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Abstract. In this paper we study the geometry of the attractors of holomorphic maps with an irrationally

indifferent fixed point. We prove that for an open set of such holomorphic systems, the local attractor
at the fixed point has Hausdorff dimension two, provided the asymptotic rotation at the fixed point is of

sufficiently high type and does not belong to Herman numbers. As an immediate corollary, the Hausdorff

dimension of the Julia set of any such rational map with a Cremer fixed point is equal to two. Moreover,
we show that for a class of asymptotic rotation numbers, the attractor satisfies Karpińska’s dimension

paradox. That is, the the set of end points of the attractor has dimension two, but without those end
points, the dimension drops to one.

1. Introduction

Let f be a holomorphic map with an irrationally indifferent fixed point at 0, that is,

f(z) = e2πiαz +O(z2)

is defined near 0, and α ∈ R \ Q. The dynamics of such systems have been extensively studied for more
than a century, with innovative methods often addressing particular arithmetic classes of the rotation α,
see for instance [Cre38, Sie42, Brj71, Her, Yoc95, PM97a, McM98, GS03, PZ04], and the references therein.

By classic works of Fatou and Mañé [Fat19, Mañ93], if f is a rational map of the Riemann sphere of
the above form, there is a recurrent critical point of f which plays a prominent role in the local dynamics
of f near 0. More precisely, if f is not topologically conjugate to a linear map near 0, then the orbit of a
recurrent critical point accumulates on 0, and if f is topologically conjugate to a linear map near 0, then
the orbit of a recurrent critical point accumulates on the boundary of the maximal linearisation domain
of f at 0. The closure of the orbit of that critical point is part of the post-critical set of the globally
defined map f . The key step towards explaining the global dynamics of f is to understand the topology
and geometry of the post-critical set of f .

Major progress in explaining the dynamics near an irrationally indifferent fixed point is being made
recently using the near-parabolic renormalisation scheme of Inou and Shishikura [IS06]; [BC12, Che13,
CC15, Che17, AC18, SY18, Che19]. This applies to an infinite dimensional class F of maps of the above
form, provided the rotation number α is of sufficiently high type. That is, α belongs to the class of irrational
numbers

(1.1) HTN = {a−1 + ε0/(a0 + ε1/(a1 + ε2/(a2 + . . . ))) | ai ≥ N, εi = ±1} ,
for a sufficiently large integer N ≥ 1. In particular, thanks to this renormalisation scheme, we have gained
an understanding of the dynamics of some simple looking non-linearisable maps, such as the quadratic
polynomials

Pα(z) := e2πiαz + z2 : C→ C
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for the first time. Elements of the class F have a preferred critical point, which are recurrent and interact
with the fixed point at 0. Let Λ(f) denote the closure of the orbit of that critical point.

A complete description of the topological structure of Λ(f) is recently established in [Che17], for f ∈ F
and α ∈ HTN . There are three possibilities for the topology of Λ(f), depending on whether α belongs to
the set of Herman numbers H and Brjuno numbers B.1 More precisely, one of the following holds:

(i) α ∈H , and Λ(f) is a Jordan curve,
(ii) α ∈ B \H , and Λ(f) is a one-sided hairy Jordan curve,

(iii) α /∈ B, and Λ(f) is a Cantor bouquet.

Roughly speaking, in case (iii) Λ(f) consists of a collection of Jordan arcs (hairs) growing out of a
single point with the additional property that each hair is approximated from both sides by hairs in Λ(f).
Similarly, in case (ii) Λ(f) consists of a collection of Jordan arcs growing out of a Jordan curve, with the
addition property that each arc is approximated from both sides by arcs in Λ(f). See Section 5.1 for the
precise definition of these objects. In cases (i) and (ii), the region enclosed by the Jordan curve is the
maximal domain on which f is linearisable, that is, the Siegel disk of f . Evidently, in case (iii) f is not
linearisable at 0.

In this paper we explain a peculiar aspect of the geometry of the set Λ(f) in cases (ii) and (iii).

Theorem A. There is N ≥ 1 such that for every α ∈ HTN \H and every f ∈ F with f ′(0) = e2πiα, Λf
has Hausdorff dimension two.

In contrast, it is prove in [Che13, Che19] that for every α ∈ HTN and every f ∈ F with f ′(0) = e2πiα,
Λ(f) has zero area.

Corollary B. For every α ∈ HTN \H and every rational function f in F with f ′(0) = e2πiα, the Julia
set of f has Hausdorff dimension two.

In [Shi98], Shishikura proves that for a residual set of α in R/Z the Julia set of the quadratic polynomial
Pα has Hausdorff dimension two. But an arithmetic characterization leading to this result was not available.
On the other hand, in [McM98], McMullen proved that for any α of bounded type, the Hausdorff dimension
of the Julia set of Pα is strictly less than two. All the results stated in this introduction also apply to the
quadratic polynomials Pα.

For α ∈ B \H , let Cf denote the base Jordan curve in Λ(f), that is, the boundary of the Siegel disk of
f , and for α /∈ B, we let Cf denote the single point 0. By the above classification of the topology of Λ(f),
in cases (ii) and (iii) the set Λf \Cf consists of uncountably many Jordan arcs (hairs). Let Ef denote the
set of all the end points of Λ(f).

Theorem C. There are sets of irrational numbers J and S, with J ⊂ B \H and S ∩B = ∅, such that
for every α ∈ J ∪ S and every f ∈ F with f ′(0) = e2πiα, we have

dimH

(
Λf \ (Cf ∪ Ef )

)
= 1 and dimH(Ef ) = 2.

The sets J and S are uncountable, and are determined by explicit arithmetic conditions.
Theorem C is surprising; the set of end points of a collection of disjoint curves occupies more space than

the set of those curves without their end points. This phenomena is due to the highly distorting nature of
the large iterates of f near 0. This remarkable paradoxical feature was first observed by Karpińska in her
study of the dynamics of the exponential maps Eλ(z) = λez, for 0 < λ < 1/e, [Kar99a, Kar99b]. In those
papers, the especial form of the exponential map plays a prominent role, while in this paper, we exploit
the complicated relations between the arithmetic of the rotation and the nonlinearities of the large iterates
of f .

1Note that H ⊂ B.
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Our results has applications to hedgehogs introduced by Pérez-Marco [PM97a] in order to explain the
local dynamics of holomorphic germs with an irrationally indifferent attractors. These are locally invariant
compact sets where both f and f−1 are injective on a neighbourhood of f . It turns out that when f ∈ F
with f ′(0) = e2πiα and α ∈ HTN , every hedgehog of f is contained in Λ(f), see [AC18] for details. For
instance, this holds for the quadratic polynomials e2πiαz + z2.

Corollary D. For every α ∈ S and every f ∈ F with f ′(0) = e2πiα, every hedgehog of f has Hausdorff
dimension one.

For an arbitrary germ of a holomorphic map with an irrationally indifferent fixed point, it is likely that
hedgehogs come in variety of topologies and geometries. A general strategy to build germs of holomorphic
maps with nontrivial hedgehogs is developed by Perez-Marco and Biswas in [PM97b] and [Bis08], see also
[Che11]. In particular, examples of hedgehogs of dimension one and positive area have been presented in
[Bis08] and [Bis16]. However, those examples have a very different nature, and are not likely to occur for
a rational map of the Riemann sphere or an entire holomorphic map of the complex plane.

Notations. Here, N, Z, Q, R and C denote the set of all natural numbers (including 0), integers, rational
numbers, real numbers and complex numbers, respectively. The Riemann sphere and the unit disk are

denoted by Ĉ = C ∪ {∞} and D = {z ∈ C : |z| < 1}, respectively. An open disk of radius r centred
at z ∈ C is denoted by D(a, r) = {z ∈ C : |z − a| < r}. In the same fashion, given Z ⊂ C and δ > 0,
Bδ(Z) :=

⋃
z∈Z D(z, δ).

For y ∈ R, we set Ly = {z ∈ C : Im z = y} and Hy = {z ∈ C : Im z ≥ y}. For a ∈ C and the sets Z and
W in C, we let aZ := {az : z ∈ Z}, Z ± a := {z ± a : z ∈ Z}, and Z +W := {z + w : z ∈ Z,w ∈W}.

For x ≥ 0, bxc denotes the integer part of x. Finally, diam(Z) denotes the Euclidean diameter of a
given set Z ⊂ C.
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2. Arithmetic of irrational rotation numbers

We work with a slightly modified notion of continued fractions, which is more suitable for employing
renormalisation algorithm later in Section 4. The modified continued fraction algorithm is defined as
follows. For x ∈ R, let d(x,Z) = min{|x− n|, n ∈ Z} ∈ [0, 1/2]. Fix an irrational number α, and let

α0 = d(α,Z).

Then there is a unique a−1 ∈ Z and ε0 ∈ {±1} such that α = a−1 + ε0α0. We define the sequence (αn)n≥0

according to
αn+1 = d(1/αn,Z),

and then identify an ∈ Z and εn+1 ∈ {±1} such that

(2.1) 1/αn = an + εn+1αn+1.

It follows that 0 < αn < 1/2 and an ≥ 2, for all n ≥ 0. These sequences provide the continued fraction in
Equation (1.1).

Let β−1 = 1 and for n ≥ 0, define βn =
∏n
i=0 αi. Yoccoz in [Yoc95] introduced the Brjuno function

B(α) =

∞∑
n=0

βn−1 log
1

αn
.

This is defined for irrational values of α. He showed that the difference∣∣∣∣∣B(α)−
∞∑
n=1

1

qn
log qn+1

∣∣∣∣∣
is uniformly bounded over the set of irrational numbers α. Thus, for any α ∈ R \Q,

α ∈ B ⇔ B(α) <∞.
By the work of Yoccoz the Brjuno condition is optimal for the linearisation of holomorphic maps with

an irrationally indifferent fixed point.
In [Yoc02], Yoccoz introduced the optimal arithmetic condition for the linearisation of orientation

preserving analytic circle diffeomorphisms. However, he only presents the arithmetic condition in terms
of the standard continued fraction algorithm. Below we present this arithmetic condition in terms of the
modified continued fraction algorithm. The equivalence of the two conditions is proved in [Che17].

Let 0 < α < 1/2 and define the function hα : R→ R as

hα(y) =

{
α−1(y + 1− logα−1) if y ≥ logα−1,

ey if y ≤ logα−1.

The function hα is C1 and satisfies

hα(logα−1) = h′α(logα−1) = α−1;

ey ≥ hα(y) ≥ y + 1,∀y ∈ R;

h′α(y) ≥ 1, ∀y ≥ 0.

Definition 2.1. The irrational number α is of Herman type, if for any n ≥ 0 there exists an integer p ≥ 1
such that

hαn+p−1
◦ · · · ◦ hαn(0) ≥ B(αn+p).

In particular, any irrational number of Herman type belongs to B.
Below, we define two classes of irrational numbers for which the conclusions of Theorem C hold. For

x ≥ 0, let
bxc = max{n ∈ N : n ≤ x}
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denote the integer part of x.

Definition 2.2. An irrational number α is called a jagged number, if α is of the form

α = a−1 −
1

a0 −
1

a1 −
1

a2 −
. . .

where there is a sequence of positive numbers (un)n≥0 such that

(i)
∑
n≥0 u0 · · ·un = +∞;

(ii) for all n ≥ 0, an+1 ≥ aunann + 1/2;
(iii) limn→∞ an =∞; and
(iv) un log an → +∞ as n→∞.

For example, an irrational number whose continued fraction coefficient satisfy a0 = 2 and an+1 = beean c
is an irrational number of jagged type.

Lemma 2.3. Any jagged number is of non-Brjuno type.

Proof. By construction, for all n ≥ 0 we have

(2.2) an −
1

2
<

1

αn
< an.

In particular,
1

αn+1
> aunann >

( 1

αn

) un
αn
.

Thus, for all n ≥ 0, we have log 1
αn+1

≥ un
αn

log 1
αn

. It follows that

α0 · · ·αn log
1

αn+1
≥ unα0 · · ·αn−1 log

1

αn
.

By induction, we get ∑
n≥0

βn−1 log
1

αn
≥ log

1

α0

(
1 +

∑
n≥0

u0 · · ·un
)

= +∞.

This means that any jagged number is not of Brjuno type. �

Definition 2.4. An irrational number α is called a spiky number if it is of the form

α = a−1 −
1

a0 −
1

a1 −
1

a2 −
. . .

where there are a sequence of positive numbers (vn)n≥0 and a uniformly bounded sequence of real numbers
(ηn)n≥0 such that

(i) vn → +∞, as n→ +∞;
(ii) for all n ≥ 0, an+1 = evnan + ηn; and

(iii)
∑
n≥1 vn/(a0 · · · an−1) < +∞.

For example if (an)n≥1 satisfies a0 = 2 and an+1 = be2nanc + 1, then the corresponding irrational
number is of spiky type.
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Lemma 2.5. Any spiky number is of Brjuno type, but not of Herman type.

Proof. Using inequality (2.2), for all n ≥ 0, we have

evn/αn + ηn − 1/2 ≤ 1

αn+1
≤ evn(1/αn+1/2) + ηn.

Hence

α0 · · ·αn log
1

αn+1
≤ βn−1

(
vn(1 + αn/2) + log(1 + Cn)

)
,

with Cn → 0 as n→∞. Then, there exists a constant M > 0 such that

B(α) < log
1

α0
+

3

2
v0 +

3

2

∑
n≥1

vn
a0 · · · an−1

+M < +∞.

Hence α ∈ B.
Since vn → +∞ as n→∞, there exists n0 ≥ 0 such that for all n ≥ n0,

1

αn+1
≥ e2/αn .

In order to show that α /∈H it is sufficient to show that for all n ≥ n0 and all p ≥ 0, E◦p(0) < log 1
αn+p

,

where E◦p is the p-th iterate of the exponential map x 7→ ex.
Note that for p ≥ 1, log 1

αn+p
≥ 2

αn+p−1
. In particular we have E(0) < 3 ≤ 2/αn ≤ log 1

αn+1
. Moreover

E◦2(0) < 2e2/αn ≤ 2

αn+1
≤ log

1

αn+2
.

Similarly one can prove inductively that

E◦p(0) < E
◦(p−1)
2 (2/αn) ≤ 2

αn+p−1
≤ log

1

αn+p

for all p ≥ 1, where E
◦(p−1)
2 is the (p− 1)-th iterate of E2(x) = 2ex. �

The set of jagged irrational numbers is denoted by J , and the set of spiky irrational numbers is denoted
by S. The terminology, jagged and spiky, reflects the geometric features of the renormalization towers
associated to such rotation numbers. This will be discussed in Section 7.

3. A criterion for full Hausdorff dimension

In this section we present a criterion which implies that a nest of measurable sets shrinks to a set of full
Hausdorff dimension in the plane. We shall employ the criterion in Section 6, to prove the lower bound on
the dimension of the post-critical sets. The dimension of the hairs without the end points is investigated
directly using the definition of the Hausdorff dimension. This criterion is also used in [McM87] 2 in order
to study the Lebesgue measure and Hausdorff dimension of the Julia sets of some transcendental entire
functions. Below we present the criterion.

For a measurable set K ⊂ C we use area(K) to denote the two-dimensional Lebesgue measure of K. If
K and Ω are two measurable subsets of C with area(Ω) > 0, we use

dens(K,Ω) =
area(K ∩ Ω)

area(Ω)

2We note that although our presentation in Proposition 3.2 and the one in [McM87, Proposition 2.2] appear similar,
there is a minor difference. Our nest starts with K0 while McMullen’s begins with K1. It seems that the superscript in the

summation in [McM87, Proposition 2.2] should be k (not k + 1). This difference is not crucial in the study of the iterates of
the exponential maps, but play a distinct role in our cases. For this reason, and for the reader’s convenience, we present a
proof of the criterion here.
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to denote the density of K in Ω.

Definition 3.1 (Nesting conditions). Let Kn, for n ≥ 1, be a finite collection of measurable subsets of C,
with Kn = {Kn,i : 1 ≤ i ≤ ln}, where each Kn,i is a measurable subset of C and ln = #Kn < +∞. We
say that {Kn}∞n=0 satisfies the nesting conditions if for all n ≥ 0 we have

(a) K0 = {K0}, with K0 = K0,1 a bounded connected measurable set;
(b) every Kn+1,i ∈ Kn+1 is contained in a Kn,j ∈ Kn, where 1 ≤ i ≤ ln+1 and 1 ≤ j ≤ ln;
(c) every Kn,i ∈ Kn contains a Kn+1,j ∈ Kn+1, where 1 ≤ i ≤ ln and 1 ≤ j ≤ ln+1;
(d) area(Kn,i ∩Kn,j) = 0 for all 1 ≤ i < j ≤ ln; and

Remark. Note that Kn is a collection of measurable sets for n ≥ 0. For simplicity, sometimes we do not

distinguish Kn and the union of its elements
⋃ln
i=1Kn,i.

Proposition 3.2. Assume that {Kn}∞n=0 satisfies the nesting conditions, and there are sequences of positive
numbers (δn)n≥0 and (dn)n≥0, with dn → 0 as n→∞, such that

(a) for n ≥ 1 and 1 ≤ i ≤ ln, we have

diamKn,i ≤ dn;

(b) for all n ≥ 0 and 1 ≤ i ≤ ln, we have

dens(Kn+1,Kn,i) = dens
( ln+1⋃
j=1

Kn+1,j ,Kn,i

)
≥ δn+1.

Then,

(3.1) dimH

( ⋂
n≥0

Kn
)
≥ 2− lim sup

n→∞

∑n+1
k=1 | log δk|
| log dn|

.

