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Abstract:
Variable renewable energy is set to become a key energy source worldwide, but there is concern regarding the impact of the intermittency of its output when penetration is high. Energy system models need to tackle this issue by improving modelling resolution and scope. To allow for such modelling, more and better input datasets are needed on variable renewable energy potentials and yields. These need to be of global scope, of sufficient spatial and temporal resolution, and generated with transparent, consistent methods. This study develops the methods and applies it to generate these datasets at subnational and hourly resolution. The assessment is carried out for wind and solar technologies with consistent constraints including geographical, social and economic aspects. Features from the OpenStreetMap are converted into land cover and land use datasets and applied. Hourly energy output is simulated using NASA MERRA-2 meteorological datasets, reconciled with resource maps from the Global Wind Atlas and Global Solar Atlas platforms. Capacity supply curves are provided for 731 terrestrial zones and 339 offshore zones worldwide, along with corresponding hourly output profiles over a 10-year simulation period. The proposed energy potentials are relative conservative compared with other studies. The datasets can serve as input for regional or global energy system models when analyzing high variable renewable energy shares.
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Introduction
Variable renewable energy (VRE) is renewable energy sources that are not dispatchable, usually referring to wind and solar energies. VRE deployment worldwide has been growing quickly over the past decade[1]. As suggested by IPCC[2], VRE is likely to play a crucial role in electricity system decarbonization in many countries. For example, in the New Policy scenario proposed by the IEA[3], the global electricity generation from wind and solar technologies is projected to grow 5- to 10-fold between 2016 to 2040. In the REmap case proposed by IRENA[4], the global wind power capacity can grow from 411 in 2015 to 5,445 in 2050, and solar PV will grow from 223 to 7,122 respectively.
To support VRE deployment, it is crucial to understand the geographical distribution of wind and solar resources and their temporal output characteristics. While there have been numerous VRE technical potential studies at regional or country level, only a few studies have been conducted at global level. These previous global studies were typically carried out with coarse spatial resolution, and the parameters and constraints applied have significant influence on the estimated potentials. Also, the input data and modelling approach used may not fully capture the temporal characteristics.
The variability and uneven distribution of VRE potentials create an important challenge to Energy System Models (ESMs). Currently national scale ESMs generally consist of several sub-regions, a set of representative time-slices to capture seasonal and diurnal load profiles, and an overall time horizon up to the year 2050 or 2100. This resolution is often further reduced in models at global scale due to pressure on computational resources, and lack of consistent worldwide data. IRENA[5] has identified a set of challenges for current ESMs, and suggests that over-simplified regions and coarse temporal resolution diminish the ability of a model to capture the flexibility requirements in high VRE systems. Therefore, this study aims to apply a consistent approach to assess global VRE capacity and energy potentials, and prepare the results at fine resolution such that they can be used more effectively in ESMs.
To capture the temporal characteristics, this study simulates VREs capacity factors (CF) using hourly meteorological assimilation data for a 10-year period, from 2008 to 2017, at around 50 gridded points based on NASA MERRA-2 datasets[6]. The resolved global CF maps in 1 spatial resolution are produced by reconciling simulated hourly data with the wind and solar resource maps from the Global Wind Atlas (GWA)[7] and the Global Solar Atlas (GSA)[8] platform. This study assesses VREs geographical potential using Geographic Information System (GIS) based approach. Consistent constraints associated with physical limits, economic considerations and social impacts are applied. Information from the OpenStreetMap (OSM)[9] is used to improve land cover accuracy and to construct exclusion areas. This study tests the eligibility masks produced against the location of existing power facilities for validation. Hourly generation records available from ENTSO-E platform are also used to validate the results for European countries.
The VRE technologies in this study include onshore wind, offshore wind, utility-scale PV of fixed-tilt and one-axis tracking varieties, distributed PV and concentrated solar power (CSP). To provide results in subnational disaggregation, the study defines 731 terrestrial zones and 339 offshore zones. The capacity potential is processed at 300m spatial resolution, and the energy output of each pixel is binned into CF classes, thus forming CF tranches. The tranches with their capacity potential form the supply curve in each zone.
Review of variable renewable energy potential assessment
This section summarizes the studies on global wind and solar energy potential assessment, and compares the data sources they used. This utilization of GIS-based approach in the assessment is also discussed. This section also briefly describes the resolution in the assessments and the influences of using different temporal and spatial resolution in an energy system model.
Global variable renewables potential assessment
The IPCC has noted that the technical potential of global renewable energy is substantially higher than total energy demand [10]. Compared to the global annual primary energy demand of 137 in 2008, the estimated wind energy technical potential ranges from 24 to 161 and the direct solar energy technical potential ranges from 438 to 13,843. Other estimates also exist, for example, the Global Energy Assessment [11] suggested that the onshore wind technical potential is between 69 to 333, and the PV and CSP technical potential is estimated at 3,417 and 76,945 respectively.
Most GIS-based VREs potential studies estimated energy output profile at each grid cell at 30-50km resolution based on meteorological data, and then calculate available area in each grid cell according to land cover maps. Table 1 summarizes several global VRE potential studies and the main datasets used. For both wind and PV potentials, Hoogwijk [12] assessed the technical potentials by estimating the full-load hours at each grid cell. That study is one of the earliest that assigns suitability factors with regard to land cover. Stetter [13] considered the projection of techno-economic assumptions in the future, and presented cost-supply curves for major regions. Teske et al. [14] estimated the land area for utility-scale solar and wind power development in 75 regions. The energy output in selected sites are based on other works.
For wind energy potential, Archer et al. [15] is the only study listed that is based on observed records from weather stations. Lu et al. [16] estimated the onshore and offshore wind potentials by simulating the power output at each grid cells with 6-hourly wind speed data. Zhou et al. [17] used similar approach but with hourly wind speed data. This study generated wind power cost-supply curves and remove uneconomic areas. Arent et al. [18] simulated offshore wind energy output at gridded cells and binned the capacity potential into several output and water depth classes. Eurek et al. [19] used wind speed data aggregated in 288 month-hours at gridded locations and produced the capacity supply curves by country. While the above mentioned studies all estimated the wind power by mapping wind speed onto turbine power curves, Dupont et al. [20] estimated wind energy output with a derived function from the Weibull wind speed distribution and turbine design parameters. This study optimized the capacity density in each grid cell. Bosch et al. [21] combined MERRA-2 datasets and GWA data maps to perform a spatially resolved assessment for onshore wind, providing CF for 32 time-slice per year for every country. Similar approach was also applied for offshore wind by Bosch et al.[22].
For solar energy, Köberle et al. [23] developed functions which estimate full load hours in each grid cell and produced cost-supply curves of PV and CSP for 26 regions globally. Pietzcker et al.[24] investigated the technical and economic potentials with a similar approach to Stetter [13] and classfied the potentials by CF and distance to grid. Trieb et al. [25] developed a model that estimates CSP full load hours, which are functions of Solar Multiple and annual Direct Normal Irradiance. 







