N HDé - U Xn,; (Yn).
JEN
Then Part (a) holds if we set?
(5.11) vp = min{¢’, ¢"}/20.

(b) If n—1,¢),_1 € Epn—1,;(D4, D3,10)N By, (Yn—1+7’) for some j in J,,—1U{*} and j’ in jn_lu{*, x—1},
then by the definitions of V* and v in Part (a), there exists a point , 1 € vy,_1 + 5’ with Im¢,_; =
Im ¢, ; + vo such that

&, (¢, 1) > 3Iméy(Cu1)/4 > 3IméE, () /4

(c) and (d). By (5.5), &, is not continuous on (Y—1 +Jp—1) Nint(X,_1). Let ¢ € (Ya_1 +Jn_1 U {, *—
1}) N X,,—1. Suppose that &, = X;E‘ is defined on Box((,v) NY,—1,; for some j € J,_1 U {x}. Note that
Xn is defined in I1,, (see (4.3) and (4.4)) and V¥ C II,,. The statements then follow by the definition of v
in (5.11). O

Sometimes &, is defined in a “half” box (for example, when the center of this box is on 7, _; +jn_1 u
{*,* — 1} and we consider the left or the right “half” part of this box). Parts (c) and (d) of Lemma 5.7
are very helpful when we need to control the distortion of &,. Part (a) plays a key role in estimating the
densities in the following two subsections and Part (b) will be used to locate the position of the boxes
when we go down the renormalization tower.

We will use the following estimations, which can be seen as an inverse version of Lemma 4.5 in some
sense.

9Part (a) holds if we define vy = min{¢’, ¢’}. Here we divide it by ‘20’ such that Part (c) also holds.
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Lemma 5.8. For any given ¢ € (0,1/10), there exist positive constants Dy = D4(e) > D3, Dy = D)(e) >
DY and M4 = M4( ) > 1 such that for all (,—1 € Z,,-1(D}, Ds, o) and ¢, = &,(Cno1) with n > 1, we
have 10

(a) IfImGu1 > 5- log— + Dy, then

16 e
Im¢, > ?Im Cn—1 and |X;L(Cn) - an| < T%;
(b) If D) <Im(p—1 < %bga% + Dy +2, then
4 M M4 3
Im¢, > gIan—1 and m I (Co)| < i < 5

Proof. (a) By Lemma 4.5(a), if Im{,, > Do/, > D} for some Dy > 0, there exists a constant My > 0
such that

(5.12) ‘Im(n - i(lmgn_l ~Log i)’ < Mo
« 27 an an
If Im ¢, < Do/cun, by Lemma 4. 5(b) there exists a constant My > 0 such that Im ¢, 1 < 5- log st M.
Therefore, if Im (,—1 > 5= log -1 + MY, then Im (,, > Dg/cw, > D} and (5 12) holds.
Suppose that Im Cn,l 2 = log oo + Mo + M. We denote Im (1 = 57 L Jog L o Ty with y > Mo + M.
Then by (5.12) we have Im ¢, > (y — Mp)/a,, and
Im ¢, > y — My

ImGu1 ~ any+ 5anlog - i'

Note that —an log —= > 0 is uniformly bounded from above. Since 0 < «a,, < 1/2, there exists a constant
My > 0 such that for all y > M/, then Im ¢, /Im ¢,,—1 > 16/9.

On the other hand, if Im Cn,l 2 5 log -1 + My + M}, we have Im (,, > M{,/c,,. By Proposition 4.6(a),

there exists a constant M; > 1 such that

‘X;(Cn) - anl S Mlane_%ranlm Cn-
If further Im ¢,y > 5= log i + My + M{ + 5= log(10M; /), then |x},(¢n) — an| < ane/10. Therefore,
Part (a) holds if we set Dy = max{M{/, Mo + M{ + 5= log(10M; /e)}.

(b) Without loss of generality, we assume that &, = —1 and (,—1 € Y,,—1,0 N E,—1(Dj, D4, 1p). The
arguments will be divided into two cases: (i) (n—1 € By, (Yn—1) N Yn_1,0; and (ii) -1 € Byy(Yn—1 +1) N
Yo_1,0.

Suppose that ¢,—1 € Byy(7n—1) N Yn—10. There exists ¢/,_; € y,—1 with Im/,_; = Im (,,—1 such that
G =&n(Gho1) = X:zl( n_1) € Y and ¢, = £ (Cu1) = ;1(@1—1)' Since Im ¢, | < i log i + Dy +2, by
Lemma 4.5(b), there exists a constant M,y = Mo(s) > 0 depending on Dy = Dy(e) such that

|Im(;,1 - ﬁ log(1 + ‘C:“LD’ < M].
If Im¢, |, > My + 1, then we have
2m(ln G,y — M) < log(1 +[¢,]) < 2r(Im ¢l + Vo).
By (5.1), ¢}, € vn is contained in U={( € C:1/2 < Re( < 3/2 and Im ¢ > —2}. Then we have
(5.13) O te?™™m e < Tm (), < Cre?™m e,

10The constant Dy > D3z will be determined first such that Part (a ) holds. Then we make the constant D} > D}
large enough such that Part (b) holds. If D} is chosen such that D) > - log an Tt Dy + 2 for some n € N, then =y =

271'
En(D), D4, 1p) = ( log + D4) and the statement of Part (b) is empty.

a+1
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where C = 2¢2™Mo_ Therefore, there exists a constant Cy = C1(g) > 0 such that if Im(/,_; > C{, then
Im¢), > ¥ Im¢],_,. By the definition of vy and Lemma 5.7(b), we have

4 4
(5.14) %Imgb <Im¢, < glm% and Im¢, > gIan—l-

According to Proposition 4.6(b), there exists a constant M; > 1 depending on Dy = Dy(e) such
that Mfl/\§n| < IxL (Gl < M1/|§n| By (5.13) and (5.14), this means that there exists a constant
M, = M4(€) > 1 such that

— i
e < )l < mme
Moreover, we assume that C} > 0 is large enough such that if Im (,_; > C}, then My/e>™ -1 < 3/5.
Therefore, if we set D} = max{Dj, My + 1,C}}, then Part (b) holds under the assumption that ¢,_; €
By (Yn-1) NYn_1,0.

For the second case (p—1 € By, (7n—1+ 1) NY,_1 0, the argument is completely similar to the first case
if we notice the fact (5.10). We omit the details. O

Definition 5.9 (Heights). For given ¢ € (0,1/10), let Dy = Dy4(e) and D} = Dj(e) be the positive
constants introduced in Lemma 5.8. For n € N we define a sequence of heights

N,

(5.15) h = (g) D
Recall that H, = {z € C:Imz > y} for y € R. For n € N we define
(516) Tn = Tn({f) = th N En(Dé, D4, Vo),

where Z,, is defined in (5.8). In particular, we have Ty = Zo (D), D4, 1) since hg = D). By Lemma 5.7(a)
we have T,, C =,, C X,, for all n € N. Further, by Lemma 5.8, we have

(5.17) &n(Th—1) C Hp,, where n > 1.

Note that D4 and D) are positive numbers depending on e while vy € (0,1/20] is a universal constant
(independent on €). The following lemma will be used to estimate the diameter of some compact sets when
we go up the renormalization tower.

Lemma 5.10. For given ¢ € (0,1/10), let (o € To = To(e) be a point such that (, = £,(Cn—1) € T,, for all
n > 1. Then exists a constant My = My(g) > 0 such that for all n > 1, we have
‘X/n(CnM < fin < 3/5,

where

. %an Zf hn—l > %logi +D4a

I Mafer i by < klog L+ Dy,
Proof. The case that h,_; > ilogi + Dy is immediate by Lemma 5.8(a). If h,—1 < Im(,—1 <
= log i + Dy, then by Lemma 5.8(b), we have

M, M,
/
‘Xn((n)l < e2mIm Cr1 = 2mhp_1

23
5

IfIm ¢, > i log i +Dy>hp_1 = (%)"‘1Dg, then by Lemma 5.8(a), we have

11 £62wD4 11 6271'D4
/ < Za, = 10 < 10 .
oGl < Toam < B

Qn

1
6277( 55 log
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For simplicity, without loss of generality we assume that D} > D4+ 1. Then %62“[)4 Jerhn—1 < g and

the result follows if we set My = max{M4, 15 Pa}. O

5.3. Boxes and almost rectangles. In order to use McMullen’s criterion to calculate the Hausdorff
dimension, we need first to construct a collection of sets satisfying the nesting conditions which is defined
in Section 3.

