
MORPH: A Reference Architecture for Configuration and
Behaviour Self-Adaptation∗

Victor Braberman1, Nicolas D’Ippolito1, Jeff Kramer2, Daniel Sykes2, Sebastian Uchitel1,2
1 Departamento de Computación, FCEN, Universidad de Buenos Aires, Argentina

2 Department of Computing, Imperial College London, UK

ABSTRACT
An architectural approach to self-adaptive systems involves
runtime change of system configuration (i.e., the system’s
components, their bindings and operational parameters) and
behaviour update (i.e., component orchestration). Thus, dy-
namic reconfiguration and discrete event control theory are
at the heart of architectural adaptation. Although control-
ling configuration and behaviour at runtime has been dis-
cussed and applied to architectural adaptation, architectures
for self-adaptive systems often compound these two aspects
reducing the potential for adaptability. In this paper we
propose a reference architecture that allows for coordinated
yet transparent and independent adaptation of system con-
figuration and behaviour.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Design

Keywords
Self-adaptive Systems, Software Architecture

1. INTRODUCTION
Self-adaptive systems are capable of altering at runtime

their behaviour in response to changes in their environment,
capabilities and goals. Research and practice in the field
has addressed challenges of designing these systems from
multiple perspectives and levels of abstraction.

It is widely recognised that an architectural approach to
achieve self-adaptability promises a general coarse grained

∗This work was partially supported by grants ERC PBM-
FIMBSE, ANPCYT PICT 2012-0724, UBACYT W0813,
ANPCYT PICT 2011-1774, UBACYT F075, CONICET
PIP 11220110100596CO, MEALS %295261.

framework that can be applied across many application do-
mains, providing an abstract mechanism in which to define
runtime adaptation that can scale to large and complex sys-
tems [21].

Architecture-based adaptation involves runtime change of
system configuration (e.g., the system’s components, their
bindings, and operational parameters) and behaviour up-
date (e.g., component orchestration).

Existing approaches to architectural adaptation (e.g. [16,
10] incorporate elements from two key areas to enable run-
time adaptation: Dynamic reconfiguration [9, 21] and discrete-
event control theory [12, 22, 8]. The first, key for adapting
the system configuration, studies how to change component
structure and operational parameters ensuring that on-going
operation is not disrupted and/or non-functional aspects of
the system are improved. The second, key for adapting be-
haviour, studies how to direct the behaviour of a system in
order to ensure high-level (i.e., business, mission) goals.

Although the notions of configuration and behaviour con-
trol are discussed and applied by many authors, they are
typically compounded when architectures for adaptation are
presented, reducing overall architectural adaptability. Au-
tomated change of configuration and behaviour address dif-
ferent kinds of adaptation scenarios each of which should
be managed as independently as possible from the other.
Nonetheless, configuration and behaviour are related and
it is not always possible to change one without changing
the other. The need for both capabilities of independent
yet coordinated adaptation of behaviour and configuration
requires an extensible architectural framework that makes
explicit how different kinds of adaptation occur.

Consider a UAV on a mission to search for and anal-
yse samples. A failure of its GPS component may trigger
a reconfiguration aiming at providing a location triangulat-
ing over alternative sensor data. The strategy may involve
passivating the navigation system, unloading the GPS com-
ponent and loading components for other sensors in addi-
tion to the component that resolves the triangulation. A be-
haviour strategy that is keeping track of the mission status
(e.g. tracking areas remaining to be traversed, samples col-
lected, etc.) should be oblivious to this change.

A reconfiguration adaptation strategy that can cope with
the GPS failure can be computed automatically using ap-
proaches based on, for example, SMT solvers or planners [22]
that consider the structural constraints provided in the sys-
tem specification (e.g., the need for a location service), re-
quirements and capabilities of component types (e.g., the
requirements of a triangulation service) and runtime infor-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CTSE’15, August 31, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3814-1/15/08...

http://dx.doi.org/10.1145/2804337.2804339

9

mation of available component instances (e.g., the availabil-
ity of other sensors).

The arrival of the UAV at an unexpected location due to,
say, unanticipated weather conditions may make the current
search and collection strategy inadequate. For instance, the
new location may be further away from the base than expected
and the remaining battery charge may be insufficient to allow
visiting the remaining unsearched locations before returning
to base. In this situation the behaviour strategy would have
to be revised to relinquish the goal of searching the complete
area before returning to base in favour of the safety require-
ment that battery levels never go below a given threshold.
The new behaviour strategy may reprioritise remaining ar-
eas to be searched (in terms of importance and convenience),
visiting only a subset of the remaining locations as it moves
towards the base station for recharging. Once recharged, the
strategy may attempt to revisit the entire area under surveil-
lance but prioritising locations previously discarded. Such
behavioural adaptation should be independent to the infras-
tructure supporting reconfiguration control.

