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Metamaterials with index ellipsoids at arbitrary
k-points
Wen-Jie Chen1, Bo Hou1,2,3, Zhao-Qing Zhang1, John B. Pendry4 & C.T. Chan1

Propagation behaviors of electromagnetic waves are governed by the equifrequency surface

of the medium. Up to now, ordinary materials, including the medium exist in nature and the

man-made metamaterials, always have an equifrequency surface (ellipsoid or hyperboloid)

centered at zero k-point. Here we propose a new type of metamaterial possessing multiple

index ellipsoids centered at arbitrary nonzero k-points. Their locations in momentum space

are determined by the connectivity of a set of interpenetrating metallic scaffolds, whereas the

group velocities of the modes are determined by the geometrical details. Such system is a

new class of metamaterial whose properties arise from global connectivity and hence can

have broadband functionality in applications such as negative refraction, orientation-

dependent coupling effect, and cavity without walls, and they are fundamentally different

from ordinary resonant metamaterials that are inherently bandwidth limited. We perform

microwave experiments to confirm our findings.
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Metamaterials1–6 have been proposed to realize exotic
effective permittivity and permeability that are not
found in nature and thereby realizing interesting phe-

nomena such as negative refraction7–10 and electromagnetic
cloaking11–13. Most metamaterials derive their properties from
built-in subwavelength resonant structures1,2 and their effective
constitutive parameters do not rely on the arrangement of the
resonant structures. The equifrequency surface typically forms an
index ellipsoid (double positive/negative medium) or hyperboloid
(hyperbolic medium14) centered at k= 0. In the quasistatic limit,
effective permittivity and permeability are normally well defined,
and we expect a linear dispersion at low frequencies near k= 0,
i.e., ω → 0 as k → 0.

We propose a new type of wire metamaterial1,15–40 possessing
one or more index ellipsoids centered at nonzero k-points, with
linear bands that go to zero frequency at some k ≠ 0. The exis-
tence of the quasistatic modes at nonzero k-points can be
understood by solving Poisson’s equation and can be viewed as
the shifting of the light cone by a synthetic gauge potential
induced by the twisting in network. The number of ellipsoids and
their positions within the Brillouin zone can be controlled by
changing the connectivity of the wire meshes. This gives us a new
degree of freedom to tailor the electromagnetic response of
metamaterials that are based on connectivity rather than reso-
nance, leading to unusual wave propagation behaviors.

Results
Quasistatic modes. To illustrate our idea, we start by considering
three different types of metallic wire scaffold structures as shown
in Fig. 1a–c. The wire meshes, assumed to be perfect metal, are
arranged in simple cubic lattices with lattice constants a. The
band structure in Fig. 1d corresponds to the simple cubic wire

mesh shown in Fig. 1a. It has a cutoff frequency of 0.39(c/a). The
double wire mesh shown in Fig. 1b is formed by two copies of
wire meshes shown in Fig. 1a. Intuitively, low-frequency waves
should be more difficult to pass as the metallic volume ratio is
doubled, and hence the low-frequency gap should persist. How-
ever, the calculated band structure shown in Fig. 1e shows that
the double wire mesh has a light cone at k= 0. These dis-
connected wire structures27–30 are called non-Maxwellian
media28. Disconnected crossed wire arrays31–35 can exhibit
anomalous refraction due to its double hyperbolic equifrequency
contours centered at k= 0. The band structure shown in Fig. 1f
corresponds to a more complex double wire mesh structure
shown in Fig. 1c. It distinguishes from other wire structures,
because it has a “light cone” emerging from the H point. We note
that the bands in the light cones shown in Fig. 1e,f are singly
degenerate and they are quasi-longitudinal modes.

The existence of these quasi-longitudinal bands can be
understood by considering the quasistatic limit (ω → 0) where
the Maxwell’s equation reduces to Poisson’s equation ∇2φ ¼ 0
and E ¼ �∇φ, with φ representing the quasistatic potential. We
first consider a single wire mesh (Fig. 1a) with a wire radius of
0.1a. Once the potential φ1 of the wire mesh is fixed, the
uniqueness theorem implies that the system has a unique solution
of the electric field, which can only be zero in the whole space.
The system in Fig. 1a has no eigenmode at zero frequency and
hence a cutoff frequency.