Proof. By employing a rescaling, we may assume that area(K0) = 1. Let µ0 be the restriction of the
two-dimensional Lebesgue measure on K0. Then µ0(K0) = 1. Let µ1 be the probability measure on K1

such that on each K1,i, with 1 ≤ i ≤ l1, µ1 is a constant multiple of the Lebesgue measure, with the
constants chosen according to

µ1(K1,i) =
area(K1,i)∑l1
k=1 area(K1,k)

.

Inductively, for n ≥ 1, we define the probability measure µn+1 on Kn+1 such that on each Kn+1,i, with
1 ≤ i ≤ ln+1, µ1 is a constant multiple of the Lebesgue measure, with the constants satisfying the following:
whenever Kn+1,i ⊂ Kn,j for some 1 ≤ i ≤ ln+1 and 1 ≤ j ≤ ln then,

µn+1(Kn+1,i) = µn(Kn,j) ·
area(Kn+1,i)∑

{k≥1:Kn+1,k⊂Kn,j} area(Kn+1,k)
.

The sequence of the measures (µn|Kn)n∈N forms a martingale, that is, for all n ≥ 0 and 1 ≤ j ≤ ln
µn+1

( ⋃
{k≥1:Kn+1,k⊂Kn,j}

Kn+1,k

)
= µn(Kn,j).

Let µ denote the unique weak limit of µn, as n→∞. It follows that µ is a probability measure supported
on K =

⋂
n≥0Kn.

We employ Frostman’s lemma [Mat95, Theorem 8.8, p. 112], to obtain lower bounds on the dimension
of K. To conclude that dimH K ≥ s, it is sufficient to prove that there is a number C(s) such that for all
a ∈ C and r > 0, µ(D(a, r)) ≤ C(s)rs. Indeed, we only need to consider this for small enough values of
r > 0. Without loss of generality, we assume that dn+1 < dn, for n ≥ 0.
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Choose n ≥ 0 such that dn+1 ≤ r < dn, and let Ln+1 be the union of all Kn+1,i ∈ Kn+1 which meet
D(a, r). Then, Ln+1 ⊂ D(a, 2r), and we have

µ(D(a, r)) ≤ µ(Ln+1) ≤ area(Ln+1)

δ1δ2 · · · δn+1
≤ 4πrs · d2−s

n

δ1δ2 · · · δn+1
.

Define bn = d2−s
n /(δ1δ2 · · · δn+1), for n ≥ 0. If s is a real number smaller than the quantity on the right

hand side of Equation (3.1), then we have lim supn→∞ bn ≤ 1, and hence (bn)n≥0 is uniformly bounded
from above. This means that K has Hausdorff dimension at least s. �

Remark. If the diameter of each Kn,i tends to zero much faster than the product of the densities
δ1δ2 · · · δn+1, as n→∞, then the superior limit in Equation (3.1) will be equal to zero and the Hausdorff
dimension of

⋂
n∈NKn will be equal to 2.

4. Near-parabolic renormalization scheme

In the first two subsections, we give the definitions of the Inou-Shishikura class and near-parabolic
renormalization operator. See [IS06] for a slightly different definition (but they produce the same operator).
Then we define the renormalization tower and prepare some useful estimates on the changing of coordinates.

4.1. Inou-Shishikura’s class. Let P (z) = z(1 + z)2 be a cubic polynomial with a parabolic fixed point
at 0 with multiplier 1. Then P has a critical point cpP = −1/3 which is mapped to the critical value
cvP = −4/27. It has also another critical point −1 which is mapped to 0. Consider the ellipse

E =

{
x+ iy ∈ C :

(x+ 0.18

1.24

)2

+
( y

1.04

)2

≤ 1

}
and define

U = ψ1(Ĉ \ E), where ψ1(z) = − 4z

(1 + z)2
.

The domain U is symmetric about the real axis, contains 0 and cpP , and U ∩ (−∞,−1] = ∅ (see [IS06,
Section 5.A]). For a given function f , we denote by its domain of definition Uf . Following [IS06, Section
4], we define a class of maps

IS0 =

{
f = P ◦ ϕ−1 : Uf → C

∣∣∣∣ 0 ∈ Uf is open in C, ϕ : U → Uf is
conformal, ϕ(0) = 0 and ϕ′(0) = 1

}
.

Each map in this class has a parabolic fixed point at 0, a unique critical point at cpf = ϕ(−1/3) ∈ Uf and
a unique critical value at

cv = −4/27

which is independent of f .
For α ∈ R, we define

ISα = {f(z) = f0(e2πiαz) : e−2πiα · Uf0 → C | f0 ∈ IS0}.
For convenience, we normalize the quadratic polynomials to

Qα(z) = e2πiαz +
27

16
e4πiαz2

such that all Qα have the same critical value −4/27 as the maps in ISα. In particular, Qα = Q0 ◦ Rα,
where Rα(z) = e2πiαz.

Let f ∈ ISα ∪ {Qα} with α ∈ R. If α 6= 0 is small, besides the origin, the map f has another fixed
point σf 6= 0 near 0 in Uf . The fixed point σf depends continuously on f .
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Proposition 4.1 ([IS06], see Figure 1). There exist an integer k ≥ 1 and a constant r1 ∈ (0, 1/2) satisfying
1/r1 − k ≥ 2 such that for all f ∈ ISα ∪ {Qα} with α ∈ (0, r1], there exist a domain Pf and a univalent
map Φf : Pf → C satisfying the following:

(a) Pf is a simply connected domain bounded by piece-wise analytic curves which is compactly contained
in Uf and ∂Pf contains cpf , 0 and σf ;

(b) Φf is normalized by Φf (cv) = 1 and

Φf (Pf ) = {ζ ∈ C : 0 < Re ζ < 1/α− k}
with Im Φf (z)→ +∞ as z → 0 and Im Φf (z)→ −∞ as z → σf in Pf ;

(c) Φf satisfies the Abel equation Φf (f(z)) = Φf (z) + 1 if z, f(z) ∈ Pf ; and
(d) The normalized Φf is unique and depends continuously on f . 23

 

Φf

Pf

0

σf

cpf cv · · ·0 1 2 3 4 1
α − k

Figure 1. The domain Pf and the Fatou coordinate Φf . The image of Pf under Φf has
been coloured accordingly by the same color on the right.

The statement of Proposition 4.1 in [IS06] is in another form. One can refer to Main Theorems 1
and 3 there for further details. See [BC12, Proposition 12] for the present form of Proposition 4.1 (see
also [Che19, Proposition 2.4]). The map Φf is called the (perturbed) Fatou coordinate and Pf is called a
(perturbed) petal.

4.2. Near-parabolic renormalization. Let f ∈ ISα ∪ {Qα} with α ∈ (0, r1], where r1 > 0 is the
constant introduced in Proposition 4.1. Define

Cf = {z ∈ Pf : 1/2 ≤ Re Φf (z) ≤ 3/2 and − 2 < Im Φf (z) ≤ 2}, and

C]f = {z ∈ Pf : 1/2 ≤ Re Φf (z) ≤ 3/2 and 2 ≤ Im Φf (z)}.
(4.1)

Note that cv = −4/27 ∈ int Cf and 0 ∈ ∂C]f . Assume for the moment that there exists an integer kf ≥ 1,
depending on f , with the following properties:

(a) For all 1 ≤ k ≤ kf , there is a unique component (C]f )−k of f−k(C]f ) containing 0 in its closure such

that f◦k : (C]f )−k → C]f is an isomorphism;

(b) There is a unique component C−kf of f−k(Cf ) intersecting (C]f )−k such that f◦k : C−kf → Cf is a
covering of degree two ramified above cv.

(c) C−kff ∪ (C]f )−kf is contained in {z ∈ Pf : 1/2 < Re Φf (z) < α−1 − k− 1/2}.
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Moreover, for all k = 1, · · · , kf , the set (Cf )−k ∪ (C]f )−k is compactly contained in Uf .

Let kf be the smallest positive integer satisfying the above properties. We now give the definition of
near-parabolic renormalization.

Definition 4.2 (Near-parabolic renormalization, see Figure 2). Define

Sf = C−kff ∪ (C]f )−kf ,

and consider the map

Φf ◦ f◦kf ◦ Φ−1
f : Φf (Sf )→ C.

This map commutes with the translation by one. Hence it projects by the modified exponential map

Exp(ζ) = − 4
27 e

2πiζ

to a well-defined map Rf which is defined on a set punctured at zero. One can check that Rf extends
across zero and satisfies Rf(0) = 0 and (Rf)′(0) = e−2πi/α. The map Rf , restricted to the interior of
Exp(Φf (Sf )), is called the near-parabolic renormalization of f .

24

 

Φf−−→

Cf
C]f

C−kff

(C]f )−kf

cpf cv

C−1
f

C−2
f

C−3
f

−2

2

0 1 1
α − k

Φf ◦ f◦kf ◦ Φ−1
f

1

Figure 2. The sets Cf , C]f and some of their preimages. The images of Cf ∪ C]f and
Sf under the perturbed Fatou coordinate Φf have been shown and the induced map

Φf ◦f◦kf ◦Φ−1
f projects to the near-parabolic renormalization map Rf under the modified

exponential map Exp.

Recall that P (z) = z(1 + z)2 is the cubic polynomial defined at the beginning of the last subsection.
Define

U ′ = P−1(D(0, 4
27e

4π)) \ ((−∞,−1] ∪B),

where B is the connected component of P−1(D(0, 4
27e
−4π)) containing −1. By an explicit calculation, one

can prove that U ⊂ U ′ (see [IS06, Proposition 5.2]).

Theorem 4.3 ([IS06, Main Theorem 3]). For all f ∈ ISα ∪ {Qα} with α ∈ (0, r1], the renormalization
map Rf is well-defined so that Rf = P ◦ψ−1 ∈ IS−1/α and ψ extends to a univalent function from U ′ to
C.
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For f ∈ ISα ∪ {Qα} with α ∈ [−r1, 0), the conjugated map f̃ = s ◦ f ◦ s satisfies f̃(0) = 0 and f̃ ′(0) =
e2πi(−α), where s : z 7→ z is the complex conjugacy. According to the structure of IS0 (U is symmetric

about the real axis), we know that IS0 is invariant under complex conjugacy and f̃ ∈ IS−α∪{Q−α}. Hence
we can extend the domain of definition of the near-parabolic renormalization operatorR to f ∈ ISα∪{Qα}
with α ∈ [−r1, 0) ∪ (0, r1].

The following result shows that kf has a uniform upper bound which is independent of f .

Proposition 4.4 ([Che19, Proposition 2.7]). There exists an integer k1 ≥ 1 such that for all f ∈ ISα ∪
{Qα} with α ∈ (0, r1], then kf ≤ k1.

For another proof of Proposition 4.4, see [BC12, Proposition 13]. For the corresponding statements of
Propositions 4.1 and 4.4 with α ∈ C (specifically, | argα| < π/4 and |α| is small), see [CS15, Section 2].

4.3. Renormalization tower. Let f ∈ ISα ∪ {Qα} with α = [(a−1, ε0); (a0, ε1), · · · , (an, εn+1), · · · ] ∈
HTN , where N ≥ 1/r1 + 1/2. Recall that s(z) = z. We define

f0 =

{
f if ε0 = +1,

s ◦ f ◦ s if ε0 = −1.

Then the rotation number of f0 at the origin belongs to (0, r1]. By (2.1), for all n ∈ N one has 3

α−1
n = an + εn+1αn+1 ≥ N − 1/2 ≥ 1/r1.

By Theorem 4.3, for n ≥ 1, the following sequence of maps can be defined inductively:

fn =

{
R(fn−1) if εn = −1,

s ◦ R(fn−1) ◦ s if εn = +1.

Let Un = Ufn be the domain of definition of fn for n ≥ 0. Then for all n ≥ 1, we have

fn ∈ ISαn , fn : Un → C, fn(0) = 0, f ′n(0) = e2πiαn and cvfn = −4/27.

For n ≥ 0, let Φn = Φfn be the Fatou coordinate of fn : Un → C defined on the petal Pn = Pfn and

let Cn = Cfn and C]n = C]fn be the corresponding sets for fn defined in (4.1). Let kn = kfn be the smallest
integer appeared in the definition of the renormalization operator R such that

(4.2) Sn = C−knn ∪ (C]n)−kn ⊂ {z ∈ Pn : 1/2 < Re Φn(z) < α−1
n − k− 1/2}.

We use σn = σfn to denote the non-zero fixed point of fn on the boundary of Pn. It is known that |σn| is
comparable to αn and the comparable constants are independent of n (see [CS15, Equation (14)]).

4.4. Changes of the coordinates. Recall that the integer part of x > 0 is denoted by bxc ∈ (x− 1, x].
For n ≥ 0, we denote

Πn = {ζ ∈ C : −1/(2αn) ≤ Re ζ < 0, Im ζ > 0}

∪ Φn(Pn) ∪
kn+b1/(2αn)c⋃

i=0

(Φn(Sn) + i).
(4.3)

The univalent map Φ−1
n : Φn(Pn)→ Pn can be extended to a holomorphic map

Φ−1
n : Πn → Un \ {0}

3Moreover, α−1 = α = a−1 + ε0α0. See (1.1).
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such that Φ−1
n (ζ + 1) = fn ◦Φ−1

n (ζ) if ζ, ζ + 1 ∈ Πn. Note that the exponential map Exp : C→ C \ {0} is
a covering map. Recall that s(z) = z. The maps Φ−1

n : Πn → C \ {0} and s ◦ Φ−1
n : Πn → C \ {0} can be

lifted to obtain a holomorphic or an anti-holomorphic map χn : Πn → C such that

(4.4) ∀ζ ∈ Πn,

{
Exp ◦ χn(ζ) = Φ−1

n (ζ) if εn = −1,

Exp ◦ χn(ζ) = s ◦ Φ−1
n (ζ) if εn = +1.

The map χn is holomorphic if εn = −1 while it is anti-holomorphic if εn = +1. Moreover, χn : Πn → C is
an injection and we assume that χn is chosen so that 4

χn(1) = 1.

For j ∈ Z we define

χn,j = χn + j.

4.5. Some estimates on the changes of coordinates. Recall that σn 6= 0 is another fixed point of fn
near 0 which is contained in ∂Pn. Let

τn(w) =
σn

1− e−2πiαnw

be a universal covering from C to Ĉ \ {0, σn} with period 1/αn. Then τn(w) → 0 as Imw → +∞ and
τn(w) → σn as Imw → −∞. The basic idea to study the Fatou coordinate Φn is to compare the inverse
Φ−1
n with τn. There exists a unique lift Fn of fn under τn such that

fn ◦ τn(w) = τn ◦ Fn(w) with lim
Imw→+∞

(Fn(w)− w) = 1.

Since the critical points of Fn are periodic with period 1/αn. We use c̃pn to denote the one which is
closest to the origin. The set τ−1

n (Pn) has countably many simply connected components. Each of these
components is bounded by piecewise analytic curves going from −i∞ to +i∞ and it contains a unique

critical point of Fn on its boundary. Let P̃n be the component containing c̃pn on its boundary. Define the
univalent map

Ln = Φn ◦ τn : P̃n → C.
This map is the Fatou coordinate of Fn since Ln◦Fn(w) = Ln(w)+1 when w and Fn(w) are both contained

in P̃n.
The inverse L−1

n : Φn(Pn) → P̃n can be extended to a holomorphic function on a larger domain Πn

(see (4.3) and [Che19, Section 6]). The main work on L−1
n in [Che19, Section 6] is to establish some

quantitative distance estimates between L−1
n and the identity. For more details on the study of Ln and

L−1
n , see [Che19, Sections 6.3-6.6] and [CS15, Section 3.5]. The following Lemma 4.5 and Proposition 4.6

are obtained from studying L−1
n and a direct calculation.

Lemma 4.5 ([SY18, Lemma 2.11]). For all D0 > 0, there exists two constants M0, M̃0 > 0 such that for
all n ≥ 1, we have

(a) If ζ ∈ Πn with Im ζ ≥ D0/αn, then∣∣∣Imχn(ζ)−
(
αn Im ζ +

1

2π
log

1

αn

)∣∣∣ ≤M0.

(b) If ζ ∈ Πn with Im ζ ∈ [−2, D0/αn], then∣∣∣Imχn(ζ)− 1
2π min

{
log(1 + |ζ|), log(1 + |ζ − 1/αn|)

}∣∣∣ ≤ M̃0.

4Note that Exp(Z) = cv and Φn(cv) = 1 for all n ∈ N.
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Note that M0 > 0 in Lemma 4.5(a) can be chosen such that it decreases as D0 increases. Partial
estimation of Lemma 4.5 can be also found in [Che19, Proposition 5.4]. When one applies χn : Πn → C,
Lemma 4.5 gives an estimation on the imaginary part of χn(ζ) for ζ ∈ Πn ∩ {ζ ∈ C : Im ζ ≥ −2}. We will
use the following result to study the real part of χn(ζ) for some ζ ∈ Πn and estimate the diameter of some
boxes when we go up the renormalization tower (see Section 5).

Proposition 4.6 ([Che13, Che19]). For all D0 > 0, there exists two constants M1, M̃1 ≥ 1 such that for
all n ≥ 1, we have

(a) If ζ ∈ Πn ∩ {ζ : Im ζ ≥ −2} with |ζ| ≥ D0/αn and |ζ − 1/αn| ≥ D0/αn, then

|χ′n(ζ)− αn| ≤M1αne
−2παnIm ζ .