Let € € (0,1/10) be any given number. We will fix this number in this subsection. Let Dy = Dy(e)
and D} = Dj(e) be the constants introduced in Lemma 5.8. Recall that vy € (0,1/20] is the constant
introduced in Lemma 5.7. Without loss of generality, based on Proposition 5.3, in the following we assume
that the constant D) is large such that

(5.18) |arg(¢ — ¢') — w/2| < arctan(vy/5) < arctan(1/100),

where ¢, ¢’ € 7, (or 7,,) satisfy Im¢{ > Im ¢’ > D} — 1. According to Corollary 5.4, both -, NL, and
~n ML, are singletons if y > D), — 1. For n € N recall that J,, = a, + % is defined in (5.4). We define
two subsets in Y}, j, _1 as

— _ + _ p—
Yn,J,L—l =Y, —1and Yn,Jn—l =Yn -1 \Yn,Jn—l‘

Definition 5.11 (Almost rectangles, see Figure 4). For n € N, a topological quadrilateral R in Y,, N H,

with y = % log an1+1 + Dy is called an almost rectangle if

e R=1W, ;(a,b) with j € J, U{x}, where W, ; is defined in (5.9), b >a > Dy and 1 <b—a < 3; or

° R:{CeYn{EJyﬁl:aglmg“—%logairl < b}, where'b>a>Dyjand 1 <b—a<3.

A Tn ’Yn+j ’Yn+j+1 77,1_1 7';1
R R
y—i—

’YnJFJn*l ’7n+Jn

FIGURE 4. The sketch of two typical almost rectangles R, R’ and two typical nice half
boxes Q and @', where R and ) are contained in Y, ; for some j € J, R’ is contained in
YnJrJTﬁ1 while @’ is contained in Y, .. See also Figure 3.

Recall that Box(¢, ) is the square defined in (5.6) and J,, is the index set defined in (5.7).

M is necessary to consider these kinds of almost rectangles since sometimes we need to pack the image &,(R) when R
is an almost rectangle in Y, _1 «. See Lemma 5.5.
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Definition 5.12 (Nice half boxes, see Figure 4). For n € N, a topological quadrilateral @ in T, is called
a nice half boz if it can be written as (where r € [, 3/2]) either

e Q =Box(¢,r)NY, ;, where ¢ € v, + j" with j" € J, and j € J, N {j/ =1, 7'} or

o () =Box(¢,r)NY, ., where { €], or € v, + Jp; or

e @=Box((,r)NY, ; ;, where (€7, +J, —1or €, —1;0r

e Q=Box(¢,r)NY,", |, where ( €y, +Jyor ( €7, — 1.
In particular, some nice half boxes may also be almost rectangles.

If £,,41 = +1, then Box(¢,vp) N (7, + N) with ¢ € 4/, may be non-empty (g is small but the width of

Y, .« might be smaller). We will consider the images of the above two kinds of topological disks (almost
rectangles and nice half boxes) under &, and use these two types of topological disks to pack the images.

5.4. Distortion and densities I. In this subsection we use Koebe’s distortion theorem and the results
obtained in the last subsection to estimate the densities which are needed in the criterion for calculating
Hausdorff dimensions. The following classic distortion theorem can be found in [Pom75, Theorem 1.6].

Theorem 5.13 (Koebe’s Distortion Theorem). Let f : D — C be a univalent map satisfying f(0) = 0 and
f'(0) = 1. Then for each z € D, we have
(a) ﬁ <If(z) < ﬁ;’ and

1—|z 14|z
(b) el <1F(2)] < s

We will use the above distortion theorem to control the shape of the images of the almost rectangles
and nice half boxes. Let ¢ € (0,1/10) be any given number. Recall that T;, = T,,(¢) is the set defined in
(5.16).

Definition 5.14 (Packing and density). Let Q be a measurable bounded subset in Y,, with area(§2) > 0,
where n € N. We denote by
Pack(Q) = {V,:: 1 <i<b,},

where b, > 1 and each V,,; is an almost rectangle or a nice half box in © N7, which satisfies area(V},
Va,j) = 0 if ¢ # j. The set Pack(Q) is called a packing of 2. For simplicity, we denote area(Pack((2))
Zf;l area(V}, ;). Recall that the density of Pack(€2) in (2 is defined as
area(Pack(02))

area(Q))

inN

dens(Pack(2),Q) =

Lemma 5.15 (Admissible packing). There exists a universal constant 5 > 0 such that for any given
e € (0,1/10), for any almost rectangle or nice half box S C Tp—1 = Tp_1(g) with n > 1, there exists a
packing Pack(£,(S)) = {Vni: 1 <i <b,} of &u(S) in T,, = Ty (¢) such that the density satisfies'?
(5.19) dens(Pack(£,(S)), £n(S)) > 0.
Moreover, the packing Pack(&,(S)) = {Va,i 1 1 <i < by} can be chosen such that
(a) If S is a nice half box (but not an almost rectangle) with height 2r € [2vg, 3], Im ¢ > % log é + Dy
and Im&,(¢) > ilog L4 Dy forall ¢ € S, then for 1 < i < by, Vi,i is either an almost

Qn41

rectangle or a nice half box with height min{8r/3,3}; and
b) If S is an almost rectangle, Im > == log - + Dy and Im &, (¢) > == log —— + Dy for all € S,
27 Qn 27

An41

then all V, ;’s are almost rectangles, and
dens(Pack(&,,(9)),&n(S)) > 1 —¢/5.

12T his means that the packing Pack(&,(S)) contains at least one almost rectangle or one nice half box, which is necessary
for the nesting condition used in the next subsection.
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We call the packing Pack(&,(S)) in Lemma 5.15 an admissible packing. In generally, the construction
of admissible packings is not unique. Note that by the definition of packing, each V,,; of Pack(&,(S5)) is
contained in T},. Hence if Im { < % log L_ 4 Dy for some ¢ € Vi, then this V,, ; has height 2vy.

Qn41

Proof. Based on the locations of S and &,(S), the proof will be divided into several cases. Without loss of
generality, in the following we assume that €, = —1 and €, 11 = +1 since the arguments for the rest three
cases (¢, = —land e,41 = —1; 6, =+l and €,41 = —1; ¢, = +1 and £,4+1 = +1) are completely similar.

Case 1: S = Box((n—1,%) NY,_1; is a nice half box, where {,—1 € y,,—1 +j and j € J,,_1. Without
loss of generality, we assume that j = 0. According to Lemma 5.7(c), the map &, : S — Y, can be
extended to a univalent map gn,o : Box((p—1,20v9) — II,,. By Lemma 5.10 and Theorem 5.13(a), for any
¢ € 0Box(¢n—1, Vo), we have

~ ~ 1%} 5
5.20 . — oG > ———— S > 14515 > V2.
(5.20) |€2,0(¢) = &n,0(Cn—1)| (11v3/202 3 0 0
This means that &,(S) contains at least one nice half box Box((,,r) N Y, 0, where r > vy and ¢, =
€n,0(Cu—1) € Yn. From (5.17) we know that &,(S) is above the height h,,. According to Koebe’s distortion

theorem (see Theorem 5.13), &,(S) has bounded shape and there exist a universal constant 6, > 0 and a
packing Pack(&,,(S5)) in T, satisfying
dens(Pack(£,(S)), €n(S)) > &1 > 0.

The argument is the same if S = Box({,—1, %) N Y,—1,+ is a nice half box with (,,—1 € yp—1 + Jp—1 (or
S = Box(¢n-1,v0) N (Yn_1,« — 1) is a nice half box with {,—1 € yp—1+ Jn—1 — 1) since &, : S — Y, can be
also extended univalently to &, . : Box((,—1,201) — IL,.

Case 2: S = Box((n—1,%) N Y,—1,; is a nice half box, where (,—1 € -1 +j+ 1 and j € J,_1.
Without loss of generality, we assume that j = 0. Then &, : S — Y,, can be extended to a univalent map

En,o : Box(¢p—1,20vg) — II,, and we have the same estimation as (5.20), where ¢, = En,o(gn,l) € ~.. Let
¢l € Yn + Jp with Im ¢, = Im (,,. By (5.18) and (5.20), there exists a number g > 0 such that
o If Re (¢, — () > o, then &,(S) contains at least one nice half box Box((,,,r) NY,, ., where r > vg;
o If Re (¢, —(},) < o, then &,(S) contains at least one nice half box Box({/,,r) NY,, s, , where r > vy.

n?