Table 1. List of global VRE potential studies and the meteorological data and land cover data sources used.
	Study
	Energy
	Meteorological data
	Land cover data

	
	
	source
	spatial resolution[footnoteRef:1] [1:  0.5° arc-degree is approximately 50km and 1° is approximately 100km.] 

	source
	spatial resolution

	Hoogwijk[12]
	wind/solar
	CRU
	0.5º
	IMAGE
	0.5º

	Stetter[13]
	wind
solar
	MERRA
NASA SRB
	0.5º
1º
	GLC2000
	300m

	Teske et al.[14]
	wind/solar
	Vaisala, GAS
RE-Ninja
	0.5º
sites
	GLC2000
	300m

	Archer et al.[15]
	wind
	NCDC
	stations
	NA
	

	Lu et al.[16]
	wind
	GEOS
	0.5º
	MODIS
	1km

	Zhou et al.[17]
	wind
	CFSR
	0.3125º
	MODIS
	1km

	Arent et al.[18]
	wind
	NCEP ECMWF
	0.25º
	NA
	

	Eurek et al.[19]
	wind
	CFDDA
	0.4º
	GlobCover
	1km

	Dupont et al.[20]
	wind
	ERA-Interim
	0.75º
	GlobCover
	1km

	Bosch et al.
[21][22]
	wind
	MERRA-2
GWA 1.0
	0.5º
1km
	GlobCover
	300m

	Köberle et al.[23]
	solar
	NASA SSE
	1º
	IMAGE
	0.5º

	Pietzcker et al.[24]
	solar
	NASA SRB
	1º
	GLC2000
	300m

	Trieb et al.[25]
	solar
	NASA SSE
	1º
	
	1km


Geographic information system-based geospatial processing
Most VRE potential studies rely on GIS processing to estimate available land area for deployment. For example, land cover such as forest, urban areas and frequently flooded areas should be excluded. Land cover maps generated from satellite surveys are commonly used to support this process. Generally, suitability factors that indicates the percentage of area available for development are assigned to several type of land cover. The drawback of using the existing land cover products is their accuracy, which for example is reported to be around 59% to 82% in China [26], and 51% to 63% in Africa [27].
Another source of land cover information is Volunteered Geographic Information (VGI) platforms such as the OSM. Resch et al. [28] identified the use of VGI as an important direction for energy potential assessment. Since VGI information is relatively accurate compared to satellite-based maps, it is possible to improve overall data quality by combining the two sources. This has been demonstrated by Fonte et al. [29] which shows overall land cover accuracy can be improved by extracting features from OSM and overriding the information in a satellite-based land cover map.
Land use information such as residential areas, protected areas and military areas are also commonly used to exclude eligible areas, and such land eligibility constraints influence the result significantly. Ryberg et al. [30] concluded that the impact of eligibility constraints applied is highly spatially sensitive, and that constraints based on woodland, agriculture areas, irradiance and protected areas are more influential in the analyses.
Temporal and spatial resolution
Some studies in Table 1 estimated the technical potential with the spatial resolution inherited from the meteorological data used. The coarse spatial resolution in these studies may not reflect the potential well. Badger et al. [7] demonstrated that the wind power density can be much higher if assessed with higher spatial resolution. For this reason, Bosch et al. [21] developed an approach that increases the spatial resolution to assess global wind power potentials.
The temporal resolution in an ESM can significantly influence the outcome regarding long-term capacity mix. It can cause either overestimates or underestimate the presence of VREs [31]. Moreover, modelling with lower resolution can make VREs more preferable and underestimate the need for dispatchable units in a system [32]. Previous studies on global VREs integration tend to use annual average or selected time-slice to capture temporal variability, and spatial representation is also aggregated into around 20 world regions [33]. The reduced resolution of these global models may underestimate the variability of VREs and the need for flexible units especially for large systems such as China, Russia and Brazil. Bogdanov et al. [34] investigated the low-carbon transitions of power sector in global 145 regions, and used hourly resolution in their model. This study is in the lead of high resolution energy model. Teske et al. [35] estimated the pathways to 100% renewable energy. Their model applies hourly resolution and spatial resolution up to 75 regions.

Methods
The section describes an overview of the data used and created in this study. More details are provided in the Supplementary File 1. The flow chart of the overall processes is shown in Figure 1. In this study, hourly meteorological data from the MERRA-2 database are used to simulate hourly CF at each grid point. The average CF maps at 1km resolution is then produced by reconciling the data from MERRA-2 and GWA and GSA. A land cover map is refined with features from the OSM. Based on this, the eligibility map for development is produced using constraints derived from other maps and OSM features. Lastly, all the materials are combined to generate hourly CF and capacity potential which are further classified into several tranches in each zone.
[image: ]
Figure 1. The overall flow chart of the data and processes in this study. This chart is applied to all VREs in this study.
Data preparation
NASA’s MERRA-2 datasets are used for CF output simulation, as it provides all the required meteorological data needed in this study, and is available in 0.625°0.5° resolution (approx. 64km54km at the equator). Ten years data, from 2008 to 2017, of all gridded locations globally is collected at hourly resolution. This study uses the global wind speed maps GWA 2.0 [7] for improving the spatial resolution of the assessment. As GWA 2.0 only covers area within 30km of the coast, for areas further than 30km offshore to the end of exclusive economic zone, the value of each raster cell is gradually blended linearly with the mean value of MERRA-2 hourly wind speed. Similar to GWA maps, the GSA maps [8] are used for improving the spatial resolution in the assessment. This study estimates hourly Global Horizontal Irradiance, Direct Normal Irradiance and Diffuse Horizontal Irradiance also with MERRA-2 historical data and GSA maps. These are required parameters for simulating output of solar technologies.
The CCI-LC [40] developed by ESA is used as the base land cover map in this study. The features on the OSM is used to improve the accuracy of this satellite-based land cover map. Also, the OSM provides features that are necessary for preparing eligibility masks. This study extracts the features containing the following attributes from OSM: natural, land use, highway, aeroway, waterway, amenity and power. The extracted land cover features from OSM are rasterized and overlapped on the CCI-LC map.
Breakdown of country-level spatial representation may allow ESMs to capture local characteristics better. This is particularly helpful for countries with large areas and populations. In total 731 terrestrial zones and 339 offshore zones are created in 171 countries/districts. The full list of the zones and their boundary are compiled in Supplementary File 2.
Geographical constraints and suitability factors
This study applies several constraints to identify the eligible area for VRE deployment. Table 2 summarizes the physical, economic and social constraints applied. It is noted that the selection of constraints can cause significant influence on eligible area. The reasoning and process via which these constraints are applied to produce the final eligibility mask is described in Supplementary File 1.



Table 2. The constraints applied and their values for preparing the eligible area masks in this study.
	Type
	Constraint
	Technology
	Value

	Physical
	Elevation
	Onshore wind
	<2500m

	
	Slope
	Onshore wind
	<20°

	
	
	Utility-scale PV
	<10°

	
	
	CSP
	<3°

	
	Permafrost area
	All terrestrial tech.
	False

	
	Latitude
	Offshore wind
	<67°N

	Economic
	Wind speed
	Onshore/offshore wind
	>4 (100m)

	
	GNI
	CSP
	>1800

	
	Water depth
	Offshore wind
	<500m

	
	Road access
	All terrestrial tech.
	<20km

	
	Land block
	CSP
	>1

	
	Capacity factor
	Onshore/offshore wind
	>18%

	
	
	All PV
	>10%

	
	
	CSP
	>25%

	Social
	Urban area
	All except Dist. PV
	>500m

	
	
