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ABSTRACT

We find the combinations of momentum and domain-wall charges correspond-
ing to BPS states preserving 1/4, 1/2 or 3/4 of D=4 N=1 supersymmetry, and
we show how the supersymmetry algebra implies their stability. These states
form the boundary of the convex cone associated with the Jordan algebra of
4 x 4 real symmetric matrices, and we explore some implications of the as-
sociated geometry. For the Wess-Zumino model we derive the conditions for
preservation of 1/4 supersymmetry when one of two parallel domain-walls is
rotated and in addition show that this model does not admit any classical con-
figurations with 3/4 supersymmetry. Our analysis also provides information
about BPS states of N=1 D=4 anti-de Sitter supersymmetry.
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1 Introduction

Although N=1 supersymmetric field theories in 3 + 1 dimensions have been extensively
investigated for more than twenty five years, most of these investigations have been based
on the standard supersymmetry algebra. It has been known for some time, however, that
p-brane solitons in supersymmetric theories carry p-form charges that appear as central
charges in the spacetime supertranslation algebra ] Allowing for all such charges, the
D=4 N=1 supertranslation algebra is spanned by a four component Majorana spinor
charge @, the 4-vector P, and a Lorentz 2-form charge Z,,,,. The only non-trivial relation

is the anticommutator 1
(Q.Q) = OV Pt 507 Zy, 1)

where C' is the charge conjugation matrix and vy, = (70,7:) are the four Dirac matrices.
Our metric convention is ‘mostly plus’ so that we may choose a real representation of the
Dirac matrices. In this representation the Majorana spinor charges @ are real, so {Q, Q}
is a symmetric 4 x 4 matrix with a total of ten real entries. The number of components
of P, and Z,, is also ten, so that we have indeed included all possible bosonic central
charges. Note that the automorphism group of this algebra is GL(4;R).

The components of Z,, can be interpreted as charges carried by domain walls [,
while P, is (in general) a linear combination of the momentum and a string charge. In
the case of a domain wall, the tension is bounded by the charge, and saturation of this
bound implies preservation of 1/2 of the N=1 D=4 supersymmetry. This is one example in
the class of ‘1/2 supersymmetric’ configurations allowed by the supersymmetry algebraﬂ
Such 1/2 supersymmetric domain walls were shown to occur in [B] in the Wess-Zumino
(WZ) model, for an appropriate superpotential, and also arise in the SU(n) SQCD [H]
because the low-energy effective Lagrangian is that of a WZ model with a superpotential
admitting n discrete vacua [E] More recently, it was shown that the WZ model also admits
(again for an appropriate superpotential) 1/4 supersymmetric configurations that can be
interpreted as intersecting domain walls [ﬂ, é] More precisely, it was established that such
configurations must solve a certain ‘Bogomol’'nyi’ equation for which earlier mathematical
studies had made the existence of appropriate solutions plausible (especially in view of
the results of [E] which were recently brought to our attention). Domain wall junctions
of the WZ model have since been studied further in [§, fid, 1], and an explicit 1/4
supersymmetric domain wall junction of a related model has recently been found [@]

It was pointed out in [E] that the possibility of 1/4 supersymmetric intersecting domain
walls is inherent in the supersymmetry algebra. If we choose C' = 4" and 75 = 70y1~2~3,
then ([l) becomes

(Q.Q = H4~%P, 4+ 149U + 24"V )
where H = PY, Uij = Z;j and Vj; = —€4;5Z0k. One is thus led to expect ‘electric’ type
domain walls with non-zero 2-form U;; but vanishing V;; and ‘magnetic’ type domain walls
with non-zero 2-form V;; but vanishing U;;. In general, a domain wall will be specified
not only by its tension and orientation but also by an angle in the electric-magnetic
charge space; the domain wall is ‘dyonic’ when this angle is not a multiple of 7. It is not
difficult to show that the algebra (P]) allows for dyonic charge configurations preserving
1/4 supersymmetry. In this paper we determine the model-independent restrictions on
such configurations that are implied by the supersymmetry algebra.

As pointed out in @, the charge associated with the stringlike junctions of domain
walls in the WZ model appears in the supersymmetry algebra in the same way as the

1An analysis of 1/2 supersymmetric combinations of charges in N > 1 D=4 theories, N = 2 in
particular, can be found in [f].



3-momentum, so for a static 1/4 supersymmetric configuration of the WZ model the 3-
vector P must be interpreted as a string charge carried by the domain wall junction. It
was further shown in [ﬂ] that this junction charge contributes positively to the energy
of the 1/4 supersymmetric configuration as a whole. In contrast, the charge associated
to domain wall junctions of the model considered in [E] was shown there to contribute
negatively to the total energy. As we shall see, this apparent disagreement is due to a
different central charge structure for the two models. There is therefore more than one
field theory realization of static intersecting domain walls preserving 1/4 supersymmetry,
but as yet no example that exploits the most obvious possibility in which P vanishes but
U;; and V;; do not.

These observations underscore the importance of the model-independent analysis of
1/4 supersymmetric configurations based only on the N=1 D=4 supersymmetry algebra,
but our aim is to understand the implications of the supersymmetry algebra for all su-
persymmetric configurations, not just those preserving 1/4 supersymmetry. Since the
matrix {Q,Q} is a positive definite real symmetric one, it can be brought to diagonal
form with real non-negative eigenvalues. The number of zero eigenvalues is the number of
supersymmetries preserved by the configuration. The ‘supersymmetric’ configurations are
those for which this number is 1, 2, 3 or 4. There is a unique ‘vacuum’ charge configuration
preserving all four supersymmetries. Configurations preserving two supersymmetries are
1/2 supersymmetric while those preserving one supersymmetry are 1/4 supersymmetric.
Configurations preserving three supersymmetries are 3/4 supersymmetric, but there is
no known field theoretic realization of this possibility. Indeed, we will show here that
there is no classical field configuration of the WZ model that preserves 3/4 supersym-
metry. However, possible string-theoretic realizations of exotic supersymmetry fractions
such as 3/4 supersymmetry were recently explored in [[l4], and this possibility has been
considered previously in a variety of other contexts , E, @, E] In particular, the
OSp(1]8; R)-invariant superparticle model of [E] provides a simple realization in the con-
text of particle mechanics. The fundamental representation of OSp(1|8;R) is spanned by
(p*, A, €), where p and A are two 4-component real commuting spinors of Spin(1, 3), and
( is a real anticommuting scalar. The action

S = / dt [paxa n cé} (3)

is manifestly OSp(1|8) invariant; in particular, it is supersymmetric with supersymmetry
charge @ = A(. The canonical (anti)commutation relations imply that {Qu, Qs} = Ao g,
which is a matrix of rank one, corresponding to 3/4 supersymmetry.