(b) If ζ ∈ Πn ∩ {ζ : Im ζ ≥ −2} with 1 ≤ |ζ| < D0/αn or 1 ≤ |ζ − 1/αn| < D0/αn, then

M̃−1
1 ≤ min{|ζ|, |ζ − 1/αn|} · |χ′n(ζ)| ≤ M̃1.

Similar to Lemma 4.5(a), the number M1 > 0 in Proposition 4.6(a) can be chosen such that it decreases
as D0 increases. Proposition 4.6(a) is proved in [Che13, Proposition 3.3]. Actually, the latter proves
a stronger statement where the dependence of M1 on D0 is established and the inequality holds in a
larger domain. Proposition 4.6(b) is proved in [Che19, Proposition 6.18] for ζ ∈ [1, 1/(2αn)] (i.e., ζ ∈ R).
However, the proof for the complex ζ is completely similar. See also [SY18, Proposition 2.13(b)] for a
more elaborate estimation for case (b).

In the rest of this article, for a given map f = f0 ∈ ISα ∪ {Qα} with α ∈ HTN , where N ≥ 1/r1 + 1/2,
we use fn to denote the map after n-th (normalized) near-parabolic renormalization. We also use Un,
Pn and Φn etc to denote the domain of definition, perturbed petal and the Fatou coordinate etc of fn
respectively.

For some recent remarkable applications of near-parabolic renormalization scheme one may refer to
[CC15], [CS15], [AL15], [CP17] etc. Recently, Chéritat generalized the near-parabolic theory to all the
unicritical case for any finite degrees [Che14]. See also [Yan15] for the corresponding theory of local degree
three. Therefore, there is a hope to generalize the results in this paper to all unicritical polynomials.

5. Almost rectagular partition of the post-critical sets

In this section, we first recall two results on the topological structure of the post-critical set Λf of
f ∈ ISα ∪ {Qα} with α ∈ HTN . Then we define a system satisfying the nesting conditions and use some
estimations between the renormalization levels to estimate the densities and the diameters of some related
sets. In next section we use the criterion established in Section 3 to obtain the full Hausdorff dimension
of Λf under the assumption that α ∈ HTN \H .

5.1. Topology of the post-critical sets. A Cantor bouquet is a compact subset of the plane which is
homeomorphic to a set of the form

{re2πiθ ∈ C | 0 ≤ r ≤ R(θ)}
where R : R/Z→ [0,∞) satisfies

(a) R−1(0) is dense in R/Z,
(b) (R/Z) \R−1(0) is dense in R/Z,
(c) for each θ0 ∈ R/Z we have

lim sup
θ→θ+0

R(θ) = R(θ0) = lim sup
θ→θ−0

R(θ).
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A one-sided hairy Jordan curve is a compact subset of the plane which is homeomorphic to a set of the
form

{re2πiθ ∈ C | 1 ≤ r ≤ R(θ)}
where R : R/Z→ [1,∞) satisfies

(a) R−1(1) is dense in R/Z,
(b) (R/Z) \R−1(1) is dense in R/Z,
(c) for each θ0 ∈ R/Z we have

lim sup
θ→θ+0

R(θ) = R(θ0) = lim sup
θ→θ−0

R(θ).

Let N ≥ 1/r1 + 1/2. In order to study the Hausdorff dimension of Λf , we also need some topological
properties of Λf .

Theorem 5.1 (Trilogy of the postcritical set [Che17]). Let f ∈ ISα ∪ {Qα} with α ∈ HTN . Then

(i) if α ∈H , Λ(f) is a Jordan curve;
(ii) if α ∈ B \ H , then Λf is a one-sided hairy circle, and the connected component of Λf \ ∆f

containing the critical value of f is a C1 curve;
(iii) if α 6∈ B, then Λf is a Cantor bouquet, and the connected component of Λf \ {0} containing the

critical value of f is a C1 curve.

For the definitions of Cantor bouquet and one-sided hairy circle, one may refer to [Che17]. In particular,
each connected component of Λf \∆f is a Jordan arc, where ∆f is the Siegel disk of f if α ∈ B \H while

∆f = {0} is the Cremer point if α 6∈ B.

Definition 5.2 (Critical value curve). For f ∈ ISα ∪ {Qα} with α ∈ HTN , let Γf be the Jordan arc
connecting the critical value cv = −4/27 with the origin5 (not including 0) stated in Theorem 5.1. The
arc Γf is called the critical value curve. It is known that Γf ⊂ Pf , where Pf is the perturbed petal of f .
More precisely, following [Che17, Lemma 3.4] or [SY18, Proposition 5.3], we have

(5.1) γf = Φf (Γf ) ⊂ 0 = {ζ ∈ C : 1/2 < Re ζ < 3/2 and Im ζ > −2}.
We also call γf the critical value curve in the Fatou coordinate plane of f . Let γ′f ⊂ Φf (Sf ) + kf be the

simple arc such that Φ−1
f (γ′f ) = Γf .

Theorem B in [Che17] states that the real part of γf (resp. γ′f ) tends to a limit as the imaginary part

tends to positive infinity. Indeed, the following result shows that the curves γf and γ′f become more and
more straight as the imaginary part increases.

Proposition 5.3 ([Che17, Lemmas 4.11 and 4.13]). For any ε > 0, there exists a constant M̃2 = M̃2(ε) > 0

such that for all f ∈ ISα ∪ {Qα} with α ∈ HTN , if ζ, ζ ′ ∈ γf (or γ′f ) with Im ζ > Im ζ ′ ≥ M̃2, then

| arg(ζ − ζ ′)− π/2| < ε.

For y ∈ R, we define

Ly = {z ∈ C : Im z = y} and Hy = {z ∈ C : Im z ≥ y}.
By Proposition 5.3, we have the following immediate corollary.

5According to [Che17], if ∆f 6= ∅, then Γf = Γ′f ∪ Γ′′f , where Γ′f is the connected component of Λf \∆f containing the

critical value cv, and Γ′′f is a curve in ∆f connecting the origin with one end point of Γ′f . In particular, if Γ′f = ∅, then Γ′′f
is a curve in ∆f connecting the origin with cv.
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Corollary 5.4. There exists a constant D′2 ≥ 1 such that for all f ∈ ISα ∪ {Qα} with α ∈ HTN and for
all y ≥ D′2, then

Ly ∩ (γf + j) and Ly ∩ (γ′f + j)

are both singletons for all j ∈ Z.

As before, let fn be the map after n-th (normalized) near-parabolic renormalization of a given map
f ∈ ISα ∪ {Qα} with α ∈ HTN . We use Γn, γn and γ′n etc to denote the simple arcs introduced above.

5.2. Going down the renormalization tower. For each n ≥ 0, from the definition of γn and γ′n we
have Φ−1

n (γn) = Γn = Φ−1
n (γ′n). Recall that 0 is an half-infinite trip defined in (5.1). For n ≥ 1 and j ∈ Z

we have

Φn ◦ Exp(γn−1 + j) = Φn(Γn) = γn ⊂ 0.

Recall that D′2 ≥ 1 is the constant introduced in Corollary 5.4. For all n ≥ 0, we define

(5.2) Yn = Yn(D′2) =

{
The closure of the connected component of
C \ (γn ∪ γ′n ∪ LD′2) containing 2 + (D′2 + 1) i

}
\ γ′n.

Then Yn is simply connected and very ‘close’ to a half-infinite strip with width 1/αn and it is ‘bottom
left’ closed and ‘right’ open. We use Yn,0 ⊂ Yn to denote the ‘bottom left’ closed and ‘right’ open domain
bounded by γn, γn + 1 and LD′2 :

Yn,0 = Yn,0(D′2) =

{
The closure of the connected component of
C \ (γn ∪ (γn + 1) ∪ LD′2) containing 2 + (D′2 + 1) i

}
\ (γn + 1).

For j ∈ Z, we denote

(5.3) Yn,j = Yn,0 + j.

By (2.1), if εn+1 = −1, then an − 1/2 < 1/αn < an. If εn+1 = +1, then an < 1/αn < an + 1/2. For
n ∈ N, we define an index set

(5.4) Jn = {j ∈ N : 0 ≤ j ≤ Jn − 1} with Jn = an + εn+1−1
2

and a half-infinite strip (see Figure 3)

Yn,∗ = Yn \
⋃
j∈Jn

Yn,j .

Note that Y n,∗ ⊂ Yn,Jn .

For n ≥ 0, we define

Yn,� =

{
The closure of the component of C \ (γ′n ∪ (γ′n − 1) ∪ LD′2)

which is contained in
⋃0
j=−1(Φn(Sn) + kn + j)

}
\ γ′n.

Note that all the sets Yn, Yn,j , Yn,∗ and Yn,� depend on the given height D′2 ≥ 1. Recall that Πn is defined

in (4.3) and we have Y n ⊂ Πn. Therefore, χn,j is well defined on Y n for all j ∈ Z. See Section 4.4 for the
definition of χn,j .

Lemma 5.5. There is a number D2 > 0 such that for all n ≥ 1 and yn−1 = 1
2π log 1

αn
+D2, we have

(a) If εn = −1, for all j ∈ Jn−1 then

χn,j(Yn) ∩Hyn−1
= Yn−1,j ∩Hyn−1

and

χn,Jn−1
(Yn \ Yn,�) ∩Hyn−1

= Yn−1,∗ ∩Hyn−1
.
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Figure 3. Some sets in the Fatou coordinate plane of fn. The critical value curve γn, its
translations and γ′n have been drawn. Some useful heights are marked. Moreover, several
packed boxes are also shown (in gray, see Section 5.3).

(b) If εn = +1, for all j ∈ Jn−1 then

χn,j+1(Y n \ γn) ∩Hyn−1
= Yn−1,j ∩Hyn−1

and

χn,Jn−1+1(Y n,� \ (γ′n − 1)) ∩Hyn−1 = Yn−1,∗ ∩Hyn−1 .

Proof. We only prove case (a) since the proof of case (b) is completely similar. If εn = −1 then χn : Πn → C
is holomorphic (see (4.4)). The first statement follows from Lemma 4.5 and the facts that χn(γn) = γn−1,
χn(γ′n) = γn−1 + 1 and the definition of χn,j with j ∈ Jn−1.

By the definition of near-parabolic renormalization, we have fn(Exp(γ′n−1)) = Exp(γn−1 + Jn−1) = Γn.
This means that Exp(γ′n−1) is the critical point curve Γcp

n of fn, i.e., the union of cpn and the component
of f−1

n (Γn \ {cv}) with endpoints 0 and cpn. If we consider Φ−1
n : Πn → C, it is easy to see that

Φ−1
n (γn) = Γn and Φ−1

n (γ′n − 1) = Γcp
n . In particular, by Lemma 4.5 if D2 > 0 is large then we have

χn,Jn−1(Yn \ Yn,�) ∩Hyn−1 = Yn−1,∗ ∩Hyn−1 . �

Remark. In the case εn = −1, the images of Yn under χn,j with j ∈ Jn−1, and the union of the image of
Yn \ Yn,� under χn,Jn−1 will cover the whole upper end of Yn−1 since(

Yn−1,∗ ∪
⋃

j∈Jn−1

Yn−1,j

)
∩Hyn−1

= Yn−1 ∩Hyn−1
.

One can have the similar observation for εn = +1.
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In order to simplify notations, for n ≥ 1 and j ∈ Z, we denote by6

χn,∗ = χn,Jn−1 and χn,∗+j = χn,Jn−1+j .

For n ≥ 1, we define (compare Lemma 5.5):

Xn−1 =


⋃

j∈Jn−1∪{∗}

(
χn,j(Yn) ∩ Yn−1,j

)
if εn = −1,

⋃
j∈Jn−1∪{∗}

(
χn,j+1(Y n) ∩ Yn−1,j)

)
if εn = +1.

It is straightforward to verify that Xn−1 is connected. Note that the restriction of χn,j on Y n is injective
for every j ∈ Z.

Definition 5.6 (The inverse of χn,j). For n ≥ 1, we define a map ξn : Xn−1 → Yn, which is the inverse
of χn,j , as following:

• if εn = −1, for ζ ∈ χn,j(Yn) ∩ Yn−1,j with j ∈ Jn−1 ∪ {∗}, define

(5.5) ξn(ζ) = χ−1
n,j(ζ).

• if εn = +1, for j ∈ Jn−1 ∪ {∗}, define

ξn(ζ) =

{
χ−1
n,0(ζ) if ζ ∈ χn,1(Y n) ∩ γn−1,

χ−1
n,j+1(ζ) if ζ ∈ χn,j+1(Y n) \ (γn−1 + j).

By definition, the map ξn : Xn−1 → Yn is a periodic function with period one. However, it is not
continuous on the arc (γn−1 + j) ∩Xn−1, where 1 ≤ j ≤ Jn−1. For example, ζ ∈ (γn−1 + 1) ∩Xn−1 is a
boundary point of Yn−1,0 and is also a boundary point of Yn−1,1. If εn = −1, then by definition we have
ξn(ζ) ∈ γn. But there exists a sequence (ζk)k∈N ⊂ Yn−1,0 which converges to ζ such that ξn(ζk) converges
to a point on γ′n as k →∞.

We will use (χn)n≥1 and (ξn)n≥1, respectively, to go up and go down the renormalization tower. For
ζ0 ∈ C and r > 0, we denote by

(5.6) Box(ζ0, r) = {ζ ∈ C : |Re (ζ − ζ0)| ≤ r and |Im (ζ − ζ0)| ≤ r}
the closed square with center ζ0 and with side length 2r. For n ∈ N, recall that Jn is defined in (5.4). For
n ∈ N we define a new index set

(5.7) J̃n = Jn ∪ {Jn} = {j ∈ N : 0 ≤ j ≤ Jn}.
Usually we use Jn and J̃n to mark the translations of Yn,0 and γn respectively. In the following, for unifying
notations, for n ∈ N we denote

γn + ∗ = γ′n and γn + (∗ − 1) = (γn + ∗)− 1 = γ′n − 1.

For a set X ⊂ C and a number δ > 0, let Bδ(X) =
⋃
z∈X D(z, δ) be the δ-neighborhood of X. Recall

that Yn = Yn(D′2) is a set defined in (5.2). For given positive numbers D3, D′3 ≥ D′2, ν ∈ (0, 1/2) and all
n ∈ N, we define

Ξn = Ξn(D′3, D3, ν)

= Yn
(

1
2π log 1

αn+1
+D3

)
∪
(
Yn(D′3) ∩Bν(γn + J̃n ∪ {∗, ∗ − 1})

)(5.8)

and
Ξn,j = Ξn ∩ Yn,j(D′3),

6As before, ‘∗’ is just a notation, not equal to Jn−1 for n ≥ N. Otherwise, this may cause confusion on Yn−1,∗ and

Yn−1,Jn−1
. Indeed, Yn−1,∗ is a proper subset of Yn−1,Jn−1

.
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where j ∈ Jn ∪ {∗}. For given n ∈ N, D′′′3 > D′′3 ≥ D3 and j ∈ Jn ∪ {∗}, we define

(5.9) Wn,j(D
′′
3 , D

′′′
3 ) = {ζ ∈ Yn,j : D′′3 ≤ Im ζ − 1

2π log 1
αn+1

≤ D′′′3 }.

Lemma 5.7. There exist constants D3, D′3 ≥ D′2 and ν0 ∈ (0, 1/20] such that for all n ≥ 1, we have

(a) Ξn−1 = Ξn−1(D′3, D3, ν0) ⊂ Xn−1;
(b) For any ζn−1, ζ ′n−1 ∈ Ξn−1,j ∩Bν0(γn−1 + j′) with ζn−1 ∈ γn−1 + j′ and Im ζ ′n−1 ≥ Im ζn−1 − ν0,

where j ∈ Jn−1 ∪ {∗} and j′ ∈ J̃n−1 ∪ {∗, ∗ − 1}, then

Im ξn(ζ ′n−1) ≥ 3
4 Im ξn(ζn−1);

(c) For ζn−1 ∈ γn−1 + j′ such that Box(ζn−1, ν0) ∩ Yn−1,j 6= ∅, where j ∈ Jn−1 ∪ {∗} and j′ ∈
J̃n−1 ∪ {∗, ∗ − 1}, ξn : Box(ζn−1, ν0) ∩ Yn−1,j → Yn can be extended to a univalent (or an anti-

univalent) map7 ξ̃n,j : Box(ζn−1, 20ν0)→ Πn;
(d) For any D′′′3 > D′′3 ≥ D3, ξn : Wn−1,j ∩ Yn−1 → Yn can be extended to a univalent (or an anti-

univalent) map ξ̃n,j : Bν0(Wn−1,j)→ Πn, where Wn−1,j = Wn−1,j(D
′′
3 , D

′′′
3 ) and j ∈ Jn−1 ∪ {∗}.

Proof. We only prove the case εn = −1 since the proof of the case εn = +1 is completely similar.
(a) Recall that D′2 ≥ 1 is the constant introduced in Corollary 5.4 and appeared in the definition of Yn

(see (5.2)). Note that γn is contained in 0 (see (5.1)). By the pre-compactness of
⋃
α∈(0,r1] ISα ∪ {Qα}

and Proposition 4.4, there exists a constant C ′0 > 0 such that for all n ≥ 0, one has (see also [Che17,
Lemma 4.13])

(5.10) |Re ζ − 1/αn| ≤ C ′0 for all ζ ∈ γ′n.
By Lemma 5.5(a) we have χn,Jn−1

(γ′n − 1) = γ′n−1. Note that both χn = χn,0 : γn → γn−1 and
χn : γ′n → γn−1 + 1 are homeomorphisms. According to Lemma 4.5, there exist two constants C1 ≥ D′2
and C ′1 > 0 such that for all n ≥ 1,

• ζn−1 ∈ (γn−1 + 1) ∩HC1 has a unique preimage ζn ∈ γn ∩H2D′2
under χn,1;

• ζn−1 has a unique preimage ζ ′n ∈ γ′n ∩H2D′2
under χn = χn,0;

• ζ ′′n−1 ∈ γ′n−1 ∩HC1 has a unique preimage ζ ′′n ∈ (γ′n − 1) ∩H2D′2
under χn,Jn−1 ; and

• Imχn(ζ) ≤ 1
2π log 1

αn
+ C ′1 for all ζ ∈ LD′2 ∩ Yn.

