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In the pursuit of developing routes to enhance magnetic Kitaev interactions in α-RuCl3, as well as
probing doping effects, we investigate the electronic properties of α-RuCl3 in proximity to graphene.
We study α-RuCl3/graphene heterostructures via ab initio density functional theory calculations,
Wannier projection and non-perturbative exact diagonalization methods. We show that α-RuCl3
becomes strained when placed on graphene and charge transfer occurs between the two layers,
making α-RuCl3 (graphene) lightly electron-doped (hole-doped). This gives rise to an insulator to
metal transition in α-RuCl3 with the Fermi energy located close to the bottom of the upper Hubbard
band of the t2g manifold. These results suggest the possibility of realizing metallic and even exotic
superconducting states. Moreover, we show that in the strained α-RuCl3 monolayer the Kitaev
interactions are enhanced by more than 50% compared to the unstrained bulk structure. Finally,
we discuss scenarios related to transport experiments in α-RuCl3/graphene heterostructures.

INTRODUCTION

Introduction.- A major step towards a realization of a
fault-tolerant quantum computer would be, for instance,
to find materials that support bond-dependent Kitaev in-
teractions [1, 2] leading to a quantum spin liquid (QSL)
[3–6] ground state of itinerant Majorana fermions that
couple to static Z2 gauge fields. α-RuCl3 has been in-
tensively discussed as a possible candidate for Kitaev
physics [7–16], however it orders antiferromagnetically
at low temperatures [9, 17] due to the presence of addi-
tional magnetic couplings [10, 13, 18, 19] extending be-
yond the pure Kitaev interaction. In order to suppress
magnetism and/or enhance pure Kitaev interactions in
α-RuCl3, various routes are currently being pursued in-
cluding the application of magnetic fields, external pres-
sure and chemical doping [17, 19–27]. Here we discuss
yet another engineering route: electronic modification of
α-RuCl3 due to the proximity to graphene. We show that
the formerly Mott insulating α-RuCl3 becomes electron-
doped via a charge transfer from graphene, and that the
substrate-induced strain leads to a significant enhance-
ment of the Kitaev exchange.

In bulk α-RuCl3, the Ru atoms have a d5 electronic
configuration with one hole per site occupying a spin-
orbital coupled jeff = 1/2 state. These holes are lo-
calized due to strong Coulomb interactions favoring a
spin-orbit assisted Mott insulating phase. Due to the
specific spin-orbital composition of the jeff states, the ef-
fective magnetic couplings between the localized holes
are strongly anisotropic, and can be described by ex-
tended Kitaev models [10, 13, 28–31]. The underlying
magnetic couplings are however somewhat far away from
the ideal Kitaev point with its desired QSL phase, re-

quiring some structural manipulation to yield more ideal
couplings. In the latter case, physical pressure has proved
to be inappropriate, as it leads to structural distortions
(dimerization) that quench completely the desired prop-
erties [22, 26, 27, 32].

On the other hand, the possibility of lightly charge
doping α-RuCl3 appears attractive, as doped Heisenberg-
Kitaev models are thought to host a variety of exotic
superconducting states [33–36]. At low energies, such
doped materials, having an average of (1−δ) holes per Ru
atom, can be described by tJ-like models, including both
the hopping of the excess charges and magnetic couplings
between singly occupied sites. Doped materials with
magnetic couplings close to the pure ferromagnetic Ki-
taev model are particularly attractive as potential hosts
for topological superconductivity [37]. However, thus far,
controlled doping has not yet been achieved. The au-
thors of Ref. [23] found that potassium doped K0.5RuCl3
(with a relatively large δ = 0.5) remains insulating and
appears to have a charge-ordered ground state. In the

FIG. 1. Van der Waals bilayer α-RuCl3/graphene in the
hexagonal supercell (see text for description). The blue, ma-
roon and grey spheres represent Ru, Cl and C atoms, respec-
tively.
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present work we argue that substrate-RuCl3 heterostruc-
tures might be able to accomplish all desired features, in
principle: small, controlled doping, and stable structural
tuning through interface strain.