Thus, there exist models of one kind or another in which all possible fractions of D=4
N=1 supersymmetry are preserved. This fact provides further motivation for the general
model-independent analysis of the possibilities allowed by the supersymmetry algebra that
we present here. As we shall explain, the space of supersymmetric charge configurations,
or ‘BPS states’, is the boundary of the convex cone of 4 x 4 real symmetric matrices
and this has an interpretation in terms of Jordan algebras. In analogy with the way
that the conformal group acts on massless states on the light-cone P? = 0, there is a
group Sp(8,R) that acts on the ‘BPS cone’ of supersymmetric configurations and which
has an interpretation in this context as the Mobius group of the Jordan algebra [@]
Another purpose of this paper is to explore some of the geometrical ideas underlying this
interpretation of supersymmetric charge configurations.

It is generally appreciated that BPS states are stable states, this being the main reason
for their importance, but some “standard” arguments for stability rely on physical intu-
ition derived from special cases. For example, a massive charged particle that minimises
the energy for given charge cannot radiate its energy away in the form of uncharged pho-
tons because this would leave behind a particle with the same charge but lower energy,



contradicting the statement that the original particle minimised the energy in its charge
sector. However, this heuristic argument is not conclusive. For instance, the stability
against radiative relaxation to a lower energy state of the same ‘charge vector’ assumes
that the radiated energy carries away no momentum because momentum is one of the
charges, and this assumption would be violated by a decay in which just one photon is
emitted. It is also implicit in the heuristic argument that prior to decay one can go to
the rest frame, but the supersymmetry algebra allows BPS states for which this is not
possible, a massless particle being an obvious, but by no means the only, example. These
considerations show that it is not quite as obvious as generally supposed that BPS states
are stable. Here we provide a complete analysis, for the general D=4 N=1 supersym-
metry algebra, based on a combination of the Minkowski reverse-triangle inequality for
positive-definite matrices and the ordinary triangle inequality for BPS energies.

The supertranslation algebra for which (m) is the only non-trivial (anti)commutator is
a contraction of the superalgebra osp(1|4; R), which is the D=4 N=1 anti-de Sitter (adS)
superalgebra. The anticommutator of the 4 real supercharges of the latter is

1
{@.Q} = CY* P+ 5C* My, @)

where M, are the Lorentz generators. This is formally equivalent to (), although the
charges on the right hand side are no longer central because they generate the adS group
SO(3,2). However the positivity conditions on these charges are the same, as are the
conditions for preservation of supersymmetry. This fact means that much of our analysis
of the centrally-extended supertranslation algebra can be immediately applied to the adS
case. A related analysis has been considered previously for D=5 in [@], where the D=4
case was briefly mentioned, and BPS states in D=4 adS have also been analysed by other
methods in [21].

We begin with an analysis of the N=1 D=4 supersymmetry algebra, determining
the charge configurations that preserve the various possible fractions of supersymmetry,
and we show how the positivity of {Q,Q} implies the stability of BPS states carrying
these charges. We also show how the supersymmetry algebra determines, in a model-
independent way, some properties of the 1/4 supersymmetric intersecting domain walls
that are realized by the WZ model, but show also that 3/4 supersymmetry is not realized
by classical WZ field configurations. We then turn to an exposition of the geometry as-
sociated with the supersymmetric configurations, which is that of self-dual homogeneous
convex cones, and review their relation to Jordan algebras. We then discuss how our
results apply to D=4 N=1 adS supersymmetry, and conclude with comments on implica-
tions and generalizations of our work, in particular to M-theory.

2 BPS states

The anticommutator (f]) can be rewritten as
{Q.Q} = H+~"P, +v7'U; +7'V; (5)

where . 1
Ui=geinljn  Vi=geinVin. (6)

As mentioned above, a charge configuration is supersymmetric if the matrix {Q, @} has
at least one zero eigenvalue. Thus, supersymmetric charge configurations are those for

which {Q, Q} has vanishing determinant. We see from (f]) that this determinant must be
expressible in terms of H and the three 3-vectors P, U and V.



Now det{@, Q} is manifestly SL(4;R) invariant, but the subgroup that keeps H fixed
is its maximal compact SO(4) = [SU(2) x SU(2)g]/Z2 subgroup. Ignoring the quotient
by Zs, the first SU(2) factor can be identified with the 3-space rotation group while the
SU(2) g group rotates the three 3-vectors P, U and V into each other, i.e. these three 3-
vectors form a triplet of SU(2)r. The notation chosen here reflects the fact that SU(2)r D
U(1)r, where U(1)g is the R-symmetry groupf] rotating U into V keeping P fixed (this
is the automorphism group of the standard supersymmetry algebra, including Lorentz
generators). We conclude from this that det{Q, @} is a fourth-order polynomial in H
with coefficients that are homogeneous polynomials in the three algebraically-independent
SU(2) x SU(2)g invariants that can be constructed from P, U and V. These are

a = U*+V?4+p?
b = P.UxV
c = |[UxVP+PxUP+|PxVJ. (7)

An explicit computation shows that
det{Q,Q} = P(H) (8)
where P(H) is the quartic polynomial
P(H) = H* — 2aH? — 8bH + a* — 4c (9)

The fact that {Q, @} is a positive real symmetric matrix imposes a bound on H in terms
of the invariants a, b, c. Specifically,

H > E(a,b,c) (10)

where E(a, b, ¢) is the largest root of P(H) = (H — A )(H — X\2)(H — A3)(H — A\4). Since
the sum of the roots vanishes, the largest root E is necessarily non-negative. The number
of supersymmetries preserved is then the number of roots equal to E. The vacuum
configuration has all roots equal with £ = 0. In all other cases F is strictly positive and
the number of roots equal to it is 1,2 or 3, corresponding to 1/4,1/2 or 3/4 supersymmetry.

Our first task, to be undertaken below, is to analyse the conditions required for the
realization of each of these possibilities. We will then show how the stability of states
preserving supersymmetry, alias ‘BPS states’, is guaranteed by the supersymmetry alge-
bra. Although all model-independent consequences of supersymmetry are encoded in the
supersymmetry algebra, the extraction of these consequences for BPS states is facilitated
by methods that involve only the constraints on the Killing spinors associated with these
states, and we show in the subsequent subsection how these methods can be used to learn
about restrictions imposed by the preservation of supersymmetry on intersecting domain
walls. We conclude with a discussion of 3/4 supersymmetry, and a proof that this fraction
is not realized in the WZ model.

