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We demonstrate that Ramsey spectroscopy can be used to observe Rydberg-dressed interactions in a many-body
system well within experimentally measured lifetimes, in contrast to previous research, which either focused
on interactions near Förster resonances or on few-atom systems. We build a spin- 1

2 from one level that is
Rydberg-dressed and another that is not. These levels may be hyperfine or long-lived electronic states. An Ising
spin model governs the Ramsey dynamics, which we demonstrate can be used to characterize the Rydberg-dressed
interactions. Furthermore, the dynamics can differ significantly from that observed in other spin systems. As one
example, spin echo can increase the rate at which coherence decays. The results also apply to bare (undressed)
Rydberg states as a special case, for which we quantitatively reproduce recent ultrafast experiments without fitting.
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I. INTRODUCTION

Ultracold Rydberg atoms allow one to process quantum
information [1–7], study interacting many-body systems
[8–18], and engineer nonlinear quantum optics [19–31].
These applications stem from the enormous van der Waals
interactions between Rydberg atoms excited to large principal
quantum numbers n ∼ 50–70. Since these interactions are
proportional to n11, they are enhanced by many orders of
magnitude compared to ground-state atoms [32,33]. These
interactions inhibit the simultaneous excitation of neighboring
atoms to Rydberg states; this is known as the “blockade
effect” [34–38]. Experiments have measured Rydberg interac-
tions using Ramsey spectroscopy [39–41] and their dramatic
consequences, such as the formation of Rydberg crystals
[42,43], and suppressed excitation number fluctuations in the
blockade region [44–46]. These experiments were focused on
interactions between bare Rydberg atoms, through either van
der Waals interactions or Förster resonances.

Dressed Rydberg atoms, in which a small amount of
Rydberg state is superposed with the ground state, enlarge
the possible range of many-body physics by allowing further
control of the interaction potential. The strength, shape, and
state lifetime can be controlled by choosing the amount of
Rydberg character in the dressed superposition of ground and
Rydberg states. (We note that alternative methods exist to tune
strength and shape, for example, utilizing Förster resonances
[47].) In particular, the reduced Rydberg character extends the
dressed state’s lifetime relative to the bare Rydberg state, since
a dominant contribution to the lifetime is often the decay due to
spontaneous emission from the Rydberg state [48–50]. Inter-
actions between Rydberg-dressed atoms have been predicted
to lead to interesting phases of matter [51–57] and exciton
transport [58,59], stabilize three-dimensional solitons [60],
enable phase imprinting of a Bose-Einstein condensate [61],
and serve as a resource for quantum metrology and quantum
information [62–64]. An exciting recent breakthrough is the
measurement of Rydberg-dressed interactions between two
atoms [65], but observing these interactions in a many-body
system remains a major outstanding goal [66].
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In this paper, we show how current experiments can
observe and characterize dressed Rydberg interactions by
using Ramsey spectroscopy, where one probes a spin- 1

2
created from two long-lived atomic states, one of which is
Rydberg dressed. This Ramsey protocol directly accesses a
regime where superpositions are crucial and can give rise
to nonclassical correlations. Although similar to the Ramsey
protocol that has been fruitfully applied to other many-body
atomic and molecular systems [67–76], we find that the
Rydberg atoms behave in qualitatively different ways because
of the shape of the potential and because the ground-Rydberg
and ground-ground interactions are negligible compared to
the Rydberg-Rydberg interactions. The unique character of
the Rydberg-dressed interaction also manifests itself in the
dependence of the dynamics on the atom density, the dressed
state excitation fraction, the spin echo, and the Rydberg state.
Just one example of this distinct behavior is that the contrast
decay of the Ramsey fringe is faster with an echo than without
in several regimes, including low density, large dissipation,
and small excitation fraction of dressed states.

