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Abstract—Policy systems are critical for managing missions
and collaborative activities carried out by coalitions involving
different organizations. Conventional policy-based management
approaches are not suitable for next-generation coalitions that
will involve not only humans, but also autonomous computing
devices and systems. It is critical that those parties be able to
generate and customize policies based on contexts and activities.
This paper introduces a novel approach for the autonomic gener-
ation of policies by autonomous parties. The framework combines
context free grammars, answer set programs, and induction-
based learning. It allows a party to generate its own policies,
based on a grammar and some semantic constraints, by learning
from examples. The paper also outlines initial experiments in the
use of such a symbolic approach and outlines relevant research
challenges, ranging from explainability to quality assessment of
policies.

Index Terms—Intelligent Systems, Context Awareness, Logic,
System Management, Coalitions

I. INTRODUCTION

Many next-generation collaborative activities and missions
will be carried out by coalitions that will include autonomous
groups of devices and systems with a large variety of cognitive
capabilities. These devices and systems will have to operate
in environments characterized by uncertainty, insecurity (both
physical and cyber), variability, and instability. In such en-
vironments, communications may be fragmented. It is thus
critical that coalition devices and systems have the capability
to be self-adaptive and evolve. In addition, those devices
and systems will collaborate with humans for a variety of
coalition tasks, and thus may have to be able to explain their
actions/decisions; and, depending on the specific application
domain, understand boundaries that may limit their actions.
Such boundaries are particularly crucial for applications in
which safety is a critical requirement [1]. They may also have
to comply with regulations and legal directives.

Addressing such challenges requires proper policy-based
management of coalition parties - be these parties devices,

systems, or humans. Policies can simplify the complex task
of managing decentralized coalitions. According to Bertino, et
al. [2], policies can be seen as directives given by a managing
party to one or more managed parties in order to guide their
behavior in coalition missions and collaborative activities.
Different types of policies can be identified, including: (i)
Constraint policies that impose constraints on the activities
that the managed parties execute – notable examples being
represented by access control policies [3] and firewall policies;
(ii) Goal-based policies that direct the managed parties to
achieve a specific goal, e.g., maintain a minimum threshold
of utilization or try to finish a task before a specific deadline;
and (iii) Utility-based policies that direct the managed parties
to produce the best consequence according to some value
function, such as for example maximizing the usage of certain
resources [2].

Policies are usually expressed as technology independent
rules aiming to enhance the hard-coded functionality of the
managed parties by the introduction of an interpreted logic that
can be dynamically changed without modifying the underlying
implementation. Policy-based management thus significantly
increases the self-managing aspects of coalition operations.
Because of the usefulness of policy-based management, policy
models, languages, formalisms, and systems have been widely
investigated and applied to many different domains, includ-
ing access control [3], firewall systems, and more recently
software defined networks [4]. Policy standards have been
developed, most notably in the areas of access control (e.g.,
the eXtensible Access Control Markup Language (XACML)
and RBAC standards).

However a critical issue in policy-based management is
represented by the specification of the proper policies to
be used as input for the policy enforcement mechanisms.
Conventional approaches to policy specification are typically
based on a top-down approach by which policies are specified
through multiple refinement steps by some centralized policy



administrator. However such an approach is human-intensive
and in addition reduces the autonomy and flexibility of the
managed parties – autonomy and flexibility are critical for
coalitions operating in distributed and dynamic settings. To
address such a challenge, Verma, et al. [5] proposed the notion
of a generative policy architecture, by which managed parties
are provided an initial policy specification. Each managed
party can then (dynamically) generate its own policies from
the initial specification, possibly evolve them over time, and
based on its own “customized” policies take decisions about
its own actions. The generative policy architecture addresses
the requirements of autonomous management and flexibility
for coalitions [2].

A generative policy architecture, however, requires ap-
proaches by which the managed parties can generate and
evolve their own policies. There are two main approaches
that can be adopted. Both leverage recent advances in big
data and learning technologies for data analysis. The first
approach is based on the use of statistical learning techniques
by which a classifier is learned from data concerning past
policy decisions. An earlier example of such an approach is in
the area of access control [6]. The second approach is based
on the use of symbolic learning techniques by which logic
rules are learned from a set of examples through the use of
induction [7]. The latter approach has the major advantage of
providing a high-level representation of the learned policies,
which in turn supports accountability and explainability of
policy decisions. In addition, because policies are expressed
according to a symbolic formalism, it is easy to support
similarity-based policy adaptation, especially when additional
semantic knowledge is available in the form of ontologies and
other conceptual representations of domains of interest.

In this paper we put forward a novel framework to generate
and evolve policies based on:

• The notion of an answer set grammar (ASG). A novel
type of formal grammar combining context-free gram-
mars with answer set programs (ASP) [8], declarative
programs oriented toward solving search problems.

• ILASP. An inductive learner that automatically learns
ASPs from examples [9].

Context-free grammars specify the syntactical components of
a given class of policies, whereas the ASPs represent semantic
constraints imposed on the generation of the policies from the
grammar. Such constraints allow one, for example, to prevent
the generation of policies that, even though syntactically
correct, would not be acceptable in certain contexts. The use
of such novel grammars in combination with the ability to
automatically learn ASPs from examples allows one to easily
generate, adapt and evolve policies by providing context-
specific examples.

