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Abstract16

Floating tracer clustering is studied in oceanic flows that combine both a field of coher-17

ent mesoscale vortices, as simulated by a regional, comprehensive, eddy-resolving gen-18

eral circulation model, and kinematic random submesoscale velocity fields. Both fields19

have rotational and divergent velocity components, and depending on their relative con-20

tributions, as well as on the local characteristics of the mesoscale vortices, we identified21

different clustering scenarios. We found that the mesoscale vortices do not prevent clus-22

tering but significantly modify its rate and spatial pattern. We also demonstrated that23

even weak surface velocity divergence has to be taken into account to avoid significant24

errors in model predictions of the floating tracer patterns. Our approach combining dy-25

namically constrained and random velocity fields, and the applied diagnostic methods,26

are proposed as standard tools for analyses and predictions of floating tracer distribu-27

tions, both in observational data and general circulation models. Plain language sum-28

mary29

The problem of dispersion and aggregation of various tracers in the ocean has recently30

attracted a lot of interest. These tracers can be natural ocean water characteristics, such31

as temperature and salinity, or various hazardous impurities, such as plastic pollution32

and oil spills. The latter tracers are also the floating ones, which means that their dy-33

namics is different from the passive tracers. An important and interesting aspect of the34

floating tracers is their ability to form pronounced clusters, that is aggregations in iso-35

lated patches — understanding and predicting this phenomenon is one of the challenges36

in modern oceanography. In this study we explore how floating-tracer clustering depends37

on kinematic characteristics of the ocean surface velocity.38

1 Introduction39

Mesoscale eddies are a ubiquitous component of the ocean circulation that signif-40

icantly contributes to the material transport of oceanic properties and tracers, such as41

density, salinity, marine life and pollution. The corresponding background literature is42

immense, and the theoretical aspects are comprehensively reviewed in (McWilliams, 2008;43

Samelson, 2013). For the purposes of this study, we note that coherent mesoscale vor-44

tices constitute substantial part of the total eddy field (Barbosa Aguiar, Peliz, & Car-45

ton, 2013; Chelton, Schlax, & Samelson, 2011; Chelton, Schlax, Samelson, & de Szoeke,46

2007; Mart́ınez-Moreno, Hogg, Kiss, Constantinou, & Morrison, 2019), contribute sig-47

nificantly to the material transport, and are remarkably long-lived and structurally or-48

ganized, as opposed to more random and wave-like eddies around them.49

Ocean circulation at the scales smaller than the mesoscale is dominated by the broad50

range of submesoscale processes, which have been intensively studied (Berta, Griffa, Özgökmen,51

& Poje, 2016; Berti, Santos, Lacorata, & Vulpiani, 2011; Haza, Özgökmen, & Hogan, 2016;52

Huntley, Lipphardt Jr., Jacobs, & Kirwan Jr., 2015; Jacobs et al., 2016; McWilliams, 2016;53

Ohlmann, Romero, Palls-Sanz, & Perez-Brunius, 2019; Schroeder et al., 2012; Zhong &54

Bracco, 2013). Interactions between submesoscale and mesoscale motions are essential55

in the formation and breakdown of coherent mesoscale vortices, but the theoretical un-56

derstanding is hindered by overwhelming computational costs due to the spatial reso-57

lution requirements (Dauhajre, McWilliams, & Renault, 2019). An efficient way (though,58

with obvious limitations) to study these interactions is by employing kinematic models59

for submesoscales, whereas retaining dynamical models for mesoscales — this is the ap-60

proach adopted in our study and applied to the tracer clustering phenomena.61

Although, it is well-established that floating tracers tend to form spatially localised62

aggregations (Cozar et al., 2014; Law et al., 2010; Martinez, Maamaatuaiahutapu, & Tail-63

landier, 2009; Maximenko, Hafner, & Niiler, 2012; McComb, 1990; Okubo, 1980; Väli,64

Zhurbas, Laanemets, & Lips, 2018) referred to as clusters, their definitions and measures65

of the degree of clustering differ substantially (Huntley et al., 2015; Jacobs et al., 2016).66
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Dynamics of floating tracers is fundamentally different from the dynamics of passive trac-67

ers, because in the former case the tracer density on fluid particles changes due to the68

experienced surface-velocity divergence, whereas in the latter case it is materially con-69

served and only advected by the flow. In other words, the floating-tracer density is com-70

pressible and can not be fully described by concentrations of Lagrangian particles — this71

fundamental theoretical issue escaped attention of many previous studies that dealt with72

the Lagrangian transport on the ocean surface (Cedarholm, Rypina, Macdonald, & Yoshida,73