Monolayers of α-RuCl3 have been previously fab-
ricated through the exfoliation technique either in
restacked geometry or on Si/SiO2 substrates [38, 39].
In this paper, we have considered graphene (gr) as sub-
strate, as it has been employed in several recent stud-
ies [40, 41]. We perform ab-initio density functional
theory (DFT) calculations and investigate the struc-
tural, electronic and magnetic properties of α-RuCl3 on
graphene (see Fig. 1). We find that (i) α-RuCl3 be-
comes strained when placed on graphene and there is
a charge transfer from graphene to α-RuCl3 making α-
RuCl3 (graphene) lightly electron-doped (hole-doped),
(ii) our magnetic calculation of the strained monolayer
α-RuCl3 shows enhancement of the Kitaev interaction
by more than 50% compared to the bulk α-RuCl3 and,
(iii) our electronic structure calculations suggest two al-
ternative scenarios to interpret recent transport mea-
surements of α-RuCl3/gr heterostructures [40, 41] which
could be distinguished via application of an in-plane mag-
netic field.

Methods.- We have performed DFT structural relax-
ations of α-RuCl3/gr heterostructures with the pro-
jector augmented wave method [42] using the Vienna
Ab − initio Simulation Package (VASP) [43]. For the
relaxations we considered as exchange-correlation func-
tional the generalized gradient approximation (GGA) in-
cluding a U correction for Ru d orbitals, as implemented
in GGA+U (with U=1.5 eV) [44]. Electronic struc-
ture calculations were performed with various function-
als; GGA, GGA+SOC (spin-orbit) and GGA+SOC+U
with and without inclusion of magnetism. We double-
checked our calculations with the full-potential-linear-
augmented-wave basis (LAPW) as implemented in the
WIEN2k code [45]. Hopping integrals were obtained by
the Wannier projector method [46–48] on the FPLAW
results [49] and the exchange parameters were estimated
using the projection and exact diagonalization method of
Refs. [10, 50]. Charge transfer values were obtained by

(a) (b)

FIG. 2. (a) Top views of two supercells of α-RuCl3/gr consid-
ered in this study (black lines): (a) hexagonal and (b) rect-
angular. The blue and maroon spheres represent Ru and Cl
atoms, respectively. The grey hexagon indicates the graphene
monolayer.

Bader analysis on the VASP results [51].

Results.- At ambient pressure, bulk α-RuCl3 has been
reported to have either C2/m or R3̄ symmetry [17,
52, 53]. While the latter case has perfect Ru hexagons,
in the former case Ru hexagons exhibit a small bond-
disproportionation (ll/ls = 1.05; where ll and ls are the
long and short Ru-Ru bonds, respectively). Owing to
the lattice mismatch (15-17%) between α-RuCl3 (5.80 Å;
considering in-plane C3 symmetry) and graphene (2.46
Å), we considered two different heterostructure super-
cells for α-RuCl3/gr (see Fig. 2): (a) an hexagonal su-
percell containing 82 atoms (composed of a 5×5 graphene
supercell and a

√
3 ×
√

3 α-RuCl3 monolayer) and (b)
a rectangular supercell containing 112 atoms. In both
these supercells, due to the strong carbon sp2 bonding,
the graphene layer is kept unstrained i.e., all C-C bond-
lengths are 1.42 Å. By keeping the lattice parameters
fixed, we performed ionic relaxations of the RuCl3 layer
within spin-polarized DFT in the GGA approximation.
We included van der Waals corrections. The resulting re-
laxed structures are dependent on the relative stacking of
the layers. In the hexagonal supercell (Fig. 2(a)), each Ru
hexagon is undistorted, i.e., no bond-disproportionation
is observed. The α-RuCl3 layer develops a positive (ex-
pansive) strain (2.5% tensile) [54] compared to the corre-
sponding bulk structure. On the other hand, in the rect-
angular supercell Fig. 2(b), the Ru-Ru bonds are slightly
anisotropic (bond disproportionation ll/ls = 1.05) and
the α-RuCl3 layer mimics scenarios corresponding to neg-
ative (compressive) strain (-5% tensile). Note that this
bond-disproportionation is comparable to the bulk ambi-
ent pressure C2/m structure, and much smaller than the
dimerized high-pressure structures [22, 32]. The van der
Waals distance between graphene and α-RuCl3 is 3.37 Å
in both supercells.