	Distributed PV
	True

	
	Amenities
	All except Dist. PV
	>500m

	
	Military area
	All except Dist. PV
	>500m

	
	Protected area
	All
	Not in IUCN I-IV

	
	Airport
	Onshore/offshore wind
	>3km

	
	Port/Harbor
	Offshore wind
	>3km

	
	Ferry route
	Offshore wind
	>1.5km


The overall land eligibility mask is the intersection of all eligible area layers. With this mask, suitability factors are assigned to each eligible raster cell according to its land cover type. The values for onshore wind are based on [12]. The assigned suitability factors to centralized PV and CSP vary significantly across the literatures. Here it is assumed that suitable area for solar power development is a subset of onshore wind and totally exclude areas with tree cover.
For offshore wind, some of the previous studies, e.g. [19] [22] [20], assign suitability factors according to water depth and distance to coast. Other factors, such as sea ice, seabed types and shipping routes, are rarely considered due to the lack of data. This study incorporates a first estimation of the impact of shipping activity. Historical shipping activity datasets are used to derive the suitability map for offshore wind development.
Energy potential and capacity factors
To estimate the energy potential in a spatially resolved manner, this study aims to produce average CF maps at 1 resolution based on GWA and GSA resource maps. A simple approach is to simulate the hourly CF at the grid points based on MERRA-2 data, and then interpolate the CF for each 1km raster cell based on the annual average value on GWA and GSA resource maps. This approach is flawed because the CF is not linear to input energy intensity. This is especially true for wind technologies. A way to improve this is to estimate the CF of multiple energy intensity bands but with the same variation profile at the grid points. The interpolation for average CF on each raster cell is based on the closest bands. More details about this method is also described in Supplementary File 1.
Wind energy potential and output profile
Hourly CF estimation of wind power is performed by mapping wind speed onto wind turbine power curve. This study uses the composite power curve proposed in [36], with IEC class 1 for offshore wind simulation, and IEC class 2 for onshore wind. The CF map based on GWA resolution is generated via the approach described in Supplementary File 1.
A 10% array loss and 95% system availability are applied. The resulting CF of each cell is binned into 10 CF tranche classes, the same classification used in [19]. Another class for CF higher than 50% is added. By combining this tranched CF map with the suitability map developed in section 3, the available land area of each tranche in a zone can be produced. The capacity potential is estimated using 5 power density for both onshore and offshore wind. These configurations is also the same in [19]. In a zone, available area of a specific CF tranche may distributed widely. Therefore, this study computes the final zonal output profile based on the weight assigned to each MERRA-2 grid point in a zone.
Solar energy potential and output profile
In this study ground-based PV system installed outside urban area is defined as utility-scale PV, including two types of systems: fixed-tilt and one-axis tracking system. The energy output is computed using the amount of solar irradiation on PV module’s surface. It is assumed that a module can generate at full load when the incoming irradiance on the surface reaches 1000. The total irradiance is the sum of three components: beam irradiance, sky diffuse irradiance and ground diffuse irradiance. Bean irradiance is calculated from Direct Normal Irradiance and incidence angle. Sky diffuse and ground diffuse irradiance are calculated with the isotropic sky model described in [37] assuming the albedo value is 0.25. This study takes into account the influence of high temperature[footnoteRef:2] on the output by assuming that the conversion efficiency drops 0.5% per degree temperature increase when the temperature is above 25ºC. The hourly temperature data is also obtained from the MERRA-2 datasets. [2:  Other factors such as pressure and wind speed may also affect the output. However, this study is not intended to incorporate other factors since it can increase processing time significantly.] 