Next, we consider the double mesh structure in Fig. 1b, where
we add another identical copy of the wire mesh (blue), shifted
from the original (red) by a displacement of (0.3a 0.3a 0.3a). As
the red and blue meshes do not touch each other, they have
independent quasistatic potentials, φ1 and φ2, allowing for a
nontrivial solution when (φ2−φ1) is nonzero. The system
must have one zero-frequency mode lying somewhere (with
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Fig. 1 Three types of wire mesh metamaterials. All have a simple cubic lattice with lattice constants of a. a Unit cell composing of a single wire mesh. b Unit
cell containing two wire meshes. Compared with a, another wire mesh (blue) is added, whose node is centered at ð0:3a 0:3a 0:3a Þ. c A more complex
metamaterial composing of two wire meshes. All of the metallic wires (both red and blue) in a–c are assumed to be perfect metal. Their different colors
indicate that the two meshes have independent potentials. d–f Corresponding band structures. The single wire mesh structure d has no eigenmode at zero
frequency, while the two types of double wire mesh structures have a light cone at Brillouin zone center e or corner f. The inset in d shows the Brillouin
zone of a simple cubic lattice
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Bloch k= (kx ky kz) in the Brillouin zone. We note that we can
apply Bloch theorem to the potential differences. If the left end of
the red (blue) wire has a potential φ1 (φ2) and their potential
difference is (φ2−φ1), then the potential difference between
their right ends should be φ2 � φ1

� �
eikxa due to periodicity. As

the left and the right end are connected by a perfect metallic wire,
their potentials are equal; therefore, φ2 � φ1

� � ¼ φ2 � φ1

� �
eikxa.

Likewise, we also have φ2 � φ1

� � ¼ φ2 � φ1

� �
eikya and

φ2 � φ1

� � ¼ φ2 � φ1

� �
eikza. Hence, the zero-frequency mode

must lie at k= 0. We then consider the wire metamaterial shown
in Fig. 1c. The radii of the horizontal thick wire and the two
oblique thin wires are 0.1a and 0.03a, respectively. As two meshes
are interpenetrating and have independent potentials φ1 and φ2,
the system has one zero-frequency mode and a similar analysis
(see Supplementary Note 1 and Supplementary Fig. 1) shows that
the nontrivial zero-frequency mode is at the H point, consistent
with the band structure in Fig. 1f.

The above analysis holds regardless of the detailed geometry of
the wires as long as the two meshes do not make contact. The
structural details (such as the filling ratio) of the wire meshes will
not affect the k of these zero-frequency modes but will affect the
group velocities of the propagating modes emerging from these
zero-frequency k-points. Similar argument shows that metama-
terials composed of N interpenetrating wire meshes have (N-1)
zero-frequency modes and the locations of these modes in
k-space are determined solely by the connectivity of the meshes.

Effective gauge potential in one-dimensional wire bundles.
Although the Poisson equation analysis gives the position of zero-
frequency modes in k-space, we still need to explain under what
conditions index ellipsoids can form around these zero-frequency
solutions. On the other hand, it is well known that the structural
modification of graphite can lead to the shifting of Dirac cone in
k-space, which can be interpreted as a gauge potential41–44. To
see how equifrequency surfaces can be shifted away from k= 0,
let us consider a wire bundle composed of six straight wires
aligned along the z-direction, as shown in Fig. 2a. The wires align
on a circle with radius of R as shown in the inset, which shows a
cross-sectional view. Under the sheath approximation45, the
potential takes the form

Vs r; θ; zð Þ ¼ Vm r=Rð Þ mj jeimθ; r<R

Vm r=Rð Þ� mj jeimθ; r>R

(
m ¼ ± 1; ± 2:::; ð1Þ

where m is the orbital angular momentum index. Here we take
the potential at the origin to be zero. Solution with m= 0 are
omitted, as it implies equal potentials on all wires and hence zero
electric field everywhere.

Let us now twist the wire bundle, as shown in Fig. 2b. The
solution of the Poisson equation becomes the superposition of

Vh r; θ; zð Þ ¼
Vm

Im mβrð Þ
Im mβRð Þ e

imθe�imβz; r<R

Vm
Km mβrð Þ
Km mβRð Þ e

imθe�imβz; r>R

8<
: m ¼ ± 1; ± 2:::;

ð2Þ

where β= 2π/6d is the twisting ratio, d is the period in the z-
direction, and Im and Km are the first and second kinds of the
modified Bessel functions. In the limit mβR<<1, Eq. (2) reduces
to

Vh r; θ; zð Þ � Vm r=Rð Þ mj jeimθe�imβz; r<R

Vm r=Rð Þ� mj jeimθe�imβz; r> and � R

(
m ¼ ± 1; ± 2:::

ð3Þ

which has the same form as the potential of the straight wires in
the region close to the wire bundle but with an additional phase
factor e−imβz for each angular momentum channel. This phase
factor can be interpreted as the consequence of an effective gauge
potential that shifts the quasistatic mode in k space by ~kz ¼�mβ ¼ �m π

3d in the twisting direction. The shift depends on the
angular momentum index m of the quasistatic mode. We can
arrive at the same conclusion using the aforementioned
quasistatic consideration when the twisting ratio β is not small
(see Supplementary Note 2 and Supplementary Fig. 2). This
angular momentum-dependent shift can be confirmed by
examining the calculated (using COMSOL) dispersion relation
of the helical wire bundle shown in Fig. 2c. The helical wires, each
of radius 0.1d, lie on a circle with a radius of 0.5d. Several guided
modes (colored solid lines) emerge under the projected light cone
(gray area), each labeled by its angular momentum index m.
Zero-frequency modes appear at −mπ/3d. The C6 symmetry of
this system implies that the modes with m=+ 3 and m=−
3 share the same representation and hence the system supports
five zero-frequency modes. At low frequencies, these modes
exhibit a linear dispersion, where the wave speed v is slightly less
than the wave speed in vacuum. This shifting effect can also be
viewed as an analog of the rotational Doppler effect46 (see
Supplementary Note 3).