For ζn ∈ γn ∩H2D′2
, there are two cases. If Im ζn ≤ 1/αn, we consider the simply connected domain8

V +
n = {ζ ∈ Yn : Im ζ/Im ζn ∈ [3/4, 4/3] and Re ζ ≤ Im (ζn/2) + 1}.

Note that χn,1 : Yn → Yn−1,1 can be extended to map defined in a neighborhood of Y n such that it is

univalent and holomorphic. By Proposition 4.6(b), there exists a constant M̃1 ≥ 1 such that M̃−1
1 ≤

|χ′n,1(ζ)|/Im ζn ≤ M̃1 for all ζ ∈ V +
n (note that |ζn|/2 < Im ζn < |ζn|). This means that χn,1(V +

n ) is a
topological disk satisfying

|ζ − ζn−1| ≥ %1 for all ζ ∈ χn,1(∂V +
n \ γn),

where 0 < %1 < 1 is a constant depending only on M̃1.

If Im ζn > 1/αn, we consider the following simply connected domain

V +
n = {ζ ∈ Yn : Im ζ − Im ζn ∈ [−3/(4αn), 3/(4αn)] and Re ζ ≤ 1/(2αn) + 1}.

7As before, εn = −1 and +1 correspond to univalent and anti-univalent respectively. Moreover, the coefficient ‘20’ in
‘20ν0’ will be used to prove Lemma 5.15.

8We add one in the definition of V +
n to guarantee that it is non-empty.
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By Proposition 4.6(a), there is a constant M ′1 ≥ 1 such that M ′−1
1 ≤ |χ′n,1(ζ)|/αn ≤ M ′1 for all ζ ∈ V +

n .

This means that χn,1(V +
n ) is a topological disk satisfying

|ζ − ζn−1| ≥ %̃1 for all ζ ∈ χn,1(∂V +
n \ γn),

where 0 < %̃1 < 1 is a constant depending only on M ′1.

Similar to the arguments as above, we consider the map χn : Yn → Yn−1,0, which can be extended to a

map defined from a neighborhood of Y n such that it is univalent. For ζ ′n ∈ γ′n ∩H2D′2
, there are two cases.

If Im ζ ′n ≤ 1/αn, we consider the simply connected domain

V −n = {ζ ∈ Yn : Im ζ/Im ζ ′n ∈ [3/4, 4/3] and Re ζ ≥ 1/αn − Im ζn/2− 1}.
If Im ζn > 1/αn, we consider

V −n = {ζ ∈ Yn : Im ζ − Im ζ ′n ∈ [−3/(4αn), 3/(4αn)] and Re ζ ≥ 1/(2αn)− 1}.
By Proposition 4.6, there is a constant 0 < %2 < 1 such that in this case, we have

|ζ − ζn−1| ≥ %2 for all ζ ∈ χn(∂V −n \ γ′n).

Note that Ṽn−1 = χn,1(V +
n ) ∪ χn(V −n ) is a neighborhood of ζn−1, and for ζ ∈ ∂Ṽn−1,

|ζ − ζn−1| ≥ %′ = min{%1, %̃1, %2}.
Hence if we set D3 = D′3 = max{C1, C

′
1}+ 1 then we have

Yn−1

(
1

2π log 1
αn

+D3

)
∪
(
Yn−1(D′3) ∩B%′(γn−1 + Z)

)
⊂ Xn−1.

Similarly, by (5.10) and Proposition 4.6, applying a similar arguments as above, there exists a constant
%′′ > 0 independent on n ∈ N such that

Yn−1(D′3) ∩B%′′(γ′n−1) ⊂ Xn−1 and B%′′(γ
′
n−1) ∩HD′3 ⊂

⋃
j∈N

χn,j(Yn).

Then Part (a) holds if we set9

(5.11) ν0 = min{%′, %′′}/20.

(b) If ζn−1, ζ
′
n−1 ∈ Ξn−1,j(D

′
3, D3, ν0)∩Bν0(γn−1 +j′) for some j in Jn−1∪{∗} and j′ in J̃n−1∪{∗, ∗−1},

then by the definitions of V ±n and ν0 in Part (a), there exists a point ζ̃n−1 ∈ γn−1 + j′ with Im ζ̃n−1 =
Im ζ ′n−1 + ν0 such that

Im ξn(ζ ′n−1) ≥ 3 Im ξn(ζ̃n−1)/4 ≥ 3 Im ξn(ζn−1)/4.

(c) and (d). By (5.5), ξn is not continuous on (γn−1 + J̃n−1)∩ int(Xn−1). Let ζ ∈ (γn−1 + J̃n−1∪{∗, ∗−
1}) ∩Xn−1. Suppose that ξn = χ−1

n,j is defined on Box(ζ, ν0) ∩ Yn−1,j for some j ∈ Jn−1 ∪ {∗}. Note that

χn is defined in Πn (see (4.3) and (4.4)) and V ±n ⊂ Πn. The statements then follow by the definition of ν0

in (5.11). �

Sometimes ξn is defined in a “half” box (for example, when the center of this box is on γn−1 + J̃n−1 ∪
{∗, ∗ − 1} and we consider the left or the right “half” part of this box). Parts (c) and (d) of Lemma 5.7
are very helpful when we need to control the distortion of ξn. Part (a) plays a key role in estimating the
densities in the following two subsections and Part (b) will be used to locate the position of the boxes
when we go down the renormalization tower.

We will use the following estimations, which can be seen as an inverse version of Lemma 4.5 in some
sense.

9Part (a) holds if we define ν0 = min{%′, %′′}. Here we divide it by ‘20’ such that Part (c) also holds.
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Lemma 5.8. For any given ε ∈ (0, 1/10), there exist positive constants D4 = D4(ε) ≥ D3, D′4 = D′4(ε) ≥
D′3 and M̃4 = M̃4(ε) ≥ 1 such that for all ζn−1 ∈ Ξn−1(D′4, D4, ν0) and ζn = ξn(ζn−1) with n ≥ 1, we
have 10

(a) If Im ζn−1 ≥ 1
2π log 1

αn
+D4, then

Im ζn ≥
16

9
Im ζn−1 and |χ′n(ζn)− αn| ≤

αnε

10
;

(b) If D′4 ≤ Im ζn−1 ≤ 1
2π log 1

αn
+D4 + 2, then

Im ζn ≥
4

3
Im ζn−1 and

M̃−1
4

e2πIm ζn−1
≤ |χ′n(ζn)| ≤ M̃4

e2πIm ζn−1
<

3

5
.

Proof. (a) By Lemma 4.5(a), if Im ζn ≥ D0/αn > D′2 for some D0 > 0, there exists a constant M0 > 0
such that

(5.12)
∣∣∣Im ζn −

1

αn

(
Im ζn−1 −

1

2π
log

1

αn

)∣∣∣ ≤ M0

αn
.

If Im ζn < D0/αn, by Lemma 4.5(b), there exists a constant M ′0 > 0 such that Im ζn−1 <
1

2π log 1
αn

+M ′0.

Therefore, if Im ζn−1 ≥ 1
2π log 1

αn
+M ′0, then Im ζn ≥ D0/αn > D′2 and (5.12) holds.

Suppose that Im ζn−1 ≥ 1
2π log 1

αn
+M0 +M ′0. We denote Im ζn−1 = 1

2π log 1
αn

+ y with y ≥M0 +M ′0.

Then by (5.12) we have Im ζn ≥ (y −M0)/αn and

Im ζn
Im ζn−1

≥ y −M0

αny + 1
2παn log 1

αn

.

Note that 1
2παn log 1

αn
> 0 is uniformly bounded from above. Since 0 < αn < 1/2, there exists a constant

M ′′0 > 0 such that for all y ≥M ′′0 , then Im ζn/Im ζn−1 ≥ 16/9.
On the other hand, if Im ζn−1 ≥ 1

2π log 1
αn

+M0 +M ′0, we have Im ζn ≥M ′0/αn. By Proposition 4.6(a),
there exists a constant M1 ≥ 1 such that

|χ′n(ζn)− αn| ≤M1αne
−2παnIm ζn .

If further Im ζn−1 ≥ 1
2π log 1

αn
+ M0 + M ′0 + 1

2π log(10M1/ε), then |χ′n(ζn) − αn| ≤ αnε/10. Therefore,

Part (a) holds if we set D4 = max{M ′′0 ,M0 +M ′0 + 1
2π log(10M1/ε)}.

(b) Without loss of generality, we assume that εn = −1 and ζn−1 ∈ Yn−1,0 ∩ Ξn−1(D′3, D4, ν0). The
arguments will be divided into two cases: (i) ζn−1 ∈ Bν0(γn−1) ∩ Yn−1,0; and (ii) ζn−1 ∈ Bν0(γn−1 + 1) ∩
Yn−1,0.

Suppose that ζn−1 ∈ Bν0(γn−1) ∩ Yn−1,0. There exists ζ ′n−1 ∈ γn−1 with Im ζ ′n−1 = Im ζn−1 such that

ζ ′n = ξn(ζ ′n−1) = χ−1
n (ζ ′n−1) ∈ γn and ζn = ξn(ζn−1) = χ−1

n (ζn−1). Since Im ζ ′n−1 ≤ 1
2π log 1

αn
+D4 + 2, by

Lemma 4.5(b), there exists a constant M̃0 = M̃0(ε) > 0 depending on D4 = D4(ε) such that∣∣Im ζ ′n−1 − 1
2π log(1 + |ζ ′n|)

∣∣ ≤ M̃0.

If Im ζ ′n−1 ≥ M̃0 + 1, then we have

2π(Im ζ ′n−1 − M̃0) ≤ log(1 + |ζ ′n|) ≤ 2π(Im ζ ′n−1 + M̃0).

By (5.1), ζ ′n ∈ γn is contained in 0 = {ζ ∈ C : 1/2 < Re ζ < 3/2 and Im ζ > −2}. Then we have

(5.13) C−1
1 e2πIm ζ′n−1 ≤ Im ζ ′n ≤ C1e

2πIm ζ′n−1 ,

10The constant D4 ≥ D3 will be determined first such that Part (a) holds. Then we make the constant D′4 ≥ D′3
large enough such that Part (b) holds. If D′4 is chosen such that D′4 >

1
2π

log 1
αn

+ D4 + 2 for some n ∈ N, then Ξn =

Ξn(D′4, D4, ν0) = Yn( 1
2π

log 1
αn+1

+D4) and the statement of Part (b) is empty.
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where C1 = 2e2πM̃0 . Therefore, there exists a constant C ′1 = C ′1(ε) > 0 such that if Im ζ ′n−1 ≥ C ′1, then

Im ζ ′n ≥ 16
9 Im ζ ′n−1. By the definition of ν0 and Lemma 5.7(b), we have

(5.14)
3

4
Im ζ ′n ≤ Im ζn ≤

4

3
Im ζ ′n and Im ζn ≥

4

3
Im ζn−1.

According to Proposition 4.6(b), there exists a constant M̃1 ≥ 1 depending on D4 = D4(ε) such

that M̃−1
1 /|ζn| ≤ |χ′n(ζn)| ≤ M̃1/|ζn|. By (5.13) and (5.14), this means that there exists a constant

M̃4 = M̃4(ε) ≥ 1 such that

M̃−1
4

e2πIm ζn−1
≤ |χ′n(ζn)| ≤ M̃4

e2πIm ζn−1
.

Moreover, we assume that C ′1 > 0 is large enough such that if Im ζn−1 ≥ C ′1, then M̃4/e
2πIm ζn−1 < 3/5.

Therefore, if we set D′4 = max{D′3, M̃0 + 1, C ′1}, then Part (b) holds under the assumption that ζn−1 ∈
Bν0(γn−1) ∩ Yn−1,0.

For the second case ζn−1 ∈ Bν0(γn−1 + 1) ∩ Yn−1,0, the argument is completely similar to the first case
if we notice the fact (5.10). We omit the details. �

Definition 5.9 (Heights). For given ε ∈ (0, 1/10), let D4 = D4(ε) and D′4 = D′4(ε) be the positive
constants introduced in Lemma 5.8. For n ∈ N we define a sequence of heights

(5.15) hn =
(4

3

)n
D′4.

Recall that Hy = {z ∈ C : Im z ≥ y} for y ∈ R. For n ∈ N we define

(5.16) Tn = Tn(ε) = Hhn ∩ Ξn(D′4, D4, ν0),

where Ξn is defined in (5.8). In particular, we have T0 = Ξ0(D′4, D4, ν0) since h0 = D′4. By Lemma 5.7(a)
we have Tn ⊂ Ξn ⊂ Xn for all n ∈ N. Further, by Lemma 5.8, we have

(5.17) ξn(Tn−1) ⊂ Hhn , where n ≥ 1.

Note that D4 and D′4 are positive numbers depending on ε while ν0 ∈ (0, 1/20] is a universal constant
(independent on ε). The following lemma will be used to estimate the diameter of some compact sets when
we go up the renormalization tower.

Lemma 5.10. For given ε ∈ (0, 1/10), let ζ0 ∈ T0 = T0(ε) be a point such that ζn = ξn(ζn−1) ∈ Tn for all
n ≥ 1. Then exists a constant M2 = M2(ε) > 0 such that for all n ≥ 1, we have

|χ′n(ζn)| ≤ µ̃n < 3/5,

where

µ̃n =

{
11
10αn if hn−1 ≥ 1

2π log 1
αn

+D4,

M2/e
2πhn−1 if hn−1 <

1
2π log 1

αn
+D4.

Proof. The case that hn−1 ≥ 1
2π log 1

αn
+ D4 is immediate by Lemma 5.8(a). If hn−1 ≤ Im ζn−1 <

1
2π log 1

αn
+D4, then by Lemma 5.8(b), we have

|χ′n(ζn)| ≤ M̃4

e2πIm ζn−1
≤ M̃4

e2πhn−1
<

3

5
.

If Im ζn−1 ≥ 1
2π log 1

αn
+D4 > hn−1 = ( 4

3 )n−1D′4, then by Lemma 5.8(a), we have

|χ′n(ζn)| ≤ 11

10
αn =

11
10e

2πD4

e
2π(

1
2π log

1
αn

+D4)
≤

11
10e

2πD4

e2πhn−1
.
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For simplicity, without loss of generality we assume that D′4 ≥ D4 + 1. Then 11
10e

2πD4/e2πhn−1 < 3
5 and

the result follows if we set M2 = max{M̃4,
11
10e

2πD4}. �

5.3. Boxes and almost rectangles. In order to use McMullen’s criterion to calculate the Hausdorff
dimension, we need first to construct a collection of sets satisfying the nesting conditions which is defined
in Section 3.

Let ε ∈ (0, 1/10) be any given number. We will fix this number in this subsection. Let D4 = D4(ε)
and D′4 = D′4(ε) be the constants introduced in Lemma 5.8. Recall that ν0 ∈ (0, 1/20] is the constant
introduced in Lemma 5.7. Without loss of generality, based on Proposition 5.3, in the following we assume
that the constant D′4 is large such that

(5.18) | arg(ζ − ζ ′)− π/2| < arctan(ν0/5) ≤ arctan(1/100),

where ζ, ζ ′ ∈ γn (or γ′n) satisfy Im ζ > Im ζ ′ ≥ D′4 − 1. According to Corollary 5.4, both γn ∩ Ly and

γ′n ∩Ly are singletons if y ≥ D′4− 1. For n ∈ N recall that Jn = an + εn+1−1
2 is defined in (5.4). We define

two subsets in Yn,Jn−1 as

Y −n,Jn−1 = Yn,∗ − 1 and Y +
n,Jn−1 = Yn,Jn−1 \ Y −n,Jn−1.

Definition 5.11 (Almost rectangles, see Figure 4). For n ∈ N, a topological quadrilateral R in Yn ∩ Hy
with y = 1

2π log 1
αn+1

+D4 is called an almost rectangle if

• R = Wn,j(a, b) with j ∈ Jn ∪ {∗}, where Wn,j is defined in (5.9), b > a ≥ D4 and 1 ≤ b− a ≤ 3; or
• R = {ζ ∈ Y ±n,Jn−1 : a ≤ Im ζ − 1

2π log 1
αn+1

≤ b}, where 11 b > a ≥ D4 and 1 ≤ b− a ≤ 3.

Figure 4. The sketch of two typical almost rectangles R, R′ and two typical nice half
boxes Q and Q′, where R and Q are contained in Yn,j for some j ∈ J, R′ is contained in
Y +
n,Jn−1 while Q′ is contained in Yn,∗. See also Figure 3.

Recall that Box(ζ, r) is the square defined in (5.6) and J̃n is the index set defined in (5.7).

