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Abstract—Full converter-based wind power generation 

(FCWG, e.g. permanent magnet synchronous generator (PMSG)) 

becomes prevalent in power electronics dominated multi-machine 

power system (MMPS). With flexibly modified FCWG oscillation 

modes (FOMs), FCWG has the potential to actuate conducive 

dynamic interactions with electromechanical oscillation modes 

(EOMs) of MMPS. In this paper, a mathematical model of 

FCWG and MMPS is firstly derived to examine the dynamic 

interactions. Then a novel modal superposition theory is 

proposed to classify the modal interactions between FOMs and 

EOMs in the complex plane for the first time. The modal 

coupling mechanism is graphically visualized to investigate the 

dynamic interactions, and the eigenvalue shift index is proposed 

to quantify the dynamic interaction impact on critical EOM. 

Based on different manifestos in modal coupling mechanism and 

eigenvalue shift index, a novel methodology to optimize the 

dynamic interactions between the FCWG and MMPS is designed 

within the existing control frame. The optimized dynamic 

interactions (i.e. modal counteraction) can significantly enhance 

the LFO stability of MMPS, effectiveness of which is verified by 

both modal analysis and time domain simulations. 

 
Index Terms— Electromechanical oscillation mode (EOM), 

low frequency oscillation (LFO), permanent magnet synchronous 

generator (PMSG), modal superposition, optimized interaction. 

 

I. INTRODUCTION 

OWER system low frequency oscillation (LFO) 

stability could be significantly impacted by the increasing 

penetration level of wind power generation [1-5]. Full 

converter-based wind power generation (FCWG, i.e., 

permanent magnet synchronous generator (PMSG)) is very 

promising to replace other types of wind power generation 

(such as doubly-fed induction generator (DFIG)) in the future 

market owing to the rapid development of power electronics 

[6-8]. Due to the completely different physical structure of the 

wind power generators from the conventional thermal power 

synchronous generators (CSGs), the high penetration of 

FCWG, especially the replacement of CSGs with FCWG, may 

lead to inertia and damping reduction of the multi-machine 

power system (MMPS). In addition, the traditional LFO 

suppressing measures such as power system stabilizer (PSS) 

can no longer be applied. New solutions to provide damping 

functions with FCWG and improve LFO stability need to be 

investigated. 

To assess the integration of wind power generation, the 

 
 

mechanism of how wind power generation interacts with 

power system needs to be studied. As stated in reference [9], 

the impact of grid-connected wind farms on the power system 

are mainly in two folds: i.e. the change of power flow and the 

dynamic interactions. With the benefit of wind power 

generation from FCWG to meet the demand of load centers 

being fully utilized, the dynamic interactions introduced by the 

integration of FCWG should also be explored to benefit the 

LFO stability of power systems. 

Various control strategies are implemented, and the 

associated damping controllers are designed to improve the 

dual dynamic interactions as well as enhance the damping of 

the power system. Reference [10] offers a cascading control 

scheme to provide inertia support to the power system via 

simultaneous utilization of dc-link capacitor energy and wind 

turbine rotor kinetic energy. A virtual inertia control scheme 

based on optimized power point tracking (OPPT) controller 

for PMSG-based wind turbine is proposed to provide inertial 

response and damping for power system oscillations [11]. The 

virtual synchronous generator (VSG) control strategy is 

widely employed to increase the effective inertia and damping 

of PMSG in [12]. It is reported in [13] that delay of frequency 

signal and gains of inertia control loop can influence the 

duration of the peak inertia response, and an over 10s inertia 

response can be achieved to improve the oscillation stability 

with the coordination of individual turbines. 

However, on the one hand, most control strategies and 

schemes require auxiliary control devices to realize the 

damping enhancement, which may increase the complexity of 

the wind power generation. On the other hand, careful tuning 

and coordination with other components of the FCWG are 

needed. This may also add burden to the operation and weaken 

the robustness of the power system. In this paper, a novel 

methodology to directly coordinate and improve the dynamic 

interactions between FCWG and MMPS is proposed. The 

objective of damping LFOs can be achieved by optimizing the 

dynamic interactions within the existing conventional control 

frame. 

Therefore, the contributions of this paper are summarized as 

follows: 1) Modal superposition theory: The modal 

superposition theory is proposed to categorize and analyze all 

the possible dynamic interactions between FCWG and MMPS. 

2) Modal coupling visualization: Three categories of modal 

coupling are extensively elaborated and visualized in the 

complex plane, which provides theoretical foundation for 

damping enhancement with proper modal coordination.; 3) 

Modal coupling mechanism: The modal coupling mechanism 
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is conducted through to explore the modal interactions 

between FOM and EOM considering the relative locations; 4) 

Optimization methodology: Based on modal superposition 

theory and eigenvalue shift index, an optimization 

methodology to optimize the dynamic interactions is proposed 

to achieve modal counteractions and enhance the overall LFO 

stability. 

The remaining of this paper is organized as follows. Section 

II presents the system under investigation where an FCWG-

based wind farm is connected to a benchmark MMPS. The 

mathematical model is established, with the FCWG wind farm 

being modeled as a PMSG controller of MMPS. Section III 

introduces the modal superposition theory that classifies the 

modal interactions between FCWG and MMPS. Three 

categories of modal coupling are analyzed and visualized, and 

their impact on damping is discussed. Section IV presents the 

eigenvalue shift index to evaluate the qualitative and 

quantitative impact of FCWG on LFO stability. Then a novel 

optimization methodology is proposed to optimize the 

dynamic interactions as well as realize the optimal modal 

coordination between FCWG and MMPS. Section V presents 

a thorough case study to verify the effectiveness of the 

proposed method. Analyses in both complex domain and time 

domain are performed. Section VI concludes the paper. 