2019; Olascoaga et al., 2013; Prants, Budyansky, & Uleysky, 2018; Wang, Olascoaga, &74

Beron-Vera, 2015). Physical mechanisms leading to formation of clusters can be differ-75

ent and overall remain poorly understood. This study deals with clustering due to the76

surface-velocity divergence, which is present in both mesoscale and submesoscale mo-77

tions.78

We focus on tracers floating on the ocean surface and, therefore, directly experi-79

encing only the 2D surface velocity. We define clusters as small and transient areas that80

exponentially shrink in time and collect the exponentially growing in time fraction of the81

tracer (Isichenko, 1992; Klyatskin & Koshel, 2000). The asymptotic theory of cluster-82

ing in random velocity fields (Klyatskin, 2015) states that the exponential clustering oc-83

curs necessarily, if the divergent velocity component completely dominates over the ro-84

tational one. When both components are comparable, the exponential clustering per-85

sists but its properties become significantly altered (Koshel, Stepanov, Ryzhov, Berloff,86

& Klyatskin, 2019) — this result is, however, restricted to specific and purely kinematic87

velocities. The main novelty of the present work is in relaxing this restriction by dynam-88

ically constraining the mesoscale flow component, which is referred to as the regular com-89

ponent. The random velocity field modelling the submesoscales represents ∼ 200−200090

m scales, has the surface divergence, which is 2 orders of magnitude larger than that of91

the mesoscales, is controlled by only 2 parameters: correlation radius and variance.92

This Letter aims at establishing phenomenology of possible floating-tracer cluster-93

ing scenarios depending on the submesoscale divergent flow component in the presence94

of dynamically modeled coherent mesoscale vortices.95

2 Models96

In this section we discuss the submesoscale and mesoscale velocity models, and how97

the tracer density fields were obtained.98

Floating tracer is advected by a 2D flow with velocity U(R, t) = (u (r, t) , v (r, t)) |z=099

characterized by the divergence100

∇RU(R, t) = −∂w(r, t)

∂z
|z=0 , (1)

where r = (x, y, z) is the full position vector; R = (x, y) is the horizontal position vec-101

tor; ∇RU(R, t) is the horizontal divergence at the ocean surface (z = 0); and w(r, t)102

is the vertical velocity component.103

Since there is no vertical flux of the floating tracer, the evolution of its density ρ(r, t)104

is governed by the conservation law:105 (
∂

∂t
+∇RU(R, t)

)
ρ(R, t) = 0 , ρ(R, 0) = ρ0(R) , (2)

and the total mass of the tracer is conserved: M =
∫
dRρ(R, t) = const. We treat106

(2) and the velocity field in a nondimensional form, with the space, time and density scales107

denoted as L0, t0 and ρ∗, respectively, and chosen to be the typical mesoscale eddy size108

(i.e., of the order of the first baroclinic Rossby radius) and turnover time, and the ini-109

tial density (distributed over the unity size area); and the velocity scale follows from this110

as U∗ = L0/t0.111
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Figure 1: Monthly mean (March 2000) sea surface mesoscale velocity field (regular
component) from the Japan/East Sea circulation model; the corresponding monthly mean
sea surface temperature (colour shading, in degrees of Celsius) from (a) satellite obser-
vations and (b) model. The general circulation patterns are reliably captured by the
simulation, so that the warm and cold regions of the JES are separated by the intense
meandering jet and its adjacent vortices. The grey square indicates the subdomain of
interest.

2.1 Mesoscale velocity model112

The mesoscale (regular) component is a solution of an eddy-resolving (1/12-degree),113

regional, hydrostatic Boussinesq, sigma-coordinate, INMOM model (Diansky, Stepanov,114

Gusev, & Novotryasov, 2016; Stepanov, Diansky, & Novotryasov, 2014) configured for115

the Japan/East Sea (JES) region plus the Sea of Okhotsk and adjacent parts of the Pa-116

cific Ocean. It is driven by the atmospheric forcing provided by the JRA55-do dataset117

covering the 1958−2017 period, and incorporating climatological boundary conditions118

on the open boundaries of the domain (Stepanov, Diansky, & Fomin, 2018). The sim-119

ulated solution is averaged over one-month intervals (Fig. 1b), and one of its surface ve-120

locity snapshots (March 2000) in the south-western JES region is used for the follow-up121

analyses. To validate the simulated velocity field, we overlaid it with the corresponding122

monthly mean sea surface temperature (SST) data provided by the AVHRR (Advanced123