A behaviour strategy that can deal with unexpected devi-
ations in the UAV’s navigation plan can be computed auto-
matically using approaches based on, for instance, controller
synthesis [8] that consider a behaviour model describing the
capabilities of the UAV (e.g. autonomy), environment (e.g.,
map with locations of interest and obstacles) and system
goals (e.g. UAV safety requirements and search and analyse
– liveness – requirements). Indeed, our proposal of an ex-
plicit separation of reconfiguration and behaviour strategy
computation and enactment is in line with the design princi-
ples of a separation of concerns and information hiding. The
behaviour strategy is oblivious to the implementation that
provides the services it calls and the reconfiguration strategy
supports the injection of the dependencies that are required
by the behaviour strategy oblivious to the particular order-
ing of calls that the behaviour strategy will make. In a sense,
the design principle which is known to support changeabil-
ity supports runtime changeability, which ultimately is what
adaptation is about.

Configuration and behaviour adaptation may however need
to be executed in concert. Consider the scenario in which
the gripper of the UAV’s arm that is to be used to pick up
samples becomes unresponsive. With a broken gripper the
original search and analyse mission is unachievable. This
should trigger an adaptation to a degraded goal that aims
to analyse samples via on-board sensors and remote process-
ing. This goal requires a different behaviour strategy (e.g.
circling samples once found to perform a 360 degree analy-
sis) but also a different set of services provided by different
components (e.g. infra-red camera). Not only are both be-
haviour and configuration adaptation required, but also their
enactment requires a non-trivial degree of provisioning: To
set up the infra-red camera, the UAV requires folding the
arm to avoid obstructing the camera’s view; performing such
an operation while in the air is risky. Hence, coordination
between configuration and behaviour adaptation is needed:
First, a safe landing location must be found, then arm fold-
ing must be completed, and only then can the reconfigura-
tion start. New components are loaded and activated, and
finally, a strategy for in-situ analysis, rather than analysis
at the base, can start.

It is in the combined configuration and behaviour adapta-
tion where the need for both separation of concerns and ex-

plicit architectural representation of coordination becomes
most evident. Approaches to automated computation of
configuration and behaviour adaptation strategies require
different input information and utilise different reasoning
techniques. Both automated reasoning forms are of signifi-
cant computational complexity and require careful abstrac-
tion of information. Keeping resolution of configuration and
behaviour adaptation separately allows reusing existing and
future developments in the fields of dynamic reconfiguration
and control theory and also helps keep computational com-
plexity down.

The broken UAV gripper scenario requires a coordinated
behaviour and reconfiguration adaptation strategy. The adap-
tation required can be decomposed into a behaviour control
problem that assumes that a reconfiguration service is avail-
able and a reconfiguration problem. The resulting behaviour
strategy will be computed on the assumption that the UAV’s
capabilities will conform to the current configuration (e.g.
grip command fails) until a reconfigure command is executed,
and that from then on different capabilities will be avail-
able (e.g. infra-red camera getPicture command available).
The behaviour strategy computation will also consider re-
strictions on when the reconfigure command is allowed (e.g.
when arm is folded) and new goals (360 degree picture anal-
ysis rather than collect). The computation of the reconfigu-
ration strategy does not entail additional complexity and is
oblivious to the fact that a behaviour strategy that involves a
reconfiguration halfway through is being computed.

In the above scenario, what needs to be resolved at the
architectural level of the self-adaptation infrastructure is
which architectural element is responsible for the decomposi-
tion of the adaptation strategy into a behaviour strategy and
a reconfiguration strategy, and also how strategy enactment
is performed to allow the behaviour strategy to command
reconfiguration at an appropriate time (and possibly even
account for reconfiguration failure). Indeed, an appropriate
architectural solution to this would enable guaranteeing that
given a correct decomposition of the overall composite adap-
tation problem into configuration and behaviour adaptation
problems, and given correct-by-construction configuration
and behavioural strategies for these problems, the overall
adaptation problem is correct.

In this paper we present MORPH, a reference architecture
for behaviour and configuration self-adaptation. MORPH
makes the distinction between dynamic reconfiguration and
behaviour adaptation explicit by putting them as first class
entities. Thus, MORPH allows both independent reconfig-
uration and behaviour adaptation building on the extensive
work developed but also allowing coordinated configuration
and behavioural adaptation to accommodate for complex
self-adaptation scenarios.

2. MORPH
The MORPH reference architecture builds upon the large

body of work related to engineering self-adaptive emphasis-
ing the need to make behaviour and reconfiguration control
first-class architectural entities. In particular, it draws in-
spiration from [16, 10], which are discussed below.

2.1 Background
The MAPE-K model shows how to structure a control

loop in adaptive systems. The four key activities (Monitor,
Analysis, Plan and Execute) are performed over a shared

10

data structure that captures the knowledge required for adap-
tation. The MAPE-K model does not prescribe what knowl-
edge is to be captured nor what aspect of the system is to
be controlled. Thus, there is no explicit treatment or dis-
tinction between configuration and behaviour adaptation let
alone prescribed mechanisms for dealing with coordinated
and independent configuration and behaviour adaptation.