2.1 Supersymmetry fractions

The analysis of the conditions on the invariants a, b, ¢ required for the preservation of the
various possible fractions of supersymmetry is fairly straightforward when the polynomial
P(H) has at least two equal roots, and is especially simple when there are three equal
roots. We shall therefore begin with the case of three equal roots, followed by the case of
two equal roots, arriving finally at the generic case.

2This symmetry is usually broken in D=4 N=1 QFTs, either by the superpotential or by anomalies.
We shall comment on this fact in the conclusions, but it is not relevant to the purely algebraic analysis
presented here.



The quartic polynomial P(H) has three equal roots if

a a
c=— b=7(3)%?

22, (1)

and the roots are

At :)\2:/\35/\:j:(§)1/2, A= —3\. (12)
If X is positive then we have the BPS bound H > A, and charge configurations saturating
this bound preserve 3/4 supersymmetry. If A is negative then we instead find the BPS
bound H > —3), with only 1/4 supersymmetry being preserved by charge configurations
that saturate it.
Charge configurations preserving 1/2 supersymmetry can occur only when P(H) has
two equal roots. The conditions for the special case in which \; = Ay and A3 = \4 are

b=c=0
A=)\ =+Va (13)
In the more general case when Ay = Ao = X and A3 = p we have \y = —(2A+p). A =0

we have a? = 4¢, b = 0 and p? = 2a, with 1/4 supersymmetry when H = |p|. Otherwise
we find the condition

4a3b% 4 27b* — 18ab*c — a*c? + 4¢3 = 0 (14)
with
3N =a42(a®-30)Y2, P 420 +3)2 =2a. (15)

with 1/2 supersymmetry possible when A is the largest root.
The general case of four unequal roots is quite complicated, unless b = 0, in which
case

(A Ao s M) = (Va+2ve,Ja—2ve, —\Ja—2ve, —\Ja+2ve) . (16)

One way to achieve b = 0 is to set P = 0. In this case the bound on H becomes

H>\/U2+V2+2UxV]|. (17)

Note that this becomes H > |U|+|V| when U-V = 0, which is typical of 1/4 supersym-
metric orthogonal intersections of branes. The four eigenvalues of {Q, @} are, in order of
increasing magnitude,

H—\/a+2c, H —\/a— 2, H+y/a— 2+, H+/a+2yc. (18)

The first of these vanishes when the bound is saturated. The last two are never zero
unless all four vanish, which is the vacuum charge sector. The second eigenvalue equals
the first only when ¢ = 0, so in this case there are two zero eigenvalues when the bound
is saturated and we have 1/2 supersymmetry. Otherwise we have 1/4 supersymmetry.
As emphasized earlier, static configurations need not have P = 0 because P may
have an interpretation as a domain-wall junction charge, rather than 3-momentum (in
general it must be interpreted as a sum of the 3-momentum and a string junction charge).
Nevertheless, one may still have b = 0 if U x V vanishes, which it will do if, say, V = 0. In
this case, the results are exactly as in the P = 0 case just analysed but with V replaced by
P. In particular, if P-U = 0 we then have H > |P|+ |U|, and static 1/4 supersymmetric
configurations have H > |P| + |U|. For this case, we can bring the charges to the form

P=(0,0,Q), U = (u1,us,0), V =(0,0,0). (19)



where @) is a junction charge. This case is the one analysed in [ﬂ], with T' = u; +tug being
the complex scalar charge in the D=3 supersymmetry algebra obtained by dimensional
reduction on the 3-direction. In agreement with [[§] we find that H = |T| + |Q|, so the
junction charge contributes positively to the energy of the whole configuration.

More generally, we might have

P:(0,0,Q), U:(u1;u250)7 V:(Ul,’UQ,O). (20)

This case was analysed in [B], and an explicit realization of it was found in a model with
several chiral superfields; in this model the charge Q is again associated with a domain
wall junction. In agreement with [@] we find the four roots to be

Moo= QA4 (ug +v1)? + (ug —v2)?

Ay = Q- \/(Uz +v1)? + (ug — v2)?

A3 = Q—/(ug —v1)? + (ug + v2)?

Moo= Q4 V(w2 — 1)+ (ur +v2)2. (21)

Note that the four roots are distinct, in general, and (in contrast to the previous case)
b # 0. If @ is positive and A; is the largest root, the junction charge @ contributes
negatively to the total energy as in [E]

The case just considered is a special case of the larger class of configurations with
b # 0 for which P(H) has four distinct roots. At this point the analysis becomes quite
complicated, and we shall not pursue it further.

2.2 Stability of BPS states

Our aim in this subsection is to prove the stability of BPS states. We begin by considering
the possible decay of a general state, not necessarily BPS, with energy Hs into two
other states, not necessarily BPS, with energies H; and H,. This can be represented
schematically as

(state)s — (state), + (state)s . (22)

Let us write
{Q.Q} = H+ K(a,b,c), (23)

where K is a traceless symmetric matrix, and (a,b,c) are the three SU(2) x SU(2)r
invariants introduced previously. Conservation of charges and energy requires that

Hs = H;+ H, (24)
Ks = Ki+ Ko (25)

where K; = K(a;, b;,c;), with (a;,b;,¢;) being the values of the invariants (a,b,c) for
the ith state. Since the matrices H; + K; are positive definite they are subject to the
Minkowski reverse triangle inequality (see e.g. [29])

[det(H3 + Kvg)]i > [det(H1 + Kl)]% + [det(Hz + sz)]i . (26)

We now want to see the consequences of supposing state 3 to be BPS. We observe that
the left hand side of (R6) vanishes if state 3 is BPS, but the right hand side can vanish
only if both states 1 and 2 are also BPS. The extension to more than two decay products
is immediate so we conclude that any unstable BPS state would have to decay into other
BPS states.

To complete the proof of stability we now show that a BPS state cannot decay into
other BPS states. A BPS state has an energy H = E(K) = E(a, b, ¢) where E(K) is the



largest value of H for which det(H + K) = 0. An equivalent characterization of F(K)
is as the smallest eigenvalue of K. It follows that E(K) = min ((TK(), where ( is a
commuting spinor normalized such that (¢ = 1 but otherwise arbitrary. From this and
the fact that min(a + b) < min(a) + min(b), we deduce the triangle inequality

Generic models will have a spectrum of BPS states for which this inequality is never
saturated. In such cases BPS states are absolutely stable. In those cases for which there
are BPS energies saturating the inequality (@) there may be states of marginal stabilityﬁ.
The inequality (@) is saturated when K7 and K5 are proportional, with positive constant
of proportionality, but this is only a sufficient condition for equality. Another sufficient
condition, which we believe to be necessary, is the coincidence, up to normalization, of
the eigenvectors of K; and Ko with lowest eigenvalue.