The full design, development and deployment of our frame-
work, referred to as the AGENP (An ASGrammar-based
GENerative Policy) framework, require, however, addressing
several challenges. In this paper, we aim at sharing our
vision and initial experience and results on the use of our

approach and develop a research roadmap based also on initial
experimental applications.

The rest of the paper is organized as follows. Section II
provides details about the notion of an ASG, whereas Section
III describes an initial architecture that implements our frame-
work. Section IV reports results from on-going applications of
AGENP to learn policies in different areas, some of which are
still in an early stage. Throughout those sections we outline
research issues. Sections V and VI conclude the paper by
discussing additional research directions and outlining a few
conclusions.

II. FORMALIZING GENERATIVE POLICY MODELS

In this section we describe our new approach to formalizing
and learning generative policy models (GPMs), which is based
on the notion of ASG which uses ASP rules to annotate a
context-free grammar, yielding a context-sensitive grammar.

The main requirement of any representation of a GPM is
that we must be able to use it to generate the set of policies
which are valid in any given context. ASGs consist of two
main components: (1) a context-free grammar (CFG), which
in our generative policy setting is used to specify the syntax
of the underlying policy language; and (2) a set of ASP
rules which, when combined with a context, specify which of
the syntactically valid policies are appropriate in the current
context. This separation of syntactic conditions enforced by
the CFG and the more semantic conditions enforced by the
ASP rules is important. The underlying syntax of the policy
language is fixed, and known (e.g. if our setting requires the
generation of XACML policies, then the language of our CFG
will be the set of all valid XACML policies), whereas the set
of policies which are valid in a particular context is domain
dependent and may not be known, or might even change over
time. For this reason, our approach to learning ASGs does
not attempt to learn the production rules of the CFG, as this
would be learning the (known) syntax of the policy language,
but instead learns the semantic ASP conditions. The reason
for choosing ASP to represent the semantic conditions is that
we can use an existing inductive learner for ASP [10] to learn
these conditions.

A. Answer Set Programming and Answer Set Grammars
In the current version of our framework we use a sub-

set of ASP consisting of normal rules and constraints.
Given any atoms h, b1, . . . , bn, c1, . . . , cm, a normal rule
is of the form h : - b1, . . . , bn, not c1, . . . , not cm, where h
is the head, b1, . . . , bn, not c1, . . . , not cm (collectively)
is the body of the rule, and “not” represents negation
as failure. Rules without a head, i.e., rules of the form
: - b1, . . . , bn, not c1, . . . , not cm, are called constraints.
Given any ground (variable free) program P , an interpretation
I , i.e., a subset of the atoms in P , is said to be a model of
P if for every rule R in P whose body is satisfied by I , the
head of R is satisfied by I . Note that as constraints have an
empty head, this means that no model of P can satisfy the
body of any constraint in P . The models of a non-ground



ASP are equal to the models of the ground instantiation of the
program where each rule is replaced with its ground instances.
Solutions of ASP programs are called answer sets, which are a
special subset of the models of a program. For a full definition
of the answer set semantics, see [8].

A context-free grammar [11], G, is a tuple hGN , GT , GPR,

GSi where GN is a (finite) set of non-terminal nodes, GT is
a (finite) set, disjoint from GN , of terminal nodes, GPR is
a set of production rules of the form n0 ! n1 . . . nk, where
n0 2 GN and each ni 2 GN [ GT . GS 2 GN is the start
node of G. The terminal nodes of a grammar correspond to the
characters of the alphabet that appear in the strings generated
by the grammar. The root of a parse tree for any CFG G is
the start node GS . For any node n of a parse tree such that
n 2 GN , the (ordered) children of n must be the list of nodes
on the right hand side of a production rule in GPR whose left
hand side is n. The nodes in a parse tree which are in GT

have no children. A grammar G accepts a string s if there is
at least one parse tree for which the concatenation of the list
of terminal nodes in the parse tree (read depth-first from left
to right) is equal to s.

ASGs extend CFGs by allowing each production rule to
be given semantic conditions, written in ASP. To allow the
semantic conditions to refer to the structure of the CFG, the
atoms in these ASP programs have annotations that refer to
nodes of the parse tree of a CFG. Specifically, an annotated
ASP program is an ASP program where some atoms have
been annotated with a ground term. For instance, the annotated
atom a(1)@2 represents the atom a(1) with the annotation 2.
When computing the answer sets of an annotated program,
annotated atoms are treated as ordinary atoms, where a@k,
a@l and a are distinct atoms. We now recall the notions of
annotated production rules and ASGs from [12].

Definition 1. An annotated production rule is of the form
n0 ! n1 . . . nk P where n0 ! n1 . . . nk is an ordinary CFG
production rule and P is an annotated ASP program, where
every annotation is an integer between 1 and k.

Definition 2. An answer set grammar G is a tuple
hGN , GT , GPR, GSi where GN is a (finite) set of non-
terminal nodes, GT is a (finite) set, disjoint from GN of
terminal nodes,. GPR is a set of annotated production rules
and GS 2 GN is the start node of G.