11It is necessary to consider these kinds of almost rectangles since sometimes we need to pack the image ξn(R) when R
is an almost rectangle in Yn−1,∗. See Lemma 5.5.
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Definition 5.12 (Nice half boxes, see Figure 4). For n ∈ N, a topological quadrilateral Q in Tn is called
a nice half box if it can be written as (where r ∈ [ν0, 3/2]) either

• Q = Box(ζ, r) ∩ Yn,j , where ζ ∈ γn + j′ with j′ ∈ J̃n and j ∈ Jn ∩ {j′ − 1, j′}; or
• Q = Box(ζ, r) ∩ Yn,∗, where ζ ∈ γ′n or ζ ∈ γn + Jn; or
• Q = Box(ζ, r) ∩ Y −n,Jn−1, where ζ ∈ γn + Jn − 1 or ζ ∈ γ′n − 1; or

• Q = Box(ζ, r) ∩ Y +
n,Jn−1, where ζ ∈ γn + Jn or ζ ∈ γ′n − 1.

In particular, some nice half boxes may also be almost rectangles.

If εn+1 = +1, then Box(ζ, ν0) ∩ (γn + N) with ζ ∈ γ′n may be non-empty (ν0 is small but the width of
Yn,∗ might be smaller). We will consider the images of the above two kinds of topological disks (almost
rectangles and nice half boxes) under ξn and use these two types of topological disks to pack the images.

5.4. Distortion and densities I. In this subsection we use Koebe’s distortion theorem and the results
obtained in the last subsection to estimate the densities which are needed in the criterion for calculating
Hausdorff dimensions. The following classic distortion theorem can be found in [Pom75, Theorem 1.6].

Theorem 5.13 (Koebe’s Distortion Theorem). Let f : D→ C be a univalent map satisfying f(0) = 0 and
f ′(0) = 1. Then for each z ∈ D, we have

(a) |z|
(1+|z|)2 ≤ |f(z)| ≤ |z|

(1−|z|)2 ; and

(b) 1−|z|
(1+|z|)3 ≤ |f ′(z)| ≤

1+|z|
(1−|z|)3 .

We will use the above distortion theorem to control the shape of the images of the almost rectangles
and nice half boxes. Let ε ∈ (0, 1/10) be any given number. Recall that Tn = Tn(ε) is the set defined in
(5.16).

Definition 5.14 (Packing and density). Let Ω be a measurable bounded subset in Y n with area(Ω) > 0,
where n ∈ N. We denote by

Pack(Ω) = {Vn,i : 1 ≤ i ≤ bn},
where bn ≥ 1 and each Vn,i is an almost rectangle or a nice half box in Ω ∩ Tn which satisfies area(Vn,i ∩
Vn,j) = 0 if i 6= j. The set Pack(Ω) is called a packing of Ω. For simplicity, we denote area(Pack(Ω)) =∑bn
i=1 area(Vn,i). Recall that the density of Pack(Ω) in Ω is defined as

dens(Pack(Ω),Ω) =
area(Pack(Ω))

area(Ω)
.

Lemma 5.15 (Admissible packing). There exists a universal constant δ̃ > 0 such that for any given
ε ∈ (0, 1/10), for any almost rectangle or nice half box S ⊂ Tn−1 = Tn−1(ε) with n ≥ 1, there exists a
packing Pack(ξn(S)) = {Vn,i : 1 ≤ i ≤ bn} of ξn(S) in Tn = Tn(ε) such that the density satisfies 12

(5.19) dens(Pack(ξn(S)), ξn(S)) ≥ δ̃.
Moreover, the packing Pack(ξn(S)) = {Vn,i : 1 ≤ i ≤ bn} can be chosen such that

(a) If S is a nice half box (but not an almost rectangle) with height 2r ∈ [2ν0, 3], Im ζ ≥ 1
2π log 1

αn
+D4

and Im ξn(ζ) ≥ 1
2π log 1

αn+1
+ D4 for all ζ ∈ S, then for 1 ≤ i ≤ bn, Vn,i is either an almost

rectangle or a nice half box with height min{8r/3, 3}; and
(b) If S is an almost rectangle, Im ζ ≥ 1

2π log 1
αn

+D4 and Im ξn(ζ) ≥ 1
2π log 1

αn+1
+D4 for all ζ ∈ S,

then all Vn,i’s are almost rectangles, and

dens(Pack(ξn(S)), ξn(S)) ≥ 1− ε/5.
12This means that the packing Pack(ξn(S)) contains at least one almost rectangle or one nice half box, which is necessary

for the nesting condition used in the next subsection.
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We call the packing Pack(ξn(S)) in Lemma 5.15 an admissible packing. In generally, the construction
of admissible packings is not unique. Note that by the definition of packing, each Vn,i of Pack(ξn(S)) is
contained in Tn. Hence if Im ζ < 1

2π log 1
αn+1

+D4 for some ζ ∈ Vn,i, then this Vn,i has height 2ν0.

Proof. Based on the locations of S and ξn(S), the proof will be divided into several cases. Without loss of
generality, in the following we assume that εn = −1 and εn+1 = +1 since the arguments for the rest three
cases (εn = −1 and εn+1 = −1; εn = +1 and εn+1 = −1; εn = +1 and εn+1 = +1) are completely similar.

Case 1: S = Box(ζn−1, ν0) ∩ Yn−1,j is a nice half box, where ζn−1 ∈ γn−1 + j and j ∈ Jn−1. Without
loss of generality, we assume that j = 0. According to Lemma 5.7(c), the map ξn : S → Yn can be

extended to a univalent map ξ̃n,0 : Box(ζn−1, 20ν0)→ Πn. By Lemma 5.10 and Theorem 5.13(a), for any
ζ ∈ ∂Box(ζn−1, ν0), we have

(5.20)
∣∣ξ̃n,0(ζ)− ξ̃n,0(ζn−1)

∣∣ ≥ ν0

(1 +
√

2/20)2
· 5

3
> 1.45 ν0 >

√
2 ν0.

This means that ξn(S) contains at least one nice half box Box(ζn, r) ∩ Yn,0, where r > ν0 and ζn =

ξ̃n,0(ζn−1) ∈ γn. From (5.17) we know that ξn(S) is above the height hn. According to Koebe’s distortion

theorem (see Theorem 5.13), ξn(S) has bounded shape and there exist a universal constant δ̃1 > 0 and a
packing Pack(ξn(S)) in Tn satisfying

dens(Pack(ξn(S)), ξn(S)) ≥ δ̃1 > 0.

The argument is the same if S = Box(ζn−1, ν0)∩ Yn−1,∗ is a nice half box with ζn−1 ∈ γn−1 + Jn−1 (or
S = Box(ζn−1, ν0)∩ (Yn−1,∗− 1) is a nice half box with ζn−1 ∈ γn−1 + Jn−1− 1) since ξn : S → Yn can be

also extended univalently to ξ̃n,∗ : Box(ζn−1, 20ν0)→ Πn.

Case 2: S = Box(ζn−1, ν0) ∩ Yn−1,j is a nice half box, where ζn−1 ∈ γn−1 + j + 1 and j ∈ Jn−1.
Without loss of generality, we assume that j = 0. Then ξn : S → Yn can be extended to a univalent map

ξ̃n,0 : Box(ζn−1, 20ν0)→ Πn and we have the same estimation as (5.20), where ζn = ξ̃n,0(ζn−1) ∈ γ′n. Let
ζ ′n ∈ γn + Jn with Im ζ ′n = Im ζn. By (5.18) and (5.20), there exists a number % > 0 such that

• If Re (ζn − ζ ′n) ≥ %, then ξn(S) contains at least one nice half box Box(ζn, r) ∩ Yn,∗, where r ≥ ν0;
• If Re (ζn− ζ ′n) < %, then ξn(S) contains at least one nice half box Box(ζ ′n, r)∩Yn,Jn , where r ≥ ν0.

According to Koebe’s distortion theorem, in both cases, ξn(S) has bounded shape and there exist a

universal constant δ̃2 > 0 and a packing Pack(ξn(S)) in Tn satisfying

dens(Pack(ξn(S)), ξn(S)) ≥ δ̃2 > 0.

The argument is the same if S = Box(ζn−1, ν0) ∩ Y +
n,Jn−1 is a nice half box with ζn−1 ∈ γn−1 + Jn−1.

Case 3: S = Box(ζn−1, ν0)∩ (Yn−1,∗ − j) is a nice half box with ζn−1 ∈ (γ′n−1 −j), where j = 0, 1. We

assume that j = 0. Then ξn : S → Yn can be extended to a univalent map ξ̃n,∗ : Box(ζn−1, 20ν0) → Πn

and we have the same estimation as (5.20), where ζn = ξ̃n,∗(ζn−1) ∈ γ′n−1 (see Lemma 5.5(a)). Therefore,
ξn(S) contains at least one nice half box Box(ζn, r) ∩ Y −n,Jn−1, where r > ν0. According to Koebe’s

distortion theorem, ξn(S) has bounded shape and there exist a universal constant δ̃3 > 0 and a packing
Pack(ξn(S)) in Tn satisfying

dens(Pack(ξn(S)), ξn(S)) ≥ δ̃3 > 0.

The argument is the same if S = Box(ζn−1, ν0) ∩ Y +
n,Jn−1 is a nice half box with ζn−1 ∈ γ′n−1 − 1.

Decreasing the constants δ̃1, δ̃2 and δ̃3 if necessary, the estimations on the densities obtained above still
hold if we replace the nice half boxes by S = Box(ζn−1, r) ∩ ?n−1 with r ∈ [ν0, 3], where ‘?n−1’ denotes
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Y ±n−1,Jn−1−1 or Yn−1,j with j ∈ Jn−1 ∪ {∗}. Indeed, in this case we have Im ζ ≥ 1
2π log 1

αn
+ D4 for all

ζ ∈ S and we still have bounded distortion by Lemma 5.7(d).

Case 4: S ⊂ Yn−1,j is an almost rectangle, where j ∈ Jn−1. By Lemma 5.7(d) and Koebe’s distortion

theorem, there exists a universal constant δ̃4 > 0 and a packing Pack(ξn(S)) in Tn satisfying

dens(Pack(ξn(S)), ξn(S)) ≥ δ̃4 > 0.

Similarly, the result still holds if S is an almost rectangle contained in Yn−1,∗, Y
−
n−1,Jn−1−1 or Y +

n−1,Jn−1−1.

Hence the statement (5.19) holds if we set δ̃ = min{δ̃i : 1 ≤ i ≤ 4}.
(a) Let S be a nice half box (but not an almost rectangle) Box(ζn−1, r) ∩ ?n−1 with r ∈ [ν0, 3], where

‘?n−1’ denotes Y ±n−1,Jn−1−1 or Yn−1,j with j ∈ Jn−1 ∪ {∗}. Suppose that Im ζ ≥ 1
2π log 1

αn
+ D4 and

Im ξn(ζ) ≥ 1
2π log 1

αn+1
+D4 for all ζ ∈ S. By Lemma 5.10, the elements in the packing Pack(ξn(S)) can

be chosen such that they are almost rectangles or nice half boxes with the form Box(ζn,min{4r/3, 3/2})∩?n,

where ζn ∈ γn + J̃n ∪ {∗, ∗ − 1} and ‘?n’ denotes Y ±n,Jn−1 or Yn,j with j ∈ Jn ∪ {∗}.
(b) Let S be an almost rectangle in Tn−1 such that Im ζ ≥ 1

2π log 1
αn

+D4 and Im ξn(ζ) ≥ 1
2π log 1

αn+1
+D4

for all ζ ∈ S. The map ξn : S → Πn can be extended to a univalent map ξ̃n : Bν0(S) → Πn by Lemma
5.7(d). For any ζn−1 ∈ S and ζn = ξn(ζn−1), according to Lemma 5.8(a) we have

| arg ξ̃′n(ζn−1)| = | − argχ′n(ζn)| ≤ ε/10.

Since each almost rectangle has height at least one, it follows that ξn(S) can be packed by a family of
almost rectangles {Vn,i : 1 ≤ i ≤ bn} in Tn such that dens(Pack(ξn(S)), ξn(S)) ≥ 1− ε/5. �

5.5. Nesting conditions. Recall that hn is defined in (5.15). Firstly we define

K0,1 = F0,1 = Y0,0 ∩ {ζ ∈ C : Im ζ − h0 ∈ [0, 1]} and

K0 = F0 = {K0,1}.
Then K0,1 = F0,1 is an almost rectangle. In the following, we define two sequences (Kn)∞n=0 and (Fn)∞n=0

such that each Fn with n ∈ N is a family of subsets (almost rectangles or nice half boxes) in the Fatou
coordinate plane of fn (in particular each element of Fn is contained in Tn) and each Kn with n ∈ N is a
family of subsets in the Fatou coordinate plane of f0 by pulling back of the elements in Fn. In particular,
(Fn)∞n=0 and (Kn)∞n=0 are constructed by going down and going up the renormalization tower respectively,
such that (Kn)∞n=0 satisfies the nesting condition (see Section 3).

By Lemma 5.15, the image ξ1(F0,1) can be packed by finitely many (at least one) almost rectangles and
some nice half boxes Pack(ξ1(F0,1)) = F1 = {F1,i : 1 ≤ i ≤ l1} in T1 such that the packing is admissible.
We define

K1 = {K1,i = ξ−1
1 (F1,i) = χ1,(ε1+1)/2(F1,i) : 1 ≤ i ≤ l1}.

Then by the definition of packing we know that

• K1,i ⊂ K0,1 for all 1 ≤ i ≤ l1; and
• area(K1,i ∩K1,j) = 0 for all 1 ≤ i, j ≤ l1 with i 6= j.

We now construct (Kn)∞n=0 and (Fn)∞n=0 inductively.

Definition of Km and Fm with 0 ≤ m ≤ n− 1. Suppose that

Km = {Km,i : 1 ≤ i ≤ lm}, and

Fm = {Fm,i = ξm ◦ · · · ◦ ξ1(Km,i) : 1 ≤ i ≤ lm},
where 0 ≤ m ≤ n− 1 with n ≥ 2 have been defined such that



26 D. CHERAGHI, A. DEZOTTI, AND F. YANG

• area(Km,i ∩Km,j) = 0 for all13 1 ≤ i, j ≤ lm with i 6= j;
• Each Fm,i ⊂ Tm is an almost rectangle or a nice half box, where 1 ≤ i ≤ lm;
• For each Fm,i ∈ Fm with 0 ≤ m ≤ n− 2 and 1 ≤ i ≤ lm, the image ξm+1(Fm,i) has an admissible

packing Pack(ξm+1(Fm,i)) = {Fm,im+1,k : 1 ≤ k ≤ lm,im+1} such that Fm+1 = {Fm,im+1,k : 1 ≤ i ≤
lm, 1 ≤ k ≤ lm,im+1} = {Fm+1,j : 1 ≤ j ≤ lm+1}, where

lm+1 =

lm∑
i=1

lm,im+1.

Definition of Kn and Fn inductively. For each 1 ≤ i ≤ ln−1 and Fn−1,i = ξn−1 ◦ · · · ◦ ξ1(Kn−1,i) ∈
Fn−1, we consider the image ξn(Fn−1,i) and pack it by almost rectangles and nice half boxes. Then the
collection of all nice half boxes and almost rectangles in the union of ξn(Fn−1,i) with 1 ≤ i ≤ ln−1 will
form the set Fn. Finally the set Kn can be obtained by going up the renormalization tower.

For each 1 ≤ i ≤ ln−1, by Lemma 5.15, the image ξn(Fn−1,i) can be packed by an admissible packing
Pack(ξn(Fn−1,i)) such that

Fn−1,i
n = Pack(ξn(Fn−1,i)) = {Fn−1,i

n,k : 1 ≤ k ≤ ln−1,i
n }.

We define

Fn = {Fn−1,i
n,k : 1 ≤ i ≤ ln−1, 1 ≤ k ≤ ln−1,i

n }
= {Fn,j : 1 ≤ j ≤ ln},

where

ln =

ln−1∑
i=1

ln−1,i
n .

For each Fn,in with n ≥ 2 and 1 ≤ in ≤ ln, there exists a unique sequence (i0, i1, · · · , in−1) with 1 ≤ im ≤
lm and 0 ≤ m ≤ n− 1 such that

Fm+1,im+1
∈ Pack(ξm+1(Fm,im)).

The inverse ξ−1
m+1|Fm+1 is defined such that ξ−1

m+1(Fm+1,im+1) ⊂ Fm,im , where 0 ≤ m ≤ n− 1. We define

Kn = ξ−1
1 ◦ · · · ◦ ξ−1

n (Fn) = {ξ−1
1 ◦ · · · ◦ ξ−1

n (Fn,j) : 1 ≤ j ≤ ln}
= {Kn,j : 1 ≤ j ≤ ln}.

Then Kn and Fn = {Fn,j = ξn ◦ · · · ◦ ξ1(Kn,j) : 1 ≤ j ≤ ln} satisfy

• area(Kn,i ∩Kn,j) = 0 for all 1 ≤ i, j ≤ ln with i 6= j; and
• Each Fn,i ⊂ Tn is an almost rectangle or a nice half box, where 1 ≤ i ≤ ln.

This finishes the definition of (Fn)∞n=0 and (Kn)∞n=0. By definition, the family (Kn)∞n=0 satisfies the
nesting condition. We will estimate the lower bound of the densities dens(Kn+1,Kn,i) in next subsection,
where 1 ≤ i ≤ ln.

5.6. Distortion and densities II. In the following, for each n ≥ 1 and 1 ≤ i ≤ ln−1, for simplicity we
denote by

(5.21) dens(Fn, ξn(Fn−1,i)) = dens(Pack(ξn(Fn−1,i)), ξn(Fn−1,i)),

where Pack(ξn(Fn−1,i)) is an admissible packing of ξn(Fn−1,i) that has been chosen in last subsection. In
order to transfer the lower bound of dens(Fn, ξn(Fn−1,i)) to that of dens(Kn,Kn−1,i), we need to estimate
the distortion.