According to Koebe’s distortion theorem, in both cases, &,(S) has bounded shape and there exist a
universal constant d2 > 0 and a packing Pack(&,(S)) in T;, satisfying

dens(Pack(£,(S)), £n(S)) > 62 > 0.
The argument is the same if S = Box((,—1,0) N Yannq is a nice half box with (,,_1 € v—1 + Jpn_1-

Case 3: S = Box((y—1,v0) N (Yn—1« —J) is a nice half box with {,—1 € (v,_; —J), where j =0,1. We
assume that j = 0. Then &, : S — Y,, can be extended to a univalent map En* : Box((n—1,2019) — 11,

and we have the same estimation as (5.20), where ¢, = Sny*(g‘n_l) € 7/, —1 (see Lemma 5.5(a)). Therefore,
&,(S) contains at least one nice half box Box({,,r) N Y, ; _1, where r > 1. According to Koebe’s

distortion theorem, &,(S) has bounded shape and there exist a universal constant 53 > 0 and a packing
Pack(&,(S)) in T, satisfying

dens(Pack(£,(S)), £, (S)) > 63 > 0.
The argument is the same if S = Box((,—1,0) N Yann_l is a nice half box with (,—1 € v/,_; — 1.

Decreasing the constants gl, 5~2 and gg if necessary, the estimations on the densities obtained above still
hold if we replace the nice half boxes by S = Box((,—1,7) N*,—1 with r € [, 3], where ‘x,_1’ denotes
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Ynﬁl’.]n_171 or Y, 1 ; with j € J,—1 U {*}. Indeed, in this case we have Im{ > % log i + D, for all
¢ € S and we still have bounded distortion by Lemma 5.7(d).

Case 4: S C Y, _;; is an almost rectangle, where j € J,,_;. By Lemma 5.7(d) and Koebe’s distortion
theorem, there exists a universal constant 64 > 0 and a packing Pack(&,(S)) in T;, satisfying

dens(Pack(£,(5)), £n(S)) > 64 > 0.

Similarly, the result still holds if S is an almost rectangle contained in Y;, 1 ., Yn__L Jo 410" Yn+_17 J
Hence the statement (5.19) holds if we set 6 = min{d; : 1 <i < 4}.

nfl_l.

(a) Let S be a nice half box (but not an almost rectangle) Box((,—1,7) N *,—1 with r € [vg, 3], where
‘p—1’ denotes Yf—LJn,l—l or Y,_1,; with j € J,—1 U {*}. Suppose that Im¢{ > %bgi + D, and
Imé&,(¢) > 5 log a:ﬂ + Dy for all ¢ € S. By Lemma 5.10, the elements in the packing Pack(&,(S)) can

be chosen such that they are almost rectangles or nice half boxes with the form Box((,, min{4r/3,3/2})Nx,,
where ¢, € v, + J, U {*,% — 1} and ‘x,,” denotes Yni",nf1 or Y, ; with j € J, U {x}.

(b) Let S be an almost rectangle in T}, such that Im ¢ > % log a—ln—i—D4 and Im &, (¢) > 5= log ——+Dy

N 27 Qpg1
for all ¢ € S. The map &, : S — II, can be extended to a univalent map &, : B,,(S) — II,, by Lemma
5.7(d). For any ¢,—1 € S and (, = &,(¢n—1), according to Lemma 5.8(a) we have

|arg &, (Go1)| = | — arg x;,(Ga)| < €/10.
Since each almost rectangle has height at least one, it follows that &,(S) can be packed by a family of
almost rectangles {V,,; : 1 <i <b,} in T,, such that dens(Pack(&,(S5)),&,(S)) > 1 —¢/5. O

5.5. Nesting conditions. Recall that h,, is defined in (5.15). Firstly we define
KO,l :FO,I :Yowoﬂ{CE(CIImC—hoé [0, 1}} and
ICO = ]:() = {KO,I}-
Then Ko 1 = Fp is an almost rectangle. In the following, we define two sequences (K,)5%, and (Fp,)22,
such that each F,, with n € N is a family of subsets (almost rectangles or nice half boxes) in the Fatou
coordinate plane of f,, (in particular each element of F,, is contained in T,,) and each K,, with n € N is a
family of subsets in the Fatou coordinate plane of fy by pulling back of the elements in F,,. In particular,

(Fn)Sey and (K,,)5%, are constructed by going down and going up the renormalization tower respectively,
such that (IC,,)52, satisfies the nesting condition (see Section 3).

By Lemma 5.15, the image &1 (Fp,1) can be packed by finitely many (at least one) almost rectangles and
some nice half boxes Pack(£1(Fp,1)) = F1 = {F1,;: 1 <i <} in Ty such that the packing is admissible.
We define

Ki={K1;=&"(Fi;) = X1,(c141)/2(F1i) 1 1 <i < Iy}
Then by the definition of packing we know that
o Kyi;C Koy foralll<i<l;and
o area(K;; NKy ;) =0forall 1 <4,j < with i # j.
We now construct (10,,)2, and (F,)52, inductively.
Definition of £,, and F,, with 0 < m < n — 1. Suppose that
K ={Km,;:1<i<ly,}, and
Fm ={Fmi=&mo-0&(Kpmy):1<i<ln},
where 0 < m <n — 1 with n > 2 have been defined such that
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e area(K,, ; N K, ;) =0 for all'® 1 <4, j <, with i £ j;

e Each F,; C T}, is an almost rectangle or a nice half box, where 1 < i <1,;

e For each F,,; € Fy, with 0 <m <n —2and 1 <i <, the image &,,+1(F, ;) has an admissible
packing Pack(§mi1(Fm,i)) = {F o 1 < k < [0} such that Frpq = {F))), 01 <4 <
I, 1 <k < lziﬁ ={Fms1:1<j <lmg1}, where

L
Imgr = > Ity
i=1
Definition of K, and F,, inductively. For each 1 <i <, and F,_1;, =&,-10---0& (Kp_1,) €
Fn—1, we consider the image &, (F,—_1,) and pack it by almost rectangles and nice half boxes. Then the
collection of all nice half boxes and almost rectangles in the union of &, (F,—1;) with 1 < i <[,_; will
form the set F,,. Finally the set K, can be obtained by going up the renormalization tower.
For each 1 <4 <,,_y, by Lemma 5.15, the image &, (F,—_1,;) can be packed by an admissible packing
Pack(&, (Fp—1,)) such that

Firmb = Pack(&n(Foo1,) = {F) " 1 1< k<17 M)

We define
Fo={Fy"1<i<l,q,1<k<")
:{F"J : 1 S] Sln}7

where

ln—1

D

i=1

For each F), ;, with n > 2 and 1 <1, <, there exists a unique sequence (ig, i1, -+ ,ip—1) With 1 <4, <

L, and 0 < m <n — 1 such that
Fm+17i1n+1 € PaCk(£m+1(Fm7inz))'

The inverse &, 1| 7,.,, is defined such that &} | (Fins1,insy) C Fini,, where 0 <m < n — 1. We define

m—+1
Kn=¢& oo (Fa)={& o0& (Fay) 1 1< 5 <l
Then K, and F,, = {F,,; =&, 0---0&(Ky, ;) : 1 < j <1l,} satisfy
e area(K, ; N K, ;) =0 forall 1 <i,j <lI, with i # j; and
e Each F, ; C T}, is an almost rectangle or a nice half box, where 1 <14 <,.

This finishes the definition of (F,,)5%, and (K,)5%,. By definition, the family (K,,)52, satisfies the
nesting condition. We will estimate the lower bound of the densities dens(/C,+1, K,,,;) in next subsection,
where 1 <17 <1,.

5.6. Distortion and densities II. In the following, for each n > 1 and 1 < i < [,,_4, for simplicity we
denote by

(521) dens(]-"n, gn (Fn—l,i)) = dens(Pack({n(Fn_Li)), gn(Fn—l,i))a

where Pack(,(Fp,—1,;)) is an admissible packing of &, (F,—1,) that has been chosen in last subsection. In
order to transfer the lower bound of dens(F,,, &, (F,,—1,:)) to that of dens(/C,,, K,,—1,;), we need to estimate
the distortion.

13Note that F,,,; may equal to Fp, ; if i # j.
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Let g be a univalent or anti-univalent map defined in a neighbourhood of a bounded set 2 in C. We
say that g has bounded distortion on  if there are constants ¢, C' > 0, such that for all different z and y
in , one has

(5.22) c<lg(x) —gy)l/lx —y| < C.

