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Abstract

We offer further evidence that discreteness of the sort inherent in a causal set

cannot, in and of itself, serve to break Poincaré invariance. In particular we

prove that a Poisson sprinkling of Minkowski spacetime cannot endow space-

time with a distinguished spatial or temporal orientation, or with a distinguished

lattice of spacetime points, or with a distinguished lattice of timelike directions

(corresponding respectively to breakings of re�ection-invariance, translation-

invariance, and Lorentz invariance). Along the way we provide a proof from

�rst principles of the zero-one law on which our new arguments are based.

Keywords: discreteness, symmetry breaking, zero-one law, Poisson process,

causal set, quantum gravity

1. Introduction

Will a discrete structure prove to be the kinematical basis of quantum gravity and if so should

we expect it to preserve the known symmetries of Minkowski spacetime, at least quasi-locally?

One strand of thought has tended to answer these questions with ‘yes’ followed by ‘no’, and

has held out effects like modi�ed dispersion relations for electromagnetic waves as promising

candidates for a phenomenology of spatiotemporal discreteness. In contrast we have main-

tained in earlier work that the type of discreteness inherent in a causal set cannot, in and of

itself, serve to break Poincaré invariance. In [1] we offered informal arguments to this effect,
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and then in [2] it was proved rigorously that a ‘sprinkling’ of Minkowski spacetime induced

by a Poisson process can determine a rest frame only with zero probability.

This theorem, however, left open the possibility that a sprinkling, even if it could not remove

all the symmetry of �at spacetime, could nevertheless cut it down to a proper subgroup H of

the Poincaré groupG. In this paperwewill address that possibility, and provide further evidence

against it, proving in particular that a Poisson sprinkling ofMinkowski spacetime cannot induce

an ‘arrow of time’ or a ‘chirality’, that it cannot break translation-symmetry by endowing

spacetime with a distinguished lattice of points, and that it cannot break Lorentz symmetry by

endowing spacetime with a distinguished ‘lattice’ of timelike directions. More generally we

conjecture that a sprinkling will almost surely preserve the full group G, and we explain how

one can potentially corroborate this expectation in any particular case (i.e. for any putative

pattern of symmetry breaking) by combining the methods of this paper with those of [2].

Our new method herein will rely on a certain ‘zero-one law’ that governs invariant events

in the theory of Poisson processes. To make the paper more self-contained, and also to provide

a result of the requisite strength, we have chosen to prove the main zero-one theorem starting

from nothing but general facts about probability measures. The resulting demonstration seems

to us to be as simple as possible, and we hope that along with the proof per se, some of the

de�nitions and lemmas that lead up to themain theoremwill prove to be of independent interest.

After presenting and proving these lemmas in the next section of the paper, we prove the

main theorem and then show how to apply it to exclude symmetry-breaking, �rst in important

special cases, and then conjecturally in the general case. We also take the opportunity to reply,

in an appendix, to some recent criticism of the theorems proven in [2].

For further background on these questions we refer the reader to [1, 2].

2. Preparing to prove a zero-one law

In the next section, we will prove a ‘zero-one law’ about Poisson processes, from which will

follow the desired theorems on symmetry-preservation in many, if not all, cases of interest.

In fact, a version of this result can be found in [3], but that theorem would not let us rule out

certain important cases of symmetry-breaking. For example it would not let us exclude that a

sprinklingmight break the group of all translations down to a discrete subgroup, as happens for

example when a liquid crystallizes. For this reason, we have decided to demonstrate ab initio

the zero-one law we will be appealing to herein. We hope also that our development will help

to clarify how and why such laws arise. In preparation, let’s �rst review some de�nitions and

known results from [2, 4].

Let µ be the measure that, mathematically speaking, de�nes our sprinkling process, which

we take to be a Poisson process in M
n, the Minkowski space of dimension n. An individual

sprinkling in M
n is almost surely a locally �nite subset of Mn. The space of all such subsets,

which we will denote byΩ, is the sample space of the Poisson process. A measurable subset of

Ω will be called an event, as is customary for stochastic processes. The set of all events forms

a σ-algebra that we will call the event-algebra A.
The concept of a bounded eventwill be important for our proof. By de�nition such an event

will be one that pertains to a bounded (say compact) subset of Mn, by which we mean more

precisely the following. Let ω ∈ Ω be any sprinkling, and B a subset of Mn. We say that an

event A is ‘an event within B’ (or is ‘supported within B’) if in order to know whether ω ∈ A

it suf�ces to know the subset, ω ∩ B, of sprinkled points that fall within B. For example the

event, ‘There are more than �ve sprinkled points in B’, is an event within B. We call an event

bounded if it is an event within B for some bounded spacetime region B.