The proposed Ramsey protocol offers two advantages
for observing and characterizing the Rydberg-dressed inter-
actions. The first is that the dynamics occurs rapidly, on
time scales set directly by the Rydberg-dressed interaction.
In contrast, alternative schemes that rely on detecting the
influence of the Rydberg-dressed interactions on the motion of
the atoms can require much longer time scales associated with
the atomic motion in the trap. A second fundamental advantage
is that the dynamics admits—as we show—exact analytic
solutions. This is extremely rare in an interacting many-body
system and allows for rigorous comparisons between theory
and experiment without uncontrolled approximations.

The rest of our paper is structured as follows. Section II
discusses the physical setup of Rydberg dressing, forming
a spin- 1

2 , and performing Ramsey spectroscopy. Section III
presents the equations for the Ramsey fringe contrast as
a function of time, and Sec. IV shows how the shape of
this function characterizes the interaction between Rydberg-
dressed atoms in a many-body gas. Section V demonstrates
that correlations develop during the Ramsey dynamics on the
same time scale that the contrast decays, considering the case
of atoms in a lattice for simplicity and experimental relevance.
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FIG. 1. Probing dressed Rydberg interactions with Ramsey spec-
troscopy. (a) Atoms (green balls) are dressed and probed with two
lasers. One laser (�2, purple) weakly mixes the Rydberg state |R〉 into
|G2〉 to form the dressed state |D〉. This state is probed with strong
pulses (�1, red) that couple |G1〉 and |G2〉. (b) The Rydberg-dressed
interaction for the �2/C6 < 0 case considered herein has a height
of V0 and a soft-core radius, rc. (c) Ramsey scheme: An initial
�1 pulse with area θ superposes |↓〉 = |G1〉 and |↑〉 = |D〉 states.
Dressed atoms interact between pulses. The final pulse allows one to
measure the spin vector. One can apply a π echo pulse to eliminate
single-particle imperfections. This also effectively “turns on” the
interactions between atoms that were initially in the ground state
for the second half of the dynamics.

Section VI applies our results to a special case that was recently
realized in experiments, where one uses bare Rydberg states
instead of Rydberg-dressed states. Good theory-experiment
agreement in this special case provides a proof-of-principle
for our proposed methods. Finally, Sec. VII concludes.

II. SETUP: RYDBERG DRESSING, INTERACTIONS,
AND SPECTROSCOPY

We consider an atom with two long-lived levels, |G1〉 and
|G2〉, as shown in Fig. 1(a). These could, for example, be two
hyperfine states or the ground state and another sufficiently
long-lived electronic state. A laser with Rabi frequency �2

and detuning �2 from resonance admixes a small fraction of
the Rydberg state |R〉 to the |G2〉 level. The eigenstate in the
presence of this mixing is the Rydberg-dressed state |D〉 ≈
|G2〉 + ε|R〉, with ε = (�2/2�2) � 1. The Rydberg-dressed
state can decay to |G1〉 via spontaneous emission from either
|R〉 or |G2〉. The contribution to the decay rate of |D〉 from the
Rydberg state is ε2�R , where �R is the spontaneous emission
rate for the Rydberg state, while the contribution to |D〉’s
decay from the |G2〉 state is �G2 , the spontaneous emission
rate of |G2〉. Which of these processes is important will depend
on what states are chosen for |G2〉 and |R〉. For example, if
we use hyperfine ground states of Rb for |G1〉 and |G2〉, the
spontaneous emission from |G2〉 is negligible and the decay
rate of |D〉 is ε2�R .

The system we often employ for numerical examples is Sr
with |G2〉 chosen to be the 3P 1 state with a 21-μs lifetime,
the same scheme employed in Ref. [63]. The 3P 0 clock state
in Sr would be another interesting choice for |G2〉, with a
159-s lifetime. In the case of Sr, the typical lifetimes for the
Rydberg state (n = 40–70 s) is on the order of 5 μs [77,78]
and we typically choose ε ∼ 0.1. The contribution to the

spontaneous emission of the dressed state from the Rydberg
state is therefore ε2�R ≈ 0.01 × 1/(5 μs) ≈ 2 ms−1. This is
negligible compared to the γ = 1/(21 μs) decay rate of 3P 1,
and we may take γ as the sole contribution to the spontaneous
emission from the |D〉 state.