In Figs. 3(a)-(b), we show the band structure and den-
sity of states (DOS) obtained within the GGA+SOC+U
approximation (U = 1.5 eV) for the relaxed hexagonal
supercell structure in the zigzag antiferromangetic con-
figuration. Here, the Ru spin-orbit entangled jeff = 1/2
and jeff = 3/2 manifolds split into upper and lower Hub-
bard bands (splitting ≈ 0.5-0.6 eV for the U value consid-
ered in the calculations), respectively. The Dirac cone of
graphene is shifted up from the Fermi energy EF (com-
pared to the bare graphene) by ≈ 0.7 eV, indicating a
charge transfer from graphene to α-RuCl3. As a result,
EF lies at the bottom of the rather flat upper Hubbard
band of α-RuCl3. In the insets of Fig. 3(a), we ob-
serve that the hybridization occurs between α-RuCl3 and
graphene only in a small region of the Brillouin zone. Ex-
cept for these points, the α-RuCl3 bands remain almost
flat. Comparison with non-magnetic calculations [49]
show only small modifications at the hybridization re-
gion.

In order to estimate the degree of charge transfer, we
computed from DFT wavefunctions (within VASP) the
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FIG. 3. (a) Calculated band structure along the high-
symmetry points (Γ, K, M) of the hexagonal Brillouin zone for
zigzag antiferromagnetic α-RuCl3/gr in the GGA+SOC+U
scheme with U =1.5 eV. The insets show zoomed in regions
near the Fermi level, EF . (b) Atom projected spin-polarized
density of states. The EF lies slightly above of the upper
Hubbard band in the t2g manifold. (c)-(d) Top of side view of
charge difference, δρ plot with charge isosurface 5×10−4 e/Å3.
The peach and cyan colors represent regions with charge ac-
cumulation and depletion (deficiency), respectively. See text
for the definition of ∆ρ.

Bader charges of the heterostructure. For the hexagonal
supercell, the amount of charge transfer is δ = 0.064 e
per RuCl3 unit (-0.010 e per carbon). Thus, graphene be-
comes electron deficient and α-RuCl3 becomes electron-
rich. Note that positive (negative) values of δq refer
to charge accumulation (depletion). To visualize the
charge transfer, in Fig. 3(c)-(d) we have plotted, for
a particular isosurface value, the charge density differ-
ence ∆ρ = ρ(gr/RuCl3) − ρ(gr) − ρ(RuCl3), where ρ
is the charge density in e/Å3. As expected from the
charge transfer values, the charge deficiency occurs at
the graphene layer with the transferred charge accumu-
lating mostly around the Cl atoms of α-RuCl3 positioned
close to graphene. Interestingly, the charge distribution
around Ru and the Cl atoms away from the graphene
layer shows regions of charge depletion and regions of
charge accumulation following the Ru and Cl electroneg-

ativity differences (see the charge-difference side-view
displayed in Fig. 3(d)). Calculations for the rectangu-
lar supercell show essentially the same degree of charge
transfer, suggesting that the doping level is not strongly
stacking-dependent [49].

In principle, the low-energy Hamiltonian for an
electron-doped layer of α-RuCl3 can be expressed in
terms of a tJ-like model with anisotropic magnetic cou-
plings between nearest-neighbor sites i and j:

H =
∑

〈ij〉
tijc
†
icj +Hspin

ij (1)

where c†i = (c†i,↑ c
†
i,↓) creates an electron in the jeff = 1/2

state at site i, tij is the hopping integral between sites i

and j and Hspin
ij describes an extended Kitaev model of

the form:

Hspin
ij = JijSi · Sj +KijS

γ
i S

γ
j + Γij(S

α
i S

β
j + Sβi S

α
j ) (2)

+ Γ′ij(S
γ
i S

α
j + Sγi S

β
j + Sαi S

γ
j + Sβi S

γ
j ),

where S corresponds to the jeff = 1/2 operator with
α, β, γ = x, y, z. In order to estimate the hopping and
interaction parameters of H, we performed additional
calculations, as described above, on isolated and charge-
neutral layers of α-RuCl3 employing the relaxed hexag-
onal geometry of the Ru layer in the α-RuCl3/gr het-
erostructure (Fig. 2(a)). These calculations are very use-
ful to identify the position of α-RuCl3/gr in the phase
diagram of the doped Kitaev-Heisenberg model away
from half-filling [33–36]. The hopping between nearest
neighbor sites is given by t0 = 1

3 (2t1 + t3), in terms
of the hopping integrals defined in Ref. [10]. Our esti-
mates via Wannier projection of the LAPW bandstruc-
ture show that this value is very small, t0 ∼ 7 meV,
suggesting that the hopping between jeff = 1/2 states
is rather suppressed. Table I displays the values of the
nearest-neighbor magnetic couplings in the strained α-
RuCl3 monolayer estimated from exact diagonalization of
the ab initio-derived multiorbital Hubbard model on two-
site clusters [10, 49]. Comparing the values with those
of bulk α-RuCl3 [10], we find that |K| increases by more
than 50% with respect to bulk α-RuCl3, while |J | and
|Γ| terms decrease and |Γ|′ remains almost unchanged.
Note that the case studied here is different from that in
Ref. [55], where no strain effects are taken into account.

