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Rapid methods for diagnosis of bacterial infections are urgently
needed to reduce inappropriate use of antibiotics, which con-
tributes to antimicrobial resistance. In many rapid diagnostic
methods, DNA oligonucleotide probes, attached to a surface, bind
to specific nucleotide sequences in the DNA of a target pathogen.
Typically, each probe binds to a single target sequence; i.e., target–
probe binding is monovalent. Here we show using computer
simulations that the detection sensitivity and specificity can be
improved by designing probes that bind multivalently to the
entire length of the pathogen genomic DNA, such that a given
probe binds to multiple sites along the target DNA. Our results
suggest that multivalent targeting of long pieces of genomic DNA
can allow highly sensitive and selective binding of the target
DNA, even if competing DNA in the sample also contains bind-
ing sites for the same probe sequences. Our results are robust to
mild fragmentation of the bacterial genome. Our conclusions may
also be relevant for DNA detection in other fields, such as disease
diagnostics more broadly, environmental management, and food
safety.

DNA-based detection | multivalent binding | superselectivity |
computer simulations | polymer physics

Rapid diagnostic methods for bacterial infections are urgently
needed to combat the threat of antimicrobial resistance

(AMR) (1). Due to the scarcity of simple practical methods
to diagnose bacterial infections at the point of care, antibiotics
are often prescribed inappropriately, e.g., for conditions that are
not caused by bacteria (2–4). Since AMR prevalence correlates
with antibiotic usage (5), improving point-of-care diagnosis for
bacterial infections is central in the battle against AMR (1, 6).
Diagnostic methods need to be not only sensitive, such that tar-
get pathogens are detected at low abundance, but also specific,
such that false positive results are not triggered by other, non-
pathogenic bacteria that may be present in a sample. Here we
show computationally that the sensitivity and specificity of detec-
tion of a target bacterial pathogen can be improved significantly
by leveraging the length of bacterial genomic DNA to achieve
multivalent binding of the target DNA to a surface coated in
oligonucleotide probes. Although we focus here on bacterial
infections, DNA detection also has a plethora of other appli-
cations. These include diagnosis of nonbacterial infections such
as malaria (7) or viral infections; tracing of rare species in the
natural environment (8); and testing for pathogens, allergens, or
authenticity in food products (9–11).

Current DNA-based detection methods typically use oligonu-
cleotide probes that are complementary to particular sequences
within the target DNA, such that each probe has a single bind-
ing site on the target DNA (Fig. 1 A, Inset, blue). Usually,
specific short fragments of target DNA are amplified from the
sample by PCR, fluorescently labeled, and exposed to a surface
that has been spotted with an array of oligonucleotide probes.
Probe-binding sequences that are present in the sample are

then detected as fluorescent dots (12). Related methods include
attaching the oligonucleotide probes to gold nanoparticles, which
aggregate upon binding to the target DNA (13, 14). Current
DNA-based methods are extremely promising, with the potential
for rapid and affordable detection, but questions remain about
whether they can achieve sufficient sensitivity and specificity to
compete with standard culture-based methods for diagnosis of
bacterial infections (15).

The genomic DNA of bacterial pathogens is typically several
million base pairs long. Here we propose that the length of bac-
terial genomic DNA can be leveraged to improve probe design
in DNA-based detection. We propose designing oligonucleotide
probes such that a single probe can bind to multiple sites along
the entire genome of the target bacterial pathogen. PCR would
not be required for such an approach; rather, the entire comple-
ment of DNA in a sample could be amplified via whole-genome
amplification methods [e.g., multiple-displacement amplifica-
tion, which does not require temperature cycling (16, 17)].
Using computer simulations, we show that multivalent binding of
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target genomic DNA to a probe-coated surface should greatly
enhance the sensitivity and specificity of DNA-based detection
of bacterial pathogens.

Our approach builds on the concept of superselectivity: the
fact that the strength of a multivalent-binding interaction can
depend critically on the number of binding sites on the target
(19–26) (see also a discussion of the theory in Materials and Meth-
ods). Based on this concept, we design oligonucleotide probe
sequences that can hybridize with multiple regions along the
length of the genomic DNA of a target pathogen. This leads to
multivalent binding of the target genomic DNA to the probe-
coated surface. Due to superselectivity, this multivalent binding
should be more selective for the target DNA compared to probes
that are designed to hybridize to just a single site on a short DNA
target fragment (19–21, 25, 26).

A key challenge is to identify which probe sequences to use
to optimize the multivalent binding. Selecting the correct probe
sequences is highly nontrivial and this is where computational
probe design and testing come into play.

Below we present a computational approach to multivalent
probe design. Crucially we optimize the multiplicity, rather than
the strength, of probe–target binding. To test the performance
of our multivalent probes, we perform computer simulations
of genome–surface binding. We use a model that takes into
account the polymer physics of genomic DNA interacting with
a probe-coated surface as well as the sequence specificity of
the target–probe binding. In Fig. 1, we summarize our main
result. Here, we ran simulations for a surface coated in probes
designed to detect Escherichia coli DNA, in the presence of two
different single-stranded genomes: the target E. coli and nontar-
get Bacillus subtilis (a different bacterial species). We measured
the number of probe–target contacts, nc , for each of the two
genomes and defined detection specificity as the ratio of these
numbers for the target vs. nontarget: s =nE. coli

c /nB. subtilis
c .