13Note that Fm,i may equal to Fm,j if i 6= j.
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Let g be a univalent or anti-univalent map defined in a neighbourhood of a bounded set Ω in C. We
say that g has bounded distortion on Ω if there are constants c, C > 0, such that for all different x and y
in Ω, one has

(5.22) c < |g(x)− g(y)|/|x− y| < C.

The quantity

L(g|Ω) = inf {C/c : c and C satisfy (5.22)}
is the distortion of g on Ω. For any univalent or anti-univalent functions g1 : Ω1 → C and g2 : Ω2 → C
satisfying g1(Ω1) ⊂ Ω2, it is straightforward to verify that the distortions of g1 and g2 satisfy

(5.23) L(g1|Ω1
) = L(g−1

1 |g1(Ω1))

and

(5.24) L((g2 ◦ g1)|Ω1) ≤ L(g1|Ω1)L(g2|g1(Ω1)).

Let X be a measurable subset of Ω. Then

(5.25) L(g|Ω)−2 dens(g(X), g(Ω)) ≤ dens(X,Ω) ≤ L(g|Ω)2 dens(g(X), g(Ω)).

Lemma 5.16. There exists a universal constant M3 ≥ 1 such that for all n ≥ 1 and 1 ≤ i ≤ ln−1, the
distortion of Gn = ξn ◦ · · · ◦ ξ1 : Kn−1,i → ξn(Fn−1,i) satisfies

L(Gn|Kn−1,i) ≤M3.

Proof. For 1 ≤ i ≤ ln−1, each Fn−1,i is an almost rectangle or a nice half box. By Lemma 5.7(c)(d) and
(5.18), the map ξn : Fn−1,i → ξn(Fn−1,i) can be extended to a univalent or anti-univalent map

ξ̃n : Bν0(Fn−1,i)→ ξ̃n(Bν0(Fn−1,i)) ⊂ Πn.

By the definition of nice half boxes and almost rectangles (each of them has height at most 3), there exists
a constant κ > 0 independent on n and i such that the conformal modulus satisfies

mod(Bν0(Fn−1,i) \ Fn−1,i) ≥ κ.
By Koebe’s distortion theorem, ξ̃n and hence ξn have uniform distortion on Fn−1,i. This means that there
exists a constant M ′3 > 0 which is independent on n and i such that L(ξn|Fn−1,i

) ≤M ′3.

On the other hand, G−1
n−1 = (ξn−1 ◦ · · · ◦ ξ1)−1 : Fn−1,i → Kn−1,i can be extended to a univalent or

anti-univalent map

G̃−1
n−1 : Bν0(Fn−1,i)→ C.

Denote by K̃n−1,i = G̃−1
n−1(Bν0(Fn−1,i)). Then Kn−1,i ⊂ K̃n−1,i and

mod(K̃n−1,i \Kn−1,i) ≥ κ.
Still by Koebe’s distortion theorem, G−1

n−1 have uniform distortion on Fn−1,i. This means that there exists

a constant M ′′3 > 0 which is independent on n and i such that L(G−1
n−1|Fn−1,i) ≤M ′′3 . Therefore, by (5.23)

and (5.24), Gn has uniform distortion and L(Gn|Kn−1,i
) ≤M3, where M3 = M ′3M

′′
3 . �

For n ≥ 1 and 1 ≤ i ≤ ln−1, we denote area(Kn ∩Kn−1,i) =
∑ln
j=1 area(Kn,j ∩Kn−1,i). The density of

Kn in Kn−1,i is defined as

dens(Kn,Kn−1,i) =
area(Kn ∩Kn−1,i)

area(Kn−1,i)
.

For any given ε ∈ (0, 1/10), recall that D4 = D4(ε) > 0 is introduced in Lemma 5.8 and µ̃n is the number
introduced in Lemma 5.10.



28 D. CHERAGHI, A. DEZOTTI, AND F. YANG

Corollary 5.17. There exist universal constants δ ∈ (0, 1) and M4 ≥ 1 such that for any given ε ∈
(0, 1/10), we have

(a) For all n ≥ 1 and all 1 ≤ i ≤ ln−1,

dens(Kn,Kn−1,i) ≥ δ.
In particular, if Im ζ ≥ 1

2π log 1
αn

+D4 and Im ξn(ζ) ≥ 1
2π log 1

αn+1
+D4 for all ζ ∈ Fn−1,i, then

dens(Kn,Kn−1,i) ≥ 1−M4ε.

(b) For all n ≥ 1 and all 1 ≤ i ≤ ln, the diameter of Kn,i satisfies

diam(Kn,i) ≤M4

n∏
k=1

µ̃k.

Proof. (a) For any n ≥ 1 and 1 ≤ i ≤ ln−1, we consider the univalent or anti-univalent map

ξn ◦ · · · ◦ ξ1 : Kn−1,i → ξn(Fn−1,i).

Note that dens(Fn, ξn(Fn−1,i)) is defined in (5.21), where n ≥ 1 and 1 ≤ i ≤ ln−1. By (5.25) and Lemmas
5.15 and 5.16, we have

dens(Kn,Kn−1,i) ≥M−2
3 dens(Fn, ξn(Fn−1,i)) ≥M−2

3 δ̃.

In particular, suppose that Im ζ ≥ 1
2π log 1

αn
+ D4 and Im ξn(ζ) ≥ 1

2π log 1
αn+1

+ D4 for all ζ ∈ Fn−1,i.

Then by Lemma 5.15(b), Lemma 5.16 and (5.25), we have 14

dens(Kn,Kn−1,i) ≥ 1− dens(C \ Kn,Kn−1,i) ≥ 1−M2
3 ε/5.

Then part (a) follows if we set δ = M−2
3 δ̃ and M4 = M2

3 /5.

(b) Note that all Fn,i = ξn ◦ · · · ◦ ξ1(Kn,i) ⊂ Tn with 1 ≤ i ≤ ln are almost rectangles or nice half
boxes, whose diameters have uniform upper bound by definition. Then the statement of the upper bound
of the diameter of Kn,i is an immediate corollary of Lemma 5.10, Lemma 5.16 and Koebe’s distortion
theorem. �

6. The Hausdorff dimension of the post-critical sets

In this section we give the proof of Theorem A. This is based on the estimation of the diameters of
Kn,i ∈ Kn and the densities of dens(Kn+1,Kn,i) established in last section, where n ∈ N and 1 ≤ i ≤ ln.

Proof of Theorem A. Recall that M4 and δ are universal positive constants introduced in Corollary 5.17.
Let 0 < ε < (1 − δ)/(10M4) be any given number. Recall that D4 = D4(ε) and D′4 = D′4(ε) are the
positive constants introduced in Lemma 5.8, and hn = (4

3 )nD′4 is the height defined in (5.15). We will

compare hn with 1
2π log 1

αn+1
+D4 and divide the arguments into several cases.

By the construction of admissible packing (see Lemma 5.15(a)(b)), there exists an integer I ≥ 1 such
that for any n ≥ 1, if

hn+j−1 ≥ 1
2π log 1

αn+j
+D4, for all 0 ≤ j ≤ I,

then the packed elements in Fn+I−1 = {Fn+I−1,i : 1 ≤ i ≤ ln+I−1} are all almost rectangles.

Recall that M2 = M2(ε) > 0 is the constant introduced in Lemma 5.10. For k ≥ 1, there are following
cases:

Case 1: If hk−1 <
1

2π log 1
αk

+D4, we define

µk = M2/e
2πhk−1 and δk = δ.

14Here we use C \ Kn to denote C \⋃lnj=1Kn,j .
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Case 2: If hk+j−1 ≥ 1
2π log 1

αk+j
+D4 for 0 ≤ j ≤ m with 0 ≤ m ≤ I − 1, hk−2 <

1
2π log 1

αk−1
+D4 and

hk+m < 1
2π log 1

αk+m+1
+D4, we define

µk+j =
3

5
and δk+j = δ, where 0 ≤ j ≤ m.

Case 3: If hk+j−1 ≥ 1
2π log 1

αk+j
+D4 for 0 ≤ j ≤ m with15 I ≤ m ≤ +∞ and hk−2 <

1
2π log 1

αk−1
+D4,

we define

µk+j =
3

5
for 0 ≤ j ≤ m, and δk+j =

{
δ if 0 ≤ j ≤ I − 1,

1−M4ε if I ≤ j ≤ m.
Then by Lemma 5.15(b) and Corollary 5.17(a), for all n ≥ 1 and all 1 ≤ i ≤ ln−1, we have

dens(Kn,Kn−1,i) ≥ δn.
By Corollary 5.17(b), for all n ≥ 1 and all 1 ≤ i ≤ ln we have

diam(Kn,i) ≤ dn = M4

n∏
k=1

µk.

For n ≥ 1, we consider the sequence

cn =

∑n+1
k=1 | log δk|∑n

k=1 | logµk| − logM4
.

We claim that
lim sup
n→∞

cn ≤ 4M4ε.

Note that limn→∞
∑n
k=1 | logµk| = +∞ and | log δk| ∈ [0, log(1/δ)], where k ≥ 1. Indeed, we have

0 < δ < 1−M4ε by the choice of ε. It is sufficient to prove that

lim sup
n→∞

c̃n ≤ 4M4ε, where c̃n =

∑n
k=1 | log δk|∑n
k=1 | logµk|

.

We consider the following two cases:
(i) Suppose that there exist only finitely many numbers 1 ≤ k1 < k2 < · · · < k` such that hki−1 <

1
2π log 1

αki
+D4, where 1 ≤ i ≤ `. This means that∣∣ logµki

∣∣ = log
e2πhki−1

M2
for 1 ≤ i ≤ ` and∣∣ logµk

∣∣ = log
5

3
for k 6∈ {ki : 1 ≤ i ≤ `}.

Then for all k ≥ k` + I, we have log δk = − log(1−M4ε). This implies that

lim
n→∞

c̃n =
log(1−M4ε)

log(3/5)
< 4M4ε.

(ii) Suppose that there exists an infinite sequence 1 ≤ k1 < k2 < · · · < k` < · · · such that hki−1 <
1

2π log 1
αki

+D4, and hk−1 ≥ 1
2π log 1

αk
+D4 for k 6∈ {ki : i ≥ 1}. This means that∣∣ logµki
∣∣ = log

e2πhki−1

M2
for i ≥ 1 and∣∣ logµk

∣∣ = log
5

3
for k 6∈ {ki : i ≥ 1}.

15Actually, m cannot be +∞ if α is not of Herman type.
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For convenience we denote k0 = 0. For any j ≥ 1, we have

uj =

kj∑
i=kj−1+1

| log δi| ≤ I log
1

δ
+
(
kj − kj−1 − 1

)
log

1

1−M4ε
and

vj =

kj∑
i=kj−1+1

| logµi| =
(
kj − kj−1 − 1

)
log

5

3
+ log

e2πhkj−1

M2
.

(6.1)

For any n ≥ 1, there exists a unique ` = `(n) ≥ 1 such that k`−1 ≤ n < k`. Similarly, we have

u′` =

n∑
i=k`−1+1

| log δi| ≤ I log
1

δ
+
(
n− kj−1 − 1

)
log

1

1−M4ε
and

v′` =

n∑
i=k`−1+1

| logµi| =
(
n− kj−1 − 1

)
log

5

3
.

(6.2)

By (6.1) and (6.2), we have

n∑
k=1

| log δk| =
`−1∑
j=1

uj + u′` ≤ ` I log
1

δ
+ (n− `) log

1

1−M4ε

and
n∑
k=1

| logµk| =
`−1∑
j=1

vj + v′` =

`−1∑
j=1

log
e2πhkj−1

M2
+ (n− `) log

5

3
.

Since hn → +∞ as n→∞, we have limj→∞ hkj−1 = +∞. Therefore, we have

lim
`→∞

` I log(1/δ)∑`−1
j=1 log(e2πhkj−1/M2)

= 0.

Note that ` = `(n)→∞ as n→∞. It follows that

lim sup
n→∞

c̃n ≤ lim sup
n→∞

` I log(1/δ)∑n
k=1 | logµk|

+ lim sup
n→∞

(n− `) log(1−M4ε)
−1∑n

k=1 | logµk|
≤ 4M4ε.

By Proposition 3.2, we have dimH(
⋂
n≥0Kn) ≥ 2 − 4M4ε. As ε was arbitrary, we conclude that the

Hausdorff dimension of
⋂
n≥0Kn is equal to 2. According to [Che19, Proposition 5.10], Φ−1

0 (
⋂
n≥0Kn) is

contained in Λ0 ∪ ∆0, where Λ0 is the post-critical set of f0 and ∆0 is the Siegel disk of f0 centred at
the origin (if any). Note that the restriction of Φ−1

0 in an open neighbourhood of K0,1 is conformal (see
Section 4.4). It follows that if α ∈ HTN \B, then ∆0 = ∅ and we have dimH(Λ0) ≥ dimH(

⋂
n≥0Kn) = 2.

Suppose that α ∈ HTN ∩ (B \H ). Then every fn, where n ∈ N, has a Siegel disk ∆n whose boundary
does not contain the unique critical point of fn. For n ∈ N, recall that Yn is defined in (5.2). We denote

∆̃n = {ζ ∈ Yn : Φ−1
n (ζ) ∈ ∆n} and

yn = inf{Im ζ : ζ ∈ ∆̃n}.
We claim that limn→∞ yn = +∞. Otherwise, by the property of uniform contraction between the adjacent
renormalization levels with respect to the hyperbolic metrics in the interiors of Πn’s (see [Che19, Section
5] or Section 7.1), one can obtain that the critical point of f0 is contained in the boundary of ∆0, which
contradicts to the assumption that α ∈ HTN is not of Herman type.
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After going down the renormalization tower by finitely many levels, say n0 ≥ 0, we can choose a nice

half box Qn0
which is contained in Yn0

(D′4) such that Qn0
is disjoint with the closure of ∆̃n0

. Then one can
obtain the full Hausdorff dimension of Λ0 \∆0 by following the arguments as in the non-Brjuno case. �

7. Dimension of the hairs without the end points

From Theorem 5.1 we know that the post-critical set Λf of each f ∈ ISα ∪{Qα} with α ∈ HTN \H is

a Cantor bouquet or a one-sided hairy circle. The set Λf \∆f consists of uncountably many components
and each of them is a simple arc (which is called a hair), where ∆f is the Siegel disk of f if α ∈ B \H
while ∆f = {0} is the Cremer point if α 6∈ B.

Let Ef be the set of one-sided endpoints (not contained in ∆f ) of the components of Λf \∆f . Then Ef
is totally disconnected. In this section we show that the hairs in Λf without end points have Hausdorff
dimension one if α ∈ (J ∪ S) ∩ HTN , where J and S are the classes of irrational numbers defined in
Section 2.

7.1. Decomposition of Fatou coordinate planes, orbits and itineraries. We continue using the
notations introduced in Sections 4.3 and 4.4. Let f ∈ ISα ∪ {Qα} with α ∈ HTN . For n ≥ 0, let fn be
the n-th near-parabolic renormalization of f and Φn the Fatou coordinate defined on the petal Pn.

In the following, we assume that

α ∈ (J ∪ S) ∩HTN .

In particular, we have εn = −1 for all n ∈ N (see Section 2). Let χn be the map defined in Section 4.4.
Then χn is holomorphic for all n ∈ N. Recall that Sn is the set defined in (4.2). For l ∈ N, similar to the
definition of Πn in (4.3), we define

Dn,l = {ζ ∈ C :
1

2
≤ Re ζ ≤ 1

αn
− k− 1

2
and Im ζ > −2} ∪

kn+l⋃
j=0

(Φn (Sn) + j) .

Recall that J̃n is the index set defined in (5.7). For a subset Z of C and δ > 0, Bδ(Z) =
⋃
z∈Z D(z, δ) is

the δ-neighborhood of Z.

Lemma 7.1. There exist constants N1 ≥ 1/r1 + 1/2, l ∈ N and δ0 > 0 such that if αn ≤ 1/N1 for n ≥ 1,
then

Bδ0(χn,j(Dn)) ⊂ Dn−1,

where Dk = Dk,l ⊂ Πk with k = n− 1, n and j ∈ J̃n−1 (i.e., 0 ≤ j ≤ an−1 − 1).

Proof. Firstly we use the following result16 (see [AC18, Proposition 1.9] or [Che19, Propositions 2.4 and

2.7]): There exists a constant k̂ > 0 such that for all n ≥ 1,

(7.1) sup
{
|Re ζ − Re ζ ′| : ζ, ζ ′ ∈ χn(Πn)

}
≤ k̂.

Note that the sector Sn and its forward iterates f◦kn (Sn), where 1 ≤ k ≤ bn = kn + b1/αnc − k − 1,
are compactly contained in Un and in fn(Un), where Un is the domain of definition of fn. By the pre-
compactness of the class ISα ∪ {Qα} with α ∈ HTN , there exists a constant δ1 > 0 independent of n

(actually independent of f ∈ IS0 ∪ {Q0}) such that the δ1-neighborhood of these sets Bδ1(
⋃bn
k=0 f

◦k
n (Sn))

are contained in Un ∩ fn(Un).