It is instructive to see how the above comments apply to the special case in which
H + K = Cy*P,. The Minkowski inequality becomes

VB A B 2\ [-P2+\/-F}. (28)

Since v/ —P? is the rest mass m of a particle with 4-momentum P, we learn that
ms Z mi + mo. (29)

This is the familiar rule that the sum of the masses of the decay products cannot exceed the
mass of the particle undergoing decay. Given that ms = 0 we deduce that m; = mo = 0,
so if a massless particle decays into two other particles those two particles must also be
massless. For this special case the triangle inequality @) reduces to

P14+ Pa| < |P1| + P2, (30)

which is saturated if and only if P; and P are parallel, and in this case there is no phase
space for the decay.

2.3 Domain Walls at Angles

Each supersymmetric configuration is associated with a set of Killing spinors ¢ which span
the kernel of {Q,Q}. With the exception of the vacuum configuration, these spinors are
subject to constraints that reduce the dimension of the space that they span. Some proper-
ties of supersymmetric configurations follow directly from the nature of these constraints.
In particular, intersecting brane configurations can be considered as configurations ob-
tained from parallel branes by rotation of one or more of them. The constraints can be
similarly obtained, and then analysed to determine the dimension of the space of Killing
spinors they allow [ We shall apply this analysis here to intersecting domain walls of
N=1 D=4 theories.
We begin with two coincident domain walls, corresponding to the constraint

Y013€ = €. (31)

We then rotate one of them around the 3-axis until it makes an angle 3 in the 12-plane,
and simultaneously rotate by some angle « in the electric-magnetic charge space. This
operation is represented by the matrix

R = e%a’ﬂse%ﬁ’Yu 7 (32)

31t is well known that marginal stability is the mechanism by which BPS states ‘decay’ as one moves
in the space of parameters defining certain theories, but this is a discontinuity of the BPS spectrum as a
function of parameters and not a process within a given theory.




which satisfies
Y0137 = Ryous. (33)

The constraint on the Killing spinor € imposed by the rotated brane is
RyoisR e =e. (34)
Using (@) and (@), one easily verifies that this second constraint is equivalent to
(R*—1)e=0. (35)

It is not difficult to show that this equation has no non-zero solutions for € unless a£/3 = 0.
We thus have

1
R =", X=3 (75 £712) - (36)

Using the identity 33 = — one can establish that
R? —1=(2R)(sinaX). (37)
Since 2R is invertible, it follows that (B) is equivalent to
sinaXe=0. (38)

This is trivially satisfied if sin @ = 0. Otherwise it reduces to Xe = 0, which is equivalent
to
Yoz€ = *e€. (39)

If this is combined with (B1)) we deduce that

V57Y023€ = Fe€, (40)

which is the constraint associated with a purely magnetic domain wall in the 23-plane.
We may take any two of these three constraints as the independent ones; the choice (@)
and (@) have an obvious interpretation as the constraints associated with the orthogonal
intersection of an electric wall with a magnetic one. This constitutes the special a = /2
case of the more general configuration of rotated intersecting branes that we have been
studying. But we have now derived these constraints for any angle o £ 0, 7. The fraction
of supersymmetry preserved by the general rotated brane configuration is therefore the
same as the fraction preserved in the special case of orthogonal intersection. Standard
arguments can now be used to show that this fraction is 1/4.

We have thus shown that starting from a 1/2 supersymmetric configuration of two
parallel coincident domain walls with normal n, one of them may be rotated relative to
the other by an arbitrary angle in a plane containing n, preserving 1/4 supersymmetry,
provided that the charge of the rotated wall is simultaneously rotated by the same angle
in the ‘electric-magnetic’ charge space. In practice it may not be possible for the domain
walls to intersect at arbitrary angles (preserving supersymmetry). For example, in the
Zs-invariant model discussed in [E], supersymmetric intersections are necessarily at 27/3
angles. But such additional restrictions are model-dependent. What we learn from the
supersymmetry algebra is the model-independent result that the angle separating 1/4
supersymmetric intersecting domain walls must equal the angle between them in the
‘electric/magnetic’ charge space.

Since the constraint (@) is associated with non-zero P; we also learn from the above
analysis that we can include this charge, provided it has the appropriate sign, which is
determined by the sign in (Bf), without affecting the constraints imposed by 1/4 super-
symmetry, although we then leave the class of configurations for which b = 0. Setting



P3; # 0 might be considered as performing a boost along the 3-direction except for the
previously noted fact that P; is not necessarily to be interpreted as momentum. Never-
theless, as a terminological convenience we shall call P the ‘3-momentum’ in what follows.
Consider the charge configuration obtained by adding the charges of an electric brane in
the 13-plane with a brane rotated in the 12-plane, preserving 1/4 supersymmetry, and
then adding momentum in the 3 direction:

U = wcosa(sina,—cosa,0)+ (0, —u,0)
V = wsina(sina, —cosa,0)
P = (0,0,p) (41)
We now have
a = u®+v?+2uvcos®a+ p?
b = puvsin®a
c = u?v?sin® a4 p?(u® 4+ v? + 2uv cos® a) (42)

One can show that the eigenvalues of {Q, Q} are

H +p+ u? + 02+ 2uvcos 2, H—-p+(u+tv) (43)

For w,v,p > 0, we conclude that H > p+u+ v and that 1/4 supersymmetry is preserved
when the bound is saturated. Note that in this case

{Q,Q} =u(l —7013) + v (1 —v013R*) +p (1 —03) , (44)

=

for the upper sign in (Bf), confirming that the projections remain unchanged by the
inclusion of momentum.

