
Abstract—This paper presents an approach for automatic 
segmentation of cardiac events from non-invasive sounds 
recordings, without the need of having an auxiliary signal 
reference. In addition, methods are proposed to subsequently 
differentiate cardiac events which correspond to normal cardiac 
cycles, from those which are due to abnormal activity of the 
heart. The detection of abnormal sounds is based on a model 
built with parameters which are obtained following feature 
extraction from those segments that were previously identified 
as normal fundamental heart sounds. The proposed algorithm 
achieved a sensitivity of 91.79% and 89.23% for the 
identification of normal fundamental, S1 and S2 sounds, and a 
true positive (TP) rate of 81.48% for abnormal additional 
sounds. These results were obtained using the PASCAL 
Classifying Heart Sounds challenge (CHSC) database.  

I.  INTRODUCTION 

ARDIAC sounds, caused by the mechanical vibrations of 

the heart or turbulent blood flow, can be recorded using 

an electronic stethoscope or a microphone, from the surface 

of the chest. The information can be presented graphically in 

what is known as a phonocardiogram (PCG). Fundamental 

heart sounds – first heart sounds (S1) and second heart sounds 

(S2) - are the ones mainly observed in the phonocardiogram 

of a healthy subject. S1 is the result of the mechanical 

activities of the mitral and tricuspid valves; while S2 results 

from the activities of the aortic and pulmonary valves. During 

normal cardiac conditions, S1 appears as a single sound with 

discrete subcomponents M1 and T1; while S2 appears as a 

single sound with discrete subcomponents A2 and P2, in the 

phonocardiogram. Although there are two discrete 

subcomponents in each of them (corresponding to the 

operation of the different valves), these are hard to distinguish 

because of the very small time interval existing between the 

occurrences of the individual mechanical cardiac events [1]. 

However, the time difference widens when there is 

malfunctioning of the heart valves [2].  

Clinically, the splitting of S1 sounds into its 

subcomponents, because of reasons other than the respiratory 

cycle, may be evidence of atrial spectral defects (ASD) or 

right bundle branch block (RBBB). Similarly, the splitting of 

S2 sounds may be an indicator of left bundle branch block 

(LBBB), atrial spectral defects (ASD), right bundle branch 

blocks (RBBBs), left ventricular ectopic beats and pulmonary 

stenosis [3]–[5]. During cardiac abnormalities, apart from the 

split sounds, additional cardiac lub/dub sounds may be 

observed in the phonocardiogram, which can provide vital 

information about cardiac conditions and assist in the early 

stage detection of various cardiovascular diseases (CVDs) 

[5]. Consequently, the automatic detection of fundamental 

and additional heart sounds has been a topic of great interest 

among researchers [5]. However, as heart sounds are often 

overlapped with high-frequency acoustic signals unrelated to 

the operation of the heart, such as noise and artifacts, their 

correct interpretation is challenging. This also creates 

challenges when applying advanced signal processing 

methods to automate the process, especially, in real, non-

controlled, environments where the number of disturbances 

present in the signal acquired is much higher.   

This paper presents an approach to automatically segment 

cardiac peaks from sound recordings without the need of any 

additional ECG or pulse carotid signal; identify normal 

fundamental cardiac sounds; and differentiate them from both 

abnormal split sounds and additional lub/dub sounds in the 

systolic and diastolic intervals.  

II. SEGMENTATION OF HEART SOUNDS SIGNALS  

A. Datasets 

The results obtained in this paper were evaluated using 

sounds recordings obtained from the PASCAL Classifying 

Heart Sounds Challenge (CHSC) database [6]. 111 recordings 

marked with the exact locations of S1 and S2 sounds were used 

to validate the segmentation performance. Additionally, 19 

recordings contained additional sounds either in the systolic 

or diastolic interval at regular intervals and 46 recordings 

contained additional sounds at irregular intervals. These were 

used to test the performance of the developed algorithm for 

the identification of additional sounds in the cardiac cycle. 