16We would like to mention that the definitions of χn in this paper and in [AC18], [Che19] are different. In this paper we
require that χn(1) = 1 but in the latter two literatures χn(1) = k0 for some k0 ≥ 1.
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Taking the preimage of Bδ1(
⋃bn
k=0 f

◦k
n (Sn)) under the modified exponential map Exp(ζ) = − 4

27e
2πiζ and

considering the lift of Dn,l under χn with 0 ≤ l ≤ min{b1/αnc − k − 1, b1/(2αn)c}, it follows that there
exists a constant δ2 > 0 independent of n such that

Bδ2(χn(Dn,l)) ⊂ (Π′n−1 + Z) ∩ (Φn−1(Sn−1) + Z),

where

Π′n−1 = {ζ ∈ C : 1/2 ≤ Re ζ ≤ 3/2 and Im ζ > −2} = Φn−1(Cn−1 ∪ C]n−1).

In order to prove this lemma it is sufficient to consider the ‘left’ and ‘right’ boundaries of the set⋃
j∈J̃n−1

Bδ2(χn,j(Dn,l)). According to [SY18, Corollary 5.2], there exist N ′1 ≥ 1/r1 + 1/2 and δ3 ∈ (0, δ2]

such that

Bδ3(χn(Π′n)) ⊂ Π′n−1.

On the other hand, by (7.1), [IS06, Propositions 5.6 and 5.7], according to the pre-compactness of the
class ISα∪{Qα} with α ∈ HTN and the continuous dependence of the Φf on f ∈ ISα∪{Qα}, there exist
N2 ≥ 1/r1 + 1/2 and δ4 ∈ (0, δ3] such that

sup
{
|Re ζ − Re ζ ′| : ζ, ζ ′ ∈ Bδ4(χn(Dn,l))

}
⊂ [1/2, k̂ + 3/2].

Let N ′2 ≥ 2 is large such that min{b1/αnc − k − 1, b1/(2αn)c} ≥ k̂ + 2 for αn ≤ 1/N ′2. Then the lemma

follows if we set N1 = max{N ′1, N2, N
′
2}, l = k̂ + 2 and δ0 = δ4. �

In the following, we fix l = k̂ + 2 in Lemma 7.1 and denote by

Dn = Dn,l, where n ∈ N.

For n ∈ N, let ρn(ζ)|dζ| be the hyperbolic metric in the interior of Dn.

Lemma 7.2. There exists 0 < µ < 1 such that for all n ≥ 1, all j ∈ J̃n−1 and all ζ ∈ Dn,

|χ′n,j(ζ)| ρn−1 (χn,j(ζ)) ≤ µρn(ζ).

For the proof of Lemma 7.2, one may refer to [Che19, Lemma 5.5] and [AC18, Lemma 3.8].

Recall that Yn = Yn(D′2) is the set defined in (5.2). Let Λn be the post-critical set of fn and ∆n the

Siegel disk (if any, otherwise ∆n is seen as the empty set) of fn. There exists a unique set Λ̃n ∪ ∆̃n ⊂
Φ−1
n (Λn ∩∆n) ∩Dn such that

• Φ−1
n (Λ̃n) = Λn, Φ−1

n (∆̃n) = ∆n;

• Φ−1
n : Λ̃n → Λn and Φ−1

n : ∆̃n → ∆n are injective;

• (Λ̃n ∪ ∆̃n) ∩ {ζ ∈ C : Im ζ ≥ D′2} = (Λ̃n ∪ ∆̃n) ∩ Yn(D′2); and

• Λ̃n ∪ ∆̃n ∪ Yn(D′2) is connected.

The sets Λ̃n and ∆̃n, respectively, are called the post-critical set and the Siegel disk (maybe empty) in the

Fatou coordinate plane of fn. Note that ∆n is open (if ∆n 6= ∅) but ∆̃n is not (indeed partial boundary

of ∆̃n is contained in ∆̃n).
Since most of the time we work in the Fatou coordinate planes, in this section we identify the post-critical

set and the Siegel disk in the dynamical planes and the Fatou coordinate planes if there is no confusion.

That means, we still use Λn and ∆n, respectively, to denote the sets Λ̃n and ∆̃n in the Fatou coordinate
planes. When α0 is not of Herman then17 Λn \∆n consists of uncountably many hairs and each of these
hairs has an endpoint outside ∆n. The set of these endpoints is still denoted by En.

17In Fatou coordinate planes, if ∆n = ∅, then Λn \∆n = Λn. This is different from the notation in the dynamical planes

where Λn \∆n = Λn \ {0}.
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Recall that γn, γ′n are defined in Section 5.1 and the sets Yn = Yn(D′2), Yn,j with j ∈ Z, Yn,∗, Yn,� are
defined in Section 5.2. Similar to those notations, if fn has a Siegel disk, we define

∆n,0 =

{
The connected component of
C \ {γn, γn + 1, ∂∆n} in ∆n

}
∪ (γn ∩∆n).

For j ∈ Z, we define ∆n,j = ∆n,0 + j. Moreover, we define

∆n,∗ =

{
The connected component of
C \ {γn + Jn, γ

′
n, ∂∆n} in ∆n

}
∪
(
(γn + Jn) ∩∆n

)
and

∆n,� =

{
The connected component of
C \ {γ′n − 1, γ′n, ∂∆n} in ∆n

}
∪
(
(γ′n − 1) ∩∆n

)
.

Accordingly, we define the ‘lower’ boundary of ∆n,0 by

∂l∆n,0 = ∂∆n,0 \
(
(γn ∩∆n) ∪ (γn + 1)

)
.

For j ∈ Z, we define ∂l∆n,j = ∂l∆n,0 + j. Moreover, we define

∂l∆n,∗ = ∂∆n,∗ \
((

(γn + Jn) ∩∆n

)
∪ γ′n

)
and

∂l∆n,� = ∂∆n,� \
((

(γ′n − 1) ∩∆n

)
∪ γ′n

)
.

For n ∈ N, recall that Jn is the index set defined in (5.4). For j ∈ Jn ∪ {∗, �}, we use Λn,j to denote the

component of Λn \∆n attaching at ∂l∆n,j . In this case, the set Λn ∪∆n can be decomposed as a disjoint
union:

(7.2) Λn ∪∆n =
⋃

j∈Jn∪{∗}

(
Λn,j ∪∆n,j

)
.

If fn has no Siegel disk, then the sets related to ∆n are seen to be empty sets. In this case we only
need to consider the sets related to Λn. For n ∈ N and j ∈ Jn ∪ {∗, �}, we define

Λn,j =

{
β is a component of Λn

∣∣∣∣ β has a non-empty subset
which is contained in Yn,j

}
.

In this case, the set Λn can be decomposed as disjoint union:

Λn =
⋃

j∈Jn∪{∗}
Λn,j .

For simplicity, we often use the decomposition (7.2) for Λn ∪∆n even when ∆n = ∅. For n ≥ 1 and j ∈ Z,
we have ∆n−1,j = χn,j(∆n). For simplicity, for n ≥ 1 and j ∈ Z we also denote

Λn−1,j = χn,j(Λn).

Since αn ∈ J ∪ S, χn is holomorphic for all n ∈ N. Obviously, by Lemma 5.5(a) we have

Λn−1 =
( ⋃
j∈Jn−1

χn,j(Λn)
)
∪ χn,Jn(Λn \ Λn,�) ⊂

⋃
j∈J̃n−1

χn,j(Λn) and

∆n−1 =
( ⋃
j∈Jn−1

χn,j(∆n)
)
∪ χn,Jn(∆n \∆n,�) ⊂

⋃
j∈J̃n−1

χn,j(∆n).
(7.3)
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In Section 5.2, the inverse ξn of χn,j is only defined on Xn−1 (see (5.5)). However, partial of the
post-critical set may be out of Xn−1. In order to study the dimension of the hairs, we need to extend the
definition of ξn. By Lemma 7.1, for n ≥ 1 we have

(7.4) Bδ0(Λn−1 ∪∆n−1) ⊂ Bδ0
( ⋃
j∈J̃n−1

χn,j(Dn)
)
⊂ Dn−1.

Recall the decomposition of Λn ∪∆n in (7.2).

Definition 7.3 (Extension of the definition of ξn). We define ξn : Λn−1 ∪∆n−1 → Λn ∪∆n as

(7.5) ξn(ζ) = χ−1
n,j(ζ),

where j ∈ J̃n−1 is the unique integer such that18 ζ ∈ Λn−1,j ∪∆n−1,j .

Let Yn,j = Yn,j(D
′
2) with j ∈ Z be the set defined in (5.3). For a subset X ⊂ C, we define

(7.6) ξn : X ′ = X ∩
⋃
j∈Z

(
Yn−1,j ∩ χn,j(Dn)

)
→ Dn

still as (7.5), where j ∈ Z is the unique integer such that ζ ∈ X ∩Yn−1,j . In general ξn may not be defined
on whole X. But we use ξn(X) to denote the restriction ξn(X ′) for simplicity.

Definition 7.4 (Orbit and itinerary). For ζ0 ∈ Λ0 ∪∆0, the orbit of ζ0 down the renormalization tower,
denoted by (ζn)n≥0, is defined inductively as

ζn = ξn(ζn−1), where n ≥ 1.

The itinerary of ζ0 down the renormalization tower is the sequence of integers s = (sn)n≥1 such that for
all n ≥ 1,

ζn−1 = χn,sn(ζn)

where sn ∈ J̃n−1. In the rest of this section, for ζ0 ∈ Λ0 ∪∆0 we use

(ζn)n∈N and s = (sn)n≥1,

respectively, to denote the orbit and the itinerary of ζ0 down the renormalization tower.

Let ζ0 ∈ Λ0 ∪∆0 with itinerary s = (sn)n≥1. We define the following notations, for 0 ≤ m ≤ n,

χn→m, s = χm+1,sm+1
◦ · · · ◦ χn,sn ,

with the convention that if m = n, then χn→n, s is the identity map. For any 0 ≤ m ≤ n, we denote by

ξm→n = ξn ◦ · · · ◦ ξm+1

with the convention that ξm→m is the identity.

Corollary 7.5. Let ζ0 ∈ Λ0∪∆0 with itinerary s. Assume that there exist a constant M > 0, a subsequence
(nj)j≥0 of N and two subsequences of points (uj)j≥0 and (wj)j≥0 such that

(i) for all j ≥ 0, [ζnj , uj ] ⊂ Dnj and |ζnj − uj | ≤M ;
(ii) for all j ≥ 0, wj = χnj→0,s(uj) ∈ D0.

Then wj converges to ζ0 as j →∞.

Proof. Note that the hyperbolic distance between ζnj and uj is uniformly bounded above (i.e., independent
of j). Then wj → ζ0 (j → ∞) is an immediate consequence of Lemma 7.2 since the hyperbolic distance
between wj and ζ0 in D0 tends to zero. �

18If j = Jn−1 ∈ J̃n−1, then ζ ∈ Λn−1,∗ ∪∆n−1,∗ ⊂ Λn−1,Jn−1
∪∆n−1,Jn−1

.
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Recall that Box(ζ, r) is the square with center ζ ∈ C and side length 2r defined in (5.6). Let δ0 > 0 be
the constant introduced in Lemma 7.1. Then there exists an integer m0 ≥ 2 such that

1

m0
≤ δ0

4

and for all n ∈ N,

Λn ∪∆n ⊂
⋃

Qn∈Qn
Qn,

where Qn is a collection of boxes which is defined as

(7.7) Qn =

{
Qn = Box

(
u+ iv

m0
,

1

2m0

)
⊂ Bδ0/2(Λn ∪∆n) : u, v ∈ N

}
.

By (7.4), each Qn ∈ Qn is contained Dn and χn is a univalent function in Bδ0/2(Qn). For each n ∈ N, we
use Kn to denote the following set

Kn =

{
Kn

∣∣∣∣ Kn = χn→0,s(Qn) for some Qn ∈ Qn,
s = (s1, · · · , sn, · · · ) with sn ∈ J̃n−1

}
.

Let ζ0 ∈ Λ0 ∪∆0 and s = (sn)n≥1 be the itinerary of ζ0 down the renormalization tower. By the uniform
contraction in Corollary 7.5, ζ0 can be written as the intersection

⋂
n∈NKn, where Kn = χn→0,s(Qn) ∈ Kn

and diamKn → 0 as n→∞.
Note that for Kn ∈ Kn, the image ξ0→n(Kn) = ξn ◦ · · · ◦ ξ1(Kn) is well-defined. However, ξ0→n(Kn)

may not be a box since ξn is not continuous on γn−1 + Z, where n ≥ 1.

7.2. A necessary condition for being on a hair. For ζ0 ∈ Λ0∪∆0, recall that (ζn)n∈N is the sequence
corresponding to the orbit of ζ0 down the renormalization tower.

Lemma 7.6. Let ζ0 ∈ Λ0 ∪∆0. If there exists a constant D0 > 0 such that

(7.8) Im ζn >
D0

αn
for all n ≥ 0,

then ζ0 ∈ ∆0.

Proof. Let D0 > 0 be any given constant such that (7.8) holds. We claim that there exists a constant
M = M(D0) > 0 such that if ζ ′0 ∈ Λ0 ∪∆0 satisfies Im ζ ′0 ≥ Im ζ0 + M , then Im ζ ′n ≥ Im ζn + M for all
n ≥ 0, where (ζ ′n)n∈N is the sequence corresponding to the orbit of ζ ′0 down the renormalization tower.

According to definition of Dn (i.e., the width of Dn and Πn are comparable to 1/αn), if ζ ∈ Dn and
Im ζ ∈ [−2, D0/αn], then there exists a constant D′0 > 0, which is independent on n, such that

(7.9) log(1 + |ζ|) ≤ log
1

αn
+D′0 and log

(
1 +

∣∣∣ζ − 1

αn

∣∣∣) ≤ log
1

αn
+D′0.

Let M0 = M0(D0) > 0 and M̃0 = M̃0(D0) > 0 be the constants introduced in Lemma 4.5. We fix some

(7.10) M ≥ max

{
D′0
2π

+ M̃0 +M0, 4M0

}
.

Suppose that Im ζ ′0 ≥ ζ0 +M . If Im ζ ′1 < D0/α1, then from Lemma 4.5(b) and (7.9) we have

Im ζ ′0 ≤
1

2π
log

1

α1
+
D′0
2π

+ M̃0.

On the other hand, by Lemma 4.5(a) we have

Im ζ0 ≥
1

2π
log

1

α1
+D0 −M0.
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This is a contradiction by the choice of M and the assumption that Im ζ ′0 ≥ Im ζ0 +M . Therefore we have
Im ζ ′1 ≥ D0/α1. Applying Lemma 4.5(a) and (7.10) we have

Im ζ ′1 ≥
1

α1
Im ζ ′0 −

1

2πα1
log

1

α1
− M0

α1

≥
(

1

α1
Im ζ0 −

1

2πα1
log

1

α1
+
M0

α1

)
+
M − 2M0

α1

≥ Im ζ1 +M.

In particular, with the choice of M in (7.10), it follows by induction that Im ζ ′n ≥ Im ζn +M for all n ≥ 0.
It is easy to see that for all n ≥ 0, the interior of the set Ωn = {ζ ∈ Dn : Im ζ ≥ ζn +M} is contained

in ∆n. Indeed, fn can be iterated infinitely many times in Φ−1
n (Ωn) for all n ∈ N. By the definition

of Dn, there exist a constant C > 0 and a sequence of real numbers (xn)n∈N with |xn| ≤ C such that
un = ζn + iM + xn ∈ Dn for all n ∈ N. By following the same itinerary as ζn and pulling it upward to
the level 0 of the renormalization tower, we obtain a point wn ∈ D0 ∩∆0 for each n ∈ N. It follows from
Corollary 7.5 that wn → ζ0 as n→∞. Therefore we have ζ0 ∈ ∆0. �

Lemma 7.6 applies in particular for any α ∈ J ∪ S and it implies in particular that if ζ0 ∈ Λ0 \ ∆0,
then there is an infinite subsequence (ζnj )j∈N such that Im ζnj ≤ D0/αnj for any given D0 > 0. Now we
show that this statement can be improved if we make the full use of the assumption that α ∈ J ∪ S.

Lemma 7.7. Let α ∈ J ∪ S and suppose ζ0 ∈ Λ0 \∆0. For any D0 > 0, there exists n? ≥ 0 such that

(7.11) Im ζn ≤
D0

αn
for all n ≥ n?.

Proof. Let D0 > 0 be any given number. We first claim that if α ∈ J ∪ S then there exists n0 ≥ 0 such
that for all n ≥ n0, then

(7.12)
1

2π
log

1

αn+1
>
D0

αn
+M0 −D0,

where M0 = M0(D0) > 0 is the constant introduced in Lemma 4.5. Indeed a direct calculation shows that
if α ∈ J , then applying log(1− x) ≥ −2x for 0 ≤ x ≤ 1/2 we have

1

2π
log

1

αn+1
≥ 1

2π
log

(
an+1 −

1

2

)
≥ 1

2π
log an+1 −

1

2π

1

an+1

> an
un log an

2π
− 1 ≥ un log an

4παn
− 1.

By the definition of J , we have un log an → +∞ as n → ∞. There exists a number n′1 ≥ 0 such that if
n ≥ n′1, then the inequality (7.12) holds.

Let α ∈ S. Suppose that |ηn| ≤ C ′ for all n ∈ N and evn ≥ 2C ′ for all n ≥ n2, where (ηn)n∈N and
(vn)n∈N are the sequences introduced in the definition of S. Then for all n ≥ n2 we have

1

2π
log

1

αn+1
≥ 1

2π
log an+1 −

1

2π

1

an+1
>

1

2π
log
(
evnan + ηn

)
− 1

≥ vn
4παn

− C ′

π
− 1.