The blue curve in Fig. 1A shows the specificity for a surface
coated in a published probe targeting a specific E. coli gene
[the 40-nt probe A (18)] and with the genomic DNA frag-
mented into segments of length 400 nt to model typical fragments
amplified by PCR. As the density of probes on the surface
decreases, the specificity of detection of the target DNA grad-

ually increases. However, there is a trade-off, because for very
low probe densities (ρ< 0.01/nm2), the number of probe–target
contacts decreases rapidly (SI Appendix, Fig. S9 and Fig. 2),
resulting in a reduction of the measurable signal. The red curve
in Fig. 1A shows the result for our proposed improved method.
Here, we optimized 20-nt probes to bind multivalently to many
positions in the E. coli genome and simulated the binding of the
nonfragmented genome to the probe-coated surface. Our results
show that, in this multivalent-binding approach, the specificity of
detection of the target DNA is greatly enhanced (E. coli DNA
binds two orders of magnitude more than B. subtilis DNA).

Simulation snapshots (Fig. 1B for E. coli genomic DNA and
Fig. 1C for B. subtilis) from our multivalent-binding simula-
tions also illustrate this finding. In these simulations, we use an
approach common in polymer physics, where a long polymer
is represented as a connected chain of “blobs.” Thus, genomic
DNA is represented as a chain of 400-nt blobs, each of which
has a sequence-specific interaction with the surface (see Materi-
als and Methods for details of our simulation model). In Fig. 1 B
and C, each ball represents one blob and its color indicates the
interaction strength of the blob with the surface probes. It is evi-
dent that E. coli genomic DNA forms many distinct contacts with
the surface and that these contacts are mediated by the blobs
that have a strong binding affinity to the surface. In contrast,
B. subtilis genomic DNA shows much less binding and, corre-
spondingly, the genome is not confined to the surface. In these
snapshots, the specificity s achieved by the multivalent-binding
approach is ≈40.

Depending on the diagnostic requirements, our approach can
be used either to detect a known target genome in the presence
of other, unknown, nontarget DNA or, with a modified approach
to probe design, to detect a target genome in the presence of a
known, but very similar, nontarget genome.

Computational Approach to Probe Design and Testing
Designing Oligonucleotide Probes for Multivalent Binding to Bacte-
rial Genomic DNA. To achieve multivalent probe–target binding,
we aim to design oligonucleotide probes (of length l) with
as many regions of complementarity with the target bacte-
rial genome as possible (i.e., to maximize the multiplicity of

A B

C

Fig. 1. Simulating multivalent detection of bacterial DNA. (A) Simulation results for the specificity of binding of target vs. nontarget DNA to surfaces coated
with probes targeting E. coli. Specificity is defined as the ratio of DNA–surface contacts for the target E. coli versus nontarget DNA from the bacterium B.
subtilis. The blue curve shows results for a published 40-nt probe, “probe A” (18) that targets the 16S ribosomal gene of E. coli, binding to DNA fragmented
into 400-nt segments. The red curve shows results for our top-scoring multivalent 20-nt probe binding to unfragmented genomic DNA (for the same total
amount of DNA as in the blue curve). (B and C) Snapshots from our simulations for genomic DNA of E. coli (B) and B. subtilis (C) binding to the surface coated
in multivalent probes. The genomic DNA is modeled as a chain of 400-nt “blobs.” Each ball represents a single blob and its color indicates the interaction
strength between the blob and the surface: weak interaction, red; strong interaction, blue. The blow-up in B, Inset shows that blue blobs with a stronger
surface-binding interaction are predominantly found close to the surface. The density of probes on the surface was set to ρ= 0.00003/nm2. The lateral size
of the snapshots is 5 µm, while the Inset to B is of size 300 nm.
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Fig. 2. Adsorption of four different genomes: E. coli, B. subtilis, herpes virus, and human mitochondrion, to a probe-coated surface designed to target
E. coli. In A and D, B and E, and C and F, respectively, we show the number of genome–surface contacts nc for the full genome as function of the probe
density ρ, the interaction free-energy histograms for the full genome at the probe density ρ= 0.1r2

b, and the nc as a function of the fragmentation length
lc (measured in blobs) at the probe density ρ= 0.003/r2

b. A–C present results for short probes (10 nt) and D–F those for longer probes (20 nt). In all cases,
the surface is coated with the highest-scoring oligonucleotide probe targeting the E. coli genome, together with its reverse complement. We use a blob size
of 400 nt, T = 50 ◦C, a periodic box of size Lx = Ly = 1,000rb, Lz = 5,000rb, and a blob–surface contact is defined as a blob being located within 2rb = 20 nm
of the surface.

genome–surface binding). To choose the probe sequences, we
designed an “in-house” bioinformatics algorithm that consid-
ers all sequences of length l that occur within the pathogen
genome and assigns to each sequence i a “multiplicity score”
Si . The multiplicity score measures the number of binding sites
for that probe on the target genome. While there are many pos-
sible ways to measure multiplicity of binding, we use the score
function Si = log

[∑l
a=1 4ania

]
, where nia denotes the number

of continuous regions of complementarity of length a between
sequence i and the pathogen genome. The numbers nia could
be obtained using, e.g., the BLAST+ (27) software package or
via our in-house implementation, as described in Materials and
Methods.