Our spin- 1
2 system is then formed from |↓〉 = |G1〉 and

|↑〉 = |D〉. Here we assume that the positions of the atoms
are fixed, which is an excellent approximation for ultracold
systems over the time scales we consider. The interaction
Hamiltonian for such a gas of atoms projected onto the spin- 1

2
states is, up to an irrelevant constant [63],

Ĥ = (1/2)
∑
j �=k

[
(Vjk/4) σ z

j σ z
k + (Vjk/2) σ z

k

]
, (1)

where σ z
k = (|↑〉k〈↑|k − |↓〉k〈↓|k), and we set � = 1. The

interaction between dressed atoms j and k with interatomic
distance rjk is Vjk = V (rjk) = V0/[1 + (rjk/rc)6], where rc =
|C6/2�2|1/6 is the soft-core radius and V0 = ε4(2�2) is the
height of the dressed potential as shown in Fig. 1(b). C6 is
the van der Waals coefficient, which depends on the Rydberg
state used. This Hamiltonian is nothing more than rewriting
the Rydberg-dressed interactions Hamiltonian—in which D-
state atoms interact, while G1-D and G1-G1 interactions
are negligible—in terms of spin- 1

2 operators. This structure
is unique to Rydberg atoms, and it is the reason that the
coefficients of the Ising term and the single-particle term are
linked through their dependence on the Vjk .

Figure 1(c) shows the Ramsey protocols studied here.
The first strong, resonant pulse, (�1/2)(|↓〉k〈↑|k + H.c.),
rotates the spins by θ around the y axis. The wave function
immediately after this pulse is

|ψ(t = 0)〉 =
⊗

k

(cos(θ/2)|↓〉k + sin(θ/2)|↑〉k), (2)

where θ is proportional to the pulse area. During the Ramsey
dark time t (the time where �1 = 0) [79], the system evolves
by Eq. (1), developing correlations. The pulse �2 can either
be applied just during the Ramsey dark period or left on
during the entire experiment: As long as the �1 pulses are
chosen to be strong and short enough, the effects of the �2

laser will be negligible during the short �1 pulses. After the
dark time t , a second pulse rotates the spin component σ

α=x,y

k

into the z axis, where it can be measured as the population
difference of |↑〉 and |↓〉. Here σx

k = (|↓〉k〈↑|k + H.c.) and
σ

y

k = i(|↓〉k〈↑|k − H.c.). The incoherent emission from |G2〉
is described in a master equation by including the jump
operator σ− with rate γ [see Fig. 1(c)]. It is convenient to
measure and analyze the contrast of the Ramsey fringe [80],

C(t) = |σ+(t)| =
√

〈σx(t)〉2 + 〈σy(t)〉2, (3)

and the phase, φ(t) = arctan[σy(t)/σ x(t)]. We define σα =∑
k σ α

k . We study the dynamics both with and without a spin-
echo pulse, illustrated in Fig. 1(b). A π spin-echo pulse around
the y axis (i.e., in phase with the first pulse) leaves the spin-
model interactions invariant while removing single-particle
terms from the Hamiltonian Eq. (1), as well as any additional
single-particle inhomogeneities in σ z

i . The resulting dynamics
are equivalent to evolution for time t without an echo but with
an effective Hamiltonian, Ĥecho = (1/2)

∑
j �=k(Vjk/4)σ z

j σ z
k as
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shown in Appendix A. The spin echo has rather unusual effects
in the system of Rydberg atoms, as it effectively turns on
interactions between the |↓〉 states, as illustrated in Fig. 1(c).