II. MATHEMATICAL MODEL 

Fig. 1 shows that an FCWG-based wind farm is connected 

to MMPS at the common coupling point (PCC). The FCWG-

based wind farm is modeled as a PMSG with full converters. 

The collective behavior of a group of wind turbines in the 

wind farm can be presented by an equivalent lumped machine 

as demonstrated in previous studies [14-16]. In this paper, 

introduction and discussion are presented for an equivalent 

PMSG connected to the MMPS so as to facilitate the analyses. 
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Fig.1.  Physical configuration of an FCWG connected to a multi-machine 

power system. 

The integration of FCWG consists of four main parts: 1) 

The PMSG; 2) The machine side converter (MSC) and the 

associated control system; 3) The DC-link, the grid side 

converter (GSC) and the associated control system; 4) The 

synchronous reference frame phase locked loop (SRF-PLL) 

which keeps the synchronization with MMPS. 

In the derivation of mathematical model, a detailed 13th-

order dynamic model of PMSG, the associated converters and 

control systems is used [17]. In addition, a second-order SRF-

PLL is used [18]. In total, the 15the order mathematical model 

of FCWG can be expressed as 
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where 𝛥𝑋𝑝𝑝 = [ 𝛥𝜓𝑝𝑠𝑑  𝛥𝜓𝑝𝑠𝑞 𝛥𝜔𝑝𝑟  𝛥𝑥𝑝1 𝛥𝑥𝑝2 𝛥𝑥𝑝3 𝛥𝐼𝑝𝑐𝑑   

𝛥𝐼𝑝𝑐𝑞  𝛥𝑉𝑝𝑑𝑐  𝛥𝑥𝑝4 𝛥𝑥𝑝5 𝛥𝑥𝑝6 𝛥𝑥𝑝7 𝛥𝑥𝑝𝑙𝑙  𝛥𝜃𝑝𝑙𝑙  ], the 1st ~3rd  

state variables denote the dynamics of PMSG wind turbine, 

the 4th~6th state variables denote the dynamics of MSC, the 

7th~8th state variables denote the dynamics of the filter, the 

9th~10th state variables denote the dynamics of DC capacitor, 

the 11th~13th state variables denote the dynamics of GSC, 

and the 14th~15th state variables denote the dynamics of SRF-

PLL. ΔVpcc=[ΔVx ΔVy]𝑇 is the voltage variation of PCC and 

ΔIpcc=[ΔIx ΔIy]𝑇 is current injection variation from PMSG at 

PCC under the common x-y coordinate system. Agp , Bgp ,Cgp , 

Dgp denote the state space matrices of FCWG. 

Meanwhile, the state space equations of MMPS can be 

derived as [19]  
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where ∆Xg denotes the vector of all the state variables of the 

CSGs. AgT  , BgT  ,CgT  , dI  denote the state space matrices of 

MMPS. 

Hence, by combining (1) and (2), the linearized 

closed-loop interconnected model of the entire power 

system is obtained as 
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In Fig.1, the FCWG acts as a current source Ipcc = Ipcc0 +

ΔIpcc, which provides the grid supporting function [20] for the 

power system and responses to the variation of PCC voltage 

Vpcc = Vpcc0 + ΔVpcc , where the subscript ‘0’ denotes the 

steady-state value of the corresponding variable and ‘ Δ ’ 

denotes the variation of the corresponding variable at some 

equilibrium operating points. Under steady state, the feedback 

signal ΔVpcc = 0 and output ΔIpcc = 0, the FCWG wind farm 

acts as a constant power source with a constant current 

injection Ipcc0  , which only influences the power flow. 

However, once disturbances happen in the power system, 

voltage fluctuations at PCC will be introduced into FCWG and 

its associated control systems will respond to MMPS in the 

form of current variation. Hence, the FCWG can influence the 

dynamic performance of the power system and in some degree 

act as a sort of controller from the point of view of MMPS. 

To study the dynamic interactions from FCWG, a 

linearized model is shown in Fig. 2, where the FCWG is 

mathematically modeled as a controller of MMPS, which 

denotes as the ‘PMSG controller’ as a matter of convenience 

in the rest of this paper. The voltage variation 

ΔVpcc=[ΔVx ΔVy]𝑇 at the point of common coupling (PCC) 

acts as the feedback signal and the output is the current 

variation injection ΔIpcc=[ΔIx ΔIy]𝑇  that influences the 

dynamic performance of the MMPS. According to the power 

flow information at PCC, the transfer functions of both MMPS 

and the PMSG controller can be derived as G(s) and H(s), 

respectively. The formation of the transfer functions can be 
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obtained from the state space matrices derived above. 
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Fig. 2.  Mathematical model of a PMSG controller connected to the multi-

machine power system. 

Due to the AC-DC-AC configuration, FCWG is decoupled 

from MMPS and do not normally respond to the dynamics 

change of the main grid. Moreover, the wind farm owners 

normally adopt conservative control strategies which mainly 

focus on the improvement of the dynamic performance of the 

wind turbines themselves rather than respond actively to the 

disturbances of MMPS. Therefore, the dynamic interactions 

between FCWG and MMPS are usually weak and even 

negative (e.g. modal resonance conditions).  