The sequences with the highest score have the longest over-
laps with, and multiple repeats in, the target genome, and thus
our algorithm works similarly to existing methods that search for
motifs, such as MobyDick (28). However, the aim of our score
function is not to find motifs within the target genome but instead
to find the probe sequence with the highest multiplicity of bind-
ing to the target. The simple form of the score function is crucial
to ensure we are able to search over the many candidate probes
for a given genome (the number of candidate probes is equal to
the genome length in nucleotides, typically 106 to 107).

Having assigned score values to all possible oligonucleotide
probe sequences of length l , one can design a probe surface by
functionalizing it either with the top-scoring probe sequence or
with a mixture of high-scoring probe sequences. Unless specified
otherwise, we optimized the probe sequences for binding to the
entire genome of our model pathogen, E. coli (wild-type strain
bl21-de3 [ASM956v1]). We considered two cases: l = 10 (“short
probes”) and l = 20 (“longer probes”).

Coarse-Grained Polymer Model for Genomic DNA. To assess the
performance of our multivalent probe design, we developed a

computer simulation model that allows us to predict the binding
of single-stranded pathogen genomic DNA to a surface which is
grafted with short, single-stranded, oligonucleotide DNA probes
(see Fig. 4 in Materials and Methods). These simulations are chal-
lenging, because our model needs to include the entire genome
of 106 to 107 nt, while also taking account of the sequence
specificity of the DNA-binding interactions. Established mod-
els that can include sequence-specific interactions (e.g., refs.
29–31) would not be computationally feasible for the long
genomic DNA.

To overcome this problem, we implemented a coarse-grained
approach to the polymeric structure of the genomic DNA,
invoking an experimentally validated polymer model (24). The
model builds on an important insight provided by polymer the-
ory: At a coarse-grained level, a polymer that is in a good
solvent (under semidilute conditions) or interacting with a sur-
face can be modeled as a chain of blobs, each representing
many monomers, that interact via soft, repulsive potentials (32,
33). Therefore, we model the single-stranded genomic DNA
as a chain of blobs, each of which represents ∼400 nt, imply-
ing a blob size of rb ≈ 10 nm (Materials and Methods and SI
Appendix). Such coarse-grained interactions are sequence spe-
cific since each blob is unique in its interaction with the probe-
coated surface. This interaction is calculated based on a nearest-
neighbor model of DNA hybridization free energy, using the
SantaLucia empirical parameters (34, 35) (Materials and Meth-
ods and SI Appendix). A similar coarse-grained model has been
experimentally validated and shown to predict accurate structure
formation and melting transitions in multicomponent DNA brick
assembly (36). We have verified that changing the number of
nucleotides per blob (and scaling the blob size accordingly) does
not affect our results (SI Appendix).

The probe-coated surface is represented in a mean-field way
via a uniform attractive potential; i.e., individual probes are not
resolved.

Curk et al. PNAS Latest Articles | 3 of 8
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Simulating the Binding of Genomic DNA to a Probe-Coated Surface.
To investigate the binding of bacterial genomic DNA to probe-
coated surfaces, we performed Langevin dynamics simulations of
our coarse-grained model using the LAMMPS open-source sim-
ulation package (37). In all simulations, both the forward and
reverse strands of the genomic DNA were present in the system
as single-stranded DNA; consequently, we assumed the surface
to be coated by a mixture of the forward and reverse-complement
strands of the top-scoring oligonucleotide probe sequence. In
our simulations, we varied the density of probes on the sur-
face, in the range where there is negligible probability of probe
self-hybridization.

To investigate the selectivity with which the surface targets E.
coli genomic DNA as opposed to other, nontarget DNA, we per-
formed simulations with four different genomes: the target E.
coli (which was used to optimize the probes) and three different
nontarget DNAs: B. subtilis (strain QB928), human mitochon-
drial DNA (NCBI reference sequence NC 012920.1), and the
herpes virus 3 genome (strain 03-500, DQ479957). Each single-
stranded genome was modeled as a chain of blobs with the
blob–probe interactions being determined for each blob during
the coarse-graining procedure.

Results
Binding Regimes. To quantify the surface–genomic DNA bind-
ing, we measured the average number of blob–surface contacts
(defined as blobs located within 2rb = 20 nm of the surface), over
a set of simulations with different densities of the surface-grafted
oligonucleotide probes. Our results are presented in Fig. 2 A
and D. For E. coli genomic DNA, we observe a rapid increase
in binding above a probe density of ∼0.0001/r2b = 1/µm2, show-
ing that the binding is sensitive. Nontarget genomes also bind to
the probe surface, but only for significantly higher probe densi-
ties; in other words, the binding of E. coli genomic DNA is also
highly selective.