III. CALCULATING THE RAMSEY CONTRAST
AND PHASE

The spin dynamics of Eq. (1) together with the nontrivial
effects of the dissipation has been obtained by solving the
corresponding master equation in Refs. [81,82] (generalizing
Refs. [83–85]) to obtain

〈σ+(t)〉 = sin θe−2γ t
∑

k

∏
j �=k

f (Vjkt), (4)

where

f (X) = e(iβX−γ t)/2{cos[(X − iγ t)/2]

+ [(γ t − iX cos θ )/2]sinc[(X − iγ t)/2]}. (5)

Here β = 0 is for the dynamics with a spin echo while β = 1 is
for no-echo dynamics. The function f (X) often simplifies; for
example, f (X) = cos(X/2) for θ = π/2, β = 0, and γ = 0.

Although Eq. (3) allows us to calculate the dynamics
once we know the atom positions, it often is impossible to
measure the positions of all of the atoms. However, in a large
enough system, the dynamics is expected to “self-average”:
C(t) for a single configuration in a large system is equal
to its average over all configurations, and therefore it is
independent of the specific configuration. We model the
atoms to be independently distributed with a uniform density,
ρ, for simplicity. The assumption is quantitatively justified
for an initially weakly interacting, not-too-degenerate gas.
Rather remarkably, we are able to analytically perform this
disorder average in the thermodynamic limit: we find that
Eq. (4) simplifies to evaluating a one-dimensional integral (see
Appendix B),

〈σ+(t)〉 = exp

(
−ρ

∫
4πr2dr [1 − f (V (r)t)]

)
. (6)

We note that Eqs. (4) and (6) neglect losses due to ionization
or molecular resonances. One way to avoid resonances is to
confine atoms in a lattice with appropriate lattice spacings
[86,87]. Recently it has also been shown that for large numbers
of atoms, losses to other dipole-allowed Rydberg states can
be significant [88–90]. Another relevant decoherence is a
dephasing of the |G2〉 level at rate γd as could result from
laser noise; this can be included simply by multiplying 〈σ+〉
by e−γd t . Including these effects is beyond the scope of this
paper, but often they should be relevant only on time scales
beyond those of interest here.

IV. CHARACTERIZING RYDBERG-DRESSED
INTERACTIONS USING RAMSEY

In the absence of dissipation, Eq. (6) implies that the di-
mensionless parameters, NR = 4πρr3

c /3 and V0t encapsulate
the dependence of the dynamics on the density ρ, the van
der Waals coefficient C6, and optical parameters (�2, �2).
Thus, we present the contrast in Figs. 2 and 3 as the function
C(NR,V0t), from which one can easily extract the dynamics
for any experiment by using the appropriate NR and V0. To
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FIG. 2. Ramsey contrast versus time for a gas of ground-state Sr
atoms with density ρ = 1012/cm3 dressed with 40-s triplet states with
a dressing amplitude of ε = 0.1. Panels (a) and (b) show θ = π/2 and
π/20, respectively. Individual curves are the dynamics in the absence
of decoherence with and without spin echo (γ = 0 curves), compared
to that of noninteracting atoms spontaneously emitting from only |G2〉
with γ = (21 μs)−1.

show typical scales, we also show the dynamics for typical
Sr experimental parameters [91] with C6 coefficients from
Ref. [78]. These figures show C(t) divided by its t = 0 value,
so that, for example, the result is independent of the number
of particles N in a homogeneous gas. Note, however, that the
actual measured signal depends on N and θ .