Very-High-Resolution Radiometer) mounted on the satellites NOAA-12 and NOAA-15.124

The simulated circulation of the JES is consistent with the existing observations (Dian-125

sky et al., 2016; Stepanov et al., 2014).126

We picked up the subdomain containing pronounced vortices with horizontal shears127

(grey square in Fig. 1 corresponds to the vorticity field (left panel) and the divergence128

field (right panel) in Fig. 2). The locations of interest, designated (Fig. 2) by C1 (cy-129

clonic eddy), A2 (two weak anticyclonic eddies) and A1 (cyclone and anticyclone pair),130

serve as typical eddy configurations with their distinct material transport patterns. At131

this stage we are interested in clustering phenomena developing much faster than the char-132

acteristic time scale of the mesoscale (regular) velocity field — this justifies our use of133

the stationary mesoscale flow.134

In dimensional units, the random velocity scale is 2.0 m/s, whilst the character-135

istic regular velocity is of the order of magnitude smaller, i.e., about 0.2 m/s. The char-136

acteristic divergence of the regular velocity is about 10−6 s−1 (see the top-right panel137

–4–
©2019 American Geophysical Union. All rights reserved.



manuscript submitted to Geophysical Research Letters

Figure 2: Top row: regular (mesoscale) flow fields. Left panel: vertical component
of the relative vorticity vector normalized by the local Coriolis parameter; right panel:
surface-velocity divergence (units are 10−6s−1). The squares labelled as A1, A2 and C1

denote the tracer deployment regions. Bottom row: snapshots of the random flow proper-
ties in a zoomed in subdomain, and for γ = 0.5. Left panel: the corresponding flow speed;
right panel: the corresponding random velocity field (color-coded).
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in Fig. 2), whilst the random velocity divergence is orders of magnitude larger, i.e., about138

10−2 s−1.139

2.2 Submesoscale velocity model140

The 2D divergent velocity field U is random, normally distributed, spatially ho-141

mogeneous, isotropic, and stationary; it is also a linear combination of the modelled mesoscale142

mean, and the submesoscale divergent and rotational components:143

U(R, t) = 〈U(R, t)〉︸ ︷︷ ︸
mesoscale

+ γUp(R, t) + (1− γ)Us(R, t)︸ ︷︷ ︸
submesoscale

, (3)

where superscript p indicates the divergent (irrotational) component, superscript s in-144

dicates the rotational (nondivergent) component, and parameter 0 ≤ γ ≤ 1 sets their145

relative contributions.146

Our next goal is to formulate a model for random, spatially correlated, and tem-147

porally uncorrelated (i.e., δ-correlated), kinematic velocity field; for this purpose we de-148

fine (Klyatskin, 1994, 2015) the correlation tensor:149

Bjαβ(R′, η) = 〈U jα(R, t)U jβ(R + R′, t+ η)〉 =

∫
dkEjαβ(k, η)eikR

′
, (4)

where indices α and β stand for x and y and indicate different components of the ten-150

sor; and index j stands for p and s, and indicates different tensors; and the following spec-151

tral densities are assumed:152

Epαβ(k, η) = Ep(k, η)
kαkβ
k2

, Esαβ(k, η) = Es(k, η)

(
δαβ −

kαkβ
k2

)
. (5)

The correlation tensor is nonzero only for the zero time lag η:153

Bjαβ(0, 0) = 〈U jα(R, t)U jβ(R, t)〉 =
1

2

(
σjU

)2

δαβ , (6)

where
(
σjU

)2

= Bjαα(0, 0) =
∫
dkEj(k, 0). In our case we take Es = Ep = E, and154

the spectral density is taken as155

E(k, 0; l) =
1

2π

l4

4
k2 exp

{
−1

2
k2l2

}
, (7)

where l is the spatial correlation radius parameter. In numerical simulations, we use ran-156

dom phase, σpU = σsU ' 0.1, which results in the typical velocity of 0.2 m/s, l = 0.08157