However, through properly tuning the controllers of grid 

side converter (GSC), considerable dynamic interactions with 

MMPS are achievable for the benefit of oscillation stability. 

With a careful investigation on the LFO characteristic of 

MMPS, it is feasible to control the participation of FCWG in 

LFOs to improve the dynamic interactions and thus oscillation 

stability. As a result, the positive contributions from FCWG 

towards MMPS can be obtained. 

III. MODAL SUPERPOSITION THEORY 

A.  Modal Superposition Classification 

The integration of FCWG introduces new FCWG 

oscillation modes (FOMs) to MMPS. The FOMs may interact 

with the open-loop electromechanical modes (EOMs) of 

MMPS. The dynamic modal interaction process can be 

designated as modal superposition. Fig. 3 illustrates all the 

classifications of modal superposition between FCWG and 

MMPS and the impact on system damping. 
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Fig. 3  Classification of modal superposition. 

A.1 Modal Decoupling (DC coupling) 

The integration of FCWG not only provides power 

injections, but also induces dynamic interactions with MMPS. 

Due to the full-scale converters and corresponding control 

strategy, not all the FOMs participate in the modal interactions. 

Some of FOMs (e.g. the oscillation modes related to PMSG 

wind turbine and machine side converter (MSC)) are 

connected at the point of DC coupling (i.e. the DC capacitor) 

and thus decoupled from MMPS. This kind of modal 

superposition is called modal decoupling, which only 

introduces new modes to the entire power system and does not 

interact with the original modes of MMPS. 

Therefore, the new oscillation modes are all independent 

FOMs, their characteristics are determined by its physical 

parameters and operating points, while the original modes of 

MMPS remain the same. As a result, the damping of critical 

EOM of MMPS is not affected. 

A.2  Modal Coupling (AC Coupling) 

The rest of FCWG is usually connected to MMPS via the 

point of AC coupling (i.e. PCC), and the associated control 

system at the grid side converter (GSC) normally responses to 

the PCC voltage variation from MMPS. Therefore, the FOMs 

that relate with DC link, GSC and phase-locked loop (PLL) 

will interact with the EOMs of MMPS. This type of modal 

interaction is named as modal coupling. Based on the 

coupling strength and characteristics, they can be classified in 

three main categories of modal coupling. 

First, based on the coupling strength, the modal coupling 

can be divided into weak interaction and strong interaction. If 

the modal coupling is strong enough to influence the critical 

EOM considerably, such as reduces the damping ratio 

noticeably or even leads to negative damping ratio and 

instability, it is defined as modal strong interaction. 

Otherwise, it is called modal weak interaction (Yellow). 

Normally, the dynamic interactions between FCWG and 

MMPS are very weak. The FOMs are mainly determined by 

the physical parameters and related control strategies that are 

commonly designed to focus on its own dynamic performance. 

Therefore, the impact of FCWG is to generate a weak 

interaction that superposes on the critical EOM and sometimes 

can be negligible. 

The strong interactions between FCWG and MMPS may be 

detrimental or beneficial. If the strong modal interactions 

deteriorate the damping ratio of the critical EOM and threat 

LFO stability, it is called modal resonance (Red). Under 

modal resonance, the newly introduced FOM resonates with 

the original EOM, and EOM tends to move towards right half 

complex plane, which magnifies the electromechanical 

oscillation and jeopardizes the LFO stability. On the contrary, 

if the interaction between FOM and EOM has a positive effect 

on the damping ratio of EOM, it is called modal 

counteraction (Green). In this case, one of FOMs 

significantly interacts with the critical EOM and pulls the 

EOM towards the left of the complex plane. As a result, the 

system damping is improved as well as the LFO stability. 

The modal superposition between FOM and EOM can 

conspicuously influence the LFO stability once modal strong 

interaction is induced. In normal weak interaction condition, 

the FOMs usually have different oscillation frequency from 
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critical EOM, which are well damped due to its well-tuned 

control parameters. However, under some circumstance, if the 

oscillation frequency of FOM is close to the frequency of 

EOM, the strong modal interactions (modal resonance or 

modal counteraction) may much likely happen, which result in 

either considerable damping reduction or improvement. 

Therefore, appropriate modal coordination between FOM and 

EOM should be paid attention to circumventing modal 

resonance and achieving modal counteraction. 

B.  Modal Coupling Classification Visualization 

In practice, if the damping ratio of critical EOM is larger 

than 5%, the power system is identified to be a strong system 

that has enough damping margin to ensure LFO stability. 

However, if the damping ratio of critical EOM is less than 5% 

or even 3%, the system is identified to be weak [19]. Under 

such circumstance, the dynamic interactions from FCWG may 

become eminent or even crucial for LFO stability. In this 

paper, the core concern is to assess the dynamic interactions 

between FCWG and a weak MMPS and propose a modal 

coordination strategy to enhance LFO stability. 
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Fig. 4  Diagram of modal coupling classification based on a fixed open-loop 

critical EOM. 