These changes can be correlated with the structural
changes: α-RuCl3/gr exhibits a larger Ru-Cl-Ru bond
angle (96.54◦) compared to the ambient condition bulk
structure (94◦). This has the effect of significantly sup-
pressing the direct Ru-Ru hopping. Instead, the dom-
inant hopping occurs via hybridization with the Cl lig-
ands, as considered by the original proposal of Ref. [28].
Since the direct Ru-Ru hopping is simultaneously the
source of the non-Kitaev magnetic couplings and the t0
hopping in Eq. (1), both are suppressed in the strained
RuCl3 layer.
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TABLE I. Comparison of magnetic interactions in meV for
strained α-RuCl3 (see text for description) from current study
and unstrained Z-bond of bulk α-RuCl3 in C/2m structure
from Ref. [10]. Values are obtained by exact diagonalization
on two-site clusters employing U = 3 eV, JH = 0.6 eV, λ =
0.15 eV.

Bond J K Γ Γ′ |K/J |

X, Y -0.5 -16.8 +1.8 -2.7 33.60

Z -0.4 -17.2 +1.9 -2.4 43.00

Z (C2/m) -3.0 -7.3 +8.4 -2.0 2.43

Discussion.- The phase diagram of the doped Kitaev-
Heisenberg model, as suggested by Refs. [33–35] reveals
a spin-triplet p-wave superconductor at low values of
Jij/t0, while at higher values the stable phases are spin-
singlet s- and d-wave superconductors. A nontrivial
topological p-wave superconducting phase is reported to
exist in a region between hole doping parameters (1-δ)
= 0.25 − 0.4, when the condition, K = t0, is fulfilled.
α-RuCl3/gr is close to satisfying this criterion (K ≈ 17
eV and t0 ≈ 7 meV). Assuming the particle-hole symme-
try remains preserved, from the doped phase diagram of
Refs. [33–35], one can conclude that α-RuCl3/gr shows
the possibility to exhibit a trivial p-wave superconduct-
ing state. We note, however, that t0 is very small so
that this region may be difficult to access due to the low
mobility of the doped charges.

In this context, we also investigated another het-
erostructure system: α-RuCl3 on hexagonal boron-
nitride (α-RuCl3/h-BN). Due to the presence of the semi-
conducting substrate, the amount of charge transfer de-
creases compared to the α-RuCl3/gr case, the values be-
ing δ = 0.011 e per RuCl3 unit (-0.003 e per BN unit).
An enhanced doping can be realized in both α-RuCl3/gr
and α-RuCl3/h-BN by the application of gate-voltage
that may shift these heterostructures into a non-trivial
topological superconducting regime. Thus, both systems
have the potential to host trivial and non-trivial topo-
logical spin-triplet superconducting states. Furthermore,
we note, by analyzing Table I, that the strained undoped
α-RuCl3 geometry satisfies the condition of |K/J | > 8
which is the topologically interesting region where the
Kitaev QSL phase exists. This study emphasizes the high
sensitivity of the properties of α-RuCl3 on the substrate
that is being chosen.

Focussing now on the interplay of itinerancy and mag-
netism in α-RuCl3/gr, two very recent experiments have
reported transport measurements of α-RuCl3/gr het-
erostructures [40, 41]. While both of these show evidence
of charge transfer, they differ in several respects. The
authors of Ref. [40] observe a clear transport anomaly
around a temperature of about 20 K attributed to a mag-
netic transition. However, the precise role of magnetism