Forming closed equifrequency surfaces. The twisting of a single
bundle in real space in the z-direction shifts the zero-frequency
solution along kz and generates modes with linear dispersion
along kz. However, we do not have a closed equifrequency surface,
which requires a three-dimensional (3D) periodic structure. As
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Fig. 2 Canonical momentum generated by twisting. a Schematic of a 1D
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The different colors indicate modes with different angular momentum m.
These modes have an angular momentum-dependent shift in kz
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such, we construct a 3D wire metamaterial by arranging helical
wire36–38 bundles in a two-dimensional (2D) hexagonal lattice
with a lattice constant of a in the x–y plane as shown in Fig. 3a.
The calculated band structure is shown in Fig. 3e. As expected,
this bundle array supports quasistatic modes locating at ekz ¼�mπ=3d for m= ± 1,±2, ± 3. In the vicinity of ekz , linear bands
emerges along the Γ-A direction as shown in Fig. 3e. Their group
velocities are plotted in Fig. 3g by black dotted lines, which are
almost the same as that of a single bundle in Fig. 2c (colored lines
in Fig. 3g). There is weak coupling between neighboring bundles
since the eigenfields of the quasistatic modes localize strongly
between the wires of the same bundle. The group velocities of m
= ± 1 mode deviates from the single bundle case more than that
of m= ± 2, ± 3, because the quasistatic mode with smaller m
decays more slowly according to Eq. (3). Due to the weak cou-
pling, the dispersion is nearly flat in the kx–ky plane for any value
of kz. In other words, the band dispersions along the kz direction
are almost independent of kx and ky (see Supplementary Note 4
and Supplementary Fig. 3). Similar flat equifrequency surfaces
have been found in 2D wire arrays39,40, which can be used for
subwavelength imaging. Apart from the linear bands emerging atekz ¼ �mπ=3d (m= ± 1, ± 2, ± 3), two linear bands emerge from
the Γ point (the lowest two bands from kz= 0 to kz= 0.1π/d),
whose eigenfields resemble the plane-wave solutions with
circular polarization (see Supplementary Fig. 4). As a chiral
hyperbolic medium47, its equifrequency surface consists of an
ellipse and two flat sheets centered at the Γ point (see Fig. 3i for
equifrequency surfaces at frequency 0.02c/d). The other 10 flat
sheets in Fig. 3i stem from the quasistatic modes at ekz ¼ �mπ=3d
(m= ± 1, ± 2, ± 3).

In order to form index ellipsoids at nonzero k-points, we need
to introduce connections between different wire bundles so that
the system will have a finite number of independent potentials
and a finite number of quasistatic modes at specific k-points. In

the structure shown in Fig. 3b, we add six horizontal metallic bars
(gray), see also the cross-sectional view in Fig. 3d. The potentials
of the 6 bars are φ1 to φ6. The corresponding band structure
calculated by COMSOL is plotted in Fig. 3f. Comparing the
results in Figs. 3f and 2c, one finds that the 3D metamaterial in
Fig. 3f only supports quasistatic modes at kz= ± 2π/3d rather
than five quasistatic modes in the one-dimensional bundle shown
Fig. 2c. This is due to the periodic boundary condition imposed
by the horizontal metallic bars on any pair of wires related by
inversion symmetry (e.g., the red and green wires are connected
via Bloch boundary condition). This in-plane connection imposes
further requirements on the Bloch k and the angular momentum
m, forbidding those with m= ± 1, ±3. For example, there are
three metallic bars (labeled as A, B and C in Fig. 3d) encircling
the right corner of the hexagonal cell marked by the solid line in
Fig. 3d. The potential difference between bars A and B is (φ2−
φ1). By applying Bloch theorem, the potential difference between

B and C is φ4 � φ3

� �
ei kx �

ffiffi
3

p
2 a�ky �a2

� �
and the one between C and A

φ6 � φ5

� �
ei kx �

ffiffi
3

p
2 aþky �a2

� �
. By encircling the right corner in counter-

clockwise manner, the total potential drop is zero. Then we have

φ2 � φ1

� �þ φ4 � φ3

� �
ei kx �

ffiffi
3

p
2 a�ky �a2

� �
þ φ6 � φ5

� �
ei kx �

ffiffi
3

p
2 aþky �a2

� �
¼ 0

. Likewise, for the left corner of the unit cell, we have a similar
equation. Meanwhile, by rotational symmetry,