For fixed-tilt systems, it is assumed that all systems are facing directly southward or northward. The best tilt angle of a location refers to the Optimal Tilt Angle (OPTA) map prepared by Solargis [8]. For one-axis tracking systems, the tilt angle is also as per OPTA, but the surface azimuth angle varies with the sun’s position whenever the sun is above the horizon. The hourly CF is thus estimated with the irradiance components, temperature and incidence angle.
All small scale PV systems in urban areas, either roof-top or ground systems, are categorized as distributed PV system in this study. The CF estimation is performed the same way as utility-scale PV technologies. Since the building type and rooftop inclination angle varies across the world, the OPTA data is still used as a default tilt angle. In fact, according to [38], flat rooftops accounts for the majority of large and medium buildings in the United States, which usually allows the buildings to install PV modules with proper tilt angle. Also by referring the rooftop azimuth angle distribution to [38], it is assumed that all the suitable surfaces for distributed PV consist of 70% of northward/southward, 15% direct eastward, and 15% westward azimuth.
The variety of CSP technologies and the complexity of the design of a CSP system is noted in this study. A generalized design of a parabolic trough CSP system is proposed to estimate the CF. This work assumes the trough surface is laid north-to-south and tracks the position of the sun. The main design parameters are: design-point at 950, solar multiple of 2.0, and 6 hours of storage capacity. This design is common for 50MW commercial systems [39]. To capture the potential in areas with less solar energy, another system design is proposed with solar multiple of 2.5 and 9 hours of storage capacity. To simplify the calculation, it is assumed that the thermal energy is transmit to the power block first to generate electricity. At any time when the power block cannot receive enough energy from the solar field to generate at full load, energy from storage flows to the power block until depleted.
The assumption regarding land requirements for utility-scale technologies is 30; 25 for CSP with solar multiple at 2.0; and 20 for solar multiple at 2.5. The same figures for the two technologies were proposed in [40], which investigated the land-use requirements for existing PV and CSP projects. For distributed PV, this study assumes 5% of urban areas is suitable for deployment, based on similar assumptions in [13]. The capacity potential is calculated using the density of 75. A general 14% combined loss rate and a 96% inverter efficiency are applied to all PV technologies, based on [41]. This study bins the available raster cells into 7 CF tranche classes for PV technologies and 5 tranche classes for CSP. The final output is prepared in the same way as described in the wind section above.
Results and discussion
This section presents the results of the improvement of land cover information, validation of eligibility masks, and validation of hourly CF produced. The global capacity and energy potential of wind and solar technologies are proposed and compared with other studies.
Improving land cover map accuracy
The land cover features extracted from OSM are used to improve the base land cover map CCI-LC. The full statistics of this process are compiled in Supplementary File 3. Overall, 3.23% of global land area is covered. This includes only selected types of features, mainly nature, farmland and urban areas. Forests and water bodies that account for a large number of the OSM features are excluded since the original CCI-LC has high accuracy on them. OSM relies on volunteers to create and update the features. Clearly, the information is more extensive in some countries. However, the improved accuracy on urban areas is crucial in this study because buffered restriction zone is generated based on the areas, and also because it defines the available area for distributed PV deployment.
Validating the eligibility masks and suitability maps
The power facility features extracted from OSM are ideal reference for testing the eligibility masks produced. Supplementary File 4 contains the statistics for existing onshore wind turbines (WTBs) relative to the constraints used in this study. While the eligible area for WTB installation accounts for 32.7% of global terrestrial area, 83.7% of existing WTBs are located inside the eligible area derived in this study, suggesting a pronounced accuracy of the masks.
Investigating the WTBs located in the restricted areas can provide useful insight. For Belgium, Germany, Japan and Morocco, a high percentage of the WTBs are installed within the buffered distance from urban areas. In CCI-LC, all human-made structures are identified as urban areas. Where WTBs can be installed close to factories and large power facilities, their location may therefore be inside the buffered restriction zone. Figure 2 shows the case of Flanders, Belgium where many WTBs are located in the urban area defied in this study. The areas in yellow on the upper figure are the urban areas defined in original CCI-LC map with 500m buffer. It is clear that almost every WTB is located in the urban zones. Conversely, the green areas in the bottom figure are the urban areas with a 500m buffer processed from the OSM features. Most WTBs locate outside this area precisely, which demonstrates the high accuracy of this mask. However, in this study the areas not covered by any OSM features are not updated onto the CCI-LC map. In this case, many WTBs are located in the urban areas defined by CCI-LC map.