Apart from this dataset, heart sounds recorded in uncontrolled 

environment conditions using the digital stethoscope from 

Thinklabs [7], were used to validate the performance of the 

developed algorithm in closer to real life applications.  

B. Segmentation of Heart Sounds Signals  

The first step in the development of the algorithm was to 

localize peaks in the recorded signal. The temporal 

localization of all peaks would, later on, be used to assist in 

the identification of S1 and S2 sounds as well as other 

abnormal sounds. The following steps were followed:  
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1) Pre-processing: The amplitude of the heart sounds was 

normalized to a fixed scale of [-1, 1] dividing by its absolute 

maximum:  

𝑌[𝑛] =  
𝑦′[𝑛]

max
𝑛

(|𝑦′[𝑛]|)
                                         (1) 

where, Y[n] was the normalized signal and max
𝑛

(|𝑦′[𝑛]|) 

represented the absolute maximum of the resampled and 

filtered signal yʹ[n]. Further, a low pass filter with a cut off 

frequency of 500 Hz was employed, to eliminate high-

frequency components from the normalized signals, which 

are typical of artifacts. The frequency spectrum of the 

recordings from the database was used to estimate this cut-off 

frequency (as shown in Fig. 1).  

2) Identification of peaks of interest: As wavelets are 

rapidly decaying oscillations with zero mean, and well-suited 

for non-stationary signal analysis, wavelet analysis was 

chosen to obtain the time-frequency domain resolution of the 

cardiac sound signals. A 6th order Daubechies wavelet with 7-

levels of decomposition and reconstruction was used. A 

windowing step was included to split the signal into a 

sequence of frames for the analysis. A 10 ms window was 

used to extract the envelope of the pre-processed signal using 

the average Shannon-energy (ES):  

𝐸𝑆 =  
−1

𝑁
∑ 𝑌[𝑛]2(𝑖). 𝑙𝑜𝑔𝑌[𝑛]2(𝑖)𝑁

𝑖=1                       (2) 

where, N represented the number of normalized samples in 

the selected window. The sound lobes of interest were 

localized using the zero crossing points of the normalized 

Shannon-energy ESnorm(t), extracted as: 

𝐸𝑆𝑛𝑜𝑟𝑚(𝑡) =  
𝐸𝑠(𝑡)− 𝐸𝑠(𝑡)̅̅ ̅̅ ̅̅ ̅

𝜎(𝐸𝑠(𝑡))
                                       (3) 

where, ES(t) was the average Shannon energy and 𝐸𝑆(𝑡)̅̅ ̅̅ ̅̅ ̅ and 

𝜎(𝐸𝑠(𝑡)) represented the mean and standard deviation of 

Es(t), respectively. 

III. FEATURE EXTRACTION  

Once the peaks were found, features were extracted to try  

Fig. 1.  Frequency spectrum using the Fourier analysis and the time-

frequency analysis of heart sounds signal.  

to identify both, the presence of fundamental heart sounds and  

also additional heart sounds, corresponding to abnormalities.  

A. Features to identify fundamental heart sounds 

Evaluated features to extract the fundamental heart sounds 

(Fig. 2) included the time intervals between the adjacent 

peaks, ratio of the intervals, amplitude and frequency of each 

Shannon envelope, locations of the onsets and offsets of the 

Shannon envelope for each peak on the zero crossings, zero 

crossing rates, spectral width and the energy of the sound 

lobes. 

B. Features to identify split sounds  

The algorithm extracted the onset and offset measurements 

of each sound lobes of interest, which then were used to 

accurately determine the beginning and end of S1 and S2 

sounds. Features to identify the split sounds were based on the 

consistency of S1 and S2 sounds. This was previously 

investigated by Tang et al [8]. Consecutive S1 and S2 sounds 

were aligned and plotted on top of one another to extract 

features. The onset and offset measurements obtained as the 

intersection of the Shannon envelope of each peak with the 

zero crossings were used to estimate the timing intervals of S1 

and S2 sounds. This feature facilitated the identification of 

splitting sounds by evaluating the change in the intervals, with 

respect to the normal cardiac conditions, of the consecutive 

cardiac cycles.  