The language of any ASG, L(G), is a subset of the
language of its underlying CFG, GCF (the CFG constructed
by removing the annotations from every production rule in G).
To decide whether a string s 2 L(GCF ) is in the language of
G, we must consider the parse trees of GCF for s. We can
represent each node n in a parse tree by its trace, trace(n),
through the tree. The trace of the root is the empty list [];
the i

th child of the root is [i]; the j
th child of the i

th child
of the root is [i, j], and so on. In [12], a mapping is defined
from any parse tree of any ASG to an ASP program. Let G
be an ASG and PT be a parse tree. G[PT ] is the program
{rule(n)@trace(n)|n 2 PT}, where for any production rule
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Fig. 1: The workflow for learning ASGs with ILASP.

n0 ! n1 . . . nk P , and any trace t, PR@t is the program
constructed by replacing all annotated atoms a@i with the
atom a@(t++[i]) and all unannotated atoms a with the atom
a@t. A string s is in the language of G, denoted s 2 L(G),
if there is at least one parse tree PT of G for s such that the
program G[PT ] has at least one answer set.

B. Learning Generative Policy Models as Answer Set Gram-
mars

In this section we show how the algorithm for learning
ASGs from examples of strings [12] can be used to learn
ASG-based GPMs from examples of which policies are valid
under some contexts. Figure 1 shows the workflow for the
learning process. We start with an initial GPM (i.e., ASG), and
examples of which policies are valid under which contexts.
We then use an ASG learning algorithm, which transforms
the learning problem into a task that can be solved by the
ILASP [10], [13] system. Each solution of the ILP task then
corresponds to an ASG-based GPM that is consistent with the
examples. Full details of the ASG-learning algorithm, and the
transformation of an ASG learning task into an ILASP task
are presented in [12].

Definition 3 presents a generalization of the ASG learning
task presented in [12], which has been upgraded to support the
notion of context-dependent examples necessary to learn ASG-
based GPMs. For any ASG G and ASP program C, we write
G(C) to denote the grammar constructed by adding C to the
annotation of every production rule in G. An ASG hypothesis
space SM is the set of rules which can be learned, where
each rule in SM also contains a set of identifiers specifying
which production rules it can be added to. Given a hypothesis
H , where each element of H is of the form hh, pridi such
that h 2 H and prid is the identifier of a production rule in
GPR, we write G : H to denote the ASG constructed from
G by adding each rule in H to the annotation of the relevant
production rule in GPR.

Definition 3. A context-dependent ASG learning task T is of
the form hG,SM , E

+
, E

�i, where G is an ASG called the
initial grammar, SM is an ASG hypothesis space and E

+

and E
� are sets of pairs of the form hs, Ci, where s is

a string and C is an ASP program, called the positive and
negative examples, respectively. An inductive solution of T is
a hypothesis H ✓ SM such that

1) 8hs, Ci 2 E
+
, s 2 L(G(C) : H)

2) 8hs, Ci 2 E
�
, s 62 L(G(C) : H)

III. THE AGENP FRAMEWORK

In this section we present the ASGrammar-based GENera-
tive Policy (AGENP) framework. Specifically, we first describe
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how the key components in the AGENP framework interact
to produce the policies for Autonomous Managed Systems,
as well as how the Answer Set Grammar (ASG) and In-
ductive Logic Programming (ILP)-based learning mechanisms
presented in Section II are used inside the AGENP components
that adjust and generate the policies. We then discuss research
directions related to the architecture.

A. Key Components of AGENP

Figure 2 shows the AGENP architecture. Its major compo-
nents include: a Policy Refinement Point (PReP), a Policy
Adaptation Point (PAdaP), a Policy Checking Point (PCP), a
Policy Information Point (PIP), a Policy Repository, a Policy
Decision Point (PDP), and a Policy Enforcement Point (PEP).
The overall flow that is represented in the architecture starts
with a Policy-based Management System (PBMS) providing
a characterization of the policy space within which the Au-
tonomous Managed System (AMS), that is, an autonomous
coalition party, will operate in terms of a CFG, goals, and
constraints. The AMS is only free to generate policies that are
captured in the language of the CFG and comply with the high
level constraints. The PReP takes the information provided by
the PBMS and produces an ASG that is pertinent to the context
within which the AMS is operating. The PReP then uses the
ASG to learn its GPM and generates the policies for the AMS
which are captured in the Policy Repository.

The PEP, PDP, and Policy Repository operate in a manner
similar to conventional PBMS. When the managed parties
require a decision to be made regarding their operation, the
PDP obtains all the policies pertinent to that decision and
uses them to determine the actions that must be performed by
the PEP on the managed parties. In the AGENP architecture,
however, the operations of the PDP and PEP are monitored
to produce a history of the decisions that have been made,
the actions that have been taken, and the effects that they
have had on the state of the system. This information is used

by the PAdaP to update the ASG-based GPM when deemed
necessary. Such an update would be triggered if the operation
of the system is not meeting the goals set by the global PBMS,
or there has been a change in context. The PReP would then
get this latest learned ASG and generate policies from the
updated policy model.

Below we describe how the PAdaP and PReP components
use the ASG representation and ILP learning, described pre-
viously, to generate policies and to learn the generative policy
model. We also present details about the additional compo-
nents in the AGENP architecture that allow the Automated
Managed System (AMS) to check the quality and consistency
of the policies, and to obtain external information to make
more informative decisions.