2.4 3/4 Supersymmetry

Continuing the above analysis, we now turn to the case in which u,v,p are not neces-
sarily all positive because this case includes the possibility of domain wall configurations
preserving 3/4 supersymmetry [[[4]. Consider the case o = 7/2 for an electric wall and a
magnetic wall intersecting at right angles, so that the eigenvalues (ft3)) are

H+p+(u—v), H—-p+(u+v). (45)

It follows that H is bounded below by each of the eigenvalues

M = p—u—v
Ao = v—u—p
A3 = u—v—p
M = utv+p. (46)

If only one of the charges is non-zero, u say, then we obtain the standard BPS bound,
H > |u|, which is saturated by the electrically charged BPS domain wall. With two
charges, v and v say, we obtain H > |u+ v| and H > |u — v|, and when the stronger
of these is saturated we have the intersecting domain wall configuration preserving 1/4
supersymmetry. With all three charges, there are four bounds corresponding to the four
eigenvalues and 1/4 supersymmetry is preserved, generically, when the strongest bound is
saturated. There are then two subcases to consider according to whether or not \4 is the
largest eigenvalue. If A4 is the largest eigenvalue, as happens, for example, when u, v, p



are all positive, then we recover the standard 1/4 supersymmetric case considered above,
unless two of the three charges u, v, p vanish in which case 1/2 supersymmetry is preserved.
If A4 is not the largest eigenvalue then one of the others is, and we may choose it to be Ay
because the other possibilities are related to this one by SU(2)g transformations. Given
this, H is bounded below by p — u — v and if there is a state saturating this bound with
H =p— u— v then the eigenvalues of {Q, Q} are

0, 2(p —v), 2(p —u), —2(u+w). (47)

It follows that 1/4 supersymmetry is preserved generically but more supersymmetry is
preserved for special values of the charges. The possibility of this kind of enhancement of
supersymmetry, including the possibility of 3/4 supersymmetry, was recently discussed in
[@] and the case under consideration here is very similar. If p = v or p = w or u = —v,
then a charge configuration saturating the BPS bound will preserve 1/2 supersymmetry
and if p=wu = v or u = —v = £p then 3/4 supersymmetry will be preserved. Thus, a
charge configuration saturating the bound H > Ay will preserve 1/4 supersymmetry for
generic values of the charges, but 1/2 or 3/4 supersymmetry for certain special values.
We should stress that the above analysis is purely algebraic and it is an open question
whether there exists a physical model with domain wall configurations preserving 3/4
supersymmetry. As we now show, this possibility is not realized by the WZ model.

2.5 BPS Solutions of the Wess-Zumino Model

The WZ model is known to admit both 1/4 and 1/2 supersymmetric classical solutions,
which (at least potentially) correspond to states in the quantum theory. We shall show
here that there are no classical solutions preserving 3/4 supersymmetry. We shall begin
by considering purely bosonic field configurations and then extend the result to arbitrary
classical configurations.

The fields of the WZ model belong to a single chiral superfield, the components of
which are a complex physical scalar ¢ = A+ iB, a complex two-component spinor, which
is equivalent to a 4-component Majorana spinor A, and a complex auxiliary field F' = f+ig.
We will continue to use a real representation of the four Dirac matrices v*. For purely
bosonic field configurations we need only consider fermion supersymmetry transforma-
tions. Our starting point will therefore be the (off-shell) supersymmetry transformation
of X\, which takes the form d\ = Me, where € is a real constant spinor parameter and M
is the real 4 x 4 matrix

M =~+"(0,A+v50,B) + f + 759 . (48)

This transformation is valid for the spinor component of any chiral superfield. The Wess-
Zumino model is characterised by the fact that the auxiliary field equation is

F=f+ig=W\{(¢), (49)

where W'(¢) is the derivative with respect to ¢ of the holomorphic superpotential W ().

A bosonic field configuration of the WZ model will be supersymmetric if there is a
spinor field € that is both annihilated by M (z), for all z, and covariantly constant with
respect to a metric connection on EGS. T hus, for there to be n preserved supersymme-
tries it is a necessary condition that M (z) has an n dimensional kernel for each z. Our
strategy for showing that there are no 3/4 supersymmetric field configurations will be to
analyse necessary conditions for the matrix My = M (xz() at a fixed point xg to have an
n-dimensional kernel.
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We begin by noting that a WZ field configuration can preserve 1/4 supersymmetry
only if det Mj vanishes, which is equivalent to

[(0A)% + (0B)® — f* — ¢°]° = 4 [(0A4)*(0B)* — (9A - 0B)?] . (50)

This condition is necessary for the preservation of at least 1/4 supersymmetry in any
model with a single chiral superfield, and in particular in the WZ model. Configurations
preserving more than 1/4 supersymmetry are characterized by additional constraints on
the fields. Necessary constraints can be found very easily by making use of the fact that
My can be brought to (real) upper-triangular form by a similarity transformation. We
may therefore assume that M is upper triangular. If, in addition, it has a 2-dimensional
kernel then it may be brought to the form

0 0 x =

0 * =«
. x (51)

*

where x indicates an entry that is not zero (or not necessarily zero in the case of the
off-diagonal entries). This matrix has the property that

2tr M3 — 3tr Mo tr M3 + (tr Mo)® =0, (52)
and substituting (fg) we learn that
ff2+g* = (04)* — (8B)*] =0. (53)

This condition is therefore necessary for a field configuration to preserve 1/2 supersym-
metry.
Similarly, any upper-triangular matrix with a 3-dimensional kernel can be brought to

the form
0

0
0

o O O

(54)

* X% X ¥

This matrix satisfies both (53) and tr M2 = (tr Mp)?, in addition to (50). These condi-
tions, which are therefore necessary for 3/4 supersymmetry, are equivalent to the joint
conditions

f =0
¢ = (94 +(9B)?
(0A)2(0B)* = (DA -0B)>. (55)

We are now in a position to show that there are no 3/4 supersymmetric WZ field
configurations (other than the vacuum which has 4/4 supersymmetry). The conditions
(@) must be satisfied by such a field configuration. We shall analyse these conditions at
a fixed point x = zy and consider separately the cases in which ¢ = 0 and g # 0 at that
point. If g = 0 then the second condition in () implies that at zq either the 4-vectors
0A and 0B are both null or one is spacelike and the other is timelike. The latter option
contradicts the third of eqs (F5) so both are null. Tt then follows from (f5) that 9A and
0B are parallel, so that

f=g=0, 0A =av, 0B = v (56)
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where a and 8 are constants and v is a null 4-vector. This field configuration is therefore
a candidate for 3/4 supersymmetry, but because the conditions leading to it were not
sufficient for 3/4 supersymmetry this must be checked. In fact, it is readily shown that
the matrix M corresponding to the configuration (@) has only a two-dimensional kernel
so that at most 1/2 supersymmetry can be preserved.