The need to deal with hierarchies of control loops in au-
tonomous systems is widely recognised (e.g. [11]). Lower
levels are typically low latency loops that focus on more
tactic and stateless objectives that involve less monitored
and controlled elements while higher levels tend to focus
on more stateful and strategic objectives involving multi-
ple controlled and monitored aspects that require higher la-
tency loops. The need for hierarchy in architectural self-
adaptation is discussed in [16]. A three-tier architecture
is proposed to provide a separation of concerns and to ad-
dress a key architectural concern related to dealing with the
complexity of run-time construction of adaptation strate-
gies. The architecture structures hierarchically the MAPE-
K loops introducing a separation of concerns in which com-
plex, strategic, resource consuming analysis is performed
in top layers while simple, more tactical adaptation is per-
formed in lower layers.

Unlike the MAPE-K model, the architecture in [16] pre-
scribes the kind of control that is effected on the adaptive
system by establishing a clear interface between the adapta-
tion infrastructure and the component based system to be
adapted. The architecture assumes an interface on which
it can take action on the current system configuration by
creating and deleting components, binding and unbinding
components through their required and provided ports and
setting component modes (i.e., configuration parameters).

Although the three-tier architecture provides a clear sep-
aration of the concerns of behavioural planning from com-
ponent reconfiguration, this is purely hierarchical, with the
behaviour plan dictating the required structural (re) config-
uration at lower layers. Although this allows for independent
structural configuration alone if the behaviour plan is still
satisfied, it is less clear how behaviour control and configura-
tion control should work together, hindering the possibility
of more elaborate behaviour and configuration control and
the potential for reasoning about adaptation guarantees.

The Rainbow [10] framework instantiates and refines the
MAPE-K architecture providing an extensible framework for
sensors and actuators at the interface between the control in-
frastructure and the target system. The architecture recog-
nises the complexity of the interface between the MAPE-K
infrastructure (referred to by the authors as the architecture
layer) and the component system to be adapted (referred to
as the system layer). The Rainbow framework introduces
additional infrastructure into the architecture and system
layers in addition to accounting for an extra layer between
the two: the translation layer. Monitoring is split amongst
the three layers: probes are introduced as system layer in-
frastructure to support observation and measurement of low-
level system states. Gauges are part of the architectural in-
frastructure layer and aggregate information from the probes
to update appropriate properties of the knowledge base used
for the MAPE activities. The translation layer resolves the
abstraction gap between the system layer and the architec-
tural layer, for instance relating abstract component iden-
tifiers in the later concrete process identifiers and machine

identifiers in the former.
Rainbow focuses on achieving self-adaptation through con-

figuration adaptation. Thus, as in [16] focus is on chang-
ing component instances and bindings and also effecting be-
haviour by changing operational parameters (thread pool
size, number of servers, etc.). Indeed, the framework does
not account explicitly for automated construction of be-
haviour strategies that control the functional behaviour of
the system layer components. As in [16], the distinction be-
tween configuration and behaviour control is not elaborated
explicitly in the architecture.

In the following, we propose an architecture that takes
inspiration from the architectures discussed above but that
includes the design concern related to supporting indepen-
dent yet coordinated behaviour and configuration adapta-
tion. The architecture combines the three tier structure
from [16] to address varying latency of architectural self-
adaptation control. We design each layer as a MAPE-K
control loop, resulting in a hierarchical control loop struc-
ture as in [17]. As in Rainbow [10] we address the problem
of bridging the gap between the managed component ar-
chitecture and the adaptation infrastructure encapsulating
the former and also providing a decoupled mechanism for
aggregation and inference over logged system data.

2.2 Architectural Overview
We start with a very brief introduction of the main ar-

chitectural elements to give a general picture of how the
architecture works before we go into detail of the workings
and rationale of each element. A graphical representation of
the architecture can be found in Figure 1. In the remaining
text, when we want to emphasise traceability to the figure
we will use an alternative font.

The architecture is structured in three main layers that sit
above the target system: Goal Management, Strategy Manage-

ment and Strategy Enactment. Orthogonal to the three layers is
the Common Knowledge Repository. Each layer can be thought
of as a implementing a MAPE-K loop. The top layer’s
MAPE-K loop is responsible for reacting to changes in the
goal model that require complex computation of strategic,
possibly configuration and behavioural, adaptation. Its knowl-
edge base is the Common Knowledge Repository. The Strategy

Management layer’s MAPE-K loop is responsible for adapting
to changes that can be addressed using pre-processed strate-
gies. It selects pre-computed strategies based on the Common

Repository Knowledge and a set of internally managed pre-
computed strategies. The Strategy Enactment layer’s MAPE-
K loop is responsible for executing strategies; its knowledge
base is primarily the strategy under enactment.

The Target System abstracts the Component Architecture that
provides system functionality. The Component Architecture

is harnessed by effectors and probes which allow the Strategy

Enactment Layer to interface with system components. The
Knowledge Repository stores in a Log the execution data pro-
duced by Target System and also stores in the Goal Model) the
result of Inference procedures that produce knowledge regard-
ing the system state, goals and environment assumptions.
We expect users, administrators and other stakeholders to
also produce modifications to the Knowledge Repository, and
in particular the goals and environment assumptions.