Since vn → +∞ as n→∞, there exists n′2 ≥ n2 such that for all n ≥ n′2, then (7.12) holds. Therefore, if
n ≥ n0 = max{n′1, n′2}, for all α ∈ J ∪ S, we have (7.12).

By Lemma 7.6, there exists n? ≥ n0 + 1 such that Im ζn? ≤ D0/αn? . In the following we show that if
ζn satisfies (7.11) for some n ≥ n?, then ζn+1 also satisfies (7.11). Indeed otherwise this would imply that
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Im ζn+1 > D0/αn+1. However, according to Lemma 4.5(a) and (7.12) we have

Im ζn ≥ αn+1Im ζn+1 +
1

2π
log

1

αn+1
−M0 >

1

2π
log

1

αn+1
+D0 −M0 >

D0

αn
.

This is a contradiction and the lemma follows. �

Definition 7.8. Let 0 < κ < 1. For n ≥ 0, a point ζ ∈ Dn is said to be above the 1/κ-parabola (in Dn) if
it satisfies the following:

Im ζ ≥ |Re ζ|1/κ or Im ζ ≥
∣∣∣∣ 1

αn
− Re ζ

∣∣∣∣1/κ .
The set of points above the 1/κ-parabola in Dn will be denoted by Dκ

n .

When there is no ambiguity we simply use the terminology “above the parabola” as a shorthand for
“above the 1/κ-parabola in Dn”. Similarly we will say that a point ζ ∈ Dn is below the parabola if it is
not above the parabola.

Definition 7.9 (Accessible from −i∞). Let n ≥ 0, a point ζ ∈ Λn is said to be accessible from −i∞ (or
just accessible) if it is accessible from 1− 2i inside Dn \ Λn.

By the definition of Cantor bouquet and one-sided hairy circle (see [Che17] and Theorem 5.1), if α ∈
HTN \H , then each connected component (a hair) of Λn \ ∆n is accumulated by a sequence of other
connected components (a sequence of hairs) in Λn \ ∆n. This means that the set of accessible points of
Λn is contained in En, which is the set of one-sided endpoints (not including the endpoints in ∆n) of the
components of Λn \∆n.

Lemma 7.10. Let α ∈ J ∪S and suppose ζ0 ∈ Λ0 \∆0. Assume that there is 0 < κ < 1 and a subsequence
(ζnj )j of (ζn)n such that ζnj is below the 1/κ-parabola in Dnj for all j ≥ 0. Then ζ0 is accessible from
−i∞. In particular, ζ0 ∈ E0.

Proof. Let ζ0 ∈ Λ0 \∆0 and D0 > 0 be any given number. It follows from Lemma 7.7 that there exists
n? = n?(D0) ∈ N such that Im ζn ≤ D0/αn for all n ≥ n?. Without loss of generality we assume that
n0 ≥ n? + 2 and for all j ≥ 0, we have

(7.13) Im ζnj < |Re ζnj |1/κ and Im ζnj < |1/αnj − Re ζnj |1/κ.
By the definition of Dn, there exist a constant C > 0 and a sequence of real numbers (xn)n∈N with

|xn| ≤ C such that for all n ∈ N,

Re ζn + xn ∈
{

Dn ∩ N ∩ [1, 1/(2αn)] if Re ζn ≤ 1/(2αn),

Dn ∩ N ∩ (1/(2αn),+∞) if Re ζn > 1/(2αn).

Let s = (sn)n≥1 be the itinerary of ζ0 down the renormalization tower. For all j ≥ 0, we define

(7.14) uj = Re ζnj + xnj ∈ Dn ∩ N and u′j = χnj ,snj (uj) .

Since Im ζnj ≤ D0/αnj , by Lemma 4.5(b) we have∣∣∣∣Im ζnj−1 −
1

2π
min

{
log
(
1 + |ζnj |

)
, log

(
1 +

∣∣∣ζnj − 1

αnj

∣∣∣)}∣∣∣∣ ≤ M̃0 and∣∣∣∣Imu′j −
1

2π
min

{
log (1 + uj) , log

(
1 +

∣∣∣uj − 1

αnj

∣∣∣)}∣∣∣∣ ≤ M̃0,
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where M̃0 = M̃0(D0) > 0 is the constant determined by Lemma 4.5. Without loss of generality and for
simplifying notations, we assume that Re ζnj ≤ 1/(2αnj ) for all j ≥ 0 since the arguments for Re ζnj >
1/(2αnj ) are completely similar. Under this assumption, we have

1

2π
log
(
1 + |ζnj |

)
− M̃0 ≤ Im ζnj−1

≤ 1

2π
log
(
1 + |ζnj |

)
+ M̃0 ≤

1

2π
log
(

3 + 2
(
Re ζnj

)1/κ)
+ M̃0

(7.15)

and
1

2π
log (1 + uj) + M̃0 ≥ Imu′j

≥ 1

2π
log (1 + uj)− M̃0 ≥

1

2π
log
(
1 + max{Re ζnj − C, 0}

)
− M̃0.

(7.16)

Then by (7.13), (7.15) and (7.16), there exist two constants x′0 > 1 and C0 = C0(x′0, κ, C) > 0 such that

• if Re ζnj ≤ x′0 or Im ζnj ≤ x′0, then

(7.17) |ζnj − uj | ≤ C0.

• if Re ζnj > x′0 and Im ζnj > x′0, then

(7.18)
1

4π
log
(
Re ζnj

)
≤ Imu′j < Im ζnj−1 ≤ min

{ 1

κπ
log
(
Re ζnj

)
,

D0

αnj−1

}
.

Let u′′j = χnj−1,snj−1
(u′j). Note that there exists a constant C ′1 > 0 such that |Re ζnj−1 − Reu′j | ≤ C ′1

and |Re ζnj−2 − Reu′′j | ≤ C ′1. If Re ζnj > x′0 and Im ζnj > x′0, by (7.18) and Lemma 4.5(b), there exists a
constant C1 > 0 such that

(7.19) |ζnj−2 − u′′j | ≤ C1.

According to the topological structure of Λn (see Theorem 5.1), for the given itinerary s = (sn)n≥1

there exists a unique accessible point ζs ∈ Λ0 which can be written as ζs = limn→∞ χ1,s1 ◦ · · · ◦ χn,sn(1).
For all j ≥ 0 we denote wj = χ1,s1 ◦ · · · ◦ χnj ,snj (uj). According to Corollary 7.5, (7.17) and (7.19), we

have wj → ζ0 as j →∞. By the definition of uj in (7.14), it follows that |χnj+1,snj+1
(1)− uj | ≤ C. Still

by Corollary 7.5, we have ζs = limj→∞ χ1,s1 ◦ · · · ◦ χnj ,snj ◦ χnj+1,snj+1
(1) = ζ0. This implies that ζ0 is

accessible. �

7.3. Upper bounds for the dimension of the hairs. Let D′2 ≥ 1 be the constant introduced in
Corollary 5.4 and δ0 > 0 be the constant in Lemma 7.1. For any κ ∈ (0, 1), D0 ≥ 1 and C > 0, we define

Πκ
n(D0, C) = Bδ0/2(Λn ∪∆n) ∩Dκ

n ∩ {ζ ∈ C : C ≤ Im ζ ≤ D0/αn + 1}.
Recall that the set Qn is defined in (7.7). For a box Qn−1 ∈ Qn−1, let19

(7.20) I(Qn−1) = sup{Im ζ : ζ ∈ ξn(Qn−1)}.
Lemma 7.11. There exists a constant C ≥ D′2 such that for any κ ∈ (0, 1) and D0 ≥ 1, then there exist

two constants M5 = M5(κ,D0) ≥ 1 and M̃5 = M̃5(κ,D0) ≥ 1 such that

(a) If ζ ∈ Dn−1 and 20 ξn(ζ) ∈ Πκ
n(D0, C), then the imaginary part of ξn increases like an exponential

map:

Im ξn(ζ) ≥ e2πIm ζ/M̃5 > eIm ζ .

19The map ξn may cannot be defined at some points in Qn−1. But for simplify we use ξn(Qn−1) to denote the image of
ξn on the points that can be defined. See (7.6).

20By the definition of J and S, there exists an integer n′ such that if n ≥ n′ then C < D0/αn + 1.
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(b) Let Qn−1 ∈ Qn−1 and Qn ∈ Qn, where Qn∩ ξn(Qn−1) 6= ∅ and Qn ⊂ Πκ
n(D0, C). For any ζ ∈ Qn,

we have
1

M5I(Qn−1)
≤ |χ′n(ζ)| ≤ M5

I(Qn−1)
.

Proof. (a) The proof is similar to Lemma 5.8(b). Let κ ∈ (0, 1) and D0 ≥ 1. If ζ ∈ Πκ
n(D0, 1), then we

have

(7.21)
1

2
≤ Im ζ

min{|ζ|, |ζ − 1/αn|}
≤ 1.

Let ζn−1 ∈ Dn−1 and suppose that ζn = ξn(ζn−1) ∈ Πκ
n(D0, 1). Without loss of generality, we assume that

Re ζn ≤ 1/(2αn) since the proof of the case Re ζn > 1/(2αn) is completely similar. If Im ζn ≤ D0/αn + 1,

by Lemma 4.5(b), there exists a constant M̃0 > 0 depending on D0 such that∣∣Im ζn−1 − 1
2π log(1 + |ζn|)

∣∣ ≤ M̃0.

If Im ζn−1 ≥ M̃0 + 1, then we have

2π(Im ζn−1 − M̃0) ≤ log(1 + |ζn|) ≤ 2π(Im ζn−1 + M̃0).

Since ζn ∈ Πκ
n(D0, 1), by (7.21) we have

C−1
1 e2πIm ζn−1 ≤ Im ζn ≤ |ζn| ≤ C1e

2πIm ζn−1 ,

where C1 = 2e2πM̃0 . Let C2 ≥ 1 such that for all y ≥ C2, then e2πy/C1 ≥ ey. Then Part (a) holds if we

set M̃5 = C1 and C = max{M̃0 + 1, C2}.
(b) Let ζn−1 and ζn as in Part (a). According to Proposition 4.6(b), there exists a constant M̃1 ≥ 1

depending on D0 such that M̃−1
1 /|ζn| ≤ |χ′n(ζn)| ≤ M̃1/|ζn|. This means that

(C1M̃1)−1

e2πIm ζn−1
≤ |χ′n(ζn)| ≤ C1M̃1

e2πIm ζn−1
.

Let ζ ′n−1 ∈ Dn−1∩D(ζn−1,
√

2/m0), where 1/m0 is the side length of Qn−1. Suppose that ζ ′n = ξn(ζ ′n−1) ∈
Πκ
n(D0, 1) and Re ζ ′n ≤ 1/(2αn). Similar to the arguments above, we have

C̃−1
1 e2πIm ζn−1 ≤ Im ζ ′n ≤ |ζ ′n| ≤ C̃1e

2πIm ζn−1 ,

where C̃1 = 2e2πM̃0+1. The proof is complete if we set M5 = C1C̃1M̃1e
2π. �

Recall that the sets Λn, Λn,j with j ∈ Jn ∪ {∗, �} are defined in Section 7.1.

Definition 7.12. For n ∈ N, let Hn denote the points in the hairs (not including end points) of the
post-critical points at level n, i.e.,

Hn = Λn \ (En ∪∆n).

By (7.3), for all n ≥ 1 we have

Hn−1 =
( ⋃
j∈Jn−1

χn,j(Hn)
)
∪ χn,Jn(Hn \Hn,�) ⊂

⋃
j∈J̃n−1

χn,j(Hn),

where Hn,� is the hair contained in Λn,�.

Proof of Theorem C. Let 0 < ε < 1 be any given number. Our aim is to show that the Hausdorff dimension
of H0 ∩ Q0 is at most 1 + ε for any square box Q0 in Q0, where Qn with n ∈ N is defined in (7.7). We
denote by κ = ε/2.

Let C > 0 be the constant introduced in Lemma 7.11. Let D0 ≥ C be any given number and Dκ
n the

set of points above the 1/κ-parabola in Dn. As stated in Section 7.1, each ζ0 ∈ Λ0 can be written as the
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intersection
⋂
n∈NKn for some sequence Kn = χn→0,s(Qn) ∈ Kn, where s is the itinerary of ζ0, Qn ∈ Qn

and diamKn → 0 as n→∞.
If ζ ∈ H0, then for any given number C ′ > 0 there exists an integer m ∈ N such that if n ≥ m, then

Im ξ0→k(ζ) ≥ C ′. Otherwise, ζ will be an end point (by following an argument as in the proof of Lemma
7.10). For k ≥ 1, let Vk be the collection of all points ζ0 ∈ Λ0 ∪∆0 satisfying {ζ0} =

⋂
n∈NKn for some

sequence Kn = χn→0,s(Qn) ∈ Kn such that for all n ≥ k, then

(a) Qn ⊂ Bδ0/2(Dκ
n ) ∩Dn; and

(b) C ≤ Im ζ ≤ D0/αn + 1 for all ζ ∈ Qn.

By Lemmas 7.7 and 7.10, we have

Q0 ∩H0 ⊂
⋃
k∈N

Vk.

Therefore, it is sufficient to show that dimH(Vk) ≤ 1 + ε for any k ∈ N.

Now we fix k ∈ N. For every n ≥ k, let An be the family of sets Kn = χn→0,s(Qn) ∈ Kn satisfying
the above conditions (a) and (b). Then each An is a covering of Vk. Since χn : Dn → Dn−1 is strictly
contraction (see Section 7.1) it follows that

max
Kn∈An

diamKn → 0 as n→∞.

Therefore, it is sufficient to prove that there exists a constant M > 0 such that for all n large enough,

(7.22)
∑

Kn∈An
(diamKn)1+ε ≤M.

Let Kn ∈ An. We use G(Kn) to denote the collection of all Kn+1 ∈ An+1 which have non-empty
intersection with Kn. In order to prove (7.22) it is sufficient to prove that there exists n0 ≥ k such that
for all n ≥ n0 and all Kn ∈ An,

(7.23)
∑

Kn+1∈G(Kn)

(diamKn+1)1+ε ≤ (diamKn)1+ε.

Let n ≥ k and Kn = χn→0,s(Qn) ∈ An. For 0 ≤ i ≤ n−1, we use Qi to denote the box in Qi which has
nonempty intersection with χn→i(Qn). For 0 ≤ i ≤ n− 1, we denote by Ii+1 = I(ξi+1(Qi)). See (7.20).

By the definition of Qn, the δ0/2-neighborhood of each box in Qn is contained in Dn. Therefore, by
Koebe’s distortion theorem, the distortion of χi→0 is universally bounded on Qi ∈ Qi. There exists a
constant C1 ≥ 1 such that for any ζ ∈ Qn, we have

(7.24) C−1
1 |χ′n→0(ζ)| ≤ diamKn ≤ C1|χ′n→0(ζ)|.

By Lemma 7.11(b) and (7.24), we have

diamKn ≥
1

C1
|χ′n→0(ζ)| = 1

C1

n∏
i=1

|χ′i(χn→i(ζ))| ≥ 1

C1

n∏
i=1

1

M 5Ii
.

On the other hand, any Kn+1 ∈ G(Kn) can be written as Kn+1 = χn+1→0,s(Qn+1) ∈ An+1, where
Qn+1 ∩ ξn+1(Qn) 6= ∅. For any ζ ∈ Qn+1, still by Lemma 7.11(b) and (7.24) we have

diamKn+1 ≤ C1|χ′n+1→0(ζ)| = C1

n+1∏
i=1

|χ′i(χn+1→i(ζ))| ≤ C1

n+1∏
i=1

M5

Ii
.

Note that the number of sets Kn+1 in G(Kn), which is equal to the number of Qn+1 satisfying Qn+1 ∩
ξn+1(Qn) 6= ∅, is smaller than 2m2

0 I
1+ε/2
n+1 , where 1/m0 is the side length of the box in Qn+1. Therefore,
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we have ∑
Kn+1∈G(Kn)

(
diamKn+1

)1+ε ≤ 2m2
0 I

1+ε/2
n+1

(
C1

n+1∏
i=1

M5

Ii

)1+ε

≤ C̃n

I
ε/2
n+1

(
diamKn

)1+ε
.

where C̃n = 2m2
0 C

2(1+ε)
1 M

(2n+1)(1+ε)
5 . By Lemma 7.11(a), In+1 increases exponentially fast. For large

n we have I
ε/2
n+1 ≥ C̃n. This means that (7.23) holds for large n and we have dimH(Vk) ≤ 1 + ε for any

k ∈ N. Therefore, we have dimH(H0) = 1. Note that we have proved that dimH(Λ0 \∆0) = 2 in Theorem
A. It follows that dimH(E0) = 2. �
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[PZ04] Carsten L. Petersen and Saeed Zakeri, On the Julia set of a typical quadratic polynomial with a Siegel disk, Ann.

of Math. (2) 159 (2004), no. 1, 1–52.
[Shi98] Mitsuhiro Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets, Ann. of

Math. (2) 147 (1998), no. 2, 225–267. MR MR1626737 (2000f:37056)

[Shi00] , Bifurcation of parabolic fixed points, The Mandelbrot set, theme and variations, London Math. Soc.
Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 325–363.

[Sie42] Carl Ludwig Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942), 607–612. MR 7044
[SY18] Mitsuhiro Shishikura and Fei Yang, The high type quadratic siegel disks are jordan domains, Preprint: arxiv.

org/abs/1608.04106, 2018.

[Yan15] Fei Yang, Parabolic and near parabolic renormalization for local degree three, preprint arxiv.org/abs/1510.00043,
2015.
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