φjþ1 � φj

� �
= φj � φj�1

� �
¼ eim�π3 . Only m= ± 2 and kx= ky=

0 satisfies these requirements. According to the above discussion
about wire bundles, the kz component of the quasistatic modes
with m= ± 2 should be �mβ ¼ �2π=3d, giving us two index
ellipsoids near ð 0 0 ± 2π=3 dÞ in Fig. 3j. The in-plane
connection also changes the group velocity of the linear band
(see Fig. 3h). The k-points of these quasistatic modes depend only
on the connectivity and are not affected by the detailed geometry
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connection configuration. The in-plane connection in b filtrates out the quasistatic modes with m= ± 1, ± 3, leaving two index ellipsoids located at
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of the metamaterials (see Supplementary Fig. 5). In fact, the
number of quasistatic modes is determined by the degree of
freedom of independent potential (see Supplementary Note 5 and
Supplementary Fig. 6). We can select or exclude other quasistatic
modes by forming other in-plane connections (see Supplemen-
tary Note 6 and Supplementary Fig. 7 for other examples).

The in-plane connection can also shift the in-plane kx and ky.
Consider a square lattice of helical wires (Fig. 4) as an example.
The lattice constants in the x-, y- and z-directions are a= 2d and
d. The isolated bundles (Fig. 4a) have flat equifrequency surfaces
generated by quasistatic modes at kz ¼ �mβ ¼ �mπ=2d (see the
band structure and equifrequency surface in Figs. 4g and 4j). In
Fig. 4b, we add four horizontal metallic bars (gray) across the unit
cell corners. The Bloch condition requires that φ2 � φ3

� � ¼
φ1 � φ4

� �
eiky �a and φ2 � φ1

� � ¼ φ3 � φ4

� �
eikx �a. Combining this

with the angular momentum conditions
φjþ1 � φj

� �
= φj � φj�1

� �
¼ eim�π2 , we find that m= ± 1 are

forbidden and the only allowed solution is at kx= ky= π/a when
m= ± 2. This corresponds to the light cone at the H point in the
calculated band structure in Fig. 4h. Figure 4k plots the

equifrequency surface at 0.04c/d, which consists of eight spherical
surfaces at Brillouin zone corners. Figure 4c illustrates another
configuration of in-plane connection. In this case, the “light cone”
with m= ± 2 remains at 0 0 π=dð Þ, whereas the “light cones”
with m= ± 1 shift to the zone boundary π=a π=a �π=2dð Þ.
The distribution of index ellipsoids is shown in Fig. 4l.

The number and positions of index ellipsoids can hence be
designed using two steps: (i) use wire bundles to form an array
and twist each bundle to give multiple quasistatic solutions with
discrete kz=−mβ; (ii) build in-plane connections to form closed
equifrequency surfaces and to remove unwanted modes and to
shift the centers of selected index ellipsoids in the kx–ky plane.
There are other ways to design these wire metamaterials, such as
the structure in Fig. 1c. The connectivity of the network controls
the number of index ellipsoids and their position in momentum
space.

Orientation-dependent coupling effect. The unusual quasistatic
modes at nonzero k-points can be used to control the wave
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propagation using a compact structure, with a small total
device size compared to the wavelength. For example, such
metamaterials have an orientation-dependent coupling effect
when interfaced with ordinary materials that have index ellipsoids
at k= 0 (such as air).

These 3D metamaterials have 2D counterparts that can be
implemented in the form of metasurfaces. Figure 5 shows a
simple implementation, which has a square lattice with lattice
constant a. Figure 5a shows its unit cell. The translucent
yellow region is a dielectric substrate with ε= 4 and a thickness of
0.4a, and its top and bottom surfaces are decorated with
two interpenetrating metallic networks (blue and red). This
thin slab is surrounded by air and we focus on the guided modes
in the slab. The calculated dispersion is shown in Fig. 5b where
the gray region marks the light cone. An index ellipse
emerges from the M point. This structure can be viewed as
groups of twisted wires along both x- and y-directions, causing a
shift of the ‘light cone’ in the x- and y-direction (see
Supplementary Fig. 8). Although the wires in neighboring unit
cells have different potentials, Fig. 5a is the primitive unit cell
because the unit cell is determined by the structure’s geometry
rather than its potential. In addition, by calculating the Fourier
spectra of the eigenfields, we confirm that the index ellipse is
indeed centered at a nonzero k-point. (see Supplementary Note 7
and Supplementary Fig. 9).