The quantity
L(glq) =inf {C/c: c and C satisfy (5.22)}

is the distortion of g on 2. For any univalent or anti-univalent functions ¢g; : 2; — C and g5 : Q5 — C
satisfying g1 (1) C o, it is straightforward to verify that the distortions of g; and go satisfy

(5.23) L(gile,) = L(g7 g 0)

and

(5.24) L((g2 © g1)le,) < L(g1la, ) L(g2]g, (1))

Let X be a measurable subset of €2. Then

(5.25) L(gla)~? dens(g(X), g(€2)) < dens(X, Q) < L(gla)” dens(g(X), g(€2)).

Lemma 5.16. There exists a universal constant M3 > 1 such that for alln > 1 and 1 < i < [,_1, the
distortion of G, =&p0--0&1 : Kp_1; — & (F_1,) satisfies

L(Gn|Kn—1,i) < Ms.

Proof. For 1 <14 <1,_q, each F,,_;, is an almost rectangle or a nice half box. By Lemma 5.7(c)(d) and
(5.18), the map &, : Fi,—1; — &, (Fph—1,;) can be extended to a univalent or anti-univalent map

gn : BVo (Fn—l,i) — gn(BVo (Fn—l,i)) C IlL,.

By the definition of nice half boxes and almost rectangles (each of them has height at most 3), there exists
a constant k > 0 independent on n and ¢ such that the conformal modulus satisfies

mod (B, (Fn-1,i) \ Frn-1,i) > K.

By Koebe’s distortion theorem, En and hence &, have uniform distortion on F;,_; ;. This means that there
exists a constant Mz > 0 which is independent on n and i such that L(&,|p,_,,) < Mj.

On the other hand, G;il = ({p-10---0 51)_1 : F—1,i — K, —1, can be extended to a univalent or
anti-univalent map

é,;il : Buo (Fn—l,i) — C.
Denote by I?n,l,i = é;il(Buo(an,i))- Then K,_1,; C I?n,l,i and

mOd(En—l,i \Kn—l,i) > K.
Still by Koebe’s distortion theorem, G, | have uniform distortion on F,,_; ;. This means that there exists
a constant M4 > 0 which is independent on n and i such that L(G;, ', |r, ,,) < Mj. Therefore, by (5.23)
and (5.24), G, has uniform distortion and L(Gy|k,_, ;) < M3, where M3 = M3zM3'. O

Forn > 1and 1 <3 <[,_1, we denote area(lC,, N K,,_1 ;) = Z;":l area(K, ; N K,_1,). The density of
Ky in Ky _1; is defined as
area(fC, N Ky—1,)

d ’Cnyan i) =
ens( 1) area(K,,—1,)

For any given ¢ € (0,1/10), recall that Dy = D4(g) > 0 is introduced in Lemma 5.8 and i, is the number
introduced in Lemma 5.10.



28 D. CHERAGHI, A. DEZOTTI, AND F. YANG

Corollary 5.17. There exist universal constants § € (0,1) and My > 1 such that for any given e €
(0,1/10), we have
(a) Foralln>1and all1 <i<l,_q,

dens(Ky, Kp—1,;) > 0.
In particular, if Im { > i log i + Dy and Im &, (¢) > % log a:ﬂ + Dy for all { € F,,_1,, then
dens(ICn, anl,i> > 1-— M4<€.
(b) For alln>1 and all 1 <i <l,, the diameter of K, ; satisfies

diam(K,, ;) < My H Tk
k=1

Proof. (a) For any n > 1 and 1 < <l,_1, we consider the univalent or anti-univalent map
Eno---0& t Ky — & (Foi)-

Note that dens(Fy,,&n(Fn—1,)) is defined in (5.21), where n > 1 and 1 <4 <{,,_7. By (5.25) and Lemmas
5.15 and 5.16, we have

dens(KCp, Kn—1,1) > M 2 dens(Fp, &n(Fpo1,)) > M3 23.
In particular, suppose that Im{ > %bg i + D4 and Im&,(¢) > %log a:“ + Dy for all ¢ € Fr_q ;.
Then by Lemma 5.15(b), Lemma 5.16 and (5.25), we have 4
dens(KC,,, Kpp—1,;) > 1 —dens(C\ Ky, K1) > 1 — MZe/5.
Then part (a) follows if we set § = M; 2 6 and M, = M2/5.

(b) Note that all F,,; = &, 0---0&(K,,;) C T, with 1 <4 <, are almost rectangles or nice half
boxes, whose diameters have uniform upper bound by definition. Then the statement of the upper bound
of the diameter of K, ; is an immediate corollary of Lemma 5.10, Lemma 5.16 and Koebe’s distortion
theorem. 0

6. THE HAUSDORFF DIMENSION OF THE POST-CRITICAL SETS

In this section we give the proof of Theorem A. This is based on the estimation of the diameters of
K, ; € K,, and the densities of dens(/Cp,41, Ky ;) established in last section, where n € Nand 1 <i <1,.

Proof of Theorem A. Recall that My and § are universal positive constants introduced in Corollary 5.17.
Let 0 < e < (1 —9)/(10M,) be any given number. Recall that Dy = Dy(e) and D) = Dj)(e) are the
positive constants introduced in Lemma 5.8, and h, = (3)"D} is the height defined in (5.15). We will
an1+1 + D, and divide the arguments into several cases.

By the construction of admissible packing (see Lemma 5.15(a)(b)), there exists an integer I > 1 such
that for any n > 1, if

compare h,, with % log

Bnyj—1 > 5= log —— 4Dy, forall0<j<I,

QAntj

then the packed elements in Fp 471 = {Fnqr-1,:1<i<l,17_1} are all almost rectangles.

Recall that My = Ms(e) > 0 is the constant introduced in Lemma 5.10. For k& > 1, there are following
cases:
Case 1: If h,_1 < % log aik + Dy, we define

W = Mg/e%h’“*1 and 0 = 4.

MHere we use C \ Kp to denote C \ U;-"Zl Kp,j.
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Case 2: If hyyj_1 > %logﬁ—ﬁ—Dzl for0<j<mwith0<m<IT—-1,hg o< %log L4+ Dy and
J

g —1
1 1
hiym < 5-log Fr— + Dy, we define

3
Hr45 = 5 and Jp4; =6, where 0 <j <m.

Case 3: If hyyj_1 > —;ﬂ log ak1+ +Dyfor0<j<m with!® I < m < 400 and hj_s < —;ﬂ log akl + Dy,
c4j —1
we define

5 if 0<j<I-—1,

1— Mg if I<j<m.

Then by Lemma 5.15(b) and Corollary 5.17(a), for all n > 1 and all 1 <i <1, _;, we have
dens(ICp,, Kp—1,i) > 6n.

By Corollary 5.17(b), for all n > 1 and all 1 < ¢ <, we have

3
/Jfk+j = g for 0 S] S m, and 6k+j = {

diam (K ;) < dp = My [ ] 1ts-
k=1

For n > 1, we consider the sequence

1 | log 6|

>l [og | — log My

Cn

We claim that
limsupec, < 4Mye.

n—oo

Note that lim, oo Y p_; [logpk| = +oo and |logdi| € [0,log(1/d)], where k& > 1. Indeed, we have
0 < § < 1— Mye by the choice of e. It is sufficient to prove that

~ ~ "_ log §
limsupc, <4Mye, where ¢, = M_
nee Zk:l | log i |

We consider the following two cases:

(i) Suppose that there exist only finitely many numbers 1 < k; < ky < -+ < kg such that hy,—1 <
% log i + Dy, where 1 < ¢ < ¢. This means that

ezﬂ—h‘kifl

:logT2 for 1<i</¢ and

’ IOg ks

5
’log,uk’ :log§ for k& {k;:1<i</{(}.
Then for all k& > kg + I, we have log §;, = —log(1 — Mye). This implies that

.~ log(1l — Mye)
lim ¢, = ————+—=>
n—00 log(3/5)
(ii) Suppose that there exists an infinite sequence 1 < k1 < ko < -+ < k¢ < --- such that hy,—1 <
%bg i + Dy, and hg_1 > % log aik + Dy for k & {k; : © > 1}. This means that

< 4M4€.

6271'}1,)%71

= log TQ for 2 1 and

| IOg Kk,

)
‘1oguk’ zlog§ for k¢ {k;:i>1}.

