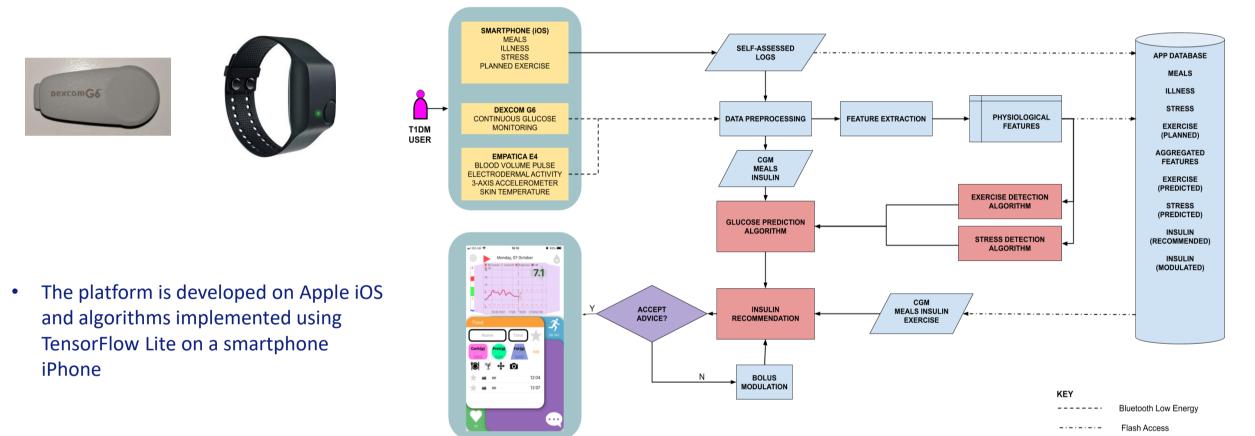
Imperial College London

ARISES: AN ADVANCED CLINICAL DECISION SUPPORT PLATFORM FOR T1D MANAGEMENT

J. Daniels¹, T. Zhu¹, K. Li¹, C. Uduku³, R. Spence², P. Herrero¹, N. Oliver³, P. Georgiou¹

¹Centre for Bio-Inspired Technologies, Institute of Biomedical Engineering, Imperial College London, UK ²Department of Electrical and Electronic Engineering, Imperial College London, UK


³Department of Medicine, Imperial College London, UK

Background

- In daily living, the management of diabetes goes beyond the consideration of meal intake for decisions on actions needed for tight glycaemic control.
- External factors such as stress and exercise also have complex effects on the blood glucose concentration.
- Currently, decision support systems require manual logging of these external factors [1], which require constant attention and can cause diabetes distress, which leads to suboptimal outcomes [2].

Aims

- ARISES (Adaptive, Real-time, Intelligent System to Enhance Self-care of chronic disease) is a mobile platform facilitating a decision support system for people with Type 1 diabetes (T1D) to improve the efficacy of current care and reduce the burden of managing diabetes in daily living.
- We incorporate wearable biosensors to continuously monitor physiological signals from the autonomic system and metabolic system.
- We leverage various machine learning techniques towards improving glucose control and automating detection of external factors.

ARISES System Overview

Methodology

- ARISES comprises inputs from a Dexcom G6 for CGM, and Empatica E4 for physiological signals.
- This data is wirelessly transmitted to the smartphone, where machine learning algorithms compute relevant information for decisions.
- The system is primarily comprised of the following data-driven submodules:
 - 1. GLUCOSE PREDICTION ALGORITHM: A 3-layer deep learning model composed of dilated recurrent neural networks that forecasts glucose concentration on a 30 minute prediction [3].
 - 2. INSULIN RECOMMENDATION ALGORITHM: A deep deterministic policy gradient model that utilises double dilated recurrent neural networks for recommending meal and correction boluses.
 - 3. STRESS DETECTION ALGORITHM: A 2-layer LSTM neural network for detecting multiple levels of stress intensity [4].
 - 4. **EXERCISE DETECTION ALGORITHM**: A deep learning model for real time detection of physical activity.

Results and Future Work

• The built-in algorithms have been in silico validated and evaluated with retrospective clinical data.

Model	Metric	Result
Glucose Prediction	RMSE	18.9±2.4 mg/dL
Insulin Recommendation	Time in range (Time in hypoglycaemia)	88.3±5.1% (5.3±3.9%)
Stress Detection	Precision	0.71±0.12
Exercise Detection	F1 score	0.96±0.02

• The performance of the platform will be evaluated in a randomised cross-over clinical study with 12 participants over 8 weeks.

REFERENCES

- [1] P. Pesl et al., "An Advanced Bolus Calculator for Type 1 Diabetes: System Architecture and Usability Results." IEEE JBHI, 2017.
- [2] L. Fisher et al., "Diabetes Distress In Adults With Type 1 Diabetes: Prevalence, Incidence and Change Over Time," J Diabetes Complications 2016.
- [3] J. Chen, K. Li, P. Herrero, T. Zhu, and P. Georgiou, "Dilated Recurrent Neural Network for Short-Time Prediction of Glucose Concentration," IJCAI-ECAI 2018.
- [4] J. Daniels and P. Georgiou, "A Data-Driven Detection System for Predicting Stress Levels from Autonomic Signals," IEEE BioCAS, 2019.

ACKNOWLEDGEMENTS

This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/P00993X/1