The origin of the observed selectivity for target vs. nontarget
genomic DNA can be understood by plotting the distribution
of blob–surface binding free energies ∆G̃j,surf (Fig. 2 B and
E; see Materials and Methods for the definition). For the tar-
get E. coli genomic DNA (black lines in Fig. 2 B and E), we
observe a broad distribution of binding free energies, with some
blobs binding strongly (more negative ∆G̃j,surf) and many bind-
ing weakly. The nontarget genomes (colored lines in Fig. 2 B
and E) contain some blobs that bind strongly to the surface, but
the frequency of such strongly binding blobs is lower ( i.e., these
curves are shifted to the right compared to the E. coli data). Thus,
selectivity of the surface for E. coli genomic DNA is achieved
not by designing oligonucleotide probes that bind exclusively to
the target genome, but rather by designing probes that have a
greater number of binding sites on the target genome than on
a nontarget genome. This is the key feature of superselective
binding (22–24).

An important parameter in our model is the length of the
oligonucleotide probes. A longer probe is expected to have
fewer perfectly complementary matches along the genomic DNA
sequence, but where it binds, its interaction is expected to be
stronger. Fig. 2E shows that indeed, for the longer probes, the
predicted distribution of probe–blob binding free energies for
the coarse-grained model of E. coli genomic DNA (black data)
has a low-abundance “tail” of strong interactions (strongly neg-
ative β∆G). Comparing Fig. 2B with Fig. 2E, the strongest
interaction for long probes ∆G̃j,surf ≈−35kBT whereas for the
short probes it is ∆G̃j,surf ≈−25kBT . But this increased bind-
ing strength comes at a price: If we count the absolute number
of blobs that interact more strongly than ∆G̃j,surf ≤−20kBT ,
there are about twofold fewer for the longer than for the shorter
probes. For the other three genomes considered (orange, green,

and purple data in Fig. 2E), the strong interactions are not
present, while the weak interactions remain.

The emerging picture suggests that there may exist a
long-probe regime that is qualitatively different from the
superselective-binding short-probe regime—and that our 20-nt
“longer” probes show some features of this long-probe regime.
In the long-probe regime, surface–genome binding is still selec-
tive (Fig. 2D). However, this selectivity arises because the few
strong interactions that mediate binding of the E. coli genome
are absent for the nontargeted genomes. This is quite different
from the superselective short-probe regime, where the surface–
genome binding interactions are equivalent in strength between
the genomes, but are simply more numerous for the E. coli
genome. While the superselective short probes give better sen-
sitivity for intermediate probe density (Fig. 2A vs. Fig. 2D,
black lines), we shall see later on (Distinguishing between Similar
Genomes) that we need to resort to longer probes to distinguish
between very similar genomes such as different strains of the
same bacterial species (Fig. 3).

Effects of Genome Fragmentation. In our approach, in the short-
probe regime, the efficacy of binding relies on the length of the
target genomic DNA: More sensitive and more selective binding
is achieved for a long genomic DNA target because it contains
many binding sites for the probe-coated surface. Therefore, we
expect that cutting the target DNA into fragments will compro-
mise the sensitivity and selectivity of binding. To test this, we
performed simulations where we cut the genomic DNA chain
into fragments of length lc blobs (or lc × 400 nt). Fig. 2 C and
F shows that fragmentation has a drastic effect: Upon reducing
the fragment length, both the number of genome–probe contacts
and the selectivity of binding drop significantly. Consistent with
the above discussion, the effect is weaker when we use longer
probes (compare Fig. 2F with 2C).

The difference in the degree of binding between target
and nontarget is compromised as the degree of fragmenta-
tion increases (lc . 10 blobs). Thus, leveraging the length of
the target genomic DNA is central to achieving sensitive and
selective detection in this approach. However, although these
results show that extensive fragmentation is bad for binding,
they also indicate that the sensitivity and specificity of binding
are barely affected by “mild” fragmentation (values of lc greater
than 10 blobs or genome fragment lengths above 4,000 nt).
This is of practical interest because sample preparation meth-
ods could introduce a small number of breaks in the genomic
DNA; our results show that our approach is robust to such mild
fragmentation.

Interestingly, we note that for the target E. coli genome, and
for B. subtilis, the extent of binding (sensitivity) decreases as
the genome is fragmented (decreasing lc in Fig. 2 C and F),
while for human mitochondrial DNA (and for herpes virus in
the long-probe regime) net binding increases with fragmenta-
tion. For herpes virus, the effect is nonmonotonic at this probe
density. These contrasting trends arise from a balance between
energetic and entropic effects. Longer DNA fragments can bind
to multiple oligonucleotide probes simultaneously, increasing
the adsorption, but there is also an entropic cost of confining
a long polymer close to the surface. Shorter DNA fragments
are less likely to bind to multiple probes, but their binding also
involves a smaller entropic cost. The herpes virus genome, which
is relatively short (16,500 nt), contains only a few probe-binding
sites even when unfragmented, so for this genome the reduc-
tion in entropic penalty upon fragmentation outweighs the loss
of binding multiplicity.