Globally around 4.7% of the WTBs are located in unsuitable land cover areas including irrigated cropland, wetland, water body, urban area and sands etc. This can also be attributed to the accuracy of CCI-LC map, though an attempt has been made reduce these errors by updating information from OSM. Nevertheless, the restriction area defined by amenity features can cause errors. The strict 3km buffer zone from any airport, including small civilian airdromes, and the 500m buffer zone from military areas are the main categories responsible for the errors.
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Figure 2. The location of onshore wind turbines (red dot) in Flanders, Belgium. The yellow areas on the top figure are the restricted urban areas identified by CCI-LC. The green areas on the bottom figures are the restricted area defined by OSM features. 
Information about 2,506 existing offshore WTBs worldwide is also extracted from OSM. Similar verification process is carried out. Most of the existing WTBs are in the eligible area defined in this study. However, social impact restrictions, including 3km from port/harbor, 1.5km buffer from ferry route, other amenities and urban area restrictions, can cause errors, especially in Netherlands.
Existing solar power features are also obtained from OSM. However, the information does not reveal their type and scale. To validate the eligibility masks, this study does not separate utility-scale PV and distributed PV systems. If a feature is located in either of the eligible areas, it is counted as a correct entry. The validation results by zone and by country are compiled in Supplementary File 4. Around 142,000 sites are tested, resulting in overall installation in eligible areas over 90% correctness. Most of the sites, around 74%, are in the urban areas. This may suggest that the extracted features are mostly distributed or rooftop systems. Most of the incorrect entries is related to the land cover masks. This is particularly the case for France, Greece, Italy and Spain. In general, the accuracy of certain type of tree cover is the main cause of these misallocations.
Validating the estimated hourly capacity factors
In this study, the historical VRE generation data on ENTSO-E platform is used for validation. The onshore wind and PV hourly power outputs of the records from ENTSO-E and the estimated CF for several European countries in 2017 are listed for comparison in Supplementary File 5. The overall result shows acceptable correlation coefficient, generally above 0.9. For PV, the coefficient is calculated for daytime hours, i.e. night hours are removed in the calculation. The error can come from many factors, including data quality and the approach applied to aggregate CF data into country level.
The correlation is high in several countries. Figure 3 shows the ENTSO-E records and estimated CF for onshore wind and PV in the last 7 days of 2017 in Germany. In general the deviation is less than 10% while in some periods the two datasets align perfectly. Because in some countries the correlation is just acceptable, the authors suggests that before using the data, one should adjust the estimation wherever historical generation records are available.
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Figure 3. The hourly CF records from the ENTSO-E platform and the estimated CF in this study in Germany (DEU) for onshore wind and PV. This chart shows the last 7 days of 2017 when the ENTSO-E data was influenced less by the annual installation capacity bias.
Global variable renewable energy potential
The global technical potentials of wind and solar technologies proposed in this study are summarized in Table 3 and 4, where they are also compared with other studies. The first CF class is excluded for economic reasons[footnoteRef:3], which corresponds to average CF less than 18% for wind technology, below 10% for PV, and below 25% for CSP. This exclusion has negligible influence on PV and CSP, but reduces wind energy potential by around 10%. The overall technical potentials of onshore and offshore wind are around 211,000 and 216,000; fixed-tilt and one-axis tracking utility-scale PV are 836,000 and 981,000; and the CSP is 587,000. Distributed PV can supply around 5,300. Clearly, the potentials are significantly higher than the global electricity demand 21,000 in 2016 [3]. In the long term, the energy potentials from these renewable technologies could supply the total primary energy demand of about 400,000 in 2100 [42]. Note that fixed-tilt PV, one-axis tracking PV and CSP are competing for the same available areas. [3:  Although the low energy potential areas are excluded in the comparison, the modelling result are still available in the supplementary files. ] 