We consider wave propagation when this 2D metasurface
forms an interface with an ordinary material which has index
ellipse at k= 0, say, e.g., a parallel plate waveguide with a
thickness of 0.4a and ε= 4. Schematics of the index ellipses are
shown in Fig. 5c. If the interface is normal to the x-axis, the
conservation of the k-component along the interface forbids the
coupling of propagating modes in the metasurface to the parallel
plate waveguide. If the interface is tilted at 45°, the equifrequency
contours (green curves) of the two materials share a common k//,
enabling transmission across the interface. To demonstrate this
effect, we simulate a triangular slab which is a square metasurface
truncated along the 45° direction (Fig. 5d). The side length of the
metasurface is 10a (~ half wavelength). The outside region of the
metasurface is the parallel plate waveguide with the same
thickness. An Ez-polarized point source (marked by a yellow
star) with a frequency of 0.05c/a can only radiate through the
tilted interface on the upper right as shown in Fig. 5d. Although
the 2D example is purposely designed for the ease of numerical
simulation, similar orientation-dependent coupling phenomena
are expected for 3D wire metamaterials. The exotic index
ellipsoids can be used to manipulate wave propagation even
when the wavelength is much larger than the structure. In
addition, such orientation-dependent coupling is a broadband
effect as it depends on topology rather than on resonance. As
such, the metasurface shown in Fig. 5d can serve as a broadband
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materials is perpendicular to the principal axis, the waves in metasurface cannot couple to the parallel plate waveguide. The electromagnetic wave can be
transmitted through the interface when the interface is tilted at 45°. d Simulated field pattern when a point source (yellow star) is embedded in the
metasurface with a triangular boundary. The electromagnetic wave can only be coupled out through the upper right interface
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and compact directional antenna. Compact antenna, such as
Yagi-Uda antenna, usually has a narrow bandwidth,
whereas those with a broad bandwidth typically have a
larger size especially for low frequencies. We simulate
the far field radiation pattern in Supplementary Fig. 10a. It
shows good directionality in a wide frequency range from 0.04 to
0.075c/a (see also the forward-to-back ratio in Supplementary
Fig. 10b).

Microwave experiment. We made a square sample with 40
periods in both x- and y-directions using printed circuit board
(PCB) (Fig. 6a). We measured the band dispersion by exciting the
guided modes using a coaxial cable below the PCB, and the Ez
field just above the PCB was measured using a monopole antenna
(see Methods). Figure 6b shows the Fourier spectrum along high
symmetry lines. A light cone emerges at the M point, in excellent
agreement with the calculated dispersion (cyan dashed line). The
Fourier components near the Γ point stem from the propagating
modes coming from the light cone in air since the Ez fields are
measured outside the PCB. We note that the vacuum light cone
does not appear in Fig. 5c, which considers the optics of the
guided modes inside the slab but the light cone shows up in the
measurement because the probing antenna is placed
outside the slab. Figure 6c plots the Fourier spectra at different
frequencies. The equifrequency contours form rings near the M
point as predicted, with the radius increasing as the frequency
increases.

We then demonstrate the orientation-dependent coupling with
a triangular sample (Fig. 6d). The triangular metasurface is
surrounded by a parallel plate waveguide, the bottom of which is
a ground plane, while the top is a copper foil perforated with a

square array of holes (lattice constant= 5 mm) where the
microwave guided in the waveguide can leak out for measure-
ment. We excite the metasurface with a coaxial cable below the
PCB, and the electric field just above the PCB was measured using
the monopole antenna (see Methods). Figure 6e shows the
scanned field pattern (real part of Ez) at 2.99 GHz. We observed
that the wave coupled out primarily through the tilted interface,
which agrees well with the simulation. The small discrepancy
between Figs. 5d and 6e is because the electric fields are measured
above (not inside) the PCB. Figure 6f shows the measured Ez at
three holes (red, blue and black in Fig. 6d) in different directions
from the metasurface as a function of frequency. The signal
detected at the blue point is larger than those at other points,
demonstrating the directivity of the radiated wave. The weak
signals recorded at the black and red points are due to evanescent
waves.

Broadband-negative group velocity medium. The light cones
emerging from nonzero k-points give us the unique opportunity
to control the refraction at low frequency (e.g., ~ 0.1c/a). By
controlling the number and the position of the quasistatic modes
and the slopes of the emerging linear bands (see Supplementary
Fig. 11), we have many degrees of freedom to engineer the shape
of equifrequency surface (see, e.g., a triangular contour in Sup-
plementary Note 8 and Supplementary Fig. 12) and hence the
refraction property in low frequency regime can be manipulated.
For example, we can achieve broadband-negative group velocity
medium. We note that negative refraction can be realized in
metamaterials3,7,9,10 using resonance and photonic crystals48–50