Figure 2(a) demonstrates that the interaction-driven dynam-
ics occurs on an experimentally favorable time scale, both
with and without a spin echo. For example, in Sr the contrast
dynamics for γ = 0 happens substantially faster than the
spontaneous emission rate γ = (21 μs)−1 of the |G2〉 = |3P1〉
state. Interesting behaviors emerge in the echo and nonecho
dynamics. In a typical system, the dynamics without an echo
pulse is faster than that with an echo pulse due to single-particle
inhomogeneities. However, due to the unique structure of the
Rydberg interactions, this naive intuition sometimes fails, as
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FIG. 3. (a,b) Contrast dynamics with θ = π/2 and γ = 0 ob-
tained from Eq. (7) takes a dramatically different shape in the NR � 1
and NR 
 1 limits. Interestingly, for NR � 1 the contrast dynamics
is faster with echo than without, except at exceptionally short times
(inset). The dashed lines are the analytic predictions of Eq. (6) for
these limits. (c) Characteristic time scale for the dynamics as a
function of NR . The top x axis represents the average number of
Rydberg excitations inside rc.
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seen in Fig. 2(b) for θ � 1. In this case, the spin-echo pulse
increases the effective interactions since it converts initially
noninteracting |G1〉 atoms into strongly interacting |D〉 states.

Figures 3(a) and 3(b) show that the contrast is sensitive to
the shape of the potential, with striking differences in the low-
density (NR � 1) and high-density (NR 
 1) limits. These
differences arise because for NR � 1 the dynamics probes the
1/r6 interaction tail, while for NR 
 1 it probes the interaction
potential inside the soft-core radius rc. In these limits, the
disorder-averaged contrast of Eq. (6) simplifies to

C(NR,V0t) =
{

e−ANR

√
V0t (NR � 1),

e−BNR [1−cosβ+1(V0t)/2] (NR 
 1),
(7)

with A = √
π/21+β/2 where β = 0 is for echo dynamics and

β = 1 is for nonecho dynamics. For NR � 1, this contrast is
the exact solution of Eq. (6) and is nonanalytic at t = 0; thus
it is beyond all orders of perturbation theory. For NR 
 1,
Eq. (7) approximates V (r) ≈ V0H (rc − r), where H (x) is the
Heaviside function. As shown in Fig. 3(b), this simple model
reproduces the exact contrast up to an overall shift of the time
scale: the naive B = 1 of the step function is replaced by
B = 4.0 for the shown value of NR .

The contrast dynamics depends on many system parame-
ters, such as �2, �2, C6, and ρ. One of the most important
characteristics is the characteristic contrast decay time τ1/2,
defined as C(NR,V0τ1/2) = C(NR,0)/2. Its dependence on the
system parameters follows directly from Eq. (6) as

τ1/2 ∝ (NR)α/V0 ∝ �−4
2 �

3−α/2
2 C

α/2
6 ρα, (8)

where α = −2 for NR � 1, while α = −1/2 for NR 
 1.
This scaling is confirmed in Fig. 3(c). Also note that Fig. 3(c)’s
top axis shows ε2NR , which must be small in order for Eq. (1)
to be valid.

Figure 3(c) also shows results for Sr including
simultaneously interactions and dissipation with γ = 1/

(21 μs) (black diamonds). As in our previous results, this
interaction-driven dynamics is faster than the spontaneous
emission-only dynamics that occurs on the 21-μs time scale.
However, in light of this, it is somewhat surprising that the
dynamics in the presence of interactions and spontaneous
emission simultaneously is much faster than for interactions
alone. The reason is a back action of the emission events on
the rest of the spins through the interaction: Each emission
event affects a single spin, which through interactions causes
a number of neighboring spins, ∼NR , to precess significantly,
thereby greatly amplifying the contrast dynamics and
correlation growth beyond that caused by either interactions
alone or spontaneous emission alone. This is analogous to the
feedback effect explained in Ref. [81].