1) Adaptation and Refinement using the ASG Solver and
Learner: In the AGENP framework, a GPM is represented as
an ASG that when combined with a given context represents
a language that corresponds to the set of policies generated
by the GPM. An ASG, denoted G, allows sets of facts to
be added to the production rule(s) for the start node of G.
Depending on which facts are added, the language of G will
contain different strings. Valid strings that are in the language
of G under a context C are denoted by the language G(C).
Thus, G(C) is the grammar constructed by adding the facts
in C to the annotation of every production rule for G. These
context-dependent ASGs provide a natural representation for
the GPM.

The PAdaP component, shown in Figure 2, adapts policies
according to the effects on the system of previous decisions
taken by the PDP component. To adapt policies, the PAdaP
analyzes context information (e.g., resources, actions/effects,
external conditions), the previous learned policy model (e.g.,
ASG), and previously selected policies, to generate, validate,
and update the ASG. More specifically, the PAdaP is composed
of the ASG Solver (Analyzer), and the ASG learner. Generated
policies from the ASG learner are sent to the PCP component
which evaluates their quality and identifies policies that incur
violations (e.g., as determined by negative policy examples).
Feedback from the PCP is used by the ASG learner, along
with information about additional annotated policy examples,
context information, and the definition of a hypothesis space
— which represents the set of learnable rules— to learn a new
generative policy model that represents the current valid AMS
ASG. The learned ASG is stored in the representations repos-
itory so that the PAdaP can access the latest representation of
the ASG-based generative policy model.

2) Quality Assessment and Validation of Policies: The goal
of the PCP component of the framework is to check the quality
and validity of the generated policies received internally, or
of external policies shared by other AMSs in a collaborative
environment. Quality of policies can be checked by the Quality
component inside the PCP by considering different policy
metrics and policy quality requirements such as consistency,
completeness, relevance, and minimality [14].

Furthermore, the PCP has a Violation Detector component,
where policies are checked for validity, i.e., policies non-



conforming to the local context, or having inconsistencies,
similar to policy conformance mechanisms, such as policy
testing and verification proposed for XACML policies [15].
The PCP component analyzes the quality and validity of
generated policies from the ASG-based model learned in the
PReP, and also of the policies received from an external policy
repository.

3) External Context Information and Shared Policies: The
Policy Information Point (PIP) component aims to acquire
information about any external conditions that affect the
operation of the AMS. These are used internally by the PAdaP
component in the AMS to adapt the local policies so that they
reflect pertinent knowledge about the external environment.
These conditions thus influence the set of policies to be
considered for local operation. Shared policies could be used
by the AMS’s GPM to leverage policies learned in different
contexts by other trusted AMSs in a collaborative fashion, as
is proposed in community-based policy learning (CASWiki)
by Bertino, et al [16]. In the CASWiki, agents, primarily
autonomous systems such as Connected and Autonomous
Vehicles (CAVs) or Internet of Things (IoT) devices, contribute
policies to a shared knowledge base. Policies shared by
different agents implicitly contain knowledge learned from the
application of policies in different contexts, thus contributing
to the joint knowledge of different AMSs working in collab-
oration.

B. Research Directions
The AGENP framework has been designed with the goal

of supporting the generation and evolution of policies for
autonomous parties. Although the ASG-based generative pol-
icy model representation and learning through ILP help to
fulfill this goal, many challenges are still open for investi-
gation. Here we describe some of those challenges. One is
Performance Optimization - since autonomous parties are in
many cases devices that need to respond in real-time, the
adaptation and learning of GPMs has to be fast enough to
be able to respond in a timely manner to requests made to
the AMS. Thus, policy adaptation and learning algorithms
need to consider the characteristics of the devices where the
GPM is being evolved, and take into account any resource
constraints. Another challenge is Effective Multi-party Col-
laboration - AGENP’s design enables it to be instantiated for
multi-party systems, such as subsets of parties in a coalition,
for which efficient mechanisms are required to communicate
and share policies. Finding the most appropriate way parties
can communicate (e.g., via a communication language and
coordination mechanisms, like the ones developed for multi-
agent systems [17]) needs to be further explored. From natural
language to grammar-based policies - policies are initially
defined by end users or organizations in natural language, and
in terms of goals that they want the system to achieve. These
constructs must be transformed into the grammars that are the
basis of the generative policy approaches being investigated.
Automatically or semi-automatically transforming intents and
constraints into grammars that capture the space of admissible

policies, would facilitate the interaction of end users with the
policy-based management system being developed in AGENP.
Previous work in software engineering [18], programming
languages [19], and security [20] has investigated similar
techniques but empirical analyses and further investigation of
alternative approaches is required.

IV. A SAMPLE OF APPLICATIONS

In this section we briefly discuss a few applications in
which we have used or plan to use our symbolic framework
for generative policies. The variety of applications shows
that there are many different domains for which flexible and
autonomous policy management is critical.

A. Autonomous Systems
Deploying autonomous systems for enabling or enhancing

tasks —especially in support of human activities has become
a reality [21], [22]. In such situations, autonomous systems
execute specific tasks in a collaborative manner, reducing
the cognitive burden on human users. In order to enable
such cooperation between humans and machines, autonomous
systems require a taxonomy that defines their full range of
autonomous capability. One such specification is the Autonomy
Levels for Unmanned Systems (ALFUS) Framework [23]. This
defines various levels of autonomy ranging from human remote
control (Level 0) to full autonomy (Level 10), where the system
approaches no human interaction—only the resulting output
is communicated. Intermediate levels are also described such
as Level 6 where a system can follow directives issued by
a human operator that may include goal setting and decision
approval.