Wewill writeA0 for the set of all boundedevents. It is not aσ-algebra, but it is still a Boolean
algebra, meaning it is closed under the operations of Boolean sum and Boolean product, as
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de�ned below. Equivalently it is closed under union, intersection, and set-difference.

It will be important for our proof that every event A ∈ A can be built up as a (countable)

logical combination of bounded events. Formally, this says that the full event-algebraA is gen-

erated qua σ-algebra by A0. (This basic fact about Poisson processes results directly from the

way in which they are de�ned [3, 5].) We claim (and will shortly prove) that as a consequence,

every event in A is in a well-de�ned sense a limit of bounded events.

Before turning to the proof, we need to establish a few more de�nitions and some notation

and lemmas. Most of the lemmas are either well known or easy to prove, but we include them

for completeness, and because some of our de�nitions are not quite the usual ones.

Notation. Let A and B be events. Their Boolean sum, A+ B, is their ‘symmetric difference’,

(A ∪ B)\(A ∩ B). Their Boolean product, AB, is their intersection, A ∩ B.

This little-used but convenient notation exhibits explicitly that the events form an algebra

overZ2, with identity 1 equal to the eventΩ. The complement of an event A can thus be written

as 1+ A.

Definition (‘Distance’ between two events). d(A,B) = µ(A+ B)

Definition. Let A,A1,A2,A3 . . . be events in A. Then Ak → A means that d(Ak,A)→ 0.

Wewill also say in this situation thatA is a limit of theAk. (Our de�nition of distance satis�es

the triangle inequality and therefore de�nes a metric on A, or more precisely a pseudometric,

because two events that differ by a set of measure zero will be at zero distance without actually

being equal. This in turn is why we have written that A is ‘a limit’ and not ‘the limit’ of the

Ak.)

The next two lemmas will verify the triangle-inequality for d. The latter is not technically

a metric, however, because d(A,B) = 0 does not imply that A = B.

Lemma 1. µ(A+ B) 6 µ(A)+ µ(B)

Proof. A+ B ⊆ A ∪ B ⇒ µ(A+ B) 6 µ(A ∪ B) 6 µ(A)+ µ(B). �

Lemma 2 (Triangle inequality). d(A,C) 6 d(A,B)+ d(B,C)

Proof. A+ C = (A+ B)+ (B+ C) because B+ B = 2B = 0. Hence, in light of the previ-

ous lemma, µ(A+ C) 6 µ(A+ B)+ µ(B+ C). �

Lemma 3. |µ(A)− µ(B)| 6 µ(A+ B)

Proof. A Venn diagram makes this clear. More computationally, we have, since

the measure µ is additive, µ(A) = µ(A\B)+ µ(AB), and similarly µ(B) = µ(B\ A)+
µ(AB), whence µ(A)− µ(B) = µ(A\B)− µ(B\A) 6 µ(A\B)+ µ(B\A) = µ(A+ B), and sim-

ilarly µ(B)− µ(A) 6 µ(A+ B). �

From this last lemma follows immediately the continuity of µ with respect to d, as well as

that of addition and multiplication.

Lemma 4. Aj → A ⇒ µ(Aj)→ µ(A)

Lemma 5. Aj → A and Bj → B⇒ AjBj → AB and Aj + Bj → A+ B

(In other words limit preserves Boolean sum and product.)