The three layers that provide the architectural adapta-
tion infrastructure are each split into reconfiguration and a
behaviour aspects. The Goal Management layer has a Goal

11

Behaviour
Problem Solver

Goal Model
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor

reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model
(System state +
System Goals +

Environment
Assumptions)

G
oa

l
M

an
ag

em
en

t
St

ra
te

gy

M
an

ag
em

en
t

St
ra

te
gy

 E

na
ct

m
en

t

Logging Infrastructure

K
no

w
le

dg
e

R
ep

os
ito

ry

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

Figure 1: The MORPH Reference Architecture.

Model Manager whose main responsibility is to decompose
adaptation problems into reconfiguration and behaviour prob-

lems, each of which is given to a specific Solver to produce a
strategy that can achieve the required adaptation. The top
layer sends reconfiguration and behaviour strategies down-
wards. The bottom two layers have architectural elements to
handle reconfiguration and behaviour strategies separately
but interact with each other when and if needed to maintain
overall consistency. The Strategy Management layer entities
interact to ensure that they select consistent strategies to be
executed by the Strategy Enactment layer (c.f., configuration

negotiation). The Strategy Enactment layer entities interact
to ensure that the execution of their respective strategies is
done consistently over time (c.f., reconfigure command).

2.3 Target System
Responsibility: The main responsibility is to achieve

the system goals, encapsulate implementation details and
provide abstract monitoring and control mechanisms over
which behaviour and structure of the system can be adapted.

Rationale: This is to encapsulate the instrumentation of
the system-to-be-adapted to support a flexible and reusable
framework for monitoring, analysing, planning and execut-
ing adaptation strategies in the layers above.

Structure and Behaviour: The Target System, strongly
inspired by [10], contains the component architecture that pro-
vides the managed system’s functionality (e.g., GPS, video,
telemetry and navigation components). It also contains in-
strumentation to monitoring and control of the component
architecture. Two types of effectors are provided. The first
provides an API to add, remove and bind components, in
addition to setting operational parameters of these compo-
nents. We refer to the invocation of operations on these
effectors as reconfiguration commands. These effectors are ap-
plication domain independent, and they provide the adapta-
tion infrastructure an abstraction over the concrete deploy-

ment infrastructure on which the component architecture
runs (e.g., the UAVs operating system). The second effec-
tor type, behaviour actions, is domain dependent and provides
an API that invokes functional services provided by compo-
nents of the component architecture. The UAV’s navigation
component may exhibit a complex API which is abstracted
into simple commands (e.g. goto(Location)) that are to be
used as the basis for behaviour strategies.

The mechanism for monitoring of the component architec-

ture can be provided by probes that reveal state information.
As with effectors, monitoring information can be classified
into two kinds. We have on one hand information regarding
the status of components. This kind of information is ap-
plication independent. Status of a component may indicate
if it is active, inactive, connected or killed. On the other
hand we refer to as events the application domain relevant
information that flows from the Target System to the Strat-

egy Enactment Layer. UAV events may include notifications
regarding battery depletion, or acknowledgements of having
reached a requested location.

Between the target system and the adaptation infrastruc-
ture a translation layer is required to provide translation
services that aim to bridge the abstraction gap between the
knowledge representation required to perform adaptation at
the architectural level and the concrete information of the
actual implementation. In the UAV, this may include re-
solving event handlers, process ids, in addition to domain
specific translations such the conversion of continuous vari-
able for battery level to a discrete battery depleted event.

2.4 Common Knowledge Repository
Responsibility: The key responsibility of the repository

is to keep an up to date goal model at runtime based on
inferences made over continuous monitoring of the environ-
ment to detect changes in goals, behaviour assumptions and
available infrastructure.

12

Rationale: The design rationale for the repository is to
decouple the accumulation of runtime information of the
target system from the complex computational processes
involved in abstracting and inferring high-level knowledge
that can be incorporated, for subsequent adaptation, into a
structured body of knowledge regarding stakeholder goals,
environmental assumptions and target system capabilities.

Structure and Behaviour: The common knowledge
repository stores information about the target system, the
goals and environment assumptions. It consists of two data
structures (a log and a goal model) and an Inference procedure.

The Goal Model: This is the key data architectural ele-
ment of the repository. We use the term “goal model” in the
sense of goal oriented requirements engineering [18].

The point of keeping a structured view of the world that
includes requirements and assumptions, with multiple ways
of achieving high-level goals and preference criteria over these
alternatives is that at runtime it is possible to change the
way a goal is achieved by selecting a different OR-refinement.
The combinatorial explosion of possible OR-refinement reso-
lutions can be a rich source for adaptation which is exploited
in the Goal Management Layer. In addition, this representa-
tion of rationale, is amenable to being updated and changed
as new information is acquired.

2.5 Goal Management Layer
Responsibility: The main responsibility of the Goal Man-

agement Layer is to deal with and anticipate changes in the
stakeholder goals, environment assumptions and system ca-
pabilities by pre-computing adaptation strategies consisting
of separate behaviour and reconfiguration strategies.

Rationale: The rationale for this layer is based on two
core concepts: The first is that the adaptive system must be
capable of performing strategic, computationally expensive,
planning independently of and concurrently with the execu-
tion of pre-computed strategies (occurring in lower layers).
The second is to decompose adaptation into a behaviour
strategy that controls the system to an interface and a re-
configuration strategy that injects the dependencies on con-
crete implementations that the behaviour strategy will use.
Decomposing adaptation along the modular design improves
support for adaptability allowing behaviour and configura-
tion changes independently.