For a weak MMPS, the open-loop critical EOM usually 

locates at the right of 5% damping ratio line and almost stays 

at the same place or nearby in most operating points, whereas 

the open-loop FOM can be flexibly relocated within 

acceptable range. The modal couplings also vary with 

different locations between open-loop FOM and open-loop 

EOM. Fig. 4 illustrates the modal coupling classification 

visualization between FCWG and MMPS for a fixed open-

loop critical EOM and a varying open-loop FOM. If the open-

loop FOM locates in the yellow area, the modal interactions 

are quite weak, and do not impose significant impact on LFO 

stability and can be neglected in most cases. If the open-loop 

FOM locates in the green area, strong modal counteraction 

may happen that pulls the critical EOM towards the left and 

meliorates the system damping. 

If the open-loop FOM locates in the red area, strong modal 

resonance may happen that resists and pushes the critical 

EOM towards the right of complex plane or even leads to 

instability.  

For the entire closed-loop system, the eigenvalues related 

with open-loop FOM and open-loop EOM shift in the complex 

plane due to modal interactions as reflected in Fig. 6. Fig. 6(a) 

depicts the typical eigenvalue movements of critical EOM and 

FOM under weak interaction, while Fig. 6(b) and Fig. 6(c) 

demonstrate that of modal counteraction and modal resonance 

under strong interaction respectively.  

C.  Modal Coupling Classification Mechanism 

To verify the modal coupling classification, a small test 

system is established as shown in Fig. 5. The critical open-

loop EOM can be calculated from the generator transfer 

function G(s), while the open-loop FOM is solved from the 

controller transfer function H(s).  
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Fig. 5  The configuration of the sample system. 
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Fig. 6  Eigenvalue shifts of critical EOM and FOM under different categories of modal coupling. 
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For a fixed open-loop EOM, the upper left half complex 

plane can be classified into different areas with respect to the 

location of open-loop FOM while considering different modal 

interactions, as illustrated in Fig. 7 and Fig. 8. To perform the 

area classification, we enumerate the most possible area in left 

half complex plane. Since there are infinite locations in the 

selected area, we set up a rule to examine 50,000 locations of 

FOM (area search range: real part range: 0 ~ -5, step length: 

0.01, imaginary part range: 0 ~ 10, step length: 0.1) for each 

subfigure. For every FOM location, closed-loop eigenvalue 

analysis is implemented, and its impact on closed-loop EOM 

damping is analyzed. Based on the damping performance with 

respect to different modal coupling conditions, the FOM 

location is colored. 

As demonstrated in Fig. 7 and Fig. 8, the yellow area 

denotes the modal weak interactions, green area implies the 

modal counteractions, while the blue, red and black areas 

reflect the modal resonances (ordinary modal resonance, 

strong resonance and instability, respectively). For a fixed 

open-loop EOM, the location of FOM influences the overall 

oscillation stability. A magenta point of FOM indicates the 

optimal location of FOM so that the entire closed-loop system 

has the largest damping ratio. Based on analyses above, 

several findings are concluded as follows: 

1) For a specific system, the integration of controller 

introduces new modes (e.g. FOM) that may interact with 

the original mode (i.e. the open-loop EOM). With 

different locations of open-loop EOM, the area 

classifications of open-loop FOM also vary in the 

complex plane. 

2) Improper locations of open-loop FOM may induce modal 

resonance that exasperates the system damping or even 

leads to instability (e.g. red and black areas). 

3) For a fixed oscillation frequency open-loop EOM, the 

smaller the damping ratio is, the larger the green area is 

(Fig. 7), which indicates that modal counteractions are 

easier to be achieved and more effective in a weak system. 

The damping improvement in a strong system is quite 

limited. 

4) For a fixed damping ratio open-loop EOM, the lower the 

oscillation frequency is, the larger the green area is (Fig. 

8), which implies that the LFO modes are more sensitive 

in the modal interactions, and modal counteractions are 

more promising in depressing LFOs. 

5) The optimal open-loop FOM usually has almost the same 

frequency as the open-loop EOM and locates at the left 

but not very far away, which is an important characteristic 

in narrowing the search range of optimal control 

parameters. 
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Fig. 7  Area classification considering different damping ratios of open-loop 

EOM. 
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Fig. 8  Area classification considering different oscillation frequencies of 

open-loop EOM. 

 
 

IV. EIGENVALUE SHIFT INDEX AND OPTIMAL MODAL 

COORDINATION STRATEGY 

In this section, assessments on the impact of the PMSG 

controller are presented. Eigenvalue shift index is proposed  to 

investigate the dynamic interaction impact on the critical 

EOM in a quantitative manner and provide a clear 

understanding of how FCWG influences the LFO stability of 

MMPS. On this basis, the modal coordination optimization is 

proposed to realize modal counteraction between FOM and 

critical EOM and enhance the damping of MMPS. 

A.  Eigenvalue Shift Index 

Assume λi=-σi+jωi and vi , i=1,2,…M as the ith eigenvalue 

and associated right eigenvectors of the state matrix AgT  of 

MMPS. Denote λi=-σi+jωi  as the eigenvalue of the ith 
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oscillation mode of MMPS excluding the dynamic interactions 

of the PMSG controller (i.e. ΔIpcc=[ΔIx ΔIy]𝑇 = 𝟎 ) , and 

𝜆̂i=-𝜎̂i+j𝜔̂i  is the eigenvalue of the ith oscillation mode 

including the dynamic interactions of PMSG controller (i.e. 