Proof. First notice that AjBj + AB = Aj(Bj + B)+ (Aj + A)B, and that Aj(Bj + B) ⊆ (Bj +

B), while (Aj + A)B ⊆ Aj + A. Therefore d(AjBj,AB) = µ(AjBj + AB) 6 µ(Bj + B)+ µ(Aj +
A) = d(Bj,B)+ d(Aj,A)→ 0. The proof for A+ B is similar but simpler. Start with the
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trivial equation, (Aj + Bj)+ (A+ B) = (Aj + A)+ (Bj + B) and apply µ to both sides. The

result is d(Aj + Bj,A+ B) = µ[(Aj + A)+ (Bj + B)] 6 µ(Aj + A)+ µ(Bj + B) = d(Aj,A)+

d(Bj,B)→ 0. �

Remark. We could prove in the same way that limit preserves complementation:Aj → A ⇒
1+ Aj → 1+ A, but it follows already from the lemma.

The next lemma holds for any Boolean algebra of events and the σ-algebra it generates.

Lemma 6. Every event in A is the limit of a sequence of events in A0

Proof. Let Ā0 be the set of all such limits. Because a σ-algebra can be de�ned as a Boolean
algebra of sets which is complete in the sense that it is closed under forming the union of an

increasing sequence of sets6, and because the σ-algebra generated by any family F of events is

by de�nition the smallest σ-algebra that includes F, it suf�ces to prove that Ā0 is closed under

Boolean addition and multiplication, and that forming the union of an increasing sequence

members of Ā0 does not lead out of Ā0 either. Since closure under the Boolean operations is the

content of the preceding lemma, we only need to demonstrate closure under nested countable

union. To that end, let A =
⋃

jA
j be the union of an increasing sequence of events A j ∈ Ā0,

each of which is the limit of a sequence of events A
j
k in A0. It is a basic7 result of measure

theory (sometimes called ‘continuity’) that in this situation, µ(A\Aj)→ 0. But because Aj ⊆ A,

A+ Aj = A\Aj, and we have d(Aj,A) = µ(A+ Aj) = µ(A\Aj)→ 0. Now choose ε > 0 and �nd

an Aj such that d(Aj,A) < ε/2, �nding next an index k such that d(A
j
k,A

j) < ε/2. Together,

these imply that d(A
j
k,A) 6 d(A

j
k,A

j)+ d(A j,A) 6 ε/2+ ε/2 = ε, whenceA0 contains events

arbitrarily close to A, as required. �

The proof of our zero-one law will rest on the previous lemma together with the following

one.

Lemma 7. If events A and B are limits of sequences of events Aj and Bj respectively, and if

for each index j, Aj is stochastically independent of Bj, then A and B are also stochastically

independent.

Proof. By de�nition, stochastic independence of A and B signi�es that µ(AB) = µ(A)µ(B),
which accordingly is what wewant to prove.But by hypothesis, we haveµ(AjBj) = µ(Aj)µ(Bj).
Appealing now to an earlier lemma, we can conclude from Aj → A that µ(Aj)→ µ(A) and sim-

ilarly µ(Bj)→ µ(B), whence µ(Aj)µ(Bj)→ µ(A)µ(B). On the other hand, AjBj → AB, whence

µ(AjBj)→ µ(AB), completing the proof. �

3. A zero-one law and its proof

Let us say that an eventA ∈ A is deterministic if its probabilityµ(A) is either 0 or 1, but nothing
in between. One also says that A obeys a ‘zero-one law’. If A is a deterministic event, then

either it or its complement, 1+ A, is forbidden. In the jargon of probability theory, an event

forbidden in this way ‘almost surely will not happen’, while its complement ‘almost surely

will’.

Consider now some event A, let G be the Poincaré group, and let g ∈ G act on A by acting

on the individual sprinklings ω that comprise it: gA = {gω|ω ∈ A}. By the invariance group

of A we mean the subset H of G whose elements leave A unchanged.

6 Increasing means that A1 ⊆ A2 ⊆ A3 · · · .
7Basic but quite simple to prove from the axioms for a measure [4].
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Theorem. If the invariance group of an event A contains at least one non-zero spacetime

translation then A is a deterministic event with respect to the Poisson process inMn.

Proof. Observe to begin with that if the invariance group H contains the translation T, it

automatically contains all powers of T; it therefore contains arbitrarily large translations. It

follows for any bounded spacetime region K that H contains a translation T for which K and

TK are disjoint. Now let B be an event within the bounded region K, and choose T ∈ H so that

K and K′ = TK are disjoint, and let B′ = TB. Since B is an event within K and B′ is an event

within K′, and since K is disjoint fromK′, B will be stochastically independent of B′, this being

a basic feature of Poisson processes.