This study adopts relatively conservative constraints for onshore wind assessment. The permafrost and road access restrictions eliminate large areas in Australia, Canada, Russia, the Amazon basin and the Sahara desert. The minimum average wind speed of 4m/s and minimum 18% CF further eliminate available areas, especially in low latitude regions. When the road access constraint is removed, the global capacity and energy potential for onshore wind and solar can increase about 70-80%, detailed figures at country level can be found in the supplementary files. The resulting potentials without road access limits are still much less than many of other studies. In fact, the majority of the difference comes from Australia and the Sahara Desert.
Lu et al. [16], Stetter [13] and Bosch et al. [21] all reported onshore wind energy potential around 3 times as high as this study. This is mainly because they include large areas from polar and unsettled area such as Western Australia, the Middle East and the Sahara Desert. Eurek et al. [19] also reported a higher potential despite applying constraints on permafrost and resource accessibility, but no minimum wind speed constraint was applied. The onshore wind potential by Hoogwijk [12] is around half of that in this study, possibly due to their coarse spatial resolution. The minimum average wind speed of 6.9m/s at 80m height applied in Archer et al. [15] may be the cause of less capacity potential but higher energy output. In Zhou et al. [17], the maximum 9c/kWh generation cost is the dominant constraint which reduces the potential to around 60% of this study. Dupont et al. [20] applied a low capacity density assumption that yields lower capacity potential compared with the others. The capacity potential proposed by Teske et al. [14] is the highest even without counting part of the Eurasia region. This is very likely because the study did not consider land suitability factor.
The proposed offshore wind energy is within a 50% range when compared with other studies. The main causes for these differences are the constraints on water depth, distance from the coast and the minimum capacity factor. This study also applies suitability factors based on shipping activity, which reduces approximately 20% of capacity potential.
For solar energy, the technical potentials proposed by Hoogwijk [12] and Köberle et al. [23] are significantly less than this study. This is because they assign much smaller suitability factors to land cover. Conversely, Trieb. Et al. [25] used similar suitability assumptions but did not apply accessibility constraints. The high installation density used in Stetter [13] produced higher potentials than this study. The capacity and energy potentials proposed by Pietzcker et al. [24] are at a similar level to this study. The capacity potential proposed by Teske et al. [14] is again the highest. Distance to infrastructure or settlement is not considered. Therefore the capacity potential in North and Central Africa account for around half of the global potential in the study.
Table 3. Comparison of global wind energy potentials between this study and others.
(LSF: land suitability factor; WS: wind speed; SI: social impact; AC: accessibility)

	Authors
	Capacity Density
()
	Global onshore wind
	Global offshore wind

	
	
	Key constraints
	Available area
()
	Capacity potential
(GW)
	Energy potential
(TWh/y)
	Key constraints
	Capacity potential
(GW)
	Energy potential
(TWh/y)