Structure and Behaviour: The layer has three main
entities, the Goal Model Manager, the Behaviour Problem
Solver and the Reconfiguration Problem Solver.

The Goal Model Manager: This is the key element of the
layer responsible for three core tasks: The first is to decide
when a new adaptation strategy must be computed, the sec-
ond is to resolve all OR-refinements in the goal model and
select the requirements for to be achieved by the system, and
third to decompose the requirements into achievable recon-
figuration and behaviour problems. Concrete strategies for
reconfiguration and behaviour are computed by the solvers.

Production of adaptation strategies can be triggered by
requests for plans from layers below or internally due to the
identification of significant changes in the goal model. The
former may correspond to a scenario in which a failure is
propagated rapidly upwards from the target system: For
instance, the UAV’s gripper component fails. The Strategy
Enactment layer, which is executing a strategy that requires
the gripper, immediately informs that its current strategy is
unviable and requests a new strategy to the Strategy Man-

agement Layer. If all pre-computed plans require the arm
to pick up objects, a new strategy for achieving system goals
is requested to the Goal Model Manager.

The alternative, internal, triggering mechanism corresponds
to scenarios in which the goal model is changed because
of new information inferred from the log or input manu-
ally by some stakeholder. For instance, weather conditions
may lead to inferring higher energy consumption rates from
logged information. What would follow is a revision of the
assumptions on UAV autonomy stored in the Goal Model.
Such alteration may trigger the re-computation and down-
stream propagation of search strategies to make more fre-
quent recharging stops.

Adaptation strategies are decomposed into a strategy for
achieving the component configuration that can provide the
functional services required achieve selected requirements
and a behaviour strategy that can call these services in
an appropriate temporal order to satisfy the requirements.
The adaptation strategy that deals with the broken gripper
must reconfigure the system to use a different set of compo-
nents (e.g. the infra-red camera) and coordinate its use upon
reaching a position where there is a sample to be inspected.

As discussed in the Introduction, decomposition allows
adaptation of the system configuration transparently to the
behaviour strategy being executed (e.g., changing the loca-
tion mechanism) or the behaviour strategy transparently to
the configuration in use (e.g., changing the route planning
strategy). In addition, decomposition allows for the compu-
tation of multiple behaviour strategies for a given configura-
tion (e.g. different search and collect strategies that assume
different UAV autonomy can be run on a configuration that
has a gripper component) and different configurations can
be used for a given behaviour strategy (e.g. different config-
urations for providing a positioning service can be used for
the same search strategy).

One of the design rationales for this layer is the pre-
computation of expensive adaptation strategies that are then
ready to use when needed. This means that multiple recon-
figuration and behaviour strategies may be constructed. In-
deed, the Goal Model Manager can pre-compute, and propa-
gate downwards, many reconfiguration and behaviour strate-
gies for one resolution of the OR-refinements of the goal
model. This may be useful, for example, if it is known that
information regarding UAV autonomy is imprecise, multiple
(behaviour) search strategies for searching the area may be
developed so that the infrastructure can adapt quickly as soon
as the predicted UAV autonomy differs significantly from
what can be inferred from the monitored energy consump-
tion. Similarly, should the GPS-based location service be
known to fail (perhaps do to environmental conditions), then
various reconfiguration plans may be pre-computed to allow
adaptation to alternative positioning systems when needed.

Configuration Problem Solver: The layer has two entities
capable of automatically constructing strategies for given
adaptation problems. The Configuration Problem Solver focuses
on how to control the target system to achieve a specified
configuration given the current system configuration, con-
figuration invariants that must be preserved and component
availability. Configuration invariants may include structural
restrictions forcing the architecture to conform to some ar-
chitectural style or other considerations based, for instance,
on non-functional. In the UAV example such restrictions
may include that the attitude control components never be

13

disabled or the total number of active components never be
beyond a given threshold to avoid battery overconsumption.

Reconfiguration problem solvers build strategies that call
actions that add and remove components, activate and passi-
vate them, and establish or destroy bindings between them.
These reconfiguration actions are part of the API exposed by
the target system. The strategy may sequence these actions
or have an elaborate scheme that decides which actions to
call depending on feedback obtained through the informa-
tion on the status of components exhibited by the target
system API.

To automatically construct strategies the solvers can build
upon a large body of work developed in the Artificial Intel-
ligence and Verification communities, including automatic
planners (e.g. [3]), controller synthesis (e.g. [8]), and model
checking. Such techniques have been applied to construction
of reconfiguration strategies in [21].

Behaviour Problem Solver: This entity focuses on how to
control the target system to satisfy a behaviour goal. In con-
trast to reconfiguration problems, the behaviour goal may
not be restricted to safety and reachability (i.e. reach a
specific global state while preserving some invariant). Be-
haviour goals may include complex liveness goals such as
to have the UAV monitor indefinitely an area for samples
to inspect. Behaviour problem solvers produce strategies,
which can be encoded as automata that monitor target sys-
tem events and invoke target system actions.