Now let Ak be a sequence of bounded events such that Ak → A. Such a sequence exists by

lemma 6. We have just seen that for each index k, there is a translation Tk ∈ H such that Ak and

Ak
′ = TkAk are stochastically independent.

Moreover, we claim (and this is the key to the proof) that these translated events Ak
′ also

converge to A. To see why, recall �rst that by the de�nition of H, the event A is not altered by

any of the Tk, i.e. TkA = A. Then since the Poisson-process measure µ is itself translationally

invariant, we have d(Ak
′,A) = d(TkAk,A) = d(TkAk, TkA) = d(Ak,A)→ 0 as claimed.

We now have two convergent sequences of events whose individual terms are stochastically

independent. According to lemma 7, this entails that the limit-events are also stochastically

independent. But we just proved that these limit-events are both equal to A, whence A is inde-

pendent of itself! As an equation, this says that µ(AA) = µ(A)µ(A), or µ(A) = µ(A)2, since of
course AA = A. The only solutions of this equation being µ(A) = 0 or µ(A) = 1, the theorem

is established. �

4. Can a sprinkling break Poincaré invariance?

The theorem just proven will let us demonstrate several results that rule out in various cases

that a sprinkling can break one of the symmetries ofMn. When combined with the analogous

results from [2], we expect that all cases of physical interest will be spoken for. To make this

plausible we now apply our theorem to some prototypical examples.

4.1. A sprinkling cannot determine an orientation

As a �rst example let’s ask whether a Poisson sprinkling can break one of the re�ection-

invariances by favoring either a particular spatial or temporal orientation, or a particular overall

orientation. The reasoning being the same in all these cases, let’s take for de�niteness the case

of an overall orientation (which is preserved by CPT but not CP or T). The question is then,

can a sprinkling—an individual realization of the Poisson process—determine (with non-zero

probability) a speci�c orientation O?

Of course only two orientations are possible, say O1 and O2, so our question reduces to

asking for the probability p that the sprinkling will favor O1 over O2. By symmetry of the

Poisson process, p is also the probability that it will favorO2 overO1. For maximumgenerality,

we also admit that it might favor neither, so that p might be strictly less than 1/2. We claim in

fact that p = 0.

To prove this consider the event A that the realization (call it ω) favors O1. Since an orien-

tation can be thought of as an equivalence class of orthonormal tetrads (if n = 4), and since

an orientation is something global, the tetrads are located nowhere in particular (or if you like

they are located everywhere). The event A is thus trivially invariant under all translations. (If

ω determinesO and if T is any spacetime symmetry, then Tω must determine TO, which as we

just saw, is O itself when T is a translation.)

5
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Our theorem then informs us that A is a deterministic event, whence either p = 0 or p = 1.

But since p 6 1/2 in any case, the only consistent possibility is that p = 0, as claimed. Thus,

a sprinkling will almost surely leave the re�ections unbroken.

One might wonder whether something would go wrong here if the sprinkling determined

more than just an orientation. What if it also determined a distinguished location in space-

time, for example? In fact nothing would go wrong because we assumed nothing about what

else ω might be able to determine. The event A would still be de�ned and would still be

translation-invariant because it would gather together all the ω which favor O1 irrespective

of which location they might also favor.

On the other hand, the doubt we have just sought to dispel does point to a perenni-

ally confusing ambiguity that lurks in a phrase like ‘A sprinkling cannot break T-reversal’.

Is it saying that the particular isomorphism t→−t is (in some coordinate system) a sym-

metry (meaning in the present context that it belongs to the invariance group H) or is it

only saying that a sprinkling cannot prefer a direction of time? The difference shows up

famously in discussions of the standard model of high energy physics, where people are

wont to say that time-reversal is broken but that the laws of physics introduce no arrow of

time because CPT is a symmetry that reverses any putative arrow. What our proofs in this

paper establish directly is the second kind of statement, which only indirectly bears on the

�rst.