Distinguishing between Similar Genomes. It is often important to
detect target DNA in the presence of closely related nontarget
DNA. For example, the O157 Sakai strain of E. coli, which causes
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Fig. 3. Distinguishing between similar genomes: the target strain E. coli
O157 Sakai and the nontarget strain E. coli bl21-de3 (wild type). (A) Results
of our Langevin dynamics simulations for the average degree of binding
(number of blob–surface contacts nc), for the target and nontarget genomic
DNA. The solid lines show results for the top-scoring 20-nt probe, which is
designed to maximize the difference function ∆S = SSakai − Sbl21−de3. The
dashed lines show results for the published 70-nt “probe B” (38), which
targets the rfbE gene specific to E. coli O157. For the published probe,
the genomic DNA has been fragmented into 400-nt pieces to mimic stan-
dard DNA microarray conditions while for our 20-nt probe we assume
unfragmented genomic DNA. (B) The effect of genome fragmentation
at surface probe density ρ= 0.03/r2

b, for our top-scoring 20-nt probe. As
in our other simulations, lb = 400, T = 50 ◦C, and a genome–surface con-
tact was defined as a DNA blob being located within 2rb = 20 nm of
the surface.

food poisoning, differs from the harmless laboratory strain bl21-
de3 in only a few regions of the genome (SI Appendix). Closely
related genomes can be distinguished using a modified version
of our approach, in which oligonucleotide probes are selected
based on the difference in binding score between the target and
nontarget genomes, ∆S =Starget −Snontarget. The resulting probes
bind to the regions of the target genome that are most different
from those of the nontarget genome.

The performance of this approach is illustrated in Fig. 3A
(solid lines), where we simulate the binding of target O157 Sakai
genomic DNA and nontarget wild-type E. coli DNA (bl21-de3)
to a surface coated in 20-nt probes designed to discriminate O157
Sakai from the wild-type strain. Comparing the predicted bind-
ing of O157 Sakai (orange points, solid line) to the nontarget
strain (black points, solid line), we see that this surface is highly
selective for the target O157 Sakai strain when the probe density
is low. At high probe density, the nontarget strain binds appre-

ciably to the surface, which in turn reduces the selectivity. We
note that the use of 20-nt, as opposed to 10-nt, probe strands is
required here to obtain sufficient discrimination between the two
genomes. However, fragmenting the genome has a strong effect
on the selectivity, suggesting that multivalent-binding effects are
still at play (Fig. 3B).

It is instructive to compare the performance of our multi-
valency approach for discriminating between similar genomes
with the results of equivalent simulations for an existing probe
from the literature. The 70-nt “probe B” targets the rfbE gene,
which is specific to the O157 Sakai strain (38). We simulated
the binding of target E. coli O157 Sakai DNA (fragmented
into 400-nt pieces), compared to nontarget wild-type E. coli
DNA, to a surface coated in the monovalently binding probe
B (see SI Appendix for details). Fig. 3A (dashed lines) shows
that binding is predicted to be less extensive (especially at
low probe density) and less selective (compare orange and
black dashed lines) for the 70-nt probe B than for the 20-nt
probe designed using our multivalent-binding approach (bind-
ing unfragmented genomic DNA). A different published probe
[the 27-nt “probe C” (39) that also targets the rfbE gene]
behaves similarly to the 70-nt probe B (see SI Appendix for
details).

The superior performance of our approach compared to that
of existing probes is due to multivalent binding to the genomic
DNA. To maximize performance, the method requires both long
pieces of target DNA (Fig. 3B) and the design of probes that
target multiple sites on the target genome (see SI Appendix,
Fig. S10, comparing the probe performance for equal degrees
of fragmentation).

Discussion
DNA-based detection methods have wide relevance, includ-
ing in disease diagnostics, environmental management, and
the food industry (7–11). For detection of infections, DNA-
based methods are attractive because they can target specific
pathogen species or specific genes (such as those encoding
virulence or antibiotic resistance). In such methods, oligonu-
cleotide probes are typically designed to bind to a single region
within the pathogen DNA. Here, we have investigated a “whole-
genome binding” approach in which the oligonucleotide probes
are instead designed to have the maximal number of regions
of complementarity with the target genome. Using computer
simulations, we show that multivalent binding can lead to
highly sensitive and specific binding of the target DNA. Our
approach exploits the concept of “superselectivity,” in which
the target genome is selectively detected even though other,
nontarget genomes may also have regions of complementarity
with the probe sequences. Our method depends on the target
DNA being long; when the genome is fragmented into short
pieces, binding becomes less sensitive and less selective. How-
ever, mild fragmentation barely affects the performance of our
multivalent-targeting approach.