Statistical features evaluated were the mean, standard 

deviation of skewness, mean absolute deviation, root mean 

square and root sum of squares of successive lobes and 

kurtosis from each analysis window. Apart from these 

statistical features, perceptual features i.e. mel-frequency 

cepstral coefficients (MFCCs) were extracted to capture the 

non-linear behavior of the signals.  

IV. IDENTIFICATION OF NORMAL FUNDAMENTAL HEART 

SOUNDS   

Sound lobes of interest in cardiac signals available from the 

database [6], as well as the signals acquired in uncontrolled 

environment, were identified using the wavelet transform and 

Shannon energy estimations. As an illustration, Fig. 3 shows 

the localization of sound lobes in an acoustic signal recorded 

using an electronic stethoscope [7] in a real, non-controlled 

environment.  

 As the duration of S1 and S2 sounds (without splitting of 

subcomponents) is known to range between 80 ms to 150 ms 

during normal cardiac operation, sound lobes with shorter or 

longer durations were investigated as potentially abnormal 

heart sounds [5]. The duration and energy of adjacent peaks 

were also evaluated, as S1 and S2 sounds cannot have the same 

energy under normal cardiac conditions [9]. Hence, if two 

adjacent peaks were found to have the same energy, then one 

of the two sounds was considered as abnormal. The intervals 

between the two adjacent S1 and S2 peaks represent the 

systolic and diastolic intervals, where the diastolic period 

under normal cardiac operation is greater than the systolic 

period. The start of S1 sound marks the beginning of the   



 
Fig. 2.  Features extracted from heart sounds signals for the identification of 

S1 and S2 sounds. (Si and Ei indicate the start and end locations of ith peak 

(Pi) and T(i,i+1) represents the time interval between peaks Pi and Pi+1).   

systolic period and extends up to the beginning of S2 sound; 

while the diastolic period is marked as the starting of S2 sound 

and extends up to the starting of S1 sound. The energy of 

sound lobes identified in the systole or diastole intervals 

regions was evaluated to distinguish the peak from the 

fundamental heart sounds. An example of how the transients 

were localized is shown in Fig. 4, in which the sound lobes of 

S1 and S2 were identified clearly in the signal obtained from 

the CHSC database [6]. Further, MFCCs were used to validate 

the sound lobes identified and to classify S1 and S2 sounds.  

V. APPROACH TO IDENTIFY SPLITTING OF S1 AND S2 

Previous studies identified the discrete subcomponents of 

S1 and S2 using instantaneous amplitude and instantaneous 

phase information [3], perceptual features with k-means 

algorithm [10], linear and non-linear transient chirp models 

[1], damped sinusoid models [11], [12], and matching pursuit 

methods [13].  Following a  chirp based method, the 

fundamental sounds are expressed mathematically as:  

𝑆1(𝑡) = 𝐴𝑀1
(𝑡) 𝑠𝑖𝑛 (𝜑𝑀1

(𝑡)) + 𝐴𝑇1
(𝑡 −  𝛿𝑆1) 𝑠𝑖𝑛 (𝜑𝑇1

(𝑡 − 𝛿𝑆1))   (4) 

𝑆2(𝑡) = 𝐴𝐴2
(𝑡) sin (𝜑𝐴2

(𝑡)) +  𝐴𝑃2
(𝑡 − δS2) sin (𝜑𝑃2

(𝑡 − δS2))  (5) 

where, AM1
(t) sin (φM1

(t)) and AT1
(t − δS1) sin (φT1

(t − δS1)) 

represent the amplitude and phase of M1 and T1 components 

of S1 sounds, respectively. Likewise, AA2
(t) sin (φA2

(t)) and 

AP2
(t − δS2) sin (φP2

(t − δS2)) represent the amplitude and phase 

of A2 and P2 components of S2 sounds, respectively. 

Additionally, δS1 and δS2 are used to indicate the delay 

between the subcomponents of S1 and S2, respectively. 