In addition to the expressiveness of goals that behaviour
strategies must resolve, there is an asymmetry between re-
configuration and behaviour problems. To resolve the co-
ordination problem between strategies (as with folding the
UAV arm before a reconfiguration to deal with a gripper fail-
ure can be executed, see Introduction), the behaviour strate-
gies produced by the solver can invoke a reconfigure com-
mand, which triggers the execution of a reconfiguration strat-
egy. We explain how this triggering works in Section 2.6.

2.6 Strategy Management Layer
Responsibility: This layer selects and propagates pre-

computed behaviour and reconfiguration strategies to be en-
acted in the layer below. For this, the layer must store and
manage pre-computed behaviour and reconfiguration plans,
and request new strategies to the layer above when needed.
It must also ensure that the behaviour and reconfiguration
strategies sent to the lower layer are consistent, indicating
their relationships.

Rationale: They main concept for the layer is to allow
rapid adaptation to failed strategy executions (or capitaliz-
ing rapidly on opportunities offered by new environmental
conditions) by having a restricted universe of pre-computed
alternative behaviour and reconfiguration strategies that can
be deployed independently or in a coordinated fashion.

Structure and Behaviour The layer has two entities
that work in similar fashion mimicking much of the layer’s
responsibilities but only on either behaviour or reconfigura-
tion strategies. However, the Behaviour Strategy Manager
and the Reconfiguration Strategy Manager are not strictly
peers. In some adaptation scenarios the former will take a
Master role in a Master-Slave decision pattern.

Behaviour Strategy Manager: This entity stores and man-
ages multiple behaviour strategies. From these strategies it
picks a behaviour strategy to be enacted in the layer below.
The selection of strategy may be triggered by an exception

raised by the layer below or internally due to a change iden-
tified in the common knowledge repository. The former may
occur when the behaviour strategy being executed finds it-
self in a unexpected situation it cannot handle. For instance,
the UAV executing a particular search strategy expects to be
at a specific location with at least 50% of its battery remain-
ing but finds that it is below that threshold, invalidating the
rest of the strategy for covering the area to be searched. At
this point the Strategy Enactment Layer signals that the
assumptions for its current strategy are invalid and requests
a new strategy to this layer.

The other scenario that can trigger the selection of a new
strategy is a change in the common knowledge repository.
Consider again the problem of unexpected energy overcon-
sumption. An inference process in the knowledge repository
may update the average energy consumption rate periodically
based on Target System information being logged. This aver-
age may be well above the assumed consumption average for
the behaviour strategy being executed. The Behaviour Strat-
egy Manager may decide that it is plausible that the current
behaviour strategy will fail and may decide to deploy a more
conservative search strategy.

Note that the two channels that may trigger the selection
of a new strategy differ significantly in terms of latency and
urgency. The exception mechanism provides a fast propaga-
tion of failures upwards, indicating that the strategy being
currently enacted is relying on assumptions that have just
been violated. This means that any guarantees on the suc-
cess of the current strategy in satisfying its requirements are
void and a new strategy is urgently required. The monitor-
ing of changes in the knowledge repository is a process that
incurs in comparatively significant delays as the inference
of goal model updates based on logged information may be
performed sporadically and consume a significant amount
of time. The upside of this second channel is that it may
predict problems sufficiently ahead of their occurrence, pro-
viding time to select pre-computed strategies to avoid them.

The selection of a behaviour strategy is constrained by
the current configuration of the target system (which deter-
mines the events and actions that can be used by the strat-
egy) and the alternative configurations that may be reached
by enacting one of the pre-computed re-configuration strate-
gies. Furthermore, the selection is informed by preferences
defined in the goal model on which OR-refinement resolution
is preferred. Thus, a new strategy that can be supported by
the current UAV configuration may be selected to alter the
search strategy. Alternatively or a strategy that no longer
picks samples up to avoid the extra consumption produced
by load carrying may be chosen. In the later case, in-situ
analysis is required and hence a reconfigured UAV with an
infra-red camera in place is required. Selecting such a pre-
computed behaviour strategy is subject to the availability of a
pre-computed reconfiguration strategy that can reach a con-
figuration with an active infra-red camera module.

The Behaviour Strategy Manager deploys the selected strat-
egy by performing two operations. Firstly, should the se-
lected strategy require a configuration with characteristics
that are currently not provided, it commands the Reconfigu-
ration Strategy Manager to deploy an appropriate reconfig-
uration strategy (c.f. Master-Slave relationship). Secondly,
the manager hot-swaps the current behaviour strategy being
executed in the layer below with the newly selected strategy,
setting the initial state of the new strategy consistently with

14

the current state of the Target System. Note that should the
new strategy be replacing a strategy that is still valid (i.e.
no exception has been raised) then the hot-swap procedure
may also exploit information extracted by the current state
of the strategy to be swapped out.