V. CORRELATIONS ARISING FROM RYDBERG-DRESSED
INTERACTIONS IN A LATTICE

In this section we show that making more detailed
measurements—in particular with spatial resolution—after
the final Ramsey pulse further extends our ability to observe
and characterize the Rydberg-dressed interaction. So far our
calculations have been for a gas where both the excitation
and the measurement are done collectively on the whole
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FIG. 4. Contrast and correlation dynamics in 15 × 15 square
lattice with one particle per site. Dressing parameters are the same
as those in Fig. 2. The lattice spacing is a = 0.5 μm and rc ≈ 2a. In
the insets, we show the connected correlation function for the center
atom located at ic and the surrounding atoms using G(i,j) as defined
in the text.

system; this is the typical and most straightforward case in
current experiments. However, it is also possible to spatially
resolve 〈σx

i 〉 [92–94]. The extreme limit of this capability
is the single-atom resolution that has recently been achieved
in microscope experiments [42,43] for atoms in lattices. The
images in these experiments reveal not only 〈σx

i 〉 but also
correlations such as 〈σx

i σ x
j 〉.

Motivated by these ongoing experiments, we study the
Ramsey dynamics with a spin echo on a two-dimensional
square lattice with exactly one particle per site. For simplicity
we neglect spontaneous emission. Figure 4 shows the C(t)
and snapshots of the connected correlation [81,82] G(i,j) =
〈σx

i σx
j 〉 − 〈σx

i 〉〈σx
j 〉, where i and j are two-dimensional vectors

which define the lattice sites. We observe that the shape and
time scale of the contrast dynamics is similar to the NR 
 1
limit found in the gas. The spatial structure of the Rydberg-
dressed interactions is manifested in the spatial correlations,
allowing rather direct characterization of the interactions.

Furthermore, Fig. 4 demonstrates that the decay of the
contrast is associated with a growth of strong spin correlations
within the radius rc. Our calculations show this quite generally
as long as decoherence is not too large. In fact, this link can be
made even more general and rigorous without even relying on
the specific Hamiltonian time evolution of Eq. (1). The contrast
of a single spin i, Ci = |〈σ+

i 〉|, is identical for all uncorrelated
(product) states with a given 〈σ z

i 〉. Therefore any decay of
this single-spin contrast Ci must occur due to the growth of
correlations. Of course, the collective contrast C = |∑i 〈σ+

i 〉|
that we have focused on can decay due to relative precessions
of different spins without the single-spin contrast Ci decaying;
however, in the presence of an echo, such effects are expected
to be absent. Thus, in the quite general situation of spin-echo
dynamics in a closed system, we expect collective contrast
decay to be associated with the growth of correlations.

VI. CHARACTERIZING BARE RYDBERG INTERACTIONS
USING ULTRAFAST LASERS

We now consider a special case of our results that has
in fact already been experimentally and theoretically studied
in the literature, in which one utilizes bare Rydberg rather
than Rydberg-dressed states [95]. In addition to exemplify-
ing the generality of our calculations, this demonstrates a
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FIG. 5. Calculated contrast decay and phase shift for bare
Rydberg atoms, which agrees with experimental measurements (taken
from Ref. [95]). Left and right columns are for f = 3.1% and f =
1.2% of particles excited to the Rydberg state, i.e., f = 1 − cos θ ,
respectively. (a,b) Ratio of the contrast at ρ = 1.3 × 1012 cm−3 to
the contrast at 4 × 1010 cm−3. (c,d) Corresponding Ramsey phase,
shifted at t = 0 as in the analysis in Ref. [95].

proof-of-principle of the ideas contained herein. For this
case, Vjk is a pure van der Waals potential, V (rjk) = C6/r6

jk .
We show that the experimental data and much of the prior
theoretical modeling can be reproduced as a special case of
our results.

Typically, due to strong blockade effects, it is hard to excite
atoms to superpositions of ground and bare Rydberg states at
a sufficiently large density. However, by using strong, ultrafast
lasers, Ref. [95] has overcome this difficulty and couples Rb
atoms from their ground state |G〉 to the bare 42D5/2 Rydberg
state |R〉.