The Society of Automotive Engineers (SAE) has also
outlined their own autonomous specification similar to the
ALFUS framework that outlines the full range of autonomy for
CAVs [24], enabling CAV manufacturers to assign a Level of
Autonomy (LOA) to a given vehicle. However, due to varying
and possibly conflicting state and governmental policies, as
well as a wide range of possible environmental conditions,
assuming a static LOA proposes a challenge for a CAV. Fur-
thermore, in local situations authorities may enforce transient
autonomy levels to aid the management of a given situation,
such as maintenance works or emergency vehicle scenarios.
Therefore, autonomous systems in such environments require
means to dynamically adapt their local and global policies
and modify their behavior given the varying contexts. Also
in a future intelligent transportation environment, CAVs of
lower LOA may be able to utilize capabilities or services
from nearby CAVs of higher LOA to accomplish tasks such
as sensing and monitoring of the local environment if certain
constraints and situations prohibit autonomous operation of
lower LOA CAVs. The feasibility of these enhanced capabil-
ities will require policy sharing and will also be subject to
temporal, spatial, and utility constraints.

Cunnington et. al have proposed an ASG based GPM for
CAVs [25]. This enables a CAV to learn a policy model
that states whether a particular request to execute a driving



task should be accepted or rejected, based on the current
environmental conditions and the LOA of the vehicle, region
and driving task. The authors have also shown that the ASG
based GPM outperforms shallow Machine Learning (ML)
techniques when learning complex policy models, as fewer
examples are required to achieve a greater accuracy. An
important research direction in this context includes utilizing
the distributed nature of a coalition of CAVs alongside road-
side infrastructure and other entities in the driving environment
to support collaborative policy management, dynamic real-
time policy adaptation, and decision making whilst adhering
to temporal and spatial constraints. As policy adaptation may
require generating new policies via the symbolic learner, it is
also important to optimize the learner so that it can meet the
real-time requirements of this domain.

B. Logistical Resupply

An interesting general military scenario set in the 2035 to
2050 time frame has been recently developed as part of the
DAIS-ITA [26]. The scenario includes several examples of
collaborative activities undertaken by military coalitions. One
of the mission scenarios focuses on logistical resupply activ-
ities and describes coalition forces in an urban environment
being regularly resupplied. In the scenario, a resupply convoy
consisting of delivery vehicles supported by escort vehicles
and drones must follow one of a set of route options, at some
time of day and under certain assumed or predicted conditions
that may take different values when the mission is under way.

Each resupply mission can be broken into phases including
planning, reconnaissance, resupply and recovery of vehicles
back to base. These phases give rise to two distinct times when
policies are needed, a planning phase (planning and reconnais-
sance) and an execution phase (resupply and recovery). When
considering policies, each phase is distinct. The planning
phase is in advance of the mission and contains speculative
information with varying degrees of accuracy such as the
expected weather conditions. The execution phase contains
real-time values that are likely to differ from the planning
phase due to updated information and other external factors
such as the enemy employing disruption tactics.

We recognize that at the start of any engagement, infor-
mation may be low and the number of training samples will
be in short supply. However, as time progresses and missions
take place the learning tasks should become easier and more
accurate as more training samples become available. As such,
the coalition is able to learn from previous experience.

The learning task and hence generative policy for this
scenario could take many forms. The policy could focus on
areas such which route the convoy should take, at what time
the convoy should travel, how the convoy should be made up
(ratio of delivery vehicles and the value of supplies to the
number of escort vehicles and their strength) and a variety
of other similar options. The task is also likely to take into
account the military risk appetite at the time of each mission. It
may be, for example, that some options that were previously

discounted on grounds of risk may later become acceptable
due to a variation in risk appetite within the coalition.

We believe that our framework is well suited for learning
policies for logistical resupply applications which are relevant
not only for military coalitions but also for smart cities.
One important issue that this scenario has highlighted is that
decisions concerning logistical resupply may be characterized
by large number of factors, and also the contexts may rapidly
change. Therefore, techniques to enhance the scalability and
real-time generation of policies is critical.

C. Access Control Policies
The specification of access control policies is quite challeng-

ing especially for complex policies [27], [28] like the ones that
can be expressed in XACML [29]. One approach to address
such a challenge is to use symbolic learning for learning
policies from examples. For access control, the most suitable
form of examples is represented by access requests and
corresponding access control responses (i.e., decisions). Such
a form of examples is suitable in many real-world situations.
For example, when an organization has logs of past decisions
taken by administrators, these logs can be used as examples
to learn policies so that access control can be automated.
In other cases, an organization may have automated access
control but based on low-level models, e.g., models that do not
support attribute-based access control, and the organization is
interested in adopting a richer access control model. Logs of
past decisions taken by the low-level mechanism can be used
as examples to learn policies expressed into the higher-level
model of interest.