15Actually, m cannot be +oo if « is not of Herman type.
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For convenience we denote kg = 0. For any 5 > 1, we have

k;

1 1
W= D0 [lomdl < Tlow g (ky ki~ 1log oy and
(6.1) o
; 5 27Thkj—1
= 3 Mgl = (s ks~ )lon g +log
i=kj;_1

For any n > 1, there exists a unique £ = ¢(n) > 1 such that k;—1 < n < k. Similarly, we have

n

1
up = | Z |log ;] < Ilogg + (n—kj—1 —1) 10g1—71\445 and
i=ko_1+1
(6.2 :
5
vy = Z |log i) = (n — kj—1 — 1) log 3
i=ky_1+1
By (6.1) and (6.2), we have
n -1 1 1
Z|log5k| = Zuj + uyp Sﬁllogg +(n—€)logm
k=1 Jj=1
and
n -1 —1 627rhkj,1 5
Z|1oguk| = Zvj +uy = .ZlogT2 + (nfé)logg.
k=1 j=1 j=1
Since hy, — 400 as n — 0o, we have lim; o hy, 1 = +00. Therefore, we have
¢1log(1/6
im s B
e Zj:l log(e™"*5 =" /M)
Note that ¢ = {(n) — oo as n — oo. It follows that
- 0Ilog(1/é — 0)log(1 — Mye)™*
limsupe, < limsup RL(/) 4+ lim sup (n )nog( 1) < 4Mye.
n—oo n—oo Zk:l |10g /Jk:‘ n—oo Zk:l UOg /,I,k|

By Proposition 3.2, we have dimp ([),50Kn) > 2 — 4Mae. As e was arbitrary, we conclude that the

Hausdorff dimension of 1,5, Kn is equal to 2. According to [Chel9, Proposition 5.10], &5 (), Kn) is
contained in Ag U Ay, where Ag is the post-critical set of fy and Ag is the Siegel disk of f, centred at
the origin (if any). Note that the restriction of ®;' in an open neighbourhood of Ky ; is conformal (see
Section 4.4). It follows that if o« € HT 5 \ 4, then Ag = () and we have dimy (Ag) > dimpy ()~ Kn) = 2.

Suppose that « € HTny N (B \ ). Then every f,,, where n € N, has a Siegel disk A,, whose boundary
does not contain the unique critical point of f,,. For n € N, recall that Y,, is defined in (5.2). We denote

A, ={CeY,:®1(¢) € A,} and
yn = inf{Im¢: ¢ € En}

We claim that lim,,_, o, ¥y, = +00. Otherwise, by the property of uniform contraction between the adjacent
renormalization levels with respect to the hyperbolic metrics in the interiors of II,,’s (see [Chel9, Section
5] or Section 7.1), one can obtain that the critical point of fj is contained in the boundary of A, which
contradicts to the assumption that o € HTy is not of Herman type.
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After going down the renormalization tower by finitely many levels, say ng > 0, we can choose a nice
half box @y, which is contained in Y,,, (D}) such that @, is disjoint with the closure of A,, . Then one can
obtain the full Hausdorff dimension of Ag \ Ay by following the arguments as in the non-Brjuno case. O

7. DIMENSION OF THE HAIRS WITHOUT THE END POINTS

From Theorem 5.1 we know that the post-critical set Ay of each f € ZS, U{Qn} with o € HTx \ 2 is
a Cantor bouquet or a one-sided hairy circle. The set A\ A consists of uncountably many components
and each of them is a simple arc (which is called a hair), where Ay is the Siegel disk of f if a € B\ A
while Ay = {0} is the Cremer point if o & 2.

Let & be the set of one-sided endpoints (not contained in Ay) of the components of A¢\ A¢. Then &%
is totally disconnected. In this section we show that the hairs in Ay without end points have Hausdorff
dimension one if & € (J US)NHTy, where J and S are the classes of irrational numbers defined in
Section 2.

7.1. Decomposition of Fatou coordinate planes, orbits and itineraries. We continue using the
notations introduced in Sections 4.3 and 4.4. Let f € ZS, U{Q4} with « € HTy. For n > 0, let f,, be
the n-th near-parabolic renormalization of f and ®,, the Fatou coordinate defined on the petal P,.

In the following, we assume that

a € (jUS)ﬂHTN.
In particular, we have e, = —1 for all n € N (see Section 2). Let x, be the map defined in Section 4.4.

Then ,, is holomorphic for all n € N. Recall that S,, is the set defined in (4.2). For [ € N, similar to the
definition of II,, in (4.3), we define

knl
1 1 1
= =< < — — — = - ) .
Dy ={CeC 5 = Re(¢ < -~ k 5 and Im¢ > —2} U ]|:0| (P, (Sn) +7)

Recall that J, is the index set defined in (5.7). For a subset Z of C and § > 0, Bs(Z) = U.cz D(2,9) is
the d-neighborhood of Z.

Lemma 7.1. There exist constants Ny > 1/r1 +1/2, 1 € N and 69 > 0 such that if oo, < 1/Ny forn > 1,
then

Bsy(Xn,j(Zn)) C D1,
where Py = P C 1y with k =n —1,n and j € Jyo (e, 0<j < any—1).

Proof. Firstly we use the following result'® (see [AC18, Proposition 1.9] or [Chel9, Propositions 2.4 and
2.7]): There exists a constant k > 0 such that for all n > 1,

(7.1) sup {|Re¢ — Re('|: ¢, ¢ € xa(Il,)} <E.

Note that the sector S,, and its forward iterates f°F(S,), where 1 < k < b, = k, + [1/an] — k — 1,
are compactly contained in U,, and in f,(U,), where U, is the domain of definition of f,,. By the pre-
compactness of the class ZS, U {Q,} with « € HTy, there exists a constant ; > 0 independent of n
(actually independent of f € ZSo U {Qo}) such that the d;-neighborhood of these sets Bs, (UZ":O Ik (S,)
are contained in U, N f,(U,).

16We would like to mention that the definitions of yy, in this paper and in [AC18], [Chel9] are different. In this paper we
require that xn(1) = 1 but in the latter two literatures xn (1) = ko for some ko > 1.
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Taking the preimage of Bs, (UZ":O f3F(S,)) under the modified exponential map Exp(¢) = —5+€*™¢ and
considering the lift of 2, ; under x, with 0 <! < min{|1/a,,] — k—1,[1/(2as,)]}, it follows that there
exists a constant do > 0 independent of n such that

B52 (Xn(-@n,l)) C (Hilfl + Z) N (q)nfl(snfl) + Z),
where
I, , ={CeC:1/2<Re(<3/2andIm¢ > -2} =®,_1(Cr_1 UC’_)).

In order to prove this lemma it is sufficient to consider the ‘left’ and ‘right’ boundaries of the set
Ujejn,l Bs,(Xn,j(Pn,1)). According to [SY18, Corollary 5.2], there exist N{ > 1/r1 +1/2 and d3 € (0, d2]
such that

B, (xn(11)) C T,y
On the other hand, by (7.1), [IS06, Propositions 5.6 and 5.7], according to the pre-compactness of the

class S, U{Qq} with a € HT 5 and the continuous dependence of the ®; on f € ZS, U{Q,}, there exist
Ny > 1/r1 +1/2 and d4 € (0, 03] such that

sup {[Re¢ —Re('| : ¢,¢’ € B, (xa(Zna))} C [1/2,k+3/2).
Let N3 > 2 is large such that min{|1/an] — k—1,{1/(2an)]} > k+ 2 for a,, < 1/N}. Then the lemma
follows if we set N7 = max{N;, Na, N5}, | = k+ 2 and 6y = 4. O
In the following, we fix | = %+ 2 in Lemma 7.1 and denote by
D, = D, where n € N.
For n € N, let p,,(¢)|d(| be the hyperbolic metric in the interior of Z,,.

Lemma 7.2. There exists 0 < u < 1 such that for allm > 1, all j € jn,l and all { € Dy,

|X;L,j(<)| Pn—1 (Xn’j (C)) < ,upn(c>‘
For the proof of Lemma 7.2, one may refer to [Chel9, Lemma 5.5] and [AC18, Lemma 3.8].

Recall that Y, = Y, (D)) is the set defined in (5.2). Let A,, be the post-critical set of f,, and A,, the

Siegel disk (if any, otherwise A,, is seen as the empty set) of f,. There exists a unique set A, UA,, C
®,1(A, NA,) N 2, such that

¢;1<An> = An, q)r_Ll(An) = Ap;
O 1A, = A, and 1 A, — A, are injective;
(ApUA,)N{CeC:Im( > DL} = (A, UA,) NY,(DY); and

A, UA, UY, (D)) is connected.