The success of our approach depends on the oligonucleotide
probes being relatively short; if the probes are long, they will
typically have fewer (although stronger) binding sites on the
target bacterial genome. We have shown that, with a modi-
fied probe selection criterion, our approach can be used to
distinguish between genomes that are very similar: e.g., the
O157 Sakai strain of E. coli versus a wild-type strain. How-
ever, distinguishing very similar genomes requires that the
oligonucleotide probes are selected to maximize the differ-
ence in binding score between target and nontarget genomes.
We note that distinguishing between very similar genomes
could be relevant, in some cases, for distinguishing between
antibiotic-resistant and -sensitive strains, thus facilitating the
prediction of the antibiotic susceptibility profile of bacterial
pathogens.
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We tested our approach using simulations of a coarse-grained
model in which the genomic DNA is modeled as a series of
blobs, each of which represents hundreds of nucleotides of DNA,
but in which sequence-specific interactions between a particular
blob and the probe-coated surface are included via a mean-field
approach based on the nearest-neighbor SantaLucia hybridiza-
tion free energy (34, 35). This allows us to simulate the relatively
long bacterial genome, while retaining sequence-specific interac-
tions with the oligonucleotide-coated surface. In our simulations,
a number of approximations have been made. In particular, we
assume that different blobs along the genome chain interact
only via steric repulsion; in other words, we neglect the pos-
sibility that blob–blob binding leads to the formation of long
loops within the single-stranded DNA genome. However, recent
results using a more detailed simulation model show that the
macroscopic properties of ssDNA (e.g., the radius of gyration)
are not significantly affected by such self-hybridization, at least
for temperatures above 40 ◦C (40). Our simulations include both
complementary strands of the genomic DNA, but do not take
into account the interactions between the two strands. Neverthe-
less, our simulation model allows us to bridge the gap between
the large-scale genomic DNA and the microscale sequence-
specific hybridization interactions. Our calculations would not
have been possible with higher-resolution, more computationally
expensive DNA models that account for detailed base-pairing
interactions (29–31). We also note that it is essential to include
both the sequence specificity and the correct polymer physics;
models that include only sequence specificity (34, 35), or only the
polymer physics (41), cannot be used to predict the performance
of the multivalent-binding strategy. Here we have chosen to vary
the probe density on the surface as a control parameter—this
is convenient for our simulations as the polymer–surface inter-
action parameters do not change with probe density. However,
experimentally, it may be more convenient to vary temperature
or salt concentration. Since temperature and salt concentration
have equivalent effects to those of probe density on genome–
surface binding (SI Appendix, Fig. S7), we expect this to lead to
equivalent results.

We note that our coarse-grained model may not capture
the kinetics of interaction of the genome with the surface cor-
rectly. Kinetic effects are expected to be important as longer
DNA strands are likely to take a longer time than shorter
ones to attach themselves to the probe-coated surface, even
though this problem may be mitigated by the presence of mul-
tiple probe-binding sites along the genome. Another kinetic
effect is related to the length of the oligonucleotide probes:
Longer probes hybridize more slowly (42). Clearly, experi-
ments (or further simulations) will be needed to quantify the
kinetic effects.

Here we have used the bacterium E. coli as our model tar-
get. To apply this approach to other targets, one would need
to design appropriate probes, following the probe design pro-
cedure set out here. The large-scale coarse-grained simulations
of target–surface binding are, however, not necessary; the sim-
ulations that we present here are meant as a validation of the
approach and should not be necessary for every new genome
that is to be targeted. Of course, the need for sensitive and selec-
tive detection of specific DNA sequences extends well beyond
bacterial infections. Examples include disease detection more
broadly in humans, animals, and plants; detection of rare species
in the environment (whether they are at risk or are invaders); and
detection of pathogens, allergens, or fraudulent substitutions in
the food industry (7–11). Our conclusions may therefore be of
broad relevance.

We stress that this paper proposes a strategy rather than pro-
viding a recipe for an experimental approach to DNA detection.
However, our approach can be tested using standard methods
available in molecular biology and DNA microarray laborato-

ries. The crucial quantity to measure in an experiment would be
the number of bound probes. In principle, the use of fluorescent
dyes that bind to double-stranded DNA should provide a fairly
direct method to measure the number of probe–genome bonds.
We also envisage that genomic DNA amplification, if needed
at all, could be done using whole-genome amplification, which
does not necessarily require thermal cycling (16, 17). Of course,
the target DNA in the experiments should be free and should
have been largely dehybridized, without massive fragmentation;
protocols exist to achieve this.

Materials and Methods
Design of Oligonucleotide Probes. Our in-house algorithm chooses oligonu-
cleotide probes based on a score function that measures the number of
regions of complementarity (continuous sequences, i.e., those without bub-
bles) between the probe sequence and the target DNA (considering both
the forward and reverse strands of the pathogen genome). We first choose
the length l, in nucleotide bases, of the desired probes. For short probes, l≤
10, our algorithm generates and evaluates all possible test-probe sequences
(e.g., there exist 410 different sequences of length 10 nt). If l> 10, the algo-
rithm instead considers all distinct sequences of length l that occur within
the target pathogen genome.

A test-probe sequence i of length l is compared to all length l subse-
quences j in the genome and its reverse complement, and the numbers nija

of exact matches of length 1< a< l between i and the j are tallied. For
example, if l = 5, i = AAAAA, and j = ATAAA, then nij1 = 4, nij2 = 2, nij3 = 1
and nij4 = nij5 = 0. Probe sequence i is then assigned a score Si , evaluated
according to

Si = log

 l∑
a=1

4ania

. [1]

This score function sums the numbers of matches nia =
∑

j nija over all sub-
sequence lengths a. Matches of length a are weighted by a factor 4a to
account for the fact that longer matches are less likely to happen by chance
(the probability of finding a match of length a in a random target DNA
sequence is (1/4)a).