To explore the feasibility and issues in using our symbolic
learning framework for learning access control policies, we
ran a case study on XACML policies. Using a public dataset
of requests and responses of XACML policies1, we generated
a set of examples. Each example consists of an access request,
in turn consisting of values of attributes of subject, resource,
action, and context, and the corresponding decision. Then, we
gave this example dataset as input to the ASG learner for
learning the corresponding XACML policies. Fig. 3a2 shows
a sample of the policies that were learned correctly.

The experiment has shown that the characteristics of the
examples greatly affect the correct learning of the policies. Of
course, this was not unexpected. However, the experimental
results indicate specific issues in the overall learning process.
Namely, these issues are related to overfitting learning and
noisy example dataset. Overfitting refers to the situation when
the learned model corresponds too closely (or exactly) to
the example dataset and, therefore, fails to predict future
observations [30]. In particular, when the generated access
control policies are only appropriate for scenarios similar to
the ones in the example dataset, such policies are generated
by an “overfitted” learned model. Therefore in order to be

1https://github.com/att/XACML/tree/master/XACML-TEST/src/test/
resources/testsets/conformance/xacml3.0-ct-v.0.4

2The policies shown in Fig. 3a are considered correct because they are
similar to the original policies in the public dataset.



applicable to other contexts the learned model should learn
some “general” insights from the example dataset. The main
issue is that the learned mode should be “safe” to minimize
risks arising from policies that have un-intended consequences.
Therefore, learning with “safe generalization” is essential to
balance the trade-off between security and overfitting. Noisy
example datasets, that is, datasets including“low quality” ex-
amples such as inconsistent responses to similar requests,
result in patterns being missed by the learning process. In
what follows, we discuss approaches to address these issues.

One method to avoid overfitting is to augment the example
dataset with background knowledge that provides either statis-
tical observations on the example dataset and/or on the context
of the system of interest. Examples of contextual knowledge
include role hierarchies and role assignments of subjects to
these roles. For example, prior knowledge about the role of a
user makes it possible to generate policies that are relevant to
the role of the user rather than generating policies fitting only
that specific user.

It is, however, important to point out that sometimes, using
one piece of background knowledge for generalization may
lead to security risks (i.e., to unsafe generalization). For
example, suppose that an organization has many users with
the DBA role while the example dataset shows that only few
of these users were granted a specific permission pi. In this
case, it is risky to generate a policy that grants the DBA role
the permission pi. Using some statistics of the example dataset
(e.g., the number of examples where the users of a specific
role was granted a certain permission) can help reducing
security risks. Therefore, gathering statistical information on
the example dataset and contextual information can help one
prioritizing the examples by assigning weights to them or to
associate confidence values with the generated policies.

Example: Policy 1 in Fig. 3b shows a case in which
the learner generated a policy based on the subject and
resource age which might be valid based on the local insights
learned from the example dataset. If statistical information
were provided, the learner would be able to generate a more
general version of Policy 1 more suitable for transfer to other
contexts.

Another method to assure safe generalization is to augment
the example dataset with pre-defined restrictions. The restric-
tions provide additional conditions that are critical to protect
against security threats and vulnerabilities. The pre-defined
restrictions may fall into two categories: domain-based and
target-based. Including domain-based constraints implies that
the learning process should consider the domain differences
between the system of the example dataset and the target sys-
tem. For example, learning security policies in a small system
that has few roles cannot be generalized straightforwardly to
a large system having a complex role hierarchy. On the other
hand, including the target-based constraints implies that the
generated policies should explicitly specify a deterministic
target (i.e., subject or resource). In the context of access
control policies, explicitly specifying targets enhances security.

Example: Policy 2 in Fig. 3b shows a case in which the

learner generated a general policy in which the subject is not
well-specified. If a target-based restriction were provided, the
learner would be able to generate a policy explicitly specifying
the resource and the specific attributes of the subject.

To avoid learning using a noisy example dataset, a straight-
forward method is to filter the dataset in advance. However,
appropriately filtering the example dataset requires formal
definitions for the “low quality” examples. “Low quality”
examples include inconsistent responses to similar requests
and requests associated with irrelevant responses which do not
reflect appropriate decisions of a policies (i.e., ‘not applicable’
decision for XACML policies). Formal definitions of “low
quality” examples can be adapted from the definitions of “low
quality” policies by Bertino et al. [14], [31]. These formal
definitions enable analyzing policies [31], [32]. Similarly,
adapted definitions for “low quality” examples can enable
analyzing and refining the example dataset to obtain a noise-
free one.

Example: Policy 3 in Fig. 3b shows a case in which the
learner has misinterpreted an irrelevant response as a proper
decision. In XACML, the decision of a specified policy is either
“Deny” or “Permit”; hence “NotApplicable” is not a proper
decision. If the example dataset were refined by pruning such
irrelevant examples, the learner would be able generate a
policy with a proper decision.

D. Data Sharing in Coalitions
In coalition operations, a wide variety of data is collected by

each of the coalition members. This data can be collected us-
ing their Intelligence, Surveillance and Reconnaissance (ISR)
assets deployed in the field which include videos and images
from cameras, audio and conversations from microphones,
seismic and vibration data, radio spectrum data, infrared im-
agery etc; information collected using satellites or unmanned
aerial vehicles, or it may be a collection of documents they
may have found when conducting operations. In many cases,
coalition members are willing to share that data with each
others so that the insights that are obtained from the data can
be mined by partners.