The sets /~\n and ﬁn, respectively, are called the post-critical set and the Siegel disk (maybe empty) in the
Fatou coordinate plane of f,. Note that A, is open (if A,, # 0) but A, is not (indeed partial boundary
of ﬁn is contained in ﬁn)

Since most of the time we work in the Fatou coordinate planes, in this section we identify the post-critical
set and the Siegel disk in the dynamical planes and the Fatou coordinate planes if there is no confusion.
That means, we still use A,, and A,,, respectively, to denote the sets 7\" and En in the Fatou coordinate
planes. When « is not of Herman then'” A,, \ A, consists of uncountably many hairs and each of these
hairs has an endpoint outside A,,. The set of these endpoints is still denoted by &,.

71y Fatou coordinate planes, if A, = 0, then A, \Zn = A,,. This is different from the notation in the dynamical planes
where Ap, \ A, = Ay \ {0}
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Recall that 7,, 7/, are defined in Section 5.1 and the sets Y,, = Y,,(Dj), Y, ; with j € Z, Y, «, Y5 o are
defined in Section 5.2. Similar to those notations, if f,, has a Siegel disk, we define

| The connected component of
Apo = { C\ {7 +1,0A,}in A, } U (yn NAR).

For j € Z, we define A, ; = A, o + j. Moreover, we define

| The connected component of
B = { C\ {7 + Jns 7, 04} in A, } U (v + Jn) N Ay)

and
_ | The connected component of ,
e { C\ {7, — 1,7,,0A,} in A, } U((vh =1 NA).

Accordingly, we define the ‘lower’ boundary of A, o by
OAno=0An0\ ((’yn NAL)U (yn + 1))
For j € Z, we define 0;A,, ; = O1A, 0 + j. Moreover, we define

OB = 080\ ((( + Ja) N A,) UL ) and
alAn,o = aAn,Q \ (((7;1 - 1) N An) U ’Y’I/'L)

For n € N, recall that J,, is the index set defined in (5.4). For j € J,, U {x,0}, we use A,, ; to denote the
component of A,, \ A,, attaching at 0;Ay,. ;. In this case, the set A, UA,, can be decomposed as a disjoint
union:

(7.2) MUAL = | (A udny).
JEILU{x}

If f, has no Siegel disk, then the sets related to A,, are seen to be empty sets. In this case we only
need to consider the sets related to A,,. For n € N and j € J,, U {*,¢}, we define

(£ has a non-empty subset }

A, = is fA . L
" {ﬁ s & component of An | pich is contained in Y,

In this case, the set A,, can be decomposed as disjoint union:
A, = U Anj.
JEILU{*}

For simplicity, we often use the decomposition (7.2) for A, UA,, even when A,, = . Forn > 1 and j € Z,
we have A,,_1 j = Xn,;j(Ay,). For simplicity, for n > 1 and j € Z we also denote

An—l,j = Xn,](An)
Since a,, € J US, x4, is holomorphic for all n € N. Obviously, by Lemma 5.5(a) we have

Momr = (U 205 (40)) U, A\ Ano) € 1 Xas(An) and

J€In—1 G€In_1

Ap_qg = ( U Xn,j(An)) U Xn,J, (An \ An,o) C U Xn,j(An)'

j€In-1 jejn71

(7.3)
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In Section 5.2, the inverse &, of X, ; is only defined on X,_;1 (see (5.5)). However, partial of the
post-critical set may be out of X, _1. In order to study the dimension of the hairs, we need to extend the
definition of &,. By Lemma 7.1, for n > 1 we have
(7.4) By (An-1U A1) € Bay (| xng(20) € Zucs.

jejn—l

Recall the decomposition of A, UA,, in (7.2).

Definition 7.3 (Extension of the definition of £,,). We define &, : A,,_1 UA,,_1 = A, UA,, as
(7.5) £n(Q) = X7 5(0),
where j € jn_l is the unique integer such that'® ¢ € A1 UAL 1.

Let Y, ; =Y, ;(D5) with j € Z be the set defined in (5.3). For a subset X C C, we define

(7.6) &t X' =X (Yaor N xni(Zn)) = Zn

JEL
still as (7.5), where j € Z is the unique integer such that ( € X NY,_; ;. In general &, may not be defined
on whole X. But we use &,(X) to denote the restriction &,(X’) for simplicity.

Definition 7.4 (Orbit and itinerary). For {y € Ag U Ag, the orbit of {y down the renormalization tower,
denoted by ((n)n>0, is defined inductively as

Cn = gn(Cn71)7 where n > 1.

The itinerary of (o down the renormalization tower is the sequence of integers s = (s,),>1 such that for
alln > 1,

Cnfl = Xn,sn (Cn)
where s,, € jn_l. In the rest of this section, for {y € Ag U Ag we use
(Cn)nGN and s= (Sn)nZh

respectively, to denote the orbit and the itinerary of (, down the renormalization tower.
Let o € Ao U Ap with itinerary s = (s, )n>1. We define the following notations, for 0 < m <n,

Xn—m,s = Xm+1,8,;m41 """ O Xn,s,

with the convention that if m = n, then x,_», s is the identity map. For any 0 < m < n, we denote by

Emoan =& 0 0&mt1

with the convention that &, ., is the identity.
Corollary 7.5. Let {y € AgUAq with itinerary s. Assume that there exist a constant M > 0, a subsequence
(nj)j>0 of N and two subsequences of points (u;);>0 and (w;);>o such that

(i) for all j >0, [Cn;,us] C Dn; and |y — uj| < M;

(11) fOT’ all] >0, wj = an_>07s(’LLj) € @0.
Then w; converges to (y as j — 00.
Proof. Note that the hyperbolic distance between ¢,,; and u; is uniformly bounded above (i.e., independent

of j). Then w; — (o (j — o0) is an immediate consequence of Lemma 7.2 since the hyperbolic distance
between w; and (p in %y tends to zero. O

181fj =Jnh_1€E jn—h then ¢ € An—l,* U An—l,* C An—l,Jn,l U An_lu]n—l'
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Recall that Box((, ) is the square with center ( € C and side length 2r defined in (5.6). Let dp > 0 be
the constant introduced in Lemma 7.1. Then there exists an integer my > 2 such that

1k
mg ~ 4
and for all n € N,

Aua,c | Qn

Qn€Qn
where Q,, is a collection of boxes which is defined as
u+iv 1
(7.7) Q, = {Qn = Box ( o 2m0> C Bsyr2(Ay UA,) tu,v € N} .

By (7.4), each @, € Q,, is contained %, and x, is a univalent function in Bj, /2(Q,). For each n € N, we
use IC,, to denote the following set

€, = {x,

Kn = Xn%O,s(Qn) for some QnNE Qn7
S:(Slv"'58n7"')With5n€Jn—l .

Let (o € Ag U Ag and s = (s, )n>1 be the itinerary of (o down the renormalization tower. By the uniform
contraction in Corollary 7.5, (o can be written as the intersection (1, o Kn, where K, = Xn—0,s(Qn) € Ky
and diam K,, — 0 as n — oo.

Note that for K,, € K,, the image &y_n(K,) = &, 0+ 0 & (K,,) is well-defined. However, &y, (Ky)
may not be a box since &, is not continuous on y,_1 + Z, where n > 1.

7.2. A necessary condition for being on a hair. For (5 € AgU Ay, recall that ({,)nen is the sequence
corresponding to the orbit of (y down the renormalization tower.

Lemma 7.6. Let o € Ag U Aq. If there exists a constant Dy > 0 such that

D,
(7.8) Im¢, > 070 forall m >0,

n

then (o € Ag.

Proof. Let Dy > 0 be any given constant such that (7.8) holds. We claim that there exists a constant
M = M(Dy) > 0 such that if ¢} € Ag U Aq satisfies Im () > Im (y + M, then Im ¢}, > Im ¢, + M for all
n > 0, where ({/,)nen is the sequence corresponding to the orbit of ¢ down the renormalization tower.