in their set-up is unclear due to a possible inhomogeneous
interface between the two layers. In contrast, Ref. [41]
uses encapsulated heterostructures and a similar anomaly
in transport is absent. However, the latter authors ob-
serve clear Shubnikov de Haas oscillations providing clear
evidence of charge transfer. These oscillations have an
unusual non-Lifshitz Kosevich (non-LK) temperature de-
pendence with a maximum at a temperature close to the
bulk TN of α-RuCl3 which is taken as evidence of spin
fluctuation-mediated electron transport scattering aris-
ing from an underlying magnetic transition. An alterna-
tive explanation could arise from the hybridization of the
doped itinerant graphene band structure and the almost
flat upper Hubbard band of α-RuCl3, which is similar
to scenarios of anomalous quantum oscillation (QO) as
discussed for SmB6 [56, 57]. There, a maximum in the
amplitude occurs at a temperature scale of the hybridiza-
tion giving rise to a similar non-LK dependence. It will
be important to distinguish the scenario of spin scattering
versus anomalous QOs for example via the application of
an in-plane field which is known to suppress the magnetic
phase in α-RuCl3 [17] which would change the magnetic
scattering but not the hybridization.

Conclusions.- We have studied the electronic and mag-
netic properties of α-RuCl3/gr heterostructures by a
combination of ab initio density functional theory cal-
culations, Wannier projection and exact diagonalization
of finite clusters. Our results show that α-RuCl3 in the α-
RuCl3/gr heterostructure gets strained due to the lattice
mismatch between α-RuCl3 and graphene and there is a
charge transfer between the two layers making α-RuCl3
(graphene) lightly electron-doped (hole-doped). Recent
experimental realizations of such heterostructures [40, 41]
confirmed the charge transfer character found in our cal-
culations and we proposed measurements under in-plane
magnetic field to disentangle the interplay of itinerancy
and magnetism in the heterostructures.

Calculation of the hopping and exchange interaction
parameters of a putative tJ model would place this sys-
tem in a region of possible p-wave supperconductivity.
Furthermore, the strained monolayer α-RuCl3 shows an
enhancement of the Kitaev interaction by a factor of two
with respect to bulk α-RuCl3. This suggests that by
means of making the α-RuCl3 monolayer charge-neutral
in such a heterostructure geometry, for instance by incor-
porating a spacing layer and/or introducing absorbates
to saturate graphene would thus potentially bring this
system close to the classified Kitaev QSL phase. In con-
clusion, the α-RuCl3/gr system lies on the boundary of a
myriad of applications with high tunability for exploring
exotic phases and possible technological applications.

We thank Erik A. Henriksen and A. W. Tsen for
useful discussion. This project was supported by the
Deutsche Forschungsgemeinschaft (DFG) through grant
VA117/15-1.
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A. Methods of calculation

The structural relaxation and the related post-
processing calculations (except the calculation of hop-
ing parameters) were performed using ab initio DFT as
implemented in the VASP package [1]. We used the pro-
jector augemented plane-wave (PAW) basis sets and the
corresponding cutoff was set as 600 eV. The generalized
gradient approximation (GGA) to the exchange correla-
tion functional was used with and without U correlation
correction as impletemented by Dudarev et al [2]. The
value of U (=1.5 eV) was chosen to be same as Ref. [3]
Van der Waals forces are included through the DFT-D2
scheme of Grimme [4]. In order to mimic the periodic
boundary conditions perpendicular to the heterostruc-
ture, a vacuum separation of 20 Å is used between the
periodic images.

In order to perform structural optimization, the Ru
atoms were allowed to have long-range ferromagnetic
configuration within GGA. Energetics of the final ge-
ometry in ferromagnetic (FM), zigzag antiferromagnetic
(zzAFM) and nonmagnetic (NM) configurations, show
that the NM configuration to be higher in energy than
the two magnetic configurations, whereas the FM and
zzAFM configurations are almost degenerate. Note that
we have restricted ourselves to collinear magnetic struc-
tures for the ease of calculation and therefore, the cur-
rent study does not rule out the possibility of having a
noncollinear magnetic groundstate structure at low tem-
peratures.

It is worthwhile to mention here that the initial self-
consistent calculation of the final optimized structure for
the zzAFM configuration within the GGA+SOC+U re-
sulted in a final ferromagnetic moments. Therefore, the
constrained magnetic calculations are performed by in-
troducing a penalty function [5] to constrain the direc-
tion of magnetic moments parallel to lattice parameter
the a; convergence with respect to the penalty parame-
ter is achieved to obtain the final result.