Should the Behaviour Strategy Manager fail to select a
pre-computed behaviour strategy, the manager requests new
strategies from the layer above. This may happen, for ex-
ample, because none of pre-computed strategies it manages
have assumptions that are compatible with the actual ob-
served behaviour of the system (e.g., energy consumption is
far worse than what is assumed by any pre-computed strat-
egy) or that they all rely on unachievable configurations (e.g.
the joint failure of the gripper component and infra-red cam-
era was a operational scenario not considered in any of the
pre-computed strategies).

Reconfiguration Strategy Manager: This entity works sim-
ilarly to its behaviour counterpart. It stores and manages
multiple reconfiguration strategies and selects them for de-
ployment constrained by the availability of instantiatable
components in the Target System while maintaining con-
sistency with the configuration requirements of the current
behaviour strategy. Selection is also informed by preferences
specified in the goal model. Consequently, a precision pref-
erence may lead to selecting a reconfiguration strategy that
attempts to use a GPS rather than hybrid positioning.

When negotiating with the Behaviour Strategy Manager
on a pair of strategies to be deployed, the Reconfiguration
Strategy Manager takes the slave rol, informing the configu-
rations requirements that are achievable and then selecting
an appropriate reconfiguration strategy based on the selec-
tion made by the Behaviour Strategy Manger.

There are three channels that can trigger the selection of
a new reconfiguration strategy. Two are similar to those
that trigger the Behaviour Strategy Manager: An exception
from the Reconfiguration Strategy Enactor and a change in
the goal model. Examples of these are the failure of the
GPS component triggering a rapid response by the manager
which selects an alternative configuration (using the hybrid
positioning component) and deploys an appropriate reconfig-
uration strategy, or an increased response time of the GPS
component leading to the decision of changing the position-
ing system before it (most likely) fails. The third channel is
the request of a new configuration by the Behaviour Strat-
egy Manager (which in turn may have been triggered via de
exception mechanism or a change in the goal model).

Note that deployment of new strategies at the Strategy
Management layer may respond not only to problems (or
forseen problems) while enacting the current strategies, but
also deploy new strategies to capitalise on opportunities af-
forded by a change in the environment. For instance, should
a new component become available, or statistics on its per-
formance improve, (e.g. the GPS component) this would
be reflected in the knowledge repository and an alternative
preferred pre-computed strategy may be deployed.

2.7 Strategy Enactor
Responsibility: This layer’s main responsibility is to ex-

ecute behaviour and reconfiguration strategies provided by
the layer above. Strategy execution involves monitoring the
target system and invoking operations on it at appropriate
times as defined by the strategy. The layer must also ensure
that if the target system should reach a state unexpected by

the strategy, and that consequently cannot be dealt with by
the strategy, is reported to the layer above. The other key
responsibility of the layer is to support both independent
and transparent update of behaviour and reconfiguration
strategies in addition to supporting a master-slave relation
between behaviour and reconfiguration strategy execution
in which the former can initiate the execution of the later.

Rationale: The aim is to provide a MAPE loop with low
latency analysis to allow rapid response to changes in the
state of the target system based on pre-computed strategies.
In other words to achieve fast adaptation to anticipated be-
haviour of the target system. Allow independent handling
of failed assumptions made by either the behaviour or re-
configuration strategies, thereby adapting one strategy in a
way that is transparent to the other.

Structure and Behaviour: The layer has two strategy
enactors, one for behaviour strategies and the other for re-
configuration strategies. Both enactors work very similarly.
They monitor the target system and react to changes in the
system by invoking commands on the target system. The
decision of which command to execute is entirely prescribed
by the strategy being enacted and requires no significant
computation. The two enactors do, however, differ in the
instrumentation infrastructure they use to monitor and ef-
fect the target.

Reconfiguration Strategy Enactor: This entity invokes re-
configuration commands and accesses individual software
component status information through an API provided by
the Target System layer. The aspects monitored and effected
by this enactor are application domain independent; com-
mands and status data are related to the component deploy-
ment infrastructure and allow operations such as adding,
removing and binding components, setting operational pa-
rameters of these components and checking if they are idle,
active, and so on.

In addition to sequencing reconfiguration commands, the
enactor has to resolve the challenge of ensuring that state
information is not lost when the configuration is modified.
This can involve ensuring stable conditions such as quies-
cence [15] passive or quiescent before change.

Behaviour Strategy Enactor: The entity monitors and ef-
fects the target system through application domain services
provided by the components of the target system via be-
haviour commands and event abstractions exhibited by the
Target System layer. The enactor starts executing the be-
haviour strategy assuming that there is a configuration in
place that can provide the events and commands it requires.
Thus, a new search and analyse behaviour strategy using the
gripper is assuming the gripper component configured.

Should the behaviour strategy require a different configu-
ration at any point, it must request the configuration change
explicitly. In this case a reconfigure command will be part of
the behaviour strategy and the behaviour enactor will com-
mand the execution of the reconfiguration strategy stored
by the reconfiguration strategy enactor (e.g., the behaviour
strategy folds the arm holding the broken gripper and then
requests reconfiguration to incorporate the infra-red camera
to only then proceed with in situ analysis). Note that in this
case the behaviour enactor assumes that the reconfiguration
strategy is attempting to reach a target configuration that
is consistent with the behaviour strategy.