According to definition of 2, (i.e., the width of 2,, and II,, are comparable to 1/«,), if { € %, and
Im¢ € [—2, Dg/ay], then there exists a constant D, > 0, which is independent on n, such that

1 1
(7.9) log(1+|) <log — +Df and log (1+’c—a—

n

1
)gloga——i—Dé.

n

Let My = My(Do) > 0 and MD = MO(DO) > 0 be the constants introduced in Lemma 4.5. We fix some
D, ~
(710) MZmax{QO—FMO—FMO, 4M0}
T

Suppose that Im {) > (o + M. If Im (] < Dy/a1, then from Lemma 4.5(b) and (7.9) we have
¢y < = log - + 20 4 37,
21 o 2T
On the other hand, by Lemma 4.5(a) we have

1 1
Im(y > — log — + Dy — M.
2 aq
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This is a contradiction by the choice of M and the assumption that Im ¢} > Im (y + M. Therefore we have
Im{{ > Dg/a;. Applying Lemma 4.5(a) and (7.10) we have

1 1 1 M,
¢ > —Im(j— -——log — — —
fo%1 2mon oq oq
1 1 1 M, M — 2M
> <Img0— 10g+0>+0
aq 2ma g a1 (o31
>Im( + M.

In particular, with the choice of M in (7.10), it follows by induction that Im ¢}, > Im (,, + M for all n > 0.

It is easy to see that for all n > 0, the interior of the set Q, = {¢ € &, : Im({ > (,, + M} is contained
in A,. Indeed, f, can be iterated infinitely many times in ®,,1(£2,) for all n € N. By the definition
of Z,, there exist a constant C' > 0 and a sequence of real numbers (z,)nen with |z,| < C such that
Uy = Cp +1IM + z, € 9, for all n € N. By following the same itinerary as (, and pulling it upward to
the level 0 of the renormalization tower, we obtain a point w, € Zy N Aq for each n € N. It follows from
Corollary 7.5 that w,, — (y as n — o0o. Therefore we have (y € Ay. O

Lemma 7.6 applies in particular for any o € J U S and it implies in particular that if (5 € Ag \ Ay,
then there is an infinite subsequence ((y,)jen such that Im¢,; < Dg/a,; for any given Dy > 0. Now we
show that this statement can be improved if we make the full use of the assumption that o € J U S.

Lemma 7.7. Let « € JUS and suppose (g € Ao\ Ag. For any Dy > 0, there exists n, > 0 such that

D
(7.11) Im¢, < a—o for all n > n,.

n

Proof. Let Dy > 0 be any given number. We first claim that if « € J U S then there exists ng > 0 such
that for all n > ng, then

(7.12) — log

where My = My(Dg) > 0 is the constant introduced in Lemma 4.5. Indeed a direct calculation shows that
if « € J, then applying log(1 — z) > —2z for 0 < z < 1/2 we have

1 1 S 1 ) 1 S 1 1 1 1
— lo —log | apt1 — =) > —logani1 — —
2 gan_H 27 & o 2 8 dnt1 2T ap41
. Uy, log a, 1> Uy, log a, 1
2w dray,

By the definition of J, we have u, loga,, — +00 as n — oco. There exists a number nj > 0 such that if
n > nj, then the inequality (7.12) holds.

Let aw € S. Suppose that |n,| < C’ for all n € N and e’ > 2C’ for all n > ny, where (9, )nen and
(vn)nen are the sequences introduced in the definition of S. Then for all n > ny we have

1 1 1 1 1 1 o a
—lo 2—10gan+1———>—log(e”"+77n)—1
2 Q1 T 21 ap41 2T
!
> o Oy
T dray, T

Since v, = +00 as n — 00, there exists ny > ny such that for all n > n}, then (7.12) holds. Therefore, if
n > ng = max{nj,n,}, for all @« € JUS, we have (7.12).

By Lemma 7.6, there exists n, > ng + 1 such that Im¢,, < Dg/a,,. In the following we show that if
(n satisfies (7.11) for some n > n,, then (,41 also satisfies (7.11). Indeed otherwise this would imply that
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Im 41 > Do/an41. However, according to Lemma 4.5(a) and (7.12) we have

D
+ Do — My > =2,

1
— My > —log
2 Ot Qp

1
Im G, > apq1Im Qo + 5= log
2T Qp41

This is a contradiction and the lemma follows. O

Definition 7.8. Let 0 < k < 1. For n > 0, a point { € 2, is said to be above the 1/k-parabola (in 2, ) if

it satisfies the following:

L 1 1/k

Im¢ > |Re¢|"" or Im¢ > |— — Re(
o

n

The set of points above the 1/k-parabola in Z,, will be denoted by ;.

When there is no ambiguity we simply use the terminology “above the parabola” as a shorthand for
“above the 1/k-parabola in 2,,”. Similarly we will say that a point ¢ € 2, is below the parabola if it is
not above the parabola.

Definition 7.9 (Accessible from —ico). Let n > 0, a point ¢ € A,, is said to be accessible from —ioo (or
just accessible) if it is accessible from 1 — 2i inside 2, \ A,,.

By the definition of Cantor bouquet and one-sided hairy circle (see [Chel7] and Theorem 5.1), if o €
HTy \ 2, then each connected component (a hair) of A, \ A, is accumulated by a sequence of other
connected components (a sequence of hairs) in A, \ A,,. This means that the set of accessible points of
A,, is contained in &, which is the set of one-sided endpoints (not including the endpoints in A,,) of the
components of A, \ A,,.

Lemma 7.10. Let a € JUS and suppose (o € Ao\ Ag. Assume that there is 0 < k < 1 and a subsequence
(Cn;)j of (Ca)n such that G, is below the 1/k-parabola in Dy, for all j > 0. Then (o is accessible from
—ico. In particular, (o € &.

Proof. Let (s € Ao\ Ag and Dy > 0 be any given number. It follows from Lemma 7.7 that there exists
ny = n.(Do) € N such that Im (,, < Dg/a, for all n > n,. Without loss of generality we assume that
ng > nyk + 2 and for all j > 0, we have

(7.13) Im¢,, < |ReCy,[Y" and Im(,, < |1/, — Re(y, |/

By the definition of %, there exist a constant C' > 0 and a sequence of real numbers (z,)neny With
|z, < C such that for all n € N,
2, NNN[1,1/(2a,)] if Re(n, <1/(2ap),

Re Gy + 25 € { Pn ONN(1/(20m), +00) if Re(p > 1/(20m).

Let s = (sp)n>1 be the itinerary of {y down the renormalization tower. For all j > 0, we define

(7.14) uj =Re(n, +on;, € Zon NN and ) = X, s, (u5)-

J

Since Im ¢,,; < Do/, by Lemma 4.5(b) we have

1
‘Im Cny—1 — Py min { log (1 + (¢, ]) ,log (1 +
T

Cn; — ai’)}‘ < M() and

1 1 ~
’Imu;— %min{log(l—l—uj),log (1—1— u; — a’)}‘ < My,
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where M@ = Mg (Do) > 0 is the constant determined by Lemma 4.5. Without loss of generality and for
simplifying notations, we assume that Re(,, < 1/(2ay,;) for all j > 0 since the arguments for Re (,, >
1/(2a,,) are completely similar. Under this assumption, we have

1 —~
ﬂlog (1 + |<nJ|) — Mo < Im(p,—1

(7.15) . B ) N
< 5105 (1+[Go, ) + Mo < 5-log (3+2(ReGy,) /™) + My
T 27
and
QL log (1 +u;) + My > Im
(7.16) T

> % log (1 +uj) — M, > % log (1 + max{Re(,, — C,0}) — Mo.
Then by (7.13), (7.15) and (7.16), there exist two constants x{, > 1 and Cy = Cy(z(, k, C) > 0 such that
e if Re Gy, < g or ImG,, < xp, then
(7.17) |Cn; — | < Co.
e if Re(y, > x4 and Im (,,; > 2y, then

(7.18) i log (Re ;) < Imufy < Im¢,, 1 < min {% log (Re Cn, ), Do }

77,]‘71

Let uf = anl,snr1(ug‘)- Note that there exists a constant C7 > 0 such that [Re(,,—1 — Reu)| < C]
and |Re(n;—2 — Reuf| < Cf. If Re(n; > x5 and Im G, > xg, by (7.18) and Lemma 4.5(b), there exists a
constant C; > 0 such that
(719) |<n]._2 - ’U,;/| § Cl.