using band folding. Resonant metamaterials only work in a
narrow frequency range (see the schematic dispersion in Fig. 7a
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Fig. 6 Experimental results at microwave frequencies. a A square sample of the metasurface with 40 × 40 periods. Scale bar, 5 mm. A source antenna was
placed below the PCB board to excite the guided mode and the Ez field was measured by scanning a monopole antenna on top of the PCB board. b Fourier
spectrum of the measured Ez field along high symmetry k-lines. A light cone at the M point was observed, in good agreement with the calculated dispersion
(cyan dashed line). c Fourier spectra for different frequencies, 0.95, 1.96, 3.08, 4.42, 5.89, and 7.07 GHz (from bottom to top). The equifrequency contours
form rings near the M points with increasing radii as frequency increases. d A top view of another sample demonstrating the orientation-dependent
coupling effect, where three specific positions are labeled with color symbols (black, red and blue) and the probing antenna is located on one of them. Scale
bar, 1 cm. e The distribution of the real part of Ez at frequency 2.99 GHz. f The signals received at three positions, as denoted by the color labels (black for
P1, red for P2, and blue for P3) in e
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for a typical design3). For photonic crystals, the negative group
velocity band is typically a higher frequency band folded back
into the primitive Brillouin zone and their high central frequency
limits their working bandwidth and an effective medium
description is sometimes questionable if the operational fre-
quency is high. In the wire metamaterials, the lowest frequency
band emerges from nonzero k-points, enabling negative disper-
sion at low frequency (~ 0.1c/a). Our metamaterials have a
broader bandwidth than the usual schemes. The effect can be
exemplified using a hexagonal wire metasurface composing of
three interpenetrating networks (Fig. 7b, with more details in
Supplementary Fig. 13). It has two quasistatic modes at K and K’,
which can be seen in the equifrequency contours in Fig. 7c. As
frequency increases from zero, the ellipses at zone corners grow
bigger and fuse to form a closed contour centered at Γ point (0.1c/
a). From then on, the contour shrinks toward the Γ point, giving a
negative group velocity. Negative refraction effect can be
demonstrated by impinging a Gaussian beam at an angle onto the
metasurface (Fig. 7d). The field pattern of the refracted beam in
Fig. 7d shows negative refraction propagation consistent with the
equifrequency contours in Fig. 7c. We note that this is a fairly
broadband effect. Similar concepts can be extended to 3D wire
metamaterials.

In addition, these connected wire mesh media can obviously be
used to realize a cavity without wall (see Supplementary Note 9
and Supplementary Fig. 14).

Discussion
We have proposed a new type of metamaterial composed of
multiple interpenetrating wire meshes. The connectivity of the
wire meshes can be used to control the number and position of
the index ellipsoids and the light cones emerging from nonzero k-
points can be used to generate exotic equifrequency surfaces at
low frequencies. The unusual equifrequency surfaces of such
medium can provide a new platform to provide broadband
functionality such as orientation-dependent coupling effect or
broadband-negative refraction, and can be utilized to manipulate
the electromagnetic wave using subwavelength structures.
The broadband functionality is a consequence of connectivity
rather than resonance. Although some wire media with index
ellipsoids at k= 0 can be described using homogenization
theories27,29,30, it will be challenging to find an effective medium
description for these materials with index ellipsoids at nonzero
k-points.

Methods
Experiment demonstrating the band dispersion. The sample was fabricated on a
PCB with dimensions of 40a × 40a. The lattice constant was 5 mm and the
thickness of the PCB was 2 mm. The middle layer is the PCB dielectric. A coaxial
cable was connected with the metasurface, with its inner and outer conductor
soldered on the two set of wires of the metasurface respectively to feed in
microwave signals. The soldering was done on the bottom surface. Another coaxial
cable with its inner conductor extruded was mounted vertically above the sample to
probe the surface field Ez. The cables were wired with a microwave network
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Fig. 7 Broadband-negative group velocity medium. a Prototypical dispersions of resonant metamaterials, photonic crystals and wire metamaterials.
The negative index of resonant metamaterials (in this case a split-ring resonator [Ref. 3]) relies on the built-in local resonance and thus works in a
narrow frequency range. For photonic crystals [see, e.g., Ref. 50], the negative group velocities appear in the second or higher band and have a limited
bandwidth. For metamaterials with bands emerging from nonzero k-points, even the lowest band can exhibit negative group velocity and have broad
bandwidth. b Unit cell of a 2D hexagonal metasurface with negative index. c Equifrequency contours of the guided modes in the metasurface. At very low
frequencies, the equifrequency contours are six ellipses emerging from the Brillouin zone corners. As frequency increases, these ellipses grow bigger to
form a closed contour centered at Γ point from 0.1 to 0.17 c/a with the contour shrinks toward Γ, giving negative group velocities in this frequency regime.
The gray solid circle marks the projected light cone. d Simulated field pattern when a plane wave is impinged onto the metasurface from an ordinary
material (parallel plate waveguide). Negative refraction is evident. The Gaussian beam with frequency of 0.13 c/a is incident from the lower left with an
angle of 45°
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analyzer (Agilent N5230C), and the S21 parameter (magnitude and phase) was
recorded. In the experiment, the probing cable (monopole antenna) is movable via
a 2D translational stage to receive the microwave at specific positions and to map
the Ez field in scanning mode.