The remaining candidates for 3/4 supersymmetry in the WZ model arise from field
configurations in which f vanishes but g is non-zero. Then (F5) implies that at xo either
0A and OB are both spacelike, or one is spacelike and the other is null. Suppose first that
either 0A or B is null. In the case in which 0B is null we have

f=0 9A=gs, 9B=v, (57)

where v is a null vector orthogonal to a spacelike vector s normalized such that s? = 1.
For this configuration one can check that the matrix M generically has a one dimensional
kernel, and has a two dimensional kernel when either g = 0 or 5 = 0. The case in which
OA is null is similar, with the same result that at most 1/2 of the supersymmetry is
preserved.

If neither A nor 0B is null then they are both spacelike and we can arrange for them
to take the form

9B = B(0,1,0,0)
0A = «afsinf,cosb,0,sind) (58)

with g2 = a?cos?6 + 2. One then finds that the kernel of M(z¢) is 2-dimensional if
afsinf = 0 and otherwise 1-dimensional. Configurations of the form (5§) can therefore
preserve at most 1/2 supersymmetry.

We have now shown that there are no non-vacuum bosonic WZ field configurations
that preserve 3/4 supersymmetry. We now wish to consider whether this remains true
when we consider general configurations that are not necessarily bosonic. This question
is perhaps best posed in the context of the quantum theory, which we will not consider
here, but it can also be posed classically by taking all fields to be supernumbers with
a ‘body’ and a nilpotent ‘soul’. Any general field configuration of this kind preserving
3/4 supersymmetry must have a body preserving at least 3/4 supersymmetry and, as we
have just seen, the vacuum configuration is the only candidate. It follows that the only
remaining way in which a classical field configuration could be 3/4 supersymmetric is if the
4/4 supersymmetry of the bosonic vacuum configuration is broken to 3/4 by fermions.
Preservation of any fraction of supersymmetry in a fermionic background requires the
vanishing of the supersymmetry transformations of the bosons. For the WZ model this
implies (A = AT0)

Xe=0, Myse =0, (59)
and for 3/4 supersymmetry there must be a three-dimensional space of parameters € for
which this condition holds. At a given point in space we may choose, without loss of
generality, a basis in spinor space such that Ce = (0, *, *, *)T, where an asterisk indicates
an entry that may be non-zero. The first equation then implies that AT = (x,0,0,0)
and the second that ATv5 = (x,0,0,0). But since 75 is both real and satisfies 72 = —1
these conditions are not mutually compatible. This concludes our proof that the WZ
model has no non-vacuum classical configurations, bosonic or otherwise, that preserve
3/4 supersymmetry

3 The geometry of supersymmetry

We now turn to a discussion of the geometry associated with BPS representations of the
algebra (E), which we may re-write in terms of a positive semi-definite symmetric bispinor
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Z as {Q,Q} = Z. The positivity of {Q, @} implies that Z is a vector in a convex cone,
with the boundary of the cone corresponding to the BPS condition det Z = 0. We shall
first explain some of the geometry associated with convex cones, and how it relates to
BPS states. We will then explain how this ties in with the theory of Jordan algebras.

3.1 Convex cones

Let us begin with the standard D=4 N=1 supersymmetry algebra, in which case Z = v- P
and the positivity of {Q, @} implies that P lies either in the forward lightcone of D=4
Minkowski momentum-spacetime or on its boundary, the lightfront. In the latter case,
P? = 0 and any states with this 4-momentum are BPS, preserving 1/2 supersymmetry.
The forward lightcone in momentum space and the forward lightcone in position space
are both examples of convex cones. An n-dimensional cone C is a subspace of an n-
dimensional vector space V with the property that Az € C for all x € C and all real
positive A\. The cone is convex if the sum of any two vectors in the cone is also in it. The
dual cone is then defined as follows. Let y be a vector in the dual vector space V* and
let y - x be a bilinear map from V' x V* to R. The dual cone C* is the subspace of V* for
which y -z > 0 for all z € C.

Given a translation-invariant measure on V' we can associate with each convex cone
in V' a characteristic function w defined by

() = / vy, (60)

As all translation-invariant measures are multiples of any given translation-invariant mea-
sure, this formula defines w up to a scale factor, but this ambiguity will not affect the
statements to follow. The cone is foliated by hypersurfaces of constant w, with the lim-
iting hypersurface w = 0 being the boundary of the cone. In the case of the forward
light cone in D=4 Minkowski spacetime the vector space V is R* and w = N2, where
N(z) = —nuuaxta” is the quadratic form defined by the Minkowski metric 1 (we adopt
a ‘mostly plus’ metric convention). The hypersurfaces of constant w are therefore hy-
perboloids homothetic to SO(1,3)/SO(3). Note that this is a symmetric space; this is
a general feature of self-dual homogeneous convex cones, of which the forward lightcone
in Minkowski space is an example. Homogeneous convex cones that are not self-dual are
foliated by homogeneous spaces that are not symmetric spaces.

Because, in this example, w is determined by a quadratic function N, the vector space
V = R* can be viewed as a metric space, with Minkowski metric 7. More generally, w is
not quadratic and hence does not furnish V' with a metric. Nevertheless, w does provide
a positive definite metric for C (obviously, this differs from the Minkowski metric of the
‘quadratic’ case discussed above). Let us first note that, by the definition of a cone, the
map D : x — Az is an automorphism, in that Dz € C if x € C. It follows immediately
that w(z) is a homogeneous function of degree n. A corollary of this is that m(x) -2 =1
where

1 0logw
m(x) = ai . (61)

Thus, m € C*, and as x ranges over all vectors in C so 7 ranges over all vectors in C*. One
can now introduce a metric g on C with componentsﬂ

1
9ij = —Eaiﬁj 1ng($) . (62)

4For the forward light-cone in Minkowski spacetime with Minkowski metric n, we have g;; =

(:(:2)*2(2901-961- - x2mj) where 22 = m-j:ci:cj and z; = nijxj, so that m; = (2) " lx;.
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One may verify that ‘
T = ngij . (63)

The map from C to C* provided by the metric (@) has a natural interpretation in terms
of Hamilton-Jacobi theory: if logw is interpreted as a characteristic function in the sense
of Hamilton, then 7 as defined by (B is the conjugate momentum.

A feature of the metric g is that it is invariant under automorphisms of C. For example
it follows from the homogeneity of w that the linear map D is an isometry of g. The group
of automorphisms will generally be a semi-direct product of D with some group G that
acts on the leaves of the foliation. The cone is homogeneous if G acts transitively. A
homogeneous cone is foliated by homogeneous hypersurfaces of the form G/H for some
isotropy group H. For a self-dual cone this homogeneous space is also a symmetric
space. As already mentioned, the forward light cone in EM®) s foliated by hyperboloids
homothetic to SO(1,3)/S0(3), so G is the (proper orthochronous) Lorentz group. The
metric induced on each leaf of the foliation by the metric g;; of the cone is the positive-
definite SO(1, 3)-invariant metric on SO(1,3)/SO(3).