4.2. A sprinkling cannot break translation-symmetry by determining a spacetime lattice

In the orientation example we just treated, the tetrads acted as a kind of order-parameter or

Higgs �eld responsible for the (putative) symmetry breaking. We take it as an article of faith

that this will always be the case: if a sprinkling breaks a spacetime symmetry it will be because

one can deduce from it some geometrical object Xwhose invariance groupH is a proper subset

of the full group G of symmetries. (In the case of Minkowski spacetime, which is our main

interest, G will be the Poincaré group including all of its connected components. In the case of

Euclidean space, to which our analysis also applies, G will be the Euclidean group, etc.)

In the present subsection, we ask whether a Poisson sprinkling can break the translation

symmetry of spacetime. For this to happen, X would have to be for example a distinguished

‘origin’ in spacetime, resulting in a trivial H of no residual symmetry. This possibility was

ruled out in [2], but X could also be a rectangular lattice of spacetime points, resulting in an H

identi�able with the subgroup of translations that preserve the lattice. (This situation is familiar

from crystallization, and ‘crystal group’ might be an apt name for H. As this name suggests,

the fullHmight include some rotations, etc, but we will ignore them here since our concern in

this example is just with translations. Thus we will for now limit G just to the translations.)

Suppose now that some sprinkling ω determines the lattice L. Reasoning as before from

the overall G-invariance of the Poisson process, we see that other sprinklings must be able to

determine other lattices, all of them equally probable. The lattices obtainable in this manner

can, in the familiar way, be identi�ed with the elements of the coset space G/H (topologically

a torus).

Fix now a particular lattice L1, and let p be the probability that L1 will result from a sprin-

kling. Or more correctly (since we do not want p to vanish trivially), introduce a small rectan-

gular neighborhood L̃1 of L1 and let A be the event: ‘The sprinkling ω determines a lattice L

belonging to L̃1’. If the neighborhood L̃1 was chosen suitably, A will be invariant under H, the

invariance group of L1, and we de�ne p = µ(A).
The event A is the analog of the event of the same name in the orientation example, and

from here onward, we can proceed exactly as before. On one hand, since H contains nontriv-

6
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ial translations, A is deterministic, thanks to our theorem8. On the other hand, p = µ(A) < 1

because there are other ‘fuzzy-lattice events’ which are just as probable as A is with respect

to our Poisson process. Therefore p = 0 is the only possibility, and a sprinkling will almost

surely leave the translations unbroken.

Remark. Exactly the same argument goes through for lattices L in Euclidean space.

4.3. A sprinkling cannot prefer a timelike direction: two methods of proof

This was the main theorem proven in [2] by a different method that assumed only that the

sprinkling process was invariant under Lorentz transformations. In this paper, we are assuming

more speci�cally that our sprinkling process is a Poisson process. To what extent this is a loss

of generality is unclear, since at present there seems to be no known example of a sprinkling

process that is Poincaré invariant without actually being Poisson (barring the trivial exception

of a convex combination of Poisson processes of different densities).

Let us compare and contrast the two methods of proof.

Following the pattern established with the previous two examples, suppose that a sprinkling

ω could determine the timelike unit vector u. Let G be the Poincaré group, as before, and let

H ⊆ G be the subgroup that acts as the identity on u. (ThusH contains the translations together

with the rotations and spatial re�ection associated with the timelike direction u.) The quotient

G/H can then be identi�ed with the (two-sheeted) unit hyperboloid inMn. Consider as before

the sprinkling-induced correspondenceω → u and express it as a partial functionF :Ω→ G/H
(it is partial because its domain might not be all of Ω). Continuing to reason as before, we

learn that F induces on G/H a (subnormalized) probability distribution ν. Because it must be

invariant under G, we know also that ν could only be a constant density on G/H.
At this point the two methods part ways. The method of [2] simply notices that unless ν = 0

its integral over all of G/H would be in�nite, whereas in fact it cannot exceed unity (being

subnormalized). The only way out of this contradiction is that the domain of F is a measure-

zero subset of Ω. The method of this paper, on the other hand, reaches the same conclusion by

introducing a bounded subset S of G/H and observing that the event A given by ‘F(ω) ∈ S’ is

translation invariant since u is a global object, like the orientations in our �rst example. Hence

A is deterministic, and ν(S) = µ(A) can only be 0 or 1, whence it must be 0 since it cannot

be 1.