According to the topological structure of A, (see Theorem 5.1), for the given itinerary s = (s, )n>1
there exists a unique accessible point (s € Ag which can be written as (s = limy, o0 X1,6; © -+ * © Xn,s,, (1)-
For all j > 0 we denote w;j = X1,5, ©** 0 Xn;,s,, (u;). According to Corollary 7.5, (7.17) and (7.19), we
have w; — (o as j — co. By the definition of u; in (7.14), it follows that [Xn,+1,s,,,,, (1) — u;| < C. Still
by Corollary 7.5, we have (s = limj_o0 X1,5, © -+ © Xnj,sn; © an+1,snj+1(1) = (y. This implies that (; is
accessible. O

7.3. Upper bounds for the dimension of the hairs. Let D), > 1 be the constant introduced in
Corollary 5.4 and &y > 0 be the constant in Lemma 7.1. For any x € (0,1), Dg > 1 and C > 0, we define

I3, (Do, C) = Bsy j2(An UAR) N2y N{¢C € C: C <Im( < Do/oy, + 1}.
Recall that the set Q,, is defined in (7.7). For a box Q,,_1 € Q,_1, let'®
(7.20) Q1) = sup{ImC : € € £,(Qu_1)}-
Lemma 7.11. There exists a constant C > Dj such that for any k € (0,1) and Do > 1, then there ewist
two constants My = Ms(k, Do) > 1 and Ms = Ms(k, Do) > 1 such that

(a) If ¢ € Dy and?®® £,(C) € TI%(Dy, C), then the imaginary part of &, increases like an exponential
map:
Im &, (¢) > e*™™¢ /My > e™¢.

19The map &, may cannot be defined at some points in Q,—1. But for simplify we use &,(Qn—1) to denote the image of
&n on the points that can be defined. See (7.6).
20By the definition of J and S, there exists an integer n’ such that if n > n’ then C < Do/ap + 1.
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(b) Let Qn—1 € Qn-1 and Q,, € @y, where Qy mgn(anl) # 0 and Q, C HZ(DOaC) For any ¢ € Qy,
we have M
5

1 /

Proof. (a) The proof is similar to Lemma 5.8(b). Let x € (0,1) and Dy > 1. If { € I1%(Dg, 1), then we
have

1 Im ¢

2= min{(CL ¢~ Lanl} =

Let (-1 € Pn—1 and suppose that ¢, = &,(¢n—1) € I1%(Dg, 1). Without loss of generality, we assume that
Re(, < 1/(2ay,) since the proof of the case Re(, > 1/(2a,) is completely similar. If Im (,, < Do/av, + 1,
by Lemma 4.5(b), there exists a constant My > 0 depending on Dy such that

Im oy — o= log(1 + [¢al)| < Mo.

<

(7.21)

IfIm¢,_ 1 > ]T/fo + 1, then we have
2m(Im (p_y — Mo) < log(1 + |¢nl) < 27(Im Gy + Mo).
Since ¢, € I1%(Dog, 1), by (7.21) we have
C;leQWIan,l S Im Cn S |<n| S CleQWIan,l,

where C7 = 2¢2™Mo | et Cs > 1 such that for all y > Cy, then €27 /C; > e¥. Then Part (a) holds if we
set Ms = Cy and C = max{My + 1,C5}.

(b) Let ¢,—1 and (, as in Part (a). According to Proposition 4.6(b), there exists a constant M, > 1
depending on Dy such that M /|C.] < [X4(Ca)| < Mi/|Cy|. This means that

(Clﬁl)il , 01]\71
e2mIm ¢y 1 < |Xn(Cn)| < e2mIm Gy’

Let ¢/, € D1 ND(n_1,v/2/myg), where 1/my is the side length of Q,,_;. Suppose that ¢, = £,(¢/,_;) €
1% (Dg, 1) and Re (], < 1/(2ay,). Similar to the arguments above, we have

51—1627r1mcn,1 S Im C;z S |<-;l| § 5«1627r1m§n,1’
where 5’1 — 92¢27Mo+1 | The proof is complete if we set M5 = C’1C~'1M162”. O
Recall that the sets A, A, ; with j € J,, U {*,0} are defined in Section 7.1.

Definition 7.12. For n € N, let H,, denote the points in the hairs (not including end points) of the
post-critical points at level n, i.e.,

H,=MA,\ (& UA,).
By (7.3), for all n > 1 we have

Hn—l = ( U Xn,J(Hn)) UXn,J,,(Hn\Hn,o) C U Xn,j(Hn)7
€l j€Tnos

where H,, , is the hair contained in A, .

Proof of Theorem C. Let 0 < € < 1 be any given number. Our aim is to show that the Hausdorff dimension
of HyN Qo is at most 1 + ¢ for any square box Qg in Qg, where Q,, with n € N is defined in (7.7). We
denote by k = ¢/2.

Let C > 0 be the constant introduced in Lemma 7.11. Let Dy > C be any given number and Z)° the
set of points above the 1/k-parabola in %,,. As stated in Section 7.1, each (s € Ag can be written as the
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intersection [, Ky for some sequence K, = Xn—0,s(@Qn) € K,, where s is the itinerary of (o, Qn € Q,
and diam K,, — 0 as n — oo.

If ¢ € Hy, then for any given number C’ > 0 there exists an integer m € N such that if n > m, then
Im &y, (¢) > C’. Otherwise, ¢ will be an end point (by following an argument as in the proof of Lemma
7.10). For k > 1, let Vi be the collection of all points (o € Ag U Ag satisfying {(o} = K,, for some
sequence K, = xn—0,s(Qn) € K, such that for all n > k, then

(a) Qn C Bs,/2(2)) N Dp; and
(b) C <Im( < Dy/ay, + 1 for all ¢ € Qp.

By Lemmas 7.7 and 7.10, we have

neN

QomH()C UVk

kEN
Therefore, it is sufficient to show that dimpy (Vi) <1+ ¢ for any k € N.

Now we fix k € N. For every n > k, let A, be the family of sets K,, = xn—0,s(Qn) € K, satisfying
the above conditions (a) and (b). Then each A, is a covering of Vi. Since x, : @, — PDp_1 is strictly
contraction (see Section 7.1) it follows that

max diam K,, — 0 as n — oo.
K,cA,

Therefore, it is sufficient to prove that there exists a constant M > 0 such that for all n large enough,

(7.22) > (diam K,)'** < M.
KneA,
Let K, € A,. We use G(K,,) to denote the collection of all K, ; € A,11 which have non-empty

intersection with K,,. In order to prove (7.22) it is sufficient to prove that there exists ng > k such that
for all n > ng and all K,, € A,

(7.23) > (dlam Kpyq)'tE < (diam K,) '
Kn11€G(Kn)
Let n > k and K,, = xn—0,s(@n) € A,. For 0 <i <n—1, we use Q; to denote the box in Q; which has
nonempty intersection with x,—;(Qy). For 0 <i <mn — 1, we denote by I;11 = I(£+1(Q;)). See (7.20).
By the definition of Q,,, the dy/2-neighborhood of each box in Q,, is contained in %,,. Therefore, by
Koebe’s distortion theorem, the distortion of y;_o is universally bounded on Q; € Q;. There exists a
constant C7 > 1 such that for any ¢ € @,,, we have

(7.24) Cr Xm0 (O < diam Koy < Ci[x50(C)]-
By Lemma 7.11(b) and (7.24), we have

1

1 1 1 1T
diam K, > —-1x; == i (Xn—si = § Sy
fam Ky > [0 (O] = & gmx SN2 & 1:I VAT,

On the other hand, any K,41 € G(K,) can be written as K11 = Xn+150,s(@nt+1) € Any1, where
Qni1N&ny1(Qy) # 0. For any ¢ € Qp41, still by Lemma 7.11(b) and (7.24) we have

n+1 n+1
. M,
diam K41 < Chlxpp150(0)] = Ch H IX; (Xn+1-(Q))] < C1 H 1_5-
i=1 i=1 '

Note that the number of sets K, 11 in G(K,,), which is equal to the number of @, 1 satisfying Qn4+1 N
£ni1(Qn) # 0, is smaller than 2m3 I}Lii/27 where 1/my is the side length of the box in Q,11. Therefore,
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we have
n 1+e ~
. 1+e 9 l4e/2 tM; Cn .. 14e
Z (dlam Kn+1) <2mgl, 4 C4 H A < 7z (dlam Kn) .
Kn11€G(Ky) i=1 ° In+1

where én = 2m3 Cf(Hs) Mé2n+1)(1+6). By Lemma 7.11(a), I,,+1 increases exponentially fast. For large
n we have IZfl > (). This means that (7.23) holds for large n and we have dimgy (V) < 1 + ¢ for any

k € N. Therefore, we have dimy (Hy) = 1. Note that we have proved that dimg (Ag \ Ag) = 2 in Theorem
A. Tt follows that dimy(&p) = 2. O
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