ΔIpcc=[ΔIx ΔIy]𝑇 ≠ 𝟎 ). Both λi  and 𝜆̂i  can be obtained 

through eigenvalue analyses on the open-loop system and 

closed-loop system respectively. Therefore, the impact of 

dynamic interactions of the PMSG controller can be 

mathematically defined by the eigenvalue shift index (ESI) by 

the equation: ESI=Δλi=𝜆̂i − λi. 

The real part of ESI (denoted as Re(ESI)) is related to the 

damping of the power system. If Re(ESI)<0, it means the 

dynamic interactions introduce extra damping, and hence the 

integration of the PMSG controller is beneficial for the power 

system oscillation stability. On the other hand, if Re(ESI)>0, it 

means the dynamic interactions deteriorate the system 

damping, and hence the integration of the PMSG controller is 

detrimental for the power system oscillation stability. 

Based on analyses in section III, the modal counteractions 

can benefit the damping MMPS. To realize modal 

counteractions, the proper modal coordination on the PMSG 

controller is needed. To deeply dig this potential to enhance 

the LFO stability, damping torque analysis is employed to 

quantify the impact mathematically. 

The rearrangement of state space matrix AgT , BgT ,CgT , dI 

of MMPS can be performed as 
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A detailed diagram to quantify the contribution from the 

PMSG controller to EOM eigenvalue shifts is shown in the 

detailed diagram is shown in Fig. 9. It is worth mentioning 

that if we further rearrange the structure of (4), other 

oscillation modes (e.g. sub-synchronous oscillation modes) 

can also be evaluated. 

The forward path (as highlighted in blue) from the PMSG 

controller to electromechanical oscillation loop of MMPS is 

[21]  

 -1= ( ) = + ( )s s
I2 23 33 I3

pcc

ΔT
F b A I - A b

ΔI
  (5) 

By employing damping torque analysis in [22], the 

eigenvalue shift of ith eigenvalue λi  (ith EOM) of MMPS 

caused by the integration of PMSG controller can be 

calculated as  

 ( ) ( ) ( )F H  
=

 = 
1

i i i i

k

ik

n

k iS   (6) 

where Sik is the sensitivity of λi with respect to the damping 

torque coefficient of the kth SG in MMPS, H is the transfer 

function of the PMSG controller, 𝛾ik  is the relationship 

between ΔVpcc and Δωk. 

1
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Fig. 9  Contribution from PMSG controller to the EOM of MMPS. 

From (6), it can be seen that the eigenvalue shift of the 

EOM of MMPS is closely related to the transfer function H (s) 
of the PMSG controller. Since H (s) is mainly determined by 

the parameters of the PMSG and its associated control system, 

if λi is close to the FOMs, H (λi) may become very large that 

leads to considerable ESI. With proper tuning and 

optimization of the PMSG controller, it is possible to obtain an 

eigenvalue shift which has a negative real part, which turns 

out to move the eigenvalue of the EOM towards the left in the 

complex plane. The objective of PMSG controller parameter 

tuning is to realize a modal coordination with the critical EOM 

so that the modal counteractions happen and improve the 

system damping. 

B.  Modal Coordination Optimization 

By optimizing the controller parameters, the FOMs can be 

relocated to induce strong modal counteractions with the 

critical EOM and thus enhance the LFO stability of MMPS. 

Based on the modal superposition theory proposed in Section 

III, the possible FOM range to achieve the modal 

counteraction can be defined in the complex plane and hence 

narrow the search range of optimal parameters and facilitate 

the modal coordination optimization. The tuning process can 

therefore be defined as an optimization problem to obtain the 

largest negative part of the eigenvalue shift in critical EOM. 

 ( )Minimize ( )iEOMRe ESI real =    (7) 

where ΔλiEOM  is the eigenvalue shift of the critical EOM of 

MMPS.  
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The modal coordination optimization is illustrated in Fig. 10. 

Input the Profile of MMPS and FCWG

Time Domain Simulation

Exit

Change FCWG 

parameters

Power Flow Calculation

Variable Initialization and Linearization

Eigenvalue Shift Index Calculation

Modal Analysis

Minimal Re(ESI) reached 

or search all the parameter 

domain already?

No

Yes

Define modal counteraction range of FCWG parameters 

Modal Superposition Theory

 
Fig. 10  Flowchart of parameter tuning in the PMSG controller. 

To ensure the robustness of the proposed optimization 

strategy, the optimization is conducted in the worst case 

scenario, not only for the worst damping conditions of MMPS 

(e.g. heavy load condition), but also for the worst dynamic 

interactions from FCWG (i.e. the highest power injection from 

FCWG and the modal resonance conditions that possess the 

worst dynamic interactions) as suggested by [9]. With this 

optimization strategy, the optimized parameters can fully 

guarantee their robustness when operating condition changes, 

which has been verified by the following case studies. 

It can be also noted that the proposed optimization strategy 

relies on the availability of the entire system model. However, 

when the system model is completely or partially unavailable, 

the optimal modal coordinating strategy can still be 

implemented by using a measurement-based technique (e.g., 

using PMU to measure typical LFOs). The important findings 

based on modal superposition theory are still valid. 