Assumptions regarding the current configuration and the
target configuration of the strategy loaded on the reconfigu-

15

ration strategy enactor are assured by the layer above that
feeds consistent behaviour and reconfiguration strategies to
this layer.

3. RELATED WORK
The last decade has seen a significant build up on the

body of work related to engineering self-adaptive systems.
This work builds on this knowledge, emphasising the need to
make behaviour and reconfiguration control first-class archi-
tectural entities. As discussed in Section 2, the architecture
proposed builds on those of [16] and others. However, ex-
isting work does not provide support for both independent
and also coordinated structural and behavioural adaptation
at the architectural level.

The MORPH reference architecture is geared towards the
use of strategies derived from the field of control engineer-
ing referred to as discrete event dynamic system (DEDS)
control [4] which naturally fits over the system abstractions
used at the architecture level, which is the level we envis-
age self-adaptation supported by our architecture to operate.
DEDS are discrete-state, event-driven system of which the
state evolution depends entirely on the occurrence of dis-
crete events over time. The field builds on, amongst others,
supervisory control theory [19] and reactive planning [5].

Automated construction of DEDS control strategies have
been applied for self-adaptation in many different forms. For
instance, in [1] temporal planning is used to produce re-
configuration strategies that do not consider structural con-
straints and the status of components when applying reconfig-

uration actions. In [22], an architecture description language
(ADL) and a planning-as-model-checking are used to com-
pute and enact reconfiguration strategies. In [7, 2, 14] au-
tomatic generation of event-based coordination strategies is
applied for runtime adaptation of deadlock-free mediators.
In [13], a learning technique (the L* algorithm [6]) is ap-
plied for automatically generating component’s behaviour.
Note that strategies do not have to be necessarily temporal
sequencing of actions or commands. For instance, in [20]
reconfiguration strategies used are one-step component pa-
rameter changes.

an executable modelling language for runtime execution
of models (EUREMA) facilitates seamless adaptation.

4. CONCLUSIONS
An architectural approach to self-adaptive systems involves

runtime change of system configuration (e.g., the system’s
components, their bindings and operational parameters that
act as knobs) and behaviour update (e.g., components or-
chestration, reactive behaviour, etc). In this paper we present
MORPH, a reference architecture for behaviour and config-
uration self-adaptation. MORPH allows both independent
reconfiguration and behaviour adaptation building on the
extensive work developed but also allows coordinated con-
figuration and behavioural adaptation to accommodate for
complex self-adaptation scenarios.

5. REFERENCES
[1] N. Arshad, D. Heimbigner, and A. L. Wolf.

Deployment and dynamic reconfiguration planning for
distributed software systems. Software Quality
Journal, 2007.

[2] A. Bennaceur, P. Inverardi, V. Issarny, and
R. Spalazzese. Automated synthesis of connectors to
support software evolution. ERCIM News, 2012.

[3] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and
P. Traverso. MBP: a model based planner. In IJCAI,
2001.

[4] C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Springer, 2010.

[5] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell., 2003.

[6] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Păsăreanu. Learning assumptions for compositional
verification. In TACAS, 2003.

[7] A. Di Marco, P. Inverardi, and R. Spalazzese.
Synthesizing self-adaptive connectors meeting
functional and performance concerns. In SEAMS,
2013.

[8] N. D’Ippolito, V. A. Braberman, N. Piterman, and
S. Uchitel. Synthesizing nonanomalous event-based
controllers for liveness goals. TOSEM, 2013.

[9] A. Filieri, H. Hoffmann, and M. Maggio. Automated
design of self-adaptive software with
control-theoretical formal guarantees. In ICSE, 2014.

[10] D. Garlan, S. Cheng, A. Huang, B. R. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. IEEE
Computer, 2004.

[11] E. Gat, R. P. Bonnasso, R. Murphy, and A. Press. On
three-layer architectures. In AIMR, 1997.

[12] C. Ghezzi, J. Greenyer, and V. P. La Manna.
Synthesizing dynamically updating controllers from
changes in scenario-based specifications. In SEAMS,
2012.

[13] D. Giannakopoulou and C. S. Pasareanu. Context
synthesis. In SFM, 2011.

[14] V. Issarny, A. Bennaceur, and Y. Bromberg.
Middleware-layer connector synthesis: Beyond state of
the art in middleware interoperability. In SFM, 2011.

[15] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. TSE, 1990.

[16] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In FOSE, 2007.

[17] P. D. L. and M. A. K. Artificial Intelligence:
Foundations of Computational Agents. Cambridge
Uni. Press, 2010.

[18] A. V. Lamsweerde. Goal-Oriented Requirements
Engineering: A Guided Tour. In RE, 2001.

[19] P. J. Ramadge and W. M. Wonham. The control of
discrete event systems. Proc. IEEE, 1989.

[20] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin,
and J. Firestone. Beyond the rainbow: self-adaptive
failure avoidance in configurable systems. In FSE,
2014.

[21] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From
goals to components: A combined approach to
self-management. In SEAMS, 2008.

[22] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic.
Plasma: A plan-based layered architecture for
software model-driven adaptation. In ASE, 2010.

16