Experiment demonstrating the orientation-dependent coupling. The sample is
designed to have a triangular metasurface surrounded by parallel plate waveguide,
where the bottom plate is a ground plane and the top plate is patterned with a
square array of holes (lattice constant= 5 mm) to allow the wave to leak out for
measurement. A coaxial cable was connected with the metasurface from the bottom
surface to feed in microwave signals. Another coaxial cable with its inner conductor
extruded was mounted vertically above the sample to probe the surface field Ez,
which is leaked from the electromagnetic mode in the dielectric layer.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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References
1. Pendry, J. B., Holden, A. J., Stewart, W. J. & Young, I. Extremely low

frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776
(1996).

2. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from
conductors and enhanced non-linear phenomena. IEEE Trans. Microw.
Theory Tech. 47, 2075–2084 (1999).

3. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S.
Composite medium with simultaneously negative permeability and
permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

4. Yen, T. J. et al. Terahertz magnetic response from artificial. Mater. Sci. 303,
1494–1496 (2004).

5. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science
306, 1351–1353 (2004).

6. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in
the development of three-dimensional photonic metamaterials. Nat. Photonics
5, 523–530 (2011).

7. Veselago, V. G. The electrodynamics of substances with simultaneously
negative value of ε and μ. Sov. Phys. Usp. 10, 509 (1968).

8. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85,
3966–3969 (2000).

9. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative
index of refraction. Science 292, 77 (2001).

10. Valentine, J. et al. Three-dimensional optical metamaterial with a negative
refractive index. Nature 455, 376–380 (2008).

11. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).
12. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields.

Science 312, 1780–1782 (2006).
13. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave

frequencies. Science 314, 977–980 (2006).
14. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nat.

Photonics 7, 958–967 (2013).
15. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Low frequency

plasmons in thin-wire structures. J. Phys. Condens. Matter 10, 4785–4809
(1998).

16. Smith, D. R. et al. Loop-wire medium for investigating plasmons at microwave
frequencies. Appl. Phys. Lett. 75, 1425–1427 (1999).

17. Gay-Balmaz, P., Maccio, C. & Martin, O. J. F. Microwire arrays with
plasmonic response at microwave frequencies. Appl. Phys. Lett. 81, 2896–2898
(2002).

18. Shvets, G. Photonic approach to making a surface wave accelerator. N. Y. Am.
Inst. Phys. 647, 371–382 (2002).

19. Shvets, G., Sarychev, A. K. & Shalaev, V. M. Electromagnetic properties of
three-dimensional wire arrays: photons, plasmons, and equivalent circuits.
Proc. SPIE 5218, 156 (2003).

20. Belov, P. A. et al. Strong spatial dispersion in wire media in the very large
wavelength limit. Phys. Rev. B 67, 113103 (2003).

21. Silveirinha, M. G. Nonlocal homogenization model for a periodic array of
ϵ-negative rods. Phys. Rev. E 73, 046612 (2006).

22. Maslovski, S. I. & Silveirinha, M. G. Nonlocal permittivity from a quasistatic
model for a class of wire media. Phys. Rev. B 80, 245101 (2009).

23. Liu, Y., Bartal, G. & Zhang, X. All-angle negative refraction and imaging in a
bulk medium made of metallic nanowires in the visible region. Opt. Express
16, 15439–15448 (2008).

24. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires.
Science 321, 930–930 (2008).

25. Fleming, J. G., Lin, S. Y., El-Kady, I., Biswas, R. & Ho, K. M. All-metallic three-
dimensional photonic crystals with a large infrared bandgap. Nature 417,
52–55 (2002).

26. Maier, S. A., Andrews, S. R., Martín-Moreno, L. & García-Vidal, F. J.
Terahertz surface plasmon-polariton propagation and focusing on periodically
corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006).

27. Silveirinha, M. G. & Fernandes, C. A. Homogenization of 3-D-connected and
nonconnected wire metamaterials. IEEE Trans. Ant. Prop. 56, 1418–1430
(2005).

28. Shin, J., Shen, J.-T. & Fan, S. Three-dimensional electromagnetic
metamaterials that homogenize to uniform non-Maxwellian media. Phys. Rev.
B 76, 113101 (2007).

29. Fernandes, D. E., Maslovski, S. I., Hanson, G. W. & Silveirinha, M. G. Fano
resonances in nested wire media. Phys. Rev. B 88, 045130 (2013).