	Hoogwijk[12]
	4
	LSF, >4m/s
	11,230,000
	
	96,000
	
	
	

	Lu et al.[16]
	4.05/5.8
	LSF, >20%
	
	
	690,000
	Depth<200m, >20%, dist.<50nm
	
	157,000

	Zhou et al.[17]
	5
	LSF, Cost <9
	
	
	119,500
	
	
	

	Archer et al.[15]
	9
	>6.9m/s
	
	72,000
	627,000
	
	
	

	Arent et al.[18]
	5
	
	
	
	
	Depth <200m, >20%, dist.<50nm
	
	192,800

	
	
	
	
	
	
	 >8.0m/s
	74,000
	

	Stetter[13]
	10.4
	LSF, SI, > 4m/s
	
	
	684,000
	Depth <40m, dist. <40km
	
	201,000

	Eurek et al.[19]
	5
	LSF, AC, permafrost
	59,665,000
	298,000
	557,000
	dist. <100nm
	126,000
	315,000

	Bosch et al.
[21][22]
	6.5/3.14
	LSF, >15%
	41,748,000
	260,000
	587,000
	 >15%
	86,000
	330,000

	Teske et al.[14][footnoteRef:4] [4:  The estimation for part of Eurasia is incomplete.] 

	5
	>5m/s, SI
	67,270,000
	336,000
	
	
	
	

	Dupont et al.[20]
	2
	LSF, EROImin≥5
	
	90,000
	132,000
	EROImin ≥5
	24,000
	65,000

	This study
	5
	LSF, SI, AC, permafrost,
>18%
	16,855,000
	84,000
	211,000
	Depth <500m,  >18%, ship route
	71,000
	216,000



Table 4. Comparison of global solar energy potentials between this study and others.
(LSF: land suitability factor; SI: social impact; AC: accessibility; SM: solar multiple)
	Authors
	Global utility-scale PV
	Global CSP (parabolic trough)

	
	Key constraints & assumptions
	Available area
()
	Capacity potential
(GW)
	Energy potential
(TWh/y)
	Key constraints & assumptions
	Available area
()
	Capacity potential
(GW
	Energy potential
(TWh/y)

	Hoogwijk[12]
	LSF
Module eff. 14%, Losses 25%
	2,300,000
	
	366,000
	
	
	
	

	Stetter[13]
	LSF, SI
Module eff. 16%, Losses 18.9%, Inst. Density 130.6
	
	
	5,404,000
	LSF, SI, DNI>1800kWh//y
Design point 800, SM1.5
Inst. Density 65.2
	
	
	1,719,000

	Teske et al.[14][footnoteRef:5] [5:  The CSP potential in this study is merged into utility-scale PV. The estimation for part of Eurasia is incomplete.] 

	LSF, SI
Inst. density 25
	71,660,000
	1,1792,000
	
	DNI>2000kWh//y
	
	
	

	Köberle[23]
	LSF
solar-to-electricity eff 13%
Land use factor 47%
	
	
	101,000
	LSF, DNI>3kWh//day
SM 2.0, 6h storage
solar-to-electricity eff 12%
Land use factor 37%
	
	
	173,000

	Pietzcker et al.[24]
	LSF
Dist. to settlement <100km
Inst. density 92
	8,045,000
	725,000
	952,000
	LSF, Dist. To settlement <100km
SM 3.0, 12h storage
Inst. density 22
	7,641,000
	170,000
	656,000

	Trieb. Et al.[25]
	
	
	
	
	LSF, SI, DNI>2000kWh//y
SM 1-4, 6h storage
Land use efficiency 4.5%
	
	
	2,946,000

	This study
	LSF, SI, AC, Lat.<60º, >10%
Losses 17.5%
Inst. density 30,
	16,383,000
(fixed-tilt)
16,424,000
(tracking)
	491,000

493,000

	836,000

981,000

	LSF, SI, AC, >25%
DNI>1800kWh//y
Design point 950, 
SM 2, 6h storage
Inst. density 25
	7,614,000
	190,000
	587,000

	
	Distributed PV
	53,000
	3,950
	5,250
	
	
	
	