Let us now turn to the general D=4 N=1 supersymmetry algebra {Q,Q} = Z. The
bispinor charge Z can be interpreted as a vector in the convex cone of positive-definite real
4 x 4 symmetric matrices. This is a cone in R which, since Z includes the 4-momentum,
we may consider as a ‘momentum-space’ cone C*. We set aside to the following subsection
consideration of the corresponding ‘position space’ cone C. The characteristic function of
C* isf]

w(Z) = (det Z)3 . (64)

The cone is again a self-dual homogeneous one, and is foliated by symmetric spaces that
are homothetic to SL(4;R)/[SO(4)]. Of principal interest here is the boundary of C*,
defined by det Z = 0, because this is the condition for preservation of supersymmetry.
The geometry of this boundary is now rather more complicated than it was before.

The basic observation required to understand this geometry is that the cone is a
stratified space with strata S,, n = 0,1,2,3,4, where S,, is the subspace in which at
least n of the four eigenvalues vanish, corresponding to at least n supersymmetries being
preserved, and S, 41 is the boundary of §,,. The boundary of the cone is the space Sy,
which is the 9-dimensional space of matrices of rank 3 or less. The boundary of this is the
space Sy of matrices of rank 2 or less which make up a 7 dimensional space. To see why it
is 7 dimensional recall that to specify a matrix of rank 2 it suffices to give the normalised
eigenvectors with non-vanishing eigenvalues together with their eigenvalues. The two
eigenvectors define a 2-plane in R*, corresponding to an element of the 4-dimensional
Grassmannian SO(4)/(SO(2) x SO(2)). Giving the orientation of the eigenvectors within
the 2-plane means specifying one of the SO(2) factors. In other words the basis of 2
eigenvectors corresponds to the 5 dimensional Stiefel manifold SO(4)/SO(2). Taking into
account the two eigenvalues we have a 7-dimensional space, as claimed. The boundary of
this stratum is the set S3 of matrices of rank 1 or less. These span a 4-dimensional space,
since a rank 1 matrix is specified by the direction, up to a sign, of its eigenvector with
non-zero eigenvalue together with the eigenvalue. This is a point in RP? x RT. Finally,
the boundary of S3 is the stratum Sy consisting of the zero matrix, which is the vertex of
the cone.

3.2 Reverse triangle inequalities

The Minkowski inequality that we used previously to establish the stability of BPS states
is a special case of a reverse-triangle inequality valid for all convex cones. Let us define

5Note that w? is a polynomial. A theorem of Koecher states that w? is a polynomial for all self-dual
homogeneous convex cones.
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the ‘length’ of a vector in an n-dimensional convex cone with characteristic function w as
L(z) = w/™(x). (65)

This is a homogeneous function of degree 1. Because the hypersurfaces of constant w are
concave, this ‘length’ satisfies the reverse triangle inequality

L(z +2") > L(x) + L(z') . (66)

with equality if and only if  and x’ are proportional. In the case of the cone of m x m
positive definite hermitian matrices we have L(z) = (det z)'/™ and the reverse triangle
inequality is the Minkowski inequality

[det(z + y)]7 > [det z]™ + [dety]™ , (67)

with equality if the two matrices are proportional. In the special case of diagonal ma-
trices, the cone becomes the positive orthant R’* in E™. The length of a vector x =
diag(z1,...,2y) in R is L(z) = (z1...2,)"/™, and Minkowski’s inequality for positive
definite matrices reduces to a form of Holder’s inequality (see e.g. [BJ). The metric
g on R7 is the flat metric di? = (1/n) > (dlogz’)?>. The automorphism group is the

permutation group S,,, which is clearly an invariance of the length.

3.3 Conformal Invariance

For the standard D=4 N=1 supersymmetry algebra without central charges all BPS states
have P? = 0. This is the momentum space version of the massless wave-equation, which
is invariant under the action of the conformal group SU(2,2) on compactified Minkowski
spacetime. Our aim here is to show how this generalizes when the domain wall charges
are included. This will turn out to be a straightforward extension of the standard case,
appropriately formulated, so we consider that first.

It is convenient to identify a point in Minkowski spacetime with a matrix X = X*o,,
where 0, = (1,01,02,03) are the 2 x 2 Hermitian sigma-matrices. The conjugate mo-
mentum P is then similarly a 2 x 2 Hermitian matrix and —P? becomes det P. (The
momentum P should not be confused with the dual variable 7 introduced in the previous
subsection.) Let us now consider the massless particle action

I= / [trPdX — edet P] (68)

where e (the einbein) is a Lagrange multiplier for the mass-shell constraint det P = 0.
The conformal group SU(2,2) acts on the compactification of Minkowski space via the
fractional linear transformation

X = X' =(AX +B)(CX+D)! (69)

where the hermiticity of X’ requires that

A B
(C’ D>€SU(2,2). (70)
This implies that
dX'(CX+D)=(A-X'C)dX . (71)

We deduce from this that the PdX part of the action I is invariant (up to a surface term)
if
P— P =(CX+DPA-XC)". (72)
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This transformation implies

det P — det P’ = Q ' det P (73)
where det(A — X'C)
e p—
=——_— ~/ 4
det(CX + D) (74)

The action I is therefore invariant if we assign to the einbein the transformation e — ¢’ =
Qe.

We now wish to determine the analogous symmetry group of the more general BPS
condition det Z = 0. The matrix Z can be viewed as a vector in a 10-dimensional vector
space. Let X be coordinates of the dual space and consider the particle action

I= / [trZdX —edet Z]. (75)

Special cases of actions of this type were considered previously by Cederwall [@], with
a motivation derived from Jordan algebra considerations that we shall explain in the
following subsection (see also [R5, [Ld]). Now consider the fractional linear transformation

X - X' =(AX +B)(CX +D)™!, (76)

which acts on the compactification of the space of symmetric matrices [@] The matrix
X’ will also be real and symmetric provided that

<é g) € Sp(8: R). (77)

That is,
ATD-c"B=1, A'c=cTA, B'D=D"B. (78)

As before, we deduce (F1) and from this that the ZdX term is invariant up to a surface
term if
Z—7'=(CX+D)Z(A-X'C)" . (79)

This implies
det Z — det Z' = Q ' det Z (80)

where ) has form of @ We may again take e — € = Qe to achieve an invariance of
the action I. In this case, the invariance group is Sp(8; R).