(i.e., 2.0 km), and time step 0.01 (i.e., 120 s).158

2.3 Numerical implementation and methodology159

We simulated the random velocity spectrally on uniform 2048× 2048 grid (Kly-160

atskin & Koshel, 2017), and the regular velocity component is taken to be piecewise-constant161

over the same grid. Since the random field is not differentiable in time, we solve the La-162

grangian equivalent of (2),163

dR

dt
= U (R, t) , R (0) = ξ,

dρ

dt
= −∇RU(R, t)ρ (t) , ρ (0) = ρ0 (ξ) , (8)

as applied to ensembles of Lagrangian particles advected by the total velocity field and164

solved numerically by the method of characteristics (Klyatskin, 1994, 2015; Koshel & Alexan-165

drova, 1999), where ξ is the initial position of each particle. Equations (8) are time-stepped166
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using the standard Euler-Itô scheme (Kloeden & Platen, 1992; Klyatskin & Koshel, 2017;167

Koshel & Alexandrova, 1999), and the Eulerian density field can be obtained by the spa-168

tial coarse-graining, if needed.169

To analyze the clustering we employed the statistical topography methodology (Isichenko,170

1992). One of the characteristics used in statistical topography is the clustering area, which171

is defined as the total combined area of the regions where the tracer density exceeds cer-172

tain threshold:173

〈S(t; ρ̄)〉 =

∫
dR 〈θ(ρ(R, t)− ρ̄)〉 =

∫
dR

∞∫
ρ̄

dρ′ P (R, t; ρ′) , (9)

where θ (·) is the Heaviside (step) function; and P (R, t; ρ) is the probability density func-174

tion (PDF) of the tracer density. The other useful characteristics is the clustering mass,175

which is the amount of tracer aggregated within the clustering area:176

〈M(t; ρ̄)〉 =

∫
dR ρ(R, t) 〈θ(ρ(R, t)− ρ̄)〉 =

∫
dR

∞∫
ρ̄

dρ′ ρ′P (R, t; ρ′) . (10)

In the exponential clustering regime, the clustering area tends to zero, and the cluster-177

ing mass tends to unity (i.e., clusters accumulate all the available tracer) in the large-178

time limit (Klyatskin, 2015; Klyatskin & Koshel, 2017). The exact analytical estimates179

for the clustering area and mass are derived in (Klyatskin, 2015) for purely divergent ve-180

locity case:181

〈S(t; ρ̄)〉 ∼ exp(−1

4
τ)/
√
τ = exp(−1

4
Dpt)/

√
Dpt, 〈M(t; ρ̄)〉 ∼ 1− 〈S(t; ρ̄)〉 , (11)

where Dp = (γ2σ2
U/l

2)t0 is the effective diffusivity of the divergent velocity component.182

Most of our numerical simulations were carried out with σU = 0.1 and l = 0.08; and183

for this set of parameters, we use notation D0 instead of Dp.184

We distribute 3 square-shaped tracer patches in the subdomain of interest (Fig. 2),185

and each tracer patch contains 36×106 uniformly distributed Lagrangian particles. This186

number of particles has been tested (by doublind and halving) and found adequate in187

capturing the clustering characteristics of interest; moreover, when we considered a purely188

divergent and no-mean velocity field (γ = 1), the numerical solution matched the cor-189

responding asymptotic estimate (11). Four experiments have been devised with the same190

regular velocity and different random velocity fields:191

1. EXP1 employs only the regular velocity field and forms the reference solution to192

evaluate the effect of the submesoscale further;193

2. EXP2 — plus the purely rotational random velocity field (γ = 0);194

3. EXP3 — plus the purely divergent random velocity field (γ = 1);195

4. EXP4 — plus the mixed random velocity field (γ = 0.5).196

3 Clustering scenarios197

The reference case EXP1 (i.e., with the random submesoscale component switched198

off) illustrates typical tracer patterns in the deployment regions (Fig. 3a). Stationary199

vortices retain the tracer; in the regions with no closed streamlines, the tracer is intensely200

stirred and spread out; large values of tracer density are rare and correspond to the sinks201

in the flow field.202

Now, we turn our attention to the benchmark solutions (EXP2, EXP3, and EXP4)203

featuring different submesoscale flow components. The purely rotational EXP2 solution204