V. CASE STUDY 

A.  Introduction of the Example System 

An example power system is presented in Fig. 11 to study 

the dynamic interactions between FCWG and MMPS. The 

New England power system is integrated with an FCWG wind 

farm connected at Bus 22. In the example system, the 

simplified third-order model of the synchronous generators 

(SGs) and a first-order of the automatic voltage regulator 

(AVR) are adopted [23]. No PSS is installed on any SG. The 

FCWG wind farm is modeled as a PMSG connected to the 

power system through full converters, the detailed 15th-order 

model of PMSG is used. The PMSG adopts reactive power 

control with a fixed power factor (0.95). The typical controller 

parameters in [24] are used in PMSG. 
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Fig. 11  Configuration of New England power system integrated with an 

FCWG wind farm.  

B.  Open-loop MMPS and Initial Condition Setting 

To examine the original EOMs of MMPS, the active power 

injection of the PMSG is first set to be zero (i.e Pw=0 p.u.). 

Then, the nine low frequency EOMs in the open-loop New 

England power system are identified by modal analysis, 

ranging from 0.4Hz ~ 1.3Hz, as shown in Table I. 
TABLE I 

THE TYPICAL EOMS OF THE NEW ENGLAND POWER SYSTEM 

Eigenvalue  

of EOM 

Frequency 

(Hz) 

ELCR*1 Associated SGs 

-0.1537 + 3.1235i 0.4971 10.16 1,2,3,4,5,6,7,8,9,10*2 

-1.5016 + 4.8621i 0.7738 14.38 3,4,5,6,7,9 

-0.1886 + 5.2913i 0.8421 18.14 2,3,6,7,9 

-0.3245 + 5.9365i 0.9448 31.03 2,3,6,7 

-0.5277 + 6.2109i 0.9885 84.21 1,3,6,7,8,9 

-0.2641 + 6.6454i 1.0576 46.29 2,3 

-0.5344 + 7.6212i 1.2129 25.92 4,5,6,7,8 

-0.4056 + 7.6556i 1.2184 32.04 4,6,7 

-0.4478 + 7.7884i 1.2396 35.21 1,4,8 

*1: ELCR means electromechanical loop correlation ratio which classifies the 

EOMs from other oscillation modes; *2: The number in bold (e.g.10) in the 

last column means the tenth SG possesses the largest participation factor. 

By analyzing the participation factors (PFs) with related 

SGs in each EOM, the local modes and inter-area modes are 

easily classified [23]. The critical mode is usually the inter-

area mode with the lowest oscillation frequency (e.g. 

0.4971Hz in Table I) that dominates the LFO stability, and in 

which almost all the SGs are participated. 

C.  Modal Analysis on Modal Couplings 

As stated in section III, there are three categories of modal 

coupling. With typical controller parameters in PMSG, the 

modal interaction between FCWG and MMPS is identified to 

be weak interaction condition above. 

By performing the proposed optimization methodology 

shown in Fig. 10, the controller parameters of FCWG is 

optimized and optimal modal coordination is achieved. The 

worst case with a low damping ratio of with 2.31% under 

modal weak interaction conditions (i.e. Pw=3.5p.u. with 

original typical controller parameters) is chosen as the base to 

conduct modal coordination optimization. After optimization, 

it is designated as the optimized interaction condition (i.e. 

modal counteraction) in this case study. 
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To demonstrate all the modal coupling conditions between 

FCWG and MMPS, the strong modal resonance (e.g. the 

open-loop modal resonance (OLMR) in [25]) is also employed 

for comparison and gives a deeper insight on the impact of 

modal interactions. This is designated as strong resonance 

condition (i.e. modal resonance).  

As it is known that the operating points of the FCWG and 

MMPS may vary and have important impacts on oscillation 

stability. Therefore, to carefully examine three categories of 

modal coupling, different operation points, i.e. active power 

injection ranges from 0p.u. to 3.5p.u., are considered and 

compared through modal analysis. The closed-loop oscillation 

modes of associated FOM and critical EOM with different 

operating points are calculated and shown in Table II. 
TABLE II 

MODAL ANALYSES COMPARISON OF THREE INTERACTION CATEGORIES 

UNDER DIFFERENT WIND POWER INJECTIONS 

Active power 

of PMSG 

(p.u.) 

Interaction 

Categories 

Modal 

Weak 

Interaction 

Modal 

Counteract

ion via 

Optimized 

Interaction 

Modal 

Resonance 

with 

OLMR 

Pw=0.0 

Critical EOM 

(Damping 

Ratio) 

-0.1537 

+3.1235i 

(4.91%) 

-0.1537 

+3.1235i 

(4.91%) 

-0.1537 

+3.1235i 

(4.91%) 

FOM 

(Damping 

Ratio) 

-2.2274 

+5.8990i 

(35.32%) 

-0.4166 

+2.5617i 

(16.05%) 

-0.1215 

+3.2270i 

(3.76%) 

PF of PMSG 0.00% 0.00% 0.00% 

Pw=0.5 

Critical EOM 

(Damping 

Ratio) 

-0.1434 

+3.1084i 

(4.61%) 

-0.1620 

+3.1313i 

(5.17%) 

-0.0853 

+3.0614i 

(2.79%) 

FOM 

(Damping 

Ratio) 

-2.2132 + 

5.9111i 

(35.06%) 

-0.4051 + 

2.5662i 

(15.59%) 

-0.1932 + 

3.2782i 

(5.88%) 

PF of PMSG 0.23% 3.05% 30.58% 

Pw=1.5 

Critical EOM 

(Damping 

Ratio) 

-0.1210 

+3.0773i 

(3.93%) 