Because the trust among partners is not absolute, there are
restrictions both on what can be sent to the other partners,
as well as what can be received from the partners. These are
usually expressed as policies on data sharing. In some cases,
these policies can be defined manually.

In many cases, e.g. when the data is used for an exercise
like machine learning to create an AI model, the definition
of manual policies becomes difficult. In these cases, policies
need to be generated automatically using a system that can
analyze the data provided by the partner; such an analysis
may take into account many different factors. For example,
data provided by different partners may have different levels
of quality, the partner may not be completely trusted, and the
value of the data provided may be different. Because of the
large number of factors and types of policy, policies for data
sharing will include Boolean combinations of conditions -such
as for example testing whether the value of some data items is



(a) Correctly Learned Policies (b) Incorrectly Learned Policies

Fig. 3: Examples of Policies Learned by the ASG learner

above a certain threshold. Manually specifying such policies
is not feasible and a generative policy framework is thus
required. An initial approach has been developed by Verma
et al. [33]. A notable feature of the approach is the use of
“helper” microservices for generating values used to evaluate
the policy conditions for specific data items and based on this
evaluation decide whether to use the data. As one may have
multiple services that can be used in different contexts, an
interesting direction is to use the symbolic learner to learn
which microservice to use for which context and data.

E. Federated Learning

In some coalition environments, sharing of raw data may not
be possible. The limitation on the sharing of data may arise
because of a lack of required bandwidth or reliable network
connectivity to exchange data, or because of a lack of trust
in the partner’s ability to assure data security, or because of
regulations or policy requirements that restrict data sharing. In
these cases, coalition members may choose to share insights
that they get from their sets of local data, and then share those
insights instead. The insights can be shared and combined
across all of the coalition partners.

This concept of transferring insights (or AI models) instead
of raw data leads to the approach for federated learning [34].
Federated learning is useful in many different contexts, e.g.
sharing insights among different Government agencies [35],
distributed electronic health records [36], machine translation
[37], and intelligence in wireless networks [38].

When insights or models are received from other parties,
that are only partially trusted, the receiving party needs to
make decisions regarding how to incorporate those insights
together, e.g. by adapting those models, by combining those
models, or by training a new model that is equivalent to those
that are received. The policies for these are hard to generate
manually, and generating them dynamically using ASG pro-
vides one mechanism to combine insights from many different
sources together. Research is, however, needed to identify the
types of policy that are required to govern federated learning,

relevant attributes to be used in policies, and how to generate
examples to be used for learning.

V. RESEARCH DIRECTIONS

In this section we elaborate on additional open research di-
rections to complement the discussion in the previous sections.

A. Policy Assessment

In many coalition settings, contexts and activities to be
executed by coalition parties may rapidly change. It is difficult
to anticipate beforehand whether a set of generated policies
is suitable for a context and/or set of activities. It is thus
critical to support the ability to dynamically evolve policies.
However such evolution needs to be based on specific policy
“quality” requirements (also referred to as policy metrics).
Initial work for access control policies has identified four key
requirements [14]:

• Consistency - it requires that the policy set does not
include two or more policies that contradict each other.
An example would be a policy that allows a subject to
perform an action on an object and another policy that
prohibits this subject to perform the same action on the
same object.

• Relevance - it requires that the policy set does not
contain policies that do not apply to any action or activity
executed in the context of interest.

• Minimality - it requires making sure that the policy
set does not include redundant policies as redundancy
increases the policy maintenance costs and for some
policy domains, such as security, it may introduce vul-
nerabilities.

• Completeness - it requires that for any action or activity
that needs to be controlled/guided, there is at least one
corresponding policy. The lack of policies may require
involving human administrator which may be expensive
and not possible in some contexts.

Previous research has focused on methods and tools for
analyzing policies with respect to those four requirements



(see [4] for a detailed survey of the state of the art). The use
of our symbolic learning framework for generating policies
helps in such an analysis. As our framework generates policies
expressed as rules, it is possible to apply various reasoning
methods to detect inconsistencies, redundancies and so forth
as several of these methods are defined to work on logical
representations. In addition, depending on the specific quality
requirement, our framework may be able to directly generate
policies that comply with the requirement, e.g. are free of
conflicts.

Assessing policies in distributed and dynamic coalition
settings entails, however, addressing a few challenges. The
first is which requirements are critical and must thus be
assessed for a given set of policies depend on several factors
including the policy type, the domain, and the context. So
case studies are needed to better understand which factors
are the most critical and how to prioritize the requirements
depending on these factors. The second is that assessment
results may vary depending on the context with respect to
which policies are assessed, especially when dealing with
attribute-based policies (such as XACML policies [29]). For
example, whether two policies conflict may depend on the
context. Consider a policy specifying that “Any member of
the Crypto project can modify the new crypto libraries” and
another policy specifying that “A postdoc cannot modify the
new crypto libraries”. Whether those two policies conflict in
a given context depends on whether there are subjects who
are both members of the Crypto project and postdocs – which
is context dependent. To address such problem one approach
is to use a static analysis to identify potential conflicts and
then at run-time use a conflict resolution algorithm to solve
conflicts. However as several conflict resolution strategies are
possible (see for example the XACML conflict resolution
algorithms), one may need to decide which strategy to adopt
depending on the context. Approaches like learning from
human decisions about conflict resolutions can be adopted
or one can specify additional policies that indicate which
conflict resolution strategy to adopt based on the context. The
third is related to the need of deploying logging tools able to
capture requests, actions and activities by the managed parties
to identify various situations, such as situations in which there
was no policy covering certain actions, or situations in which
the managed parties did not comply with the policies. In
such situations collecting comprehensive information about the
context may help in understanding the research for the lack of
compliance.