–7–
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(Fig. 3b) is characterized by smearing of the tracer patches due to enhanced tracer dis-205

persion. Similar effect has been observed in the model of an isolated ellipsoidal vortex206

subject to random velocity perturbations (Koshel, Ryzhov, & Zhmur, 2013). Overall tracer207

patterns and density values are similar to EXP1 (Fig. 3a), but the boundaries of the tracer208

patches are more filamented due to the random fluctuations.209

When the random velocity field is purely divergent (EXP3; γ = 1; Fig. 3c), the210

tracer evolution is characterized by the exponential clustering (followed up to the two211

orders of magnitude density increase). On the other hand, the overall large-scale pat-212

tern of the mesoscale-size tracer features, that is clearly seen in the other experiments,213

is significantly eroded. Remarkably, the exponential clustering develops even within the214

intensively sheared mesoscale jet and vortices (entirely from vortex peripheries to cores).215

Somewhat similar but grainy small-scale pattern is found when amplitudes of the rota-216

tional and divergent submesoscale flow components are equal (EXP4; γ = 0.5): the tracer217

evolution is also characterized by the exponential clustering (Fig. 3d), and tThe large-218

scale tracer distribution pattern is like in EXP1 and EXP2.219

Since our interest is mostly in the clustering process subject to coherent mesoscale220

vortices, we choose a typical situation — the cyclone over C1 deployment location — and221

analyze the corresponding tracer evolution in detail (Fig. 4). In EXP1 the tracer is ex-222

pelled towards periphery of the cyclone; in EXP2 it is additionally smeared across the223

mesoscale shear, and the boundary of the tracer patch is significantly more distorted;224

in EXP3 the exponential clustering is most pronounced (Figs. 3–4); in EXP4 despite the225

strong influence of the rotational component, the exponential clustering still persists; qual-226

itative difference between the clustering dynamics in EXP3 and EXP4 are discussed in227

the next section. Note, that clusters tend to aggregate differently in cyclones (tendency228

towards the periphery) and anticyclones (tendency towards the centre); e.g., consider A1,229

where clusters fill up the anticyclone’s centre.230

For a partial interpretation of the modeling results, we resort to the asymptotic the-231

ory of clustering in random velocity fields containing uniform-shear flow component (Kly-232

atskin, 2015), which predicts the following time dependence of the single-particle disper-233

sion:234

σ2
xx = 2D0t(1 + αt+

1

3
α2t2) , σ2

yy = 2D0t , (12)

where α is the shear parameter. According to this estimate, a tracer patch should be smeared235

in time, and more so along the shear direction (Fig. 3b); but in the case of purely ro-236

tational velocity (i.e., there is no exponential clustering), there is an estimate for the dis-237

persion of the density gradient p (Klyatskin, 2015):238

〈
p2 (t)

〉
∼ exp

{(
3

2
α2Ds

)1/3

t

}
, (13)

where Ds is the variation due to the purely rotational random velocity field. This esti-239

mate is obtained in the limit Ds � α, when α 6= 0, and its interpretation is as fol-240

lows: regardless of how small Ds is, it still contributes towards increasing the gradient241

dispersion, that is, it makes the tracer patch boundary more serrated (similar tenden-242

cies are seen in Fig. 3b), opposite to the (elongating) effect of uniform shear on the tracer243

patch. Although, the above estimate is valid for uniform shear, we expect it to be true244

for more complicated shears, and this expectation is consistent with the solutions dis-245

cussed in this section.246

To quantify clustering properties in the above-discussed scenarios, we make use of247

statistical topography diagnostics, such as the clustering area and mass. In EXP4 the248

rate of exponential clustering (Fig. 5) is qualitatively similar to but still slower to the249

theoretical prediction for the purely divergent case EXP3 (Klyatskin, 2015; Klyatskin250

& Koshel, 2017; Koshel et al., 2019). Despite the general tendency towards the expo-251

nential clustering, the clustering process is significantly affected by the specifics of the252
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a

b

c

d

Figure 3: Tracer densities corresponding to (a) EXP1 – regular velocity component, no
random velocity, (b) EXP2 – regular plus purely rotational random velocity component,
(c) EXP3 – regular plus purely divergent random velocity component, and (d) EXP4 –
regular plus mixed rotational and divergent random velocity components (γ = 0.5)).
Colour-coded is the dimensionless tracer density; red values indicate the exponential clus-
tering. The tracer advection patterns remain similar: the C1-tracer remains bounded to
the original deployment site; the A1-tracer is redistributed within the cyclone-anticyclone
pair; the A2-tracer is advected southeastward.