-0.2074 

+3.0759i 

(6.73%) 

-0.0344 

+2.9740i 

(1.16%) 

FOM 

(Damping 

Ratio) 

-2.1836 + 

5.9364i 

(34.52%) 

-0.3775 + 

2.5762i 

(14.50%) 

-0.2504 + 

3.3434i 

(7.47%) 

PF of PMSG 0.71% 9.71% 35.60% 

Pw=2.5 

Critical EOM 

(Damping 

Ratio) 

-0.0964 

+3.0446i 

(3.16%) 

-0.2528 

+3.0433i 

(8.28%) 

-0.0000 

+2.9060i 

(0.00%) 

FOM 

(Damping 

Ratio) 

-2.1529 + 

5.9635i 

(33.96%) 

-0.3412 + 

2.5857i 

(13.08%) 

-0.2904 + 

3.3884i 

(8.54%) 

PF of PMSG 1.19% 17.11% 36.45% 

Pw=3.5 

Critical EOM 

(Damping 

Ratio) 

-0.0695 

+3.0101i 

(2.31%) 

-0.3086 

+3.0150i 

(10.18%) 

0.0288 

+2.8454i 

(-1.01%) 

FOM 

(Damping 

Ratio) 

-2.1215 

+ 5.9926i 

(33.37%) 

-0.2938 

+ 2.5898i 

(11.27%) 

-0.3239 

+ 3.4248i 

(9.42%) 

PF of PMSG 1.67% 24.89% 36.39% 

 

With the increase of active power injections from FCWG, 

with the normal weak interaction condition, the dynamic 

interactions have limited impact on critical EOM, the main 

impact from FCWG is the power flow changes that possess 

variation on power flow structure of the power system, which 

is also confirmed in [18]. As demonstrated by the blue line in 

Fig.12, the dynamics of FCWG worsen the damping ratio to a 

moderate degree. However, if strong resonance is involved (as 

demonstrated by the black line), the damping ratio of critical 

EOM decreases quickly and leads to instability. 

By implementing modal coordination optimization, the 

dynamic interactions between the FCWG and MMPS can be 

reversed, i.e. the damping ratio of critical EOM can be raised 

with increasing active power injection of the PMSG (as 

denoted by the magenta line) and the eigenvalue loci in Fig. 

12 also implies the critical EOM tends to move towards left, 

and the LFO stability has been enhanced. 

 
Fig. 12  The impact on critical EOM with increasing active power injection of 

PMSG. 

The closed-loop power system is a multi-input-multi-output 

(MIMO) system, the singular value response of the power 

system is illustrated in Fig. 13 to assess the frequency domain 

response. It can be performed by Matlab coding [26]. As the 

low frequency domain is our main concern, to make a clear 

sight, only 0.2Hz ~2.0 Hz (1.26rad/s ~12.57rad/s) is drawn in 

Fig. 13 with the PMSG power injection Pw=1.5p.u. 

Strong resonance condition has the highest peak at the 

frequency 2.97rad/s with 0.882dB while in the optimized 

interaction condition, the critical oscillation peak at the 

frequency 3.07rad/s is the lowest with -10.1dB that indicates 

the critical EOM is well damped. This is also perfectly 

matched with the modal analysis results in Table II. At the 

same time, it can be found that other local EOMs can also be 

compared (as displayed by the red doted circle), and the 

optimized interaction condition also has lower peaks in other 

EOMs in a rough estimation. This finding indirectly proves 

that optimized interactions do not deteriorate other EOMs of 

MMPS. 
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Fig. 13  Singular value response of the closed-loop power system when the 

active power injection of PMSG Pw=1.5p.u. 
The PMSG participation level in critical EOM is also 

examined in Fig. 14. It is noteworthy that the power injection 

may play as a quasi-amplifier that magnifies the dynamic 

interactions although it is not strictly linear, as shown in Fig. 

14(a) and Fig. 14(b). 

(a) (b) (c)  
Fig. 14  Comparison of the PMSG participation in critical EOM under 

different modal couplings. 

Under normal weak interaction condition, the participation 

factor of PMSG grows with the increasing active power 

injection but remains at a very low level (PF<0.018). With 

optimized interaction, the participation factor of PMSG 

increases with a considerable degree (PF=0.25 when Pw=3.5), 

which significantly influences the critical EOM. For the strong 

resonance condition, the participation factors are much higher, 

and the critical EOM is almost dominated by the PMSG 

controller. Hence, its impact on LFO stability is huge and may 

lead to remarkable decrease in damping and even leads to 

instability (as also shown in Fig. 12). 

D.  Time Domain Simulation Verification 

Since the optimized interaction is usually based on the 

extreme case (usually low damping operation conditions), the 

optimized interaction of FCWG can possess positive 

mitigation effect on LFO stability when the operation 

condition varies. 

To further confirm the effectiveness of optimization, the 

dynamic performances of the test system under small 

disturbance and large disturbance conditions are examined via 

time domain simulations respectively. 

D.1 Small Disturbance Response 

The simulation condition is set to be: at t=0.2s, a 5% step 

increase of mechanical power reference occurs at SG1 and 

subsequently drops to original after 100ms. Three categories 

of dynamic interactions with different power injections (Pw 

increases from 1.5 p.u. ~ 3.5 p.u.) are investigated. Due to the 

limitation of space, only the terminal bus voltage and active 

power output of SG10 and PMSG are compared, as shown in 

Fig. 15~Fig. 17. 