Figure 5 shows our calculations of the contrast and phase
for this experiment, which did not apply a spin-echo pulse. We
used |C6| = 9.8 GHz-μm6, taken from Ref. [96], and densities
ρ taken from Ref. [95] with values indicated in the caption
to Fig. 5. Our results quantitatively agree with experiment
without any fitting. We emphasize that the theoretical results
of Ref. [95] agree equally well with the data, and when our
theory is applied to the same potential it reduces to theirs.
Our main point here is to demonstrate that this bare Rydberg
dynamics emerges as a special case of our results.

The agreement between theory and experiment confirms
that the effects of Zeeman degeneracies [97] can be neglected,
possibly because at the low fraction of Rydberg excitation
studied the excitations are far enough separated that short-
range resonances are negligible. The agreement provides a
compelling proof of principle for Ramsey spectroscopy as a
method in future ultracold Rydberg-dressed experiments.

VII. CONCLUSIONS

We have shown that the dynamics of the Ramsey fringe
contrast happens on experimentally favorable time scales
and allows one to access and characterize Rydberg-dressed

interactions in a many-body system. Quite remarkably for
a many-body interacting system, we are able to provide
exact analytic solutions for the contrast dynamics, despite
the strongly correlated dynamics. (To emphasize the strong
correlations, note that for θ = π/2, the dynamics is completely
beyond mean-field theory, which predicts a time-independent
spin-echo contrast.)

The ability to solve the dynamics exactly contrasts with
many other types of dynamics and spectroscopy, for which
approximations must inevitably be made. For example, if we
were to consider Rabi spectroscopy rather than Ramsey spec-
troscopy, no general procedure to solve the dynamics—even
numerically—would be available; similarly, no techniques
exist to efficiently calculate the Ramsey contrast dynamics
of Rydberg atoms near a Förster resonance. In contrast to our
Ramsey dynamics, calculating the dynamics in these other
situations inevitably involves approximations. For example,
to model dynamics near Förster resonances, Refs. [41,98]
employed a model of the many-body dynamics as two-particle
dynamics averaged over the expected nearest-neighbor inter-
particle separation in a homogeneous gas (the Chandrasekhar
distribution). While this is a useful and potentially accurate
approximation in some circumstances, it has limits to its
applicability. For example, at large NR in our system, it would
predict the dynamics decays at a rate of V0 rather than

√
NRV0,

a large error for NR 
 1.
The exact analytic solutions provided for the Ramsey

contrast dynamics allow for systematic and rigorous com-
parison between experiment and theory, without uncertainties
associated with approximate treatments. Such comparisons
are extremely beneficial for diagnosing experimental compli-
cations. Discrepancies between theory and experiment cannot
be blamed on approximations, but instead directly imply that
an important aspect of the experiment has been omitted from
the theory.

We showed, as a first step and proof of principle, that
our theory quantitatively agrees with recent ultrafast measure-
ments of bare Rydberg atoms, a remarkable demonstration of
the universality of the dynamics over 6 orders of magnitude,
from μs to ps. We revealed that the contrast dynamics is
sensitive to the shape of the interaction potential, as well as
to the density, the principal quantum number, and the dressing
laser properties.

Striking dynamics emerges for NR � 1: The contrast
displays a nonperturbative short time nonanalyticity, e−√

t/τ0 ,
due to the 1/r6 character of Rydberg interactions. Further
interesting dynamical phenomena result from the unique
nature of Rydberg interactions. For example, the spin-echo
pulse enhances the rate of contrast dynamics for small
excitation fraction θ or low densities.

Although previous experiments on coherent excitation of
Rydberg atoms in many-body systems have demonstrated
strong correlations, they have not established their nonclas-
sicality. Although we do not show the nonseparability of the
correlations, Ramsey spectroscopy directly creates and probes
the superpositions necessary for quantum correlations. Such
quantum correlations are expected to occur, despite the fact
that Eq. (1) is “classical.” Although in equilibrium the fact that
the Hamiltonian consists of commuting variables does imply
that correlations are classical (in the sense that entanglement is
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absent), this is not true out of equilibrium: extremely entangled
states can be and generically are generated dynamically by
such Hamiltonians.