Capacity potential of variable renewable energies by country
Figure 4 shows the highest potential countries for onshore wind and utility-scale PV capacity by CF tranches. For wind power, the USA and Australia possess the highest capacity potential. Although Russia, Canada and Brazil have large land area, their potentials are restricted by permafrost, forest and road access, while they can rank at the top in other studies. As for high CF potential tranches, some countries, for example Kazakhstan (KAZ) and Algeria (DZA), can rank higher. Contrary to wind potential, Kazakhstan ranks at the 9th on utility-scale PV potential, but its energy output is lower than most countries on the chart. This is actually the purpose of splitting the output potential by tranches in this study. It allows one to focus on the high output areas, which implies higher economic value.
[image: D:\Imperial\PSM\All_Layers\ENTSOE\chart\Cap_Wind.png][image: D:\Imperial\PSM\All_Layers\ENTSOE\chart\Cap_PV.png]
Figure 4. Highest onshore wind (left chart) and utility-scale PV (right chart) capacity potential countries and the CF tranches breakdown.
Spatial distribution and temporal output
In this study, available area, capacity potential and average CF of the technologies, along with the simulated hourly CF are produced for each zone. The available area and capacity are compiled in Supplementary Files 6. This study aggregates the hourly CF into 288 time-slices (24 diurnal hours for each calendar month) CF profile, compiled in Supplementary Files 7. This temporal resolution may be more useful for large ESMs. 
Figure 5 shows an example of the offshore wind potential around the Philippines. The suitable area is constrained by the EEZ boundary and 500m water depth, as well as social impact constraints such as airports, ports, and ferry routes. The offshore area around the Philippines is split into 7 regions. It is clear that the capacity potential is concentrated on region 3 and 4.
[image: D:\Dropbox (Ind Tech Res Inst)\Work\5_paper\1_VRE potential\fig\Phil_offwind.jpg]
Figure 5. The suitable areas and gross capacity factor of offshore wind energy around the Philippines.
Figure 6 shows another example of the distribution of VRE potentials. It shows the distribution of onshore wind and utility-scale PV potential in Western Cape, South Africa. The wind power generation is high in certain mountainous area across the zone, and the PV generation is generally strong in this zone. The exclusion areas on the wind potential map are mainly due to low energy output. The exclusion areas on the PV potential map are mainly unsuitable terrain and land cover. There are restriction areas derived from road access in another zone to the north which is a less developed barren area of the country.
 [image: D:\Dropbox (Ind Tech Res Inst)\Work\5_paper\1_VRE potential\fig\SA_wind.jpg]     [image: D:\Dropbox (Ind Tech Res Inst)\Work\5_paper\1_VRE potential\fig\SA_PV.jpg]
Figure 6. The estimated CF map of onshore wind (left chart) and utility-scale PV (right chart) in Western Cape, South Africa.
In South Africa, this study identifies 166 VRE development options. This is estimated based on available capacity in different CF tranches, technologies and zones, where the capacity potential is not zero. This study identifies 21 VRE options in the Western Cape zone. To show the variation of their output, hourly CF in the first 3 days in 2017 of selected technologies are plotted on Figure 7. This interesting case is chosen to show how the space-time output can be variable that higher mean CF does not guarantee more generation at certain period of time. For PV technologies, the production of fixed-tilt PV and distributed systems is higher than tracking systems. The tracking system in class 5 outperforms class 7. For wind, class 4 outperforms class 6 between hour 15 and hour 20. This phenomenon is the result of their potential area distribution in the zone. For instance, the potential of class 7 (CF>25%) tracking PV is located in upper middle part of the zone. It is likely that the weather is less sunny in this period. High spatial and temporal resolution clearly capture local weather patterns better.
[image: D:\Imperial\PSM\All_Layers\ENTSOE\chart\ZAF_WC_Output.png]
Figure 7. The simulated CF of selected technologies in Western Cape, South Africa for the period of the first 3 days in 2017.
Conclusions
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The main purpose of this study has been to assess the global VRE potentials with consistent constraints and approach. The most updated dataset at the time of writing was applied, and a wide range of constraints considered. Information from the OpenStreetMap is used to improve the geospatial assessment. The MERRA-2 datasets are used for temporal CF estimation, while energy resource maps from GWA and GSA are used to improve the spatial resolution. The final results are hourly CF profile for each technology and for several CF tranches in 731 on shore zones and 339 offshore zones. 
The accuracy of the land cover map is improved with information from OSM. Analyses comparing the eligibility masks produced with existing wind turbine and solar power system locations demonstrate high accuracy of the masks in most countries. The validation shows a notable number of cases where there are errors as a result of inaccurate the land cover maps. Hence, future study on this topic to update the land cover using newer geographic information from platforms such as OSM is advisable. This study also validates the estimated CF with records from ESTSO-E platform. The results demonstrate very high correlation for most countries in Europe. In general, the capacity and energy potentials reported in this study are conservative compared with other studies, stemming from the stricter social impact restrictions, permafrost areas, road access and minimum CF requirement. It is recognized that the parameters used have significant influence on the estimated potential. The installation density is clearly critical.
An important contribution of this study is that the output datasets are essential for regional or global ESMs that are striving to improve modelling resolution. The datasets can also be aggregated easily into coarser resolution where required. Another significant advance is the use of OSM information to improve land cover data and to construct constraints on eligible areas. To the authors’ knowledge, there is no study that has made this effort at global scale prior to this study. It is noted that this study does not estimate electricity production cost explicitly for the technologies. This is one potential future research direction in supporting investment decisions. Another possible direction is regarding determination of the optimal mix of VREs in each region or country.
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