 
Fig. 15  Small disturbance dynamics comparison: Pw=1.5p.u. 

 
Fig. 16  Small disturbance dynamics comparison: Pw=2.5p.u. 
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Fig. 17  Small disturbance dynamics comparison: Pw=3.5p.u. 

 

D.2 Large Disturbance Response 

The simulation condition is set to be: at t=0.2s, a three-

phase to earth short circuit occurs at Bus 1 and subsequently 

clears after 100ms. Three categories of dynamic interactions 

with different power injections (Pw increases from 1.5 p.u. ~ 

3.5 p.u.) are investigated. The terminal bus voltage and active 

power output of SG10 and PMSG are compared, as shown in 

Fig. 18~ Fig. 20. 

 
Fig. 18  Large disturbance dynamics comparison: Pw=1.5p.u. 

 
Fig. 19  Large disturbance dynamics comparison: Pw=2.5p.u. 

 

Fig. 20  Large disturbance dynamics comparison: Pw=1.5p.u. 

D.3 Discussion on Time Domain Simulations 

If the wind power penetration level is low, i.e. the active 

power output is low, the impact of PMSG on LFO stability is 

limited. Whereas if the wind power penetration level increases, 

the impact on MMPS become eminent, oscillation becomes 

drastic especially when strong resonance happens. 

It is also worth mentioning that, with optimized interactions, 

the LFO of the critical EOM can be effectively damped. With 

more wind power injection of PMSG into the power system, 

the ability to damp the LFO also becomes stronger, which 

means with properly optimized interaction, the integration of 

FCWG can effectively mitigate the LFO, the positive 

mitigation can be amplified by the increasing wind power 
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injection. 

Simulation results in both small disturbance and large 

disturbance have supported that the optimized interactions 

work effectively especially in weak damping conditions and 

can significantly maximize the damping ratio of the critical 

EOM. 

E.  The Replacement of SG with FCWG 

To test the adaptability of the proposed modal coordination 

strategy, a SG is replaced by FCWG in another different test 

system (viz., two-area power system), as illustrated in Fig. 21. 

In the modified two-area power system, a third-order model 

of the SGs and a simple first-order model of the AVR are used 

with no power system stabilizers (PSS) equipped. The loads at 

Bus 7 and Bus 9 are modeled as constant impedance. The 

detailed model and parameters of the power system are given 

in [23]. The detailed 15th-order FCWG is used to replace SG1 

with the same power output. FCWG adopts the reactive power 

control with constant power factor. The power load flow 

change is balance by G3 at slack Bus 3.  

~

~~
7 7+P jQ

9 9+P jQ

FCWG

2SG 4SG

3SG1 5

2

6 7 8 9 10 11

4

3

 
Fig. 21  Configuration of modified two-area power system integrated with an 

FCWG wind farm.  

The same analysis process is implemented in this two-area 

system. Due to space limit, only the modal analyses and time 

domain simulation results are briefly discussed. 

With typical control parameters, the critical EOM is 

calculated to be -0.1218 + 3.7919i (damping ratio=3.21%) via 

modal analysis. If the parameters are not properly tuned, for 

example, the strong resonance happens, and then critical EOM 

is forced to move to -0.0099 + 3.6500i with a very low 

damping ratio of 0.27%. However, after performing the 

optimal modal coordination, the critical EOM is relocated to -

0.2985 + 3.6371i with a high damping ratio of 8.18%. 

The small disturbance condition is set to be: at t=0.2s, a 5% 

step increase of mechanical power reference occurs at SG2 

and subsequently drops to original after 100ms. The large 

disturbance condition is set to be: at t=0.2s, a three-phase to 

earth short circuit occurs at Bus 2 and subsequently clears 

after 100ms. Due to the limitation of space, only the terminal 

bus voltage and active power output of SG3 and PMSG are 

compared as shown in Fig. 22 and Fig. 23. 

 
Fig. 22  Small disturbance dynamics comparison in two-area system. 

 
Fig. 23  Large disturbance dynamics comparison in two-area system. 

Same findings can be concluded. Improper tuning of 

controller parameters in FCWG may induce negative impact 

on LFO stability. With optimal modal coordination strategy, it 

is possible to impose beneficial dynamic interactions. As a 

result, the system damping is greatly enhanced as well as the 

LFO stability. 

 

VI. CONCLUSION 

An optimal modal coordination strategy to mitigate low 

frequency oscillation in FCWG penetrated power systems has 

been proposed in this paper. The significant findings are 

exhibited as follows. 
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i) Modal superposition theory analyzes the all the 

possibilities of modal interactions between FCWG and MMPS. 

One of the modal interactions (viz. modal counteraction) is 

proved to be effective in improving system damping. 

ii) Three categories of modal coupling are visualized in the 

complex plane. Modal coupling mechanism is investigated to 

support the important finding that modal counteraction can 

significantly suppress LFOs in a weak damping MMPS 

especially. 

iii) An optimal modal coordination strategy is proposed to 

relocate FOM to induce modal counteraction with the critical 

EOM of MMPS. Satisfactory damping performance are 

attained after optimization with different operation points. 

iv) Time domain simulation results also validate the 

superior damping effect and effectiveness of the optimized 

modal interaction over the normal weak interaction with 

typical controller parameters in FCWG. 
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