–9–
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Figure 4: Tracer density for the benchmark experiments. The enlarged region corre-
sponds to C1 deployment location. Top and bottom rows correspond to consequent di-
mensionless time instances t = 20000 and 40000, respectively. The rest is as in Fig. 2.

regular velocity, as illustrated by different evolution curves for different locations of the253

initial tracer deployment (Fig. 5). Formation of clusters can be inhibited by intense shear254

in jet-like flows, as can be seen in Fig. 5 for the A2 case.255

Changing the random velocity field parameters σU and l is similar to changing the256

diffusivity. The clustering proxy curves calculated for different sets of the parameters (pur-257

ple curve (σU = 0.2, l = 0.04), thin black curve (σU = 0.1, l = 0.16) and other combi-258

nations in fig. 5) produce similar shapes of the curves. If Dp is decreased, the cluster-259

ing rate slows down for the larger values of the clustering mass (Jacobs et al., 2016); if260

Dp is increased, the rate of clustering in the large-time limit decreases; overall, the ef-261

fective diffusivity cannot stop or initiate clustering, and only modifies it.262

4 Conclusions263

This study was motivated by the well-established phenomenon of clustering, that264

is, the development of spatially localised aggregations, here, of floating tracers (e.g., ma-265

rine plastic or other pollution, marine biomass) on the ocean surface. The underlying266

theory for this phenomenon remains largely undeveloped, except for simple kinematic,267

random velocity flows, which are our starting point. The work contributes to a better268

understanding of the effects characteristic of the floating tracer as compared to the pas-269

sive one. The other novelty is in considering clustering in the velocity field containing270

both random and regular (i.e., dynamically constrained) components. The latter com-271

ponent comes from a dynamical, realistic, general circulation model of the Japan/East272

Sea’s region, and it features mesoscale vortices; the former one aims at representing sub-273

mesoscale motions unresolved by the dynamical model and simulated by a random kine-274

matic model.275

–10–
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Figure 5: Time series of clustering mass (top curves) and clustering area (bottom
curves) for EXP3 (left panel) and EXP4 (right panel) for the tracer deployment loca-
tions: C1 - blue lines, A1 - red lines, and A2 - green lines (σU = 0.1, l = 0.08). The black
curves show theoretical estimates (11) for the purely divergent case (EXP3). Additional
curves correspond to different sets of the parameters (σU , l) through (11), and the tracer
deployment location C1: purple – Dp = 16D0 (σU = 0.2, l = 0.04); thin black – Dp = 1

4D0

(σU = 0.1, l = 0.16); light blue – Dp = D0 (σU = 0.2, l = 0.16); pink – Dp = 4D0

(σU = 0.1, l = 0.04); dark green – Dp = D0 (σU = 0.05, l = 0.04)). For most of the cases,
the exponential nature of clustering is clearly evident.
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Four experiments with gradually increased influence of the divergent component276

of the flow were devised; 3 regions of interest were selected, as represented by typical foot-277

prints of the mesoscale eddies: an isolated cyclonic eddy; two anticyclonic eddies; a pair278

of cyclonic-anticyclonic eddies. A compelling feature of the presented clustering behaviour279

is the widespread distribution of intermittent patterns of floating-tracer clusters within280

regions of intense shears, such as vortices and jets. This suggests that real mesoscale ed-281

dies in the ocean should also contain similar patterns; although, the relevant observa-282

tions are either scarce or with inadequate spatial resolution (see Fig. 1 in (Huntley et283

al., 2015) and Fig. 2 in (Lim et al., 2012), which feature intermittent cluster patterns284

similar to our model solutions).285

Upon comparison with the comprehensive study (Jacobs et al., 2016), we agree with286

their scenario that the short-time clustering is associated with the submesoscale diver-287

gence but argue that the long-term clustering is also due to the submesoscale divergence,288

while the mesoscales do not directly induce clustering but rather advect already formed289

clusters into larger aggregations. This is asserted using the statistical topography tech-290

niques showing that the rate of clustering does not change in time and is largely inde-291

pendent of the spatial inhomogeneities, such as given by mesoscale eddies.292

A serious challenge for further comparison between the model solution and obser-293

vations is disentangling of specific contributions of the rotational and divergent veloc-294

ity components that are shown to be essential for the rate and intensity of the cluster-295

ing process.296
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