How then do the two methods differ? Both proceed from the same uniform density ν on

G/H, but they presuppose different things about H and G/H. The �rst method lives off the

fact that G/H has an in�nite volume. The second lives off the fact that H contains a nontrivial

translation. Thus, the �rst methodworks whenH is ‘suf�ciently small’, the second works when

H is ‘suf�ciently big’ (but not so big that G/H fails to contain at least two points. In that case

H = G and there is no breaking at all.)

In the previous two examples, the �rst method would not have worked because G/H was

compact and hence of �nite volume. On the other hand the second method would have trouble

if the sprinklingwere trying to break translation-invariance completely by picking out a unique

favored point or ‘origin’; in that case H would contain no translations. We would conjecture

that in all cases of interest at least one of the two methods will work. This would be true, for

example, if G/H necessarily had in�nite volume whenever H failed to contain a translation.

8 In the previous example the full strength of our theorem was not needed, because H there included the entire

translation group.
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4.4. A sprinkling cannot prefer a ‘lattice’ of timelike directions

As a last illustration of the secondmethod, let us consider the possibility that ‘X’ is not a single

timelike direction but an in�nite set of them which is invariant under a discrete subgroup of

the Lorentz group G9. It might seem surprising that such a subgroup exists at all, but many

instances are known. One of the most interesting is comprised of the set of Lorentz transfor-

mations that leave invariant the integer lattice Z
4 in M

4 [6, 7]. The elements of X itself can

then be taken to be the unit vectors pointing from the origin to the points of L. Let us focus on

this example.

It seems that there are general theorems of algebraic geometry which imply in this case that

orbit of such an X under the action of the Lorentz group, though not actually compact, has only

a �nite volume [8]. Our �rst method of proof would then not apply. The second method does

apply however for the same reason it applied to a single timelike direction, our X’s being by

de�nition translation invariant.

5. What does it all mean?

We don’t have access to all of spacetime, and in any case we don’t live inM4. What then is the

physical relevance of theorems about sprinklings of a �at spacetime? Recall that the sprinkling

of a LorentzianmanifoldM has only a kinematical and not a dynamical signi�cance. It is meant

to provide a causal set typifying those that could be the substructure ofM10. If in this paper we

have takenM to be literallyM4, this is only an idealization of some approximately �at region

Rwithin the larger Universe.What we’d really like, then, is not only a global proof of Poincaré

invariance, but a quasilocal result that would quantify how much anisotropy or inhomogeneity

remains, depending on the size of R. Our rigorously proven theorems are but a �rst step toward

such an analysis. (As usual there’s a trade-off between beautiful theorems and applicability!)

In Euclidean space, such an analysis seems near at hand. To each spatial point x we can

associate the line that passes through it and its nearest sprinkled neighbor. Each such line breaks

the rotation symmetry at that point to Z2, which is of course why rotations cannot literally be

a symmetry of a sprinkling but only so in an average sense. It is equally clear, though, that

these lines �uctuate wildly in direction, so the anisotropy dies out rapidly with the size of the

region one considers. Similarly, one would expect any localized inhomogeneities to wash out

on larger scales so that translation-invariance would return.

In Minkowski space something similar is plausibly true, but in relation to the Lorentz sub-

group of the Poincaré group, there’s a complication; both the size and the shape of the region

R are important. Nevertheless we would still expect to get a rapidly �uctuating array of lines

that are, in the natural rest-frame of the region11, nearly null, and so the breaking would again

die out rapidly as R grew. Only now in a �nite region we won’t restore all of the Lorentz group,

but only those boosts that are small enough for R to accommodate. This ‘boundary effect’ (or

‘shape effect’) has no analog in the Euclidean case, but otherwise the two situations seem quite

similar.

9To be mathematically impeccable, we should point out that G here is not literally a subgroup of the Poincaré group,

but of its quotient by the translations. That is, G doesn’t act on spacetime itself, which is strictly speaking an af�ne

space, but rather on the associated vector-space.
10Even this statement ignores that quantum spacetime is expected to be more like a ‘superposition’ of causal sets than

a single one. Moreover, we only expect a sprinkling to be a good model after a certain amount of coarse-graining, e.g.

if at small scales the structure of spacetime were of Kaluza–Klein type.
11What is the ‘frame of the region’? Well, �nd two points x, y in R such that the order-interval I(x, y) has the biggest

volume possible. The line through x and y then de�nes the rest-frame in question. Some such prescription ought to be

adequate in most cases.