Identifying additional requirements that are specific to coali-
tion settings is also important. Two such requirements are:
“enforceability” and risk. Enforceability requires that a policy
can actually be enforced by a managed party in a certain
context. For example, a policy may require contextual infor-
mation be acquired in real time – which may be challenging
in certain contexts – and it is crucial to provide indicators
about the feasibility of the policy enforcement. The risk related
requirement focuses on possible risks that may result from
the application of a policy (or set of policies). For example,

a restrictive access control policy may prevent the delivery
of relevant information needed by a party, thus affecting
the outcomes of activities, tasks, and actions. Supporting the
assessment of such requirements requires the ability to use
different enforceability and risk models for different contexts
and coalition missions.

B. Policy Explainability

The ability of explaining decisions and recommendations
taken by intelligent systems is today an important requirement
for humans to trust these systems [39], [40]. Policy-based
management systems are no exceptions, as these are systems
that return decisions and recommendations and thus they may
need to provide explations. In the context of our symbolic
learning framework explainability is required at two different
levels: policy learning, and policy enforcement. For the former,
explainability is required to explain why certain policies are
generated and why others are not. Explanations are crucial to
indicate how generalization from examples and contexts has
occurred and specifically which examples, example weights –
if provided for the example dataset – and contextual informa-
tion have resulted in the generation of certain policies and/or
generalizations. For the latter, explanations are required when
enforcing complex attribute-based access control policies, such
as XACML, that often include multiple rules. When enforcing
such policies, access requests include attributes on the subject,
the object, and the context. However, depending on the specific
conditions in policies, not all attributes may be relevant
for the request. Therefore explanations may have to clarify
which rules within a policy were the ones that were applied
to the request. An important requirement for explainability
approaches is that they must be easily understood by humans.
An interesting approach to address such requirement is based
on the notion of counterfactual explanation [41], that has
been suggested in different contexts, such as for example
to support the “right to explanation” in the General Data
Protection Regulation (GDPR) of the EU. An example of a
counterfactual explanation is the statement (slightly adapted
from an example in [41]) “You were denied a loan because
your annual income was $40,000. If your income had been
$45,000, you would have been offered a loan”. As counter-
factual explanations are considered to be quite effective in
communicating with human users, these approaches are being
investigated in different domains (see [42] for examples).
An interesting research direction is thus to explore such an
approach, possibly combined with other approaches for AI
systems [43] for policy explanations in our framework at both
levels mentioned in the previous discussion.

C. Integration of Symbolic Learning and Statistical Learning

In spite of the tremendous success that statistical machine
learning has had over the past 20 years, what these systems
do is limited to the implementation of a specialized function-
fitting algorithm [44] that does not provide any information
on causality [45]. Take, for example, a purely statistically
learned policy to decide the data quality provided by two



partners in a 3 partner coalition. Assume one of the partners
leaves the coalition, and the second one knows that the data
they share could be partially verified by the partner that left.
Now the incentive caused by the presence of the other partner
to provide accurate data changes, and the learned function
becomes useless without warning. Environment conditions
are very dynamic in coalition systems, hence making pure
statistical machine learning to learn policies hard to apply.

Symbolic learning, on the other hand, provides a door to
causal information through rules. With this information tools
can be built for an analyst to spot missing co-dependencies
that were not captured during learning. Such tools could
also provide information about potential effects when cir-
cumstances change. In other words, rules also open the door
for explainability, as discussed in Subsection V.B. We have
already mentioned counterfactuals. Counterfactuals allow one
to see consequences in hypothetical situations, and this is
possible only if causal relations are known: “Do I get a loan
if my income were $50,000?.” Learning causal rules, though,
is not easy. There is usually a very large hypothesis space to
search. Here is one place where statistical machine learning
can complement, in a supporting role, symbolic learning. One
can learn strategies to best search the hypothesis space. This
has been proved successful in other areas where statistical
machine learning is also hard to apply like planning (see, for
example, [46]). Nevertheless, causal rules most be rigorously
verified and tested by data analysis and certainty values should
be associated with rules. At the end both approaches should
co-exist, where statistical machine learned functions are used
to detect “atomic” concepts such as edges and shapes from
the pixels of an image, and a rule model of causation can be
used to identify more complex concepts like the image shows
a car parked inside the parking garage of a house.

VI. CONCLUSIONS

In this paper we have introduced an approach based on
symbolic learning for the autonomic generation of poli-
cies for distributed dynamic coalitions, that may include
robots, drones, self-driving vehicles, and IoT devices. We
have developed several case studies that assess the use of
generative policies and identify several challenges. As final
remark we would like to emphasize that the development
of a comprehensive management system based on symbolic
learning requires techniques from different areas of computer
science, including agent technologies, risk-based assessment
techniques, statistical machine learning techniques, service-
oriented architectures, edge computing.
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