In order to calculate the amount of charge transfer
between the layers, we have used Bader analysis [6] of
wavefunctions obtained from VASP calculations. Finally,
the hopping parameters are obtained using the WIEN2k

Table I: Relaxed geometries of the α-RuCl3 layer in both
supercells for the α-RuCl3/gr system and in the hexagonal
supercell for α-RuCl3/h-BN system. The in-plane lattice
constants for the rectangular supercell are a=10.078 Å and
b=9.843 Å, while the values for the hexagonal supercell are
a=b=12.300 Å.

Bond-lengths Hexagonal supercell Rectangular supercell

α-RuCl3/gr

Ru-Ru 3.55 Å 3.17-3.18 Å (ls)

3.33-3.35 Å (ll)

Ru-Cl 2.39-2.40 Å 2.34-2.36 Å

6 Ru-Cl-Ru 96.92◦ 85.02◦ -90.67◦

α-RuCl3/h-BN

Ru-Ru 3.54-3.56 Å -

Ru-Cl 2.37-2.38 Å -

6 Ru-Cl-Ru 96.21◦ -97.55◦ -

code as described below (see section E).

B. Geometrical optimization and choice of the
commensurate supercells

For the α-RuCl3/gr heterostructure, we have chosen
two commensurate supercells: (a) a hexagonal super-
cell with 82 atoms and a rectangular supercell with 112
atoms. The k-point meshes of size 6×6×1 and 2×6×1
(with smearing width of 0.01) were used for the hexagonal
and rectangular supercells, respectively. All the atoms in
the supercell were relaxed until forces on each atoms were
less than 0.002 eV/Å. The lattice parameters for the two
supercells were chosen in such a way that the graphene
layer is not strained (i.e., C-C bond-length remains 1.42
Å after relaxation).

While no buckling of the graphene is observed, buck-
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(a)

(b)

Figure 1: Top (a) and side (b) views of the α-RuCl3/h-BN
system in the relaxed geometry using the hexagonal supercell.
The buckling of the h-BN layer is clearly shown in the side
view. Pink and violet colors represent boron and nitrogen
atoms, respectively.

ling of ≈ 0.5 Å is observed for the h-BN layer in the
α-RuCl3/h-BN heterostructure (see Fig. 1) as a result of
using the same lattice parameters as in the α-RuCl3/gr
calculation; note that the α-RuCl3 layer remains flat af-
ter the relaxation. The structural details and different
bond-lengths for both α-RuCl3/gr and α-RuCl3/h-BN
are shown in Table I.

Strain values that are reported in the main text, are
calculated using the formula: d−dα

dα
; where d is the av-

erage Ru-Ru bond-length of α-RuCl3 layer in the het-
erostructure and dα is the same for the bulk α-RuCl3
(taken to be 3.45 Å here).

C. Charge transfer

As mentioned above, the amount of charge transfer was
obtained by Bader analysis [6]. Here, we show that the
value of the charge transfer remains almost similar for dif-
ferent magnetic configurations. We note here that using
the rectangular supercell, we obtain only a slightly lower
value of δ (0.050 per RuCl3) compared to the hexago-
nal supercell; this can be attributed to the larger strain
value in the former case and slightly inhomogeneous Ru-
Ru bond-lengths. Table II shows that the values of the
charge transfer are almost unchanged in the rectangu-
lar supercell for different magnetic configurations within
GGA, GGA+U and GGA+SOC+U .

As mentioned above, the amount of charge trans-
fer was obtained by Bader analysis [6]. The charge
difference of a heterostructure configuration is given
by ∆ρ = ρ(gr/RuCl3) − ρ(gr) − ρ(RuCl3), where the
ρ(gr/RuCl3) is the total charge density of the het-

erostructure system and ρ(RuCl3) [ρ(gr)] is the charge
density of the α-RuCl3(gr) in the hetetrostructure geom-
etry with graphene (α-RuCl3) layer removed. The unit
of charge density ρ, is e/Å3.

D. Band structure of α-RuCl3/gr: effect of
magnetism, correlation and spin-orbit coupling
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Figure 2: Non-spin-polarized band structure within (a) GGA
and (b) GGA+SOC schemes for α-RuCl3/gr in hexagonal su-
percell. Insets show zoomed-in regions of the band structures
around the Fermi level, EF .