The score function, Eq. 1, can be thought of as an estimate of the inter-
action free energy between the probe and the target. Briefly, the factor
of 4a can be seen as a Boltzmann factor e−E/(kBT), where the “energy” E
is −kBT log(4) per matching nucleotide. The term in the square brackets
in Eq. 1 would then correspond to a partition function. The 10- and 20-nt
top scoring sequences targeting E. coli bl21-de3 are CGCCAGCGCC and
AGGCGTTCACGCCGCATCCG.

In some cases, it is important to be able to detect the target genome in
the presence of other genomic DNA that is closely related to it. For example,
one might need to distinguish between strains of the same bacterial species,
such as the O157 Sakai strain of E. coli, which causes food poisoning, in the
presence of harmless strains (represented here by the wild-type laboratory
strain bl21-de3). In this case, it is likely that the top-scoring oligonucleotide
probe sequences for both target genomes will be very similar, making it
hard to achieve selective binding.

To differentiate between similar genomes (here denoted A and B) we
propose a modified method of probe selection. Rather than simply scoring
probe sequences according to their number of regions of complementarity
with the target genome, we propose instead to rank them by the difference
in their score for genomes A and B:

∆Si = Si(A)− Si(B). [2]

The 20-nt sequence maximizing the difference between O157 and bl21-de3
strains of E. coli is GGAGACTAAACTCCCTGAGA.

Coarse-Grained Model for Genomic DNA. We model the single-stranded
genomic DNA as a chain of blobs, each of which represents ∼400 nt
(Fig. 4). Following coarse-grained polymer theory (32), neighboring blobs
are connected via harmonic potentials of the standard form

Usp = 0.534 kBT (r/rb− 0.730)2, [3]

where kBT is the thermal energy and r the center–center distance. Repulsive
interactions between distant parts of the genome polymer are included via
a soft Gaussian potential acting between any pair of blobs

Ubb(r) = 1.75 kBT e−0.80(r/rb )2
. [4]
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Fig. 4. Illustration of our model. Single-stranded genomic DNA is rep-
resented as a chain of blobs, connected by harmonic springs. Each blob
represents ∼400-nt bases. The interactions among the blobs, and between
each blob and the probe DNA-coated surface, are sequence specific and
are calculated from the SantaLucia interaction free energies (34, 35) (see
SI Appendix for a full description). The oxDNA model is used to represent
the configuration of the single-stranded DNA chain (40).

The origin of the dimensionless constants in these equations is detailed in
ref. 32. We also need to model the interaction between the genomic DNA
and the surface, which is assumed to be uniformly coated with oligonu-
cleotide probes (which are taken to be well mixed if more than one probe
type is present). Blobs interact with the surface via the potential

Ubs,j(x) = 3.20 kBT e−4.17(x/rb−0.50)
+

Hj√
2π

e
− x2

2r2
b , [5]

where x is the distance between the blob center and the surface. This inter-
action is specific to a given blob. The first term in Eq. 5 represents the
entropic repulsion between the DNA polymer and the surface and is taken
from coarse-grained polymer theory (22, 24). The second term describes the
attractive interaction between a given blob j and the surface, due to DNA
base pairing between the genomic DNA and the DNA that is grafted to
the surface. This model has been experimentally verified in a study of mul-
tivalent binding of hyaluronan HA–β-CD to receptor-coated surfaces (24,
43). The model provided an accurate description of polymer–surface interac-
tions including multivalent-binding effects; superselective response; and the
dependence of binding on receptor interaction strength, valency, and con-
centration. In ref. 24 the binding strength Hj was uniform for all blobs, while
here the prefactor Hj is specific to each blob and captures sequence-specific
information about the genomic DNA in that blob.

To obtain the sequence-specific prefactor Hj for the interaction of a given
blob with the surface, we need to know the free energy of hybridization ∆G
between the blob DNA and the oligonucleotide probes on the surface. Here,
we make use of the large body of work on nearest-neighbor (NN) models
for DNA hybridization (34, 35, 44, 45). These models approximate the bind-
ing free energy ∆G between two DNA sequences as sums over base pairs,
in which the contribution for a given base pair depends on its identity and
that of its immediate neighbors (e.g., CG/GC; SI Appendix). SantaLucia has
provided a parameterization of these free-energy contributions for all pos-
sible pairs of base pairs (34, 35); we use this to compute the free energy
of interaction between a given 400-nt blob and a given surface-grafted
oligonucleotide probe. Briefly, the binding free energy ∆G̃j,k between blob
sequence j and probe sequence k is given by ∆G̃j,k = ∆Gj,k −∆Gj −∆Gk,
where ∆Gj,k is the SantaLucia binding free energy between the blob
and probe, and ∆Gj and ∆Gk are the self-binding free energies due
to DNA base-pairing interactions within the blob and within the probe,
respectively.

To obtain the binding free energy ∆G̃j,surf between the blob and the sur-
face, we also need to take into account the surface density of the probes. If
all of the probes are identical in sequence (i.e., only probes of sequence k
are present), ∆G̃j,surf is given by

∆G̃j,surf =−kBT log
[
ρr2

b

(
e−β∆G̃j,k − 1

)
+ 1
]
. [6]

The detailed form of Eq. 6 arises because ∆G, as defined by SantaLucia,
includes a contribution from the state where no base pairs are formed (SI
Appendix).