Note that this conclusion rests on an interpretation of the 4-dimensional compactified
Minkowski spacetime as a subspace of a ten-dimensional vector space of the 4 x 4 real
symmetric matrices X. A field theory realization of Sp(8;R) would require fields defined on
this larger space. For example, the analogue of the massless wave equation on Minkowski
space is the fourth-order equation

det(—id/0X) T =0 (81)

The symmetry group of this equation is Sp(8;R). By analogy with the Minkowski case,
we expect this to be the maximal symmetry group of this equation.
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3.4 Jordan algebras

The results of the previous subsections have an interpretation in terms of Jordan algebras.
A Jordan algebra J of dimension n and degree v is an n-dimensional real vector space with
a commutative, power associative, bilinear product, and a norm N that is a homogeneous
polynomial of degree v (see e.g. [@]) There are four infinite series of simple Jordan
algebras, realizable as matrices with the Jordan product being the anticommutator: the
degree 2 algebras X(n) to be discussed below, and the series J;CR, Jg:, J;CHI, which are
realized by k X k hermitian matrices over R, C or H, with norm given by the determinant,

N(z) = det(x). In addition, there is one ‘exceptional’ Jordan algebra J3© realizable by
3 x 3 hermitian matrices over the octonions.

Associated with any Jordan algebra J with product x oy is a self-dual homogeneous
convex cone C(J). This is the subspace of J consisting of elements e” with x € J (where
e® is defined by the usual power series with 2" "1 = 2™ o). The characteristic function is

w= NV, (82)

so the boundary of the cone corresponds to N' = 0. The cone is foliated by copies of
the homogeneous space Str(J)/Aut(J), where Str(J) is the invariance group of A (the
‘structure group’ of the algebra) and Aut(J) is the automorphism group of the algebra
(the subgroup of Str(J) that fixes the identity element in J).

The relation of self-dual homogeneous convex cones to Jordan algebras has similarities
to the relation between Lie groups and Lie algebras. Recall that a Lie group is paral-
lelizable but has a non-zero torsion given by the structure constants of its Lie algebra. A
self-dual homogeneous convex cone C, on the other hand, is not parallelizable (in general)
but its torsion-free affine connection is determined by the structure constants of a Jordan
algebra. Because of homogeneity it suffices to know the connection at the ‘base’ point
¢ € C defined byﬁ

Gijle = dij - (83)
Let f;;* be the structure constants of J in a basis e = (c,e,). Then
Li¥le = fi* . (84)
Although Jordan algebras are commutative they are nonassociative. Define the associator
{a,b,c} = (aob)oc—ao(boc). (85)
The curvature tensor of the cone at the base point is then given by the relation
{ei,ej, ex} = Rijkl|cel . (86)

In addition to the automorphism and structure groups, there is a larger ‘Mobius group’
associated with any Jordan algebra J, acting on elements of J by fractional linear trans-
formations. We therefore have the sequence of groups

Aut(J) C Str(J) C Mo(J), (87)

associated with any Jordan algebra J. These can be interpreted as generalized, rotation,
Lorentz and conformal groups, respectively [@] To motivate this interpretation, we
return to the representation of a Minkowski 4-vector as the 2 x 2 Hermitian matrix X.
JC

This is an element in the degree 2 Jordan algebra Jy~. The dimension is 4 and the norm

SThere is only one such point, even in those cases for which C is flat. It corresponds to the identity
element in the algebra. We use the notation c¢ to indicate both the identity element of J and the base
point of the cone C(J).
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is the determinant, which is the SL(2; C) invariant Minkowski norm A" on R*. The group
SL(2;C) acts on 2 X 2 matrices by conjugation so the subgroup leaving invariant the
identity matrix is its maximal compact SU(2) subgroup. The convex cone associated
with this Jordan algebra is the forward light-cone of D=4 Minkowski spacetime. As we
saw in the previous subsection, the group of fractional linear transformations of X is
SU(2,2), so the sequence (@) is, in this case,

SU(2) € SL(2;C) C SU(2,2). (88)

These are the standard rotation, Lorentz and conformal groups.
The inclusion of domain wall charges means that we should replace JQ(C by JJLR, the
algebra of 4 x 4 symmetric real matrices. One can see that JQC is a subalgebra of JJLR

from the fact that JSC & 3(4), where X(n) is the n-dimensional Jordan algebra with basis
(1,01,...0n-1) and Jordan product o, o o) = 20,4p; this has a realization in which o, are
sigma-matrices of an n-dimensional Minkowski spacetime, with the Jordan product being
the anticommutator; it follows that the standard supersymmetry algebra in D dimensions
is naturally associated with (D). For D = 4 one can choose the o, to be the three 2 x 2

hermitian Pauli matrices, hence the isomorphism Jéc >~ ¥(4). All simple Jordan algebras

of degree 2 are isomorphic to 3(n) for some n. Having replaced Jéc by J = JJLR we find
that the sequence (B9) is generalized to [[L]]

SU(2) x SU(2) € SL(4;R) C Sp(8;R) (89)

We now turn to the Jordan algebraic interpretation of the boundary of the convex cone
C(J). This consists of elements AP € J where A is a positive real number and P is an
idempotent of J with less than maximal rank, i.e. its trace, defined by tr X = log N'(e”),
is less than v. An idempotent is a non-zero element P € J satisfying P o P = P, and
two idempotents P and P’ are said to be orthogonal if Po P’ = 0. The idempotents with
unit trace are called the primitive idempotents, and the number of mutually orthogonal
primitive idempotents equals the degree v of the algebra. For a Jordan algebra of degree 2
all idempotents of less than maximal rank have unit trace and are therefore primitive. This

is true of Jéc, in particular, corresponding to the fact that the only supersymmetric states
other than the vacuum permitted by the standard D=4 N=1 supersymmetry algebra are
1/2 supersymmetric states associated with massless particles (for which the 4-momentum
lies on the positive light-front). Note that although at most two primitive idempotents
of a degree 2 Jordan algebra can be orthogonal in the above sense, the space of primitive
idempotents of (D) is (D — 1)-dimensional. The boundary of the associated convex
cone is therefore (D — 1)-dimensional. For ¥(4) & Jéc, in particular, this boundary is the
three-dimensional forward light-front of the origin of 4-dimensional Minkowski momentum
space.

For a Jordan algebra J of degree v > 2, there are idempotents