In the future, performing similar Ramsey experiments
but with local pulses applied to read out various spin
components would allow measurement of the quantumness
in the correlations and would pave the way for studying
interesting many-body nonequilibrium spin physics. Recently,
Ref. [99] has used Ramsey spectroscopy to experimentally
observe Rydberg-dressed interactions of atoms in an optical
lattice using a quantum gas microscope with local readout
capabilities, suggesting that measurement of genuine nonclas-
sical correlations may be within reach. Another interesting
direction is to simply add a transverse field. This prevents
exact solution and the resulting rich many-body dynamics will
be an interesting test bed for theoretical methods [100–103].
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APPENDIX A: EFFECTIVE HAMILTONIAN FOR RAMSEY
DYNAMICS WITH AN ECHO

In the nonecho dynamics protocol, the time-evolution oper-
ator for the Ramsey dark period is given by Unonecho = e−iĤ t ,
where Ĥ is given by Eq. (1). For the spin-echo dynamics, the
time-evolution operator is given by Uecho = e−iĤ t/2Rπe−iĤ t/2,
where Rπ is the π -pulse evolution. The combined effect
of Rπe−iĤ t/2 is that the system evolves under a unitary
transformation given by e−iĤRt/2, where ĤR is same as Ĥ

but with σ z
j → −σ z

j :

ĤR = 1

2

∑
j �=k

[
(Vjk/4) σ z

j σ z
k − (Vjk/2) σ z

k

]
, (A1)

so Uecho = e−iĤ t/2e−iĤRt/2. Since Ĥ and ĤR commute, the
resulting time-evolution operator is Uecho = e−iĤechot , where
Ĥecho = (Ĥ + ĤR)/2. Physically this implies that interactions
between atoms initially in |G1〉 states start interacting in the

second half of the spin-echo dynamics. Additional contribu-
tions arising from interactions with atoms in |G1〉 and |D〉
states are negligible.

APPENDIX B: ANALYTIC EXPRESSION OF CONTRAST
FOR A UNIFORMLY DISTRIBUTED GAS OF ATOMS

For the derivation of Eq. (6), consider a uniformly dis-
tributed gas of N atoms with positions labeled by j and k.
Since the particles are independent, the probability distribution
in space factors as P (r1,r2, . . . ,rN ) = P (r1)P (r1) · · · P (rN ).
For a uniform distribution, we have P (rj ) = ρ/N , where ρ is
the uniform density of the gas. Thus averaging Eq. (4) in the
main text, we have

〈σ+
k (t)〉 =

∫
dr1 · · · drN−1

(
ρ

N − 1

)N−1 ∏
j �=k

f (V (rjk)t)

=
(

ρ

N − 1

)N−1 ∏
j �=k

[∫
drj f (V (rjk)t)

]

=
[(

ρ

N − 1

)∫
drj f (V (rjk)t)

]N−1

. (B1)

Although the remaining single integral diverges with the
system volume this divergence is canceled by the 1/(N − 1)
factor. To evaluate the expression in Eq. (B1) it is convenient
to define the finite integral

I = ρ

∫
4πr2dr[1 − f (V (r)t)], (B2)

in terms of which Eq. (B1) simplifies to

〈σ+
k (t)〉 =

[
1 − I

N

]N−1

. (B3)

In the thermodynamic limit where N → ∞, the above expres-
sion is

〈σ+(t)〉 = exp

(
−ρ

∫
4πr2dr[1 − f (V (r)t)]

)
, (B4)

which is Eq. (6) in the main text. We emphasize that no ap-
proximation or redefinition is made in our calculation to render
it finite: the diverging integral in Eq. (B1) simply cancels out
in the final expression. Note that this simplified expression
depends on the function f , which in turn depends on the
exact dynamics (echo, nonecho, tipping angle, dissipation).
Our results coincide with those of Ref. [95] in the special
cases calculated there.
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