Consecutive S1 and S2 sounds were aligned and plotted on top 

of one another (as shown in Fig. 5), to extract statistical 

information of sound lobes. These were extrapolated to obtain 

the characteristics of fundamental heart sounds in a cardiac 

signal.  

As S1 and S2 sounds are quasi-cyclic stationary with almost 

fixed duration in consecutive cycles for a particular subject 

[8], a proper estimation of the spectral width of lobes helps in 

accessing the time intervals of S1 and S2 and the delay (δS1 

and δS2), which can be compared with the normal intervals 

(estimated during normal cardiac conditions) to ascertain the 

 

Fig. 3.  Identification of S1 and S2 sounds in the heart sounds signals recorded 

in an uncontrolled environment with an electronic stethoscope. (c) and (b) 
show the recorded signal and the identified sound lobes of interest, 

respectively. (a) shows the potential S1 and S2 sounds after discarding the 

identified abnormal sounds.   

splitting of heart sounds.  

In case of splitting of S1 or S2, the interval between the two 

discrete consecutive sound lobes would be less than 50 ms 

and both sound lobes would have different energies [9]. This 

is because one of the split components of S1 or S2 will have a 

lower intensity compared to the another component [9]. 

Further, the consecutive sound lobes with time interval 

greater than 50 ms, were investigated for abnormal/additional 

lub/dub sounds. Since the possibility existed that split sounds 

of S1 and S2 might get confused with other abnormal heart 

sounds, perceptual features were also extracted using higher 

order decomposition of transients.  

VI. RESULTS  

This proposed algorithm achieved an accuracy of 91.79% 

and 89.23% in successful identification of normal S1 and S2 

sounds, respectively, which is superior to other reported 

envelope-based approaches [14]. Additionally, the proposed  

 

Fig. 4.  S1 and S2 sounds identification using the proposed algorithm. 



 

Fig. 5.  S1 and S2 sounds aligned to extract features based on the consistency 
of S1 and S2 sounds. (a) and (d) show 22 S1 and S2 sounds from the database, 

aligned and plotted on top of one another to extract S1 and S2 sounds as in (b) 

and (e), respectively. (c) and (f) show the extracted features of S1 and S2 
sounds, respectively.  

algorithm is able to segment heart sounds signals without 

using any auxiliary signal, such as ECG and/or carotid pulse, 

which in other works is required to mark the location of S1 

and S2 sounds. 

Further, the performance of the proposed approach, using 

the extracted features was also tested with the recordings 

containing abnormal additional sounds, from the CHSC 

database [6]. The algorithm achieved a mean true positive 

(TP) rate of 81.48%, using an ensemble of k-NN classifier in 

the identification of additional lub/dub sounds in the systole 

or diastole interval with a 50-fold cross-validation. An 

example of how the transients were localized is shown in Fig. 

6, in which sound lobes of S1 and S2 were identified clearly in 

the signal obtained from the CHSC database [6] that 

contained additional lub/dub sounds. A direct comparison of  

Fig. 6.  Identification of S1 and S2 sounds in the heart sounds signals with 
additional lub/dub sounds obtained from the database. (c) and (b) show the 

recorded signal and the identified sound lobes of interest, respectively. (a) 
shows the potential S1 and S2 sounds after discarding the identified additional 

lub/dub sounds.    

performance cannot be carried out since others have not tested 

their approaches with additional lub/dub sounds.   

VII. CONCLUSIONS 

This pilot study shows an approach to automatically 

segment heart sounds into cardiac events and from there 

differentiate between normal fundamental sounds and 

additional abnormal sounds; where the latter include both 

splitting of fundamental, S1 and S2, sounds and additional 

lub/dub sounds in the diastolic and systolic periods. The 

splitting of fundamental sounds is detected without extracting 

the discrete subcomponents of S1 (M1 and T1) or S2 (A2 and P2) 

sounds. This method could have a potential application in the 

automatic detection of cardiac abnormalities. It should be 

noted that, although, the proposed approach performed well 

on signals acquired in non-controlled environments, other 

features to assist with the extraction of subcomponents of S1 

and S2 sounds could lead to further improvements.  
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