8
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Beyond these kinematic questions of global theorems vs quasilocal applicability, what we

ultimately care about are consequences for the dynamics. Would a massless scalar �eld living

on a Poisson sprinkling propagate via a modi�ed dispersion relation, as has been suggested for

discrete structures? The answer depends obviously on how the dynamics is formulated, so it

is impossible to answer categorically. But our theorems are signi�cant precisely because they

indicate that the answer will be ‘no’. (We ignore here the possibility of dynamical spontaneous

symmetry breakings which have nothing to do with kinematical discreteness.)

Which doesn’t mean there might not be other ‘dispersive’ or diffusive effects consistent

with all the spacetime symmetries. We hope that there are, because they would be highly

constrained by the symmetry, and would potentially provide phenomenological evidence of

discreteness! [1, 9] Indeed, such effects, although not yet seen experimentally or observation-

ally, have already begun to be studied in extant theories that describe the dynamics of particles

and/or �elds on a background causal set. (For examples of such theories, see [10])

But even these re�exions are not the end of the story. Beyond dynamics on a �xed, back-

ground causal set, we need ultimately to understand the effects of the causal set itself being

dynamical (i.e. of quantum gravity). Our theorems here are merely a �rst indication of how

things are likely to turn out.
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Appendix A. Reply to Kent [11]

In a recent paper [11], Kent has disputed our interpretation of the theorems proven in [2]. As

far as we can see, he puts forward three main criticisms, and we take this opportunity to explain

why we think they are unfounded.We hope also, that our comments will help bring into focus

the conceptual background to both the work in [2] and its extension here.

Kent’s primary complaint seems to be that attention should fall onwhat he calls ‘sprinklable

sets’ instead of sprinklings, where a sprinklable set is an isometry equivalence class of sprin-

klings. This amounts to treating Poincaré symmetries as if they were merely gauge, contrary

to the way most physicists understand them. (We follow here the widely used terminology

that draws a distinction between ‘gauge transformations’ that, like coordinate transformations,

merely alter the description without affecting physical reality, and ‘symmetries’ which effect

genuine physical changes. It is, for example, because one treats translations as symmetries that

it is meaningful to speak of the energy-momentum vector of a system.) We believe that the

majority viewpoint is in this case the appropriate one. As highlighted earlier, we don’t live in

M
4 but in a cosmos that is highly curved on large scales and near to black holes, etc. In such

a Universe a �at spacetime can only be an idealization of a nearly �at local region R. But as

soon as you remember that all such regions exist within an enveloping spacetime, you real-

ize [12] that local translations, rotations, and Lorentz-boosts are in the larger context not pure

gauge, because they move a subsystem around relative to its environment. They are rather real

9
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physical changes idealized as what one might term ‘partial gauge transformations’12; and one

really ought to think of M4 as being referred to an ‘external frame’—a laboratory, the �xed

stars, etc. (If the whole of spacetime really were M4, one might have to rethink the status of

the Poincaré group, but obviously that is not the case.) Thus sprinklings and not sprinklable

sets are the appropriate objects of study.

Having replaced sprinklings by sprinklable sets, Kent then argues, if we understand him,

that the zero-one law that holds for propositions about sprinklable sets is a bad thing because

it means in some sense that one cannot say anything interesting about a sprinklable set cre-

ated by a Poisson process. Of course, this criticism cannot be sustained if, as we have just

argued, it is sprinklings and not sprinklable sets that are physically relevant. But instead of

just stopping with this comment, perhaps we should add that (as explained by Kent him-

self under the heading ‘A lacuna in the BHS theorem’) a question like ‘Does the sprinkling

determine a timelike direction?’, still makes sense as a question about sprinklable sets. The

corresponding event in the sample-space ΩS of sprinklable sets is simply the union of all the

events in A that belong to speci�c timelike directions; and it still has measure zero. (See [14]

for how ΩS is related to Ω.) Since this question and others like it hold the keys to deciding

whether a sprinkling can break a spacetime symmetry, we cannot agree that the σ-algebra of
ΩS is too sparse to contain events of physical interest, even if one chooses to study it instead

of Ω.