30. Latioui, H. & Silveirinha, M. G. Light tunneling anomaly in interlaced metallic
wire meshes. Phys. Rev. B 96, 195132 (2017).

31. Silveirinha, M. G. Anomalous refraction of light colors by a metamaterial
prism. Phys. Rev. Lett. 102, 193903 (2009).

32. Silveirinha, M. G. Broadband negative refraction with a crossed wire mesh.
Phys. Rev. B 79, 153109 (2009).

33. Morgado, T. A., Marcos, J. S., Silveirinha, M. G. & Maslovski, S. I.
Ultraconfined interlaced plasmons. Phys. Rev. Lett. 107, 063903 (2011).

34. Morgado, T. A., Marcos, J. S., Maslovski, S. I. & Silveirinha, M. G. Negative
refraction and partial focusing with a crossed wire mesh: physical insights and
experimental verification. Appl. Phys. Lett. 101, 021104 (2012).

35. Morgado, T. A. et al. Reversed rainbow with a nonlocal metamaterial. Appl.
Phys. Lett. 105, 264101 (2014).

36. Silveirinha, M. G. Design of linear-to-circular polarization transformers made
of long densely packed metallic helices. IEEE Trans. Ant. Prop. 56, 390–401
(2008).

37. Demetriadou, A., Oh, S. S., Wuestner, S. & Hess, O. A tri-helical model for
nanoplasmonic gyroid metamaterials. New J. Phys. 14, 083032 (2012).

38. Oh, S. S., Demetriadou, A., Wuestner, S. & Hess, O. On the origin of
chirality in nanoplasmonic gyroid metamaterials. Adv. Mater. 25, 612–617
(2013).

39. Belov, P. A., Hao, Y. & Sudhakaran, S. Subwavelength microwave imaging
using an array of parallel conducting wires as a lens. Phys. Rev. B 73, 033108
(2006).

40. Belov, P. A. et al. Transmission of images with subwavelength resolution to
distances of several wavelengths in the microwave range. Phys. Rev. B 77,
193108 (2008).

41. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of
carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997).

42. Suzuura, H. & Ando, T. Phonons and electron-phonon scattering in carbon
nanotubes. Phys. Rev. B 65, 235412 (2002).

43. Mañes, J. L. Symmetry-based approach to electron-phonon interactions in
graphene. Phys. Rev. B 76, 045430 (2007).

44. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field
quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33
(2009).

45. Sensiper, S. Electromagnetic wave propagation on helical structures (a review
and survey of recent progress). Proc. IRE 43, 149–161 (1955).

46. Skeldon, K. D., Wilson, C., Edgar, M. & Padgett, M. J. An acoustic
spanner and its associated rotational Doppler shift. New J. Phys. 10, 013018
(2008).

47. Gao, W. et al. Topological photonic phase in chiral hyperbolic metamaterials.
Phys. Rev. Lett. 114, 037402 (2015).

48. Notomi, M. Negative refraction in photonic crystals. Opt. Quant. Elect. 34,
133–143 (2002).

49. Luo, C., Johnson, S. G., Joannopoulos, J. D. & Pendry, J. B. All-angle negative
refraction without negative effective index. Phys. Rev. B 65, 201104R (2002).

50. Wang, X., Ren, Z. F. & Kempa, K. Unrestricted superlensing in a triangular
two dimensional photonic crystal. Opt. Express 12, 2919–2924 (2004).

Acknowledgements
This work was supported by Research Grants Council, University Grants Committee,
Hong Kong (AoE/P-02/12, 16304717), and the National Natural Science Foundation of
China (No. 11474212). B.H. acknowledges the visiting scholarship program for youth
scientist in Collaborative Innovation Center of Suzhou Nano Science and Technology
and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education
Institutions.

Author contributions
C.T.C. initiated the program and oversaw and directed the entire project. W.-J.C. and
Z.-Q.Z. developed the theory. B.H. carried out experimental measurements. J.B.P.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04490-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2086 | DOI: 10.1038/s41467-018-04490-4 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


provided important suggestions. All authors contributed to the analysis and discussion of
the results.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04490-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04490-4

10 NATURE COMMUNICATIONS |  (2018) 9:2086 | DOI: 10.1038/s41467-018-04490-4 |www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-018-04490-4
https://doi.org/10.1038/s41467-018-04490-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Metamaterials with index ellipsoids at arbitrary k-�points
	Results
	Quasistatic modes
	Effective gauge potential in one-dimensional wire bundles
	Forming closed equifrequency surfaces
	Orientation-dependent coupling effect
	Microwave experiment
	Broadband-negative group velocity medium

	Discussion
	Methods
	Experiment demonstrating the band dispersion
	Experiment demonstrating the orientation-dependent coupling
	Data availability

	References
	Acknowledgements
	Author contributions
	ACKNOWLEDGEMENTS
	Competing interests
	ACKNOWLEDGEMENTS