Here we compare the non-spin-polarized band struc-
ture within the GGA and GGA+SOC schemes for α-
RuCl3/gr system (see Fig. 2). We find that the spin-orbit
coupling splits the bands and this changes the details of
the hybridization. Therefore, the Fermi energy EF , shifts
down in Fig. 2(b) compared to Fig. 2(a). One can com-
pare Fig. 2(b) with Fig.3(a) of the main text, in order
to observe the role played by magnetism and correlation;
magnetism modifies the hydridization and correlation in-
creases the splitting between the upper and lower Hub-
bard bands.

We performed additional band structure calculations
in the zigzag antiferromagnetic configuration with the
WIEN2k code for the α-RuCl3/gr heterostructure with
two magnetization directions within the GGA+SOC+U
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Table II: Amount of charge transfer in the rectangular supercell for different magnetic structures within different approximations.

Calculation method Nonmagnetic Ferromagnetic Zigzag antiferromagnetic

GGA -0.0087/C -0.0086/C -0.0088/C

0.046/α-RuCl3 0.046/α-RuCl3 0.047/α-RuCl3

GGA+U -0.0110/C -0.0076/C -0.0094/C

0.059/α-RuCl3 0.041/α-RuCl3 0.050/α-RuCl3

GGA+SOC+U -0.0091/C - -0.0095/C

0.049/α-RuCl3 0.050/α-RuCl3

scheme: one in-plane direction along a axis and another
out-of-plane direction. Though these two band structures
are very similar over most of the Brillouin zone, the slope
of the flat band crossing the Fermi energy along Γ − K
and Γ−M are found to be opposite. The calculated band
structure with magnetization along the in-plane direction
is in agreement with Fig. 3(a) of the main text, which is
obtained from the VASP calculations.

E. Calculation of magnetic interaction parameters

The hopping integrals for the non-spin-polarized α-
RuCl3/gr heterostructure shown in Table III, were ob-
tained using the Wannier function projection formal-
ism proposed in Refs. 7–9. The ab initio density func-
tional theory (DFT) calculations are performed with
the full-potential-linearized-augmented-plane-wave basis
(LAPW) method as implemented in WIEN2k [10]. The
Perdew-Burke-Ernzerhof generalized gradient approxi-
mation [11] was used, with a mesh of 1000 k points in the
first Brillouin zone and RKmax was set to 8. In Table III,
the values of the hopping parameters for α-RuCl3/gr are
compared to those of bulk α-RuCl3 from Ref. [12].

We note that the t − J model described in Eq. 1 of
the main text, is expressed in terms of relativistic jeff

basis. However, in table III, the hopping matrices are
defined in terms of the non-relativistic t2g basis. The
hopping parameters for the Z-bond (nearest neighbor) in
the strained α-RuCl3 is given by [12]:

TZ =



t1 t2 t4
t2 t1 t4
t4 t4 t3


 (1)

The TZ matrix above is defined in the Ct2g =
{cyz,↑, cyz,↓, cxz,↑, cxz,↓, cxy,↑, cxy,↓} basis and the
hopping parameters ti for i=1-4 are defined in the
same way as in Ref. [12]. In order to transform the
Ct2g basis to the relativistic basis of Cjeff , we can

represent the TZ matrix in the jeff = {{ j,mj}} =

Table III: Parameters for crystal field splitting and near-
est neighbor hopping (meV) for monolayer and experimental
C2/m structures of RuCl3

Term α-RuCl3/gr C/2m Ref. [12]

∆1 -8.4 -19.8

∆2 -8.7 -17.5

∆3 -0.1 -12.5

t1 (t1̄||) +22.7 +50.9

t′1a (t1||) +17.3 +44.9

t′1b (t1||) +26.5 +45.8

t2 (t1̄O) +176.1 +158.2

t′2 (t1O) +175.1 +162.2

t3 (t1̄σ) -24.1 -154.0

t′3 (t1σ) -22.3 -103.1

t4 (t1̄⊥) -16.6 -20.2

t′4a (t1⊥) -21.9 -15.1

t′4b (t1⊥) -20.8 -10.9

{{1

2
,

1

2
}, {1

2
,−1

2
}, {3

2
,

3

2
}, {3

2
,

1

2
}, {3

2
,−1

2
}, {3

2
,−3

2
}}

basis. For this, we have used the following transforma-
tion matrix:




1√
3

0
−i√

3
0 0

−1√
3

0
1√
3

0
i√
3

1√
3

0

0
1√
2

0
−i√

2
0 0

0
−1√

6
0
−i√

6

√
2√
3

0

1√
6

0
−i√

6
0 0

√
2√
3

−1√
2

0
−i√

2
0 0 0




(2)

Then the transformed matrix TZ
jeff

, is given by the fol-
lowing equation:
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


2t1 + t3
3

0 − (1 + i)t4√
6

(1− i)t4√
2

√
2(t1 − t3)

3
i

√
2

3
t2

0
2t1 + t3

3
i

√
2

3
t2

√
2(−t1 + t3)

3

(1 + i)t4√
2

− (1− i)t4√
6

− (1− i)t4√
6

−i
√

2

3
t2 t1

it2√
3

(1− i)t4√
3

0

(1 + i)t4√
2

√
2(−t1 + t3)

3

−it2√
3

t1 + 2t3
3

0 − (1− i)t4√
3√

2(t1 − t3)

3

(1− i)t4√
2

(1 + i)t4√
3

0
t1 + 2t3

3

it2√
3

−i
√

2

3
t2 − (1 + i)t4√

6
0 − (1 + i)t4√

3
−i t2√

3
t1




(3)

Similarly, the hopping matrices for the X and Y bonds
(nearest neighbor), which are given by the following equa-
tion in the t2g basis,

TX =



t′3 t′4a t′4b
t′4a t′1a t′2
t′4b t′2 t′4b


 , TY =



t′1a t′4a t′2
t′4a t′3 t′4b
t′2 t′4b t′1b


 (4)

transform in the following way:




t′1a + t′1b + t′3
3

0 −i (t
′
2 − it′4b)√

6

−it′2 + t′4b√
2

t′1a − 2t′1b + t′3
3
√

2

t′1a − t′3 + 2it′4a√
6

0
t′1a + t′1b + t′3

3

−t′1a + t′3 + 2it′4a√
6

− (t′1a − 2t′1b + t
′)
3

3
√

2

it′2 + t′4b√
2

i
(t′2 + it′4b)√

6

i
t′2 + it′4b√

6

−t′1a + t′3 − 2it′4a√
6

t′1a + t′3
2

t′1a − t′3 + 2it′4a
2
√

3

−it′2 + t′4b√
2

0

it′2 + t′4b√
2

− (t′1a − 2t′1b + t′3)

3
√

2

t′1a − t′3 − 2it′4a
2
√

3

t′1a + 4t′1b + t′3
6

0 i
(t′2 + it

′)
4b√

3
t′1a − 2t′1b + t′3

3
√

2

−it′2 + t′4b√
2

it′2 + t′4b√
3

0
t′1a + 4t′1b + t′3

6

t′1a − t′3 + 2it′4a
2
√

3
t′1a − t′3 − 2it′4a√

6

−it′2 − t′4b√
6

0
−it′2 − t′4b√

3

t′1a − t′3 − 2it′4a
2
√

3

t′1a + t′3
2




and



t′1a + t′1b + t′3
3

0 − (t′2 + it′4b)√
6

t′2 − it′4b√
2

t′1a − 2t′1b + t′3
3
√

2

−t′1a + t′3 + 2it′4a√
6

0
t′1a + t′1b + t′3

3

t′1a − t′3 + 2it′4a√
6

− (t′1a − 2t′1b + t
′)
3

3
√

2

t′2 + it′4b√
2

− (t′2 − it′4b)√
6

− (t′2 − it′4b)√
6

t′1a − t′3 − 2it′4a√
6

t′1a + t′3
2

−t′1a + t′3 + 2it′4a
2
√

3

t′2 − it′4b√
3

0

t′2 + it′4b√
2

− (t′1a − 2t′1b + t′3)

3
√

2
− (t′1a − t′3 − 2it′4a)

2
√

3

t′1a + 4t′1b + t′3
6

0 − (t′2 − it′)4b√
3

t′1a − 2t′1b + t′3
3
√

2

t′2 − it′4b√
2

t′2 − it′4b√
3

0
t′1a + 4t′1b + t′3

6

−t′1a + t′3 + 2it′4a
2
√

3
−t′1a + t′3 − 2it′4a√

6
− (t′2 + it′4b)√

6
0 − (t′2 + it′4b)√

3
− (t′1a − t′3 + 2it′4a)

2
√

3

t′1a + t′3
2




(5)
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