But independent of ‘sprinkling vs sprinklable’, could it be that something else is behind

the criticism? There are hints in [11] that one is thinking of the Poisson process as a kind

of dynamical theory of causal sets. If one were to think of it in this way, then one might

feel uncomfortable that every event in this theory would be deterministic. For some pur-

poses that might be an interesting observation, but it is in any case not relevant to causal

set dynamics. As described in the previous section, sprinklings within causal set theory

play only the kinematical role of helping to de�ne the relationship between a causal set

and the corresponding spacetime continuum. Dynamical laws (‘laws of motion’) meant

for causal sets can presuppose no background spacetime, and are envisioned as de�ning a

stochastic process of growth which, as it were, builds up an evolving causal set element by

element.

Remark. Suppose that in some context one actually did want to interpret the Poisson process

as a discrete dynamics for Minkowski spacetime. There is only one M4-geometry, and since

every question you can ask about its structure thereby has a unique yes-or-no answer, would

not a zero-one law for such questions be exactly what you would want? It would suggest that

your dynamics had reproducedM4 as well as it could, consistent with discreteness.

Kent’s third criticism seems to be that reference [2] proved the wrong thing, or at least failed

to prove some things it needed to prove. In effect he has brought forward a new requirement that

anyone claiming to establish Poincaré invariance needs to satisfy, which he states as follows.

‘One needs to show that, given any data that leave some continuous subgroup of the Lorentz

group as a symmetry in the continuous case, there is no mathematical construction that breaks

this symmetry in the discrete case’.

To see what this means, consider for simplicity the Euclidean question whether a sprinkling

can prefer a spatial direction, thereby breaking isotropy. This was a question that could not be

answered in [2], but which we have answered in the negative in the present paper.

12By partial gauge transformation we mean an operation which is locally indistinguishable from a gauge transfor-

mation but which only acts nontrivially on a subsystem or region while leaving the surroundings unchanged. Most if

not all symmetries can be understood as partial gauge transformations. See for example the brief discussion of this

concept (though not under this name) in section 1 of [13].

10
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Now consider the different questionwhether a sprinkling could determine a spatial direction

if one provided in addition amarked spatial point or ‘origin’. As pointed out in [2], the answer to

this question is ‘yes’. Does this constitute a breaking of isotropy? Kent thinks it does, whereas

we think it does not, because the required extra information is in reality absent13. We therefore

disagree that there is some kind of ‘lacuna’ in the theorems of [2] or this paper. For us the

most pertinent questions are the intrinsic ones, that ask whether a sprinkling in and of itself

can break a symmetry.

The above is of course not meant to claim that the theorems in [2] settled every question one

might want to ask. On the contrary, our concern in this paper has been to complement those

theorems by analyzing a larger class of symmetry-breaking scenarios than was possible with

the tools of [2] alone. And beyond that loom the whole series of questions adumbrated in the

previous section.

It is in connectionwith the latter questions that Kent’s ‘extra information’might become rel-

evant. He invokes for example a particle moving through a medium of sprinkled points (inM4,

but let’s stay Euclidean for convenience).The particle itself ‘marks a point’, and so it can in fact

see some anisotropy. It will then swerve from a straight line, and this effect could be noticed.

Very good! This is precisely the type of effect one expects from discreteness. But what’s impor-

tant is the inference that—precisely because isotropy is intrinsically preserved—the diffusion

equation describing these swerves will be rotationally invariant. Just such an equation, in its

Lorentzian guise, was brought forth in [1] as a possible phenomenological manifestation of

an underlying causal set. The extrinsic information provided microscopically does something

observable, but in a manner that respects the intrinsic global symmetry.

Remark. Apropos of Kent’s remarks on local Lorentz invariance, we have noticed that cer-

tain passages in [2] could lead readers to interpret that ambiguous phrase in a manner less like

what it would mean in the context of this paper, and more like what it means in connection

with �elds of orthonormal tetrads. If so, we hope that the re�ections in the previous section

concerning what one might call ‘local Poincaré-invariance’ (which, be it noted, includes trans-

lations) will have made it clear that the words local or quasilocal are in the present context not

meant to point to any extrinsically given location or marked point in spacetime; they are meant

rather to evoke the kind of approximately �at region R expounded on above under the heading

‘What does it all mean?’
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