If a mixture of probe sequences is present on the surface, Eq. 6 can be

generalized to ∆G̃j,surf =−kBT log
[
ρr2

b
∑

k f̃k

(
e−β∆G̃j,k − 1

)
+ 1
]
, where

f̃k = fk

/[∑Nt
i=1 fi

]
is the occurrence probability of probe k within the mix-

ture of probes on the surface (SI Appendix). In deriving this equation, we
assume that the same mixture of probes is to be found at every position on
the surface; i.e., we ignore any heterogeneity in the spatial distribution of
probes on the surface.

Finally, we need to map the free energy of blob–surface binding ∆G̃j,surf

(Eq. 6) to the interaction potential prefactor Hj (Eq. 5). This is done
by matching the partition functions for microscopic and coarse-grained
representations of the system (SI Appendix), which turns out to be linear,

Hj =
√

2π

[
∆G̃j,surf

kBT
+ ln[r3

bρwNA]

]
, [7]

where rb is the blob radius, ρw = 55 mol/L is the concentration of pure water,
and NA is Avogadro’s number.

Theory of Superselective Binding. We consider two distinct cases for probe–
target binding: monovalent (a probe and target can form a single bond
only) and multivalent. In the monovalent case, for a low density of probes
on the surface, we expect the fraction f of probe strands that bind to the
target DNA to be proportional to the target DNA concentration ct and to
the binding constant KA: f = ctKA. The binding constant in turn is related to
the probe–target hybridization free energy ∆G by KA = e−β∆G/c0, where
β≡ 1/(kBT) and c0 = 1 M is a standard reference concentration. Therefore,
for a given target concentration, the number of target–probe bonds can be
enhanced by increasing the density of probes on the surface (as in Fig. 5,
blue curve) or, equivalently, by increasing the strength of probe–target
hybridization, ∆G, i.e., by designing probes that bind more strongly to the
target DNA.

In contrast, for multivalent probe–target binding, probes are designed
to have multiple regions of hybridization with the target DNA. Therefore
each piece of target DNA can bind simultaneously to two or more of the
(identical) probe molecules on the surface (as in the case of the long target;
red curve in Fig. 5). As was shown in refs. 23, 24, and 46 (also SI Appendix),
the fraction of probes that are bound to the target is still proportional to
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probe surface density   ���ltc0
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Fig. 5. Theoretical prediction (Eq. 8) for specificity as a function of the
probe density. Specificity is defined as a ratio ftarget/fnontarget between the
number of bound probes to “target” DNA (∆G =−8kBT) and to “non-
target” DNA (∆G =−7kBT). The blue (“short target”) curves are in the
monovalent-binding regime (k = 1 in ref. 8), while the red curves describe
binding of “long targets” in the multivalent-binding regime (k = 10). Here
we have assumed that that target size scales with target length (or mul-
tiplicity) as lt(k) = kν lt|k=1 with the self-avoiding walk scaling exponent
ν= 0.588 and that the target concentration is ct = 10−6c0/k.
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the target DNA concentration, but now depends nonlinearly on the binding
constant:

f = (ct lt/ρ)
[
(1 + (ρKA/lt))

k − 1
]
. [8]

Here, k is the number of regions of hybridization of the probe with the target
( i.e., the multiplicity of binding), ρ is the surface density of oligomer probes,
and lt measures the physical size of the target (in this case, the radius of gyra-
tion of the target DNA molecule). Eq. 8 shows that in the multivalent case,
probe–target binding depends not only on the probe densityρ and hybridiza-
tion free energy ∆G, but also on the multiplicity of binding k. For large k, the
target binding becomes switch-like, increasing sharply over a narrow range
of values of probe density, or equivalently ∆G (Fig. 5, red curve). This implies
that target binding can be highly specific: Even if nontarget DNA within the
sample can also hybridize with the probe sequence, it will typically bind to far
fewer probe sequences because it has a smaller binding free energy, or fewer
hybridization sites for the probe sequences, or both.

Langevin Dynamics Simulations. We used the LAMMPS open-source sim-
ulation package (37) to perform Langevin dynamics simulations (see SI
Appendix for implementation details). In our simulations, the blob radius
rb was used as the unit of length. The time step used was dt = 0.02τ
and the temperature was set to 1.0 in Lennard-Jones units. Langevin
damping was used, with the damping time parameter chosen to be high,

τ0 = 100.0τ to speed up the diffusion, with τ =
√

mr2
b/(kBT) being the

Lennard-Jones unit of time with m the mass of each blob and kB the
Boltzmann constant, and real temperature used was T = 50 ◦C. In all sim-
ulations both the forward and reverse-complement genomes are modeled
and the surface is assumed to be coated with a mixture of the chosen
oligonucleotide probe and its reverse complement. Simulations of bacte-
rial genomes included a single genome and its reverse complement while
the simulation of shorter viral (42 copies) and mitochondrial (320 copies)
DNA included multiple copies of the genome such that the nucleotide
concentration matched that in the simulations of E. coli genomic DNA.

All simulation scripts, input files, SantaLucia calculation script, and data
analysis routines pertinent to this work are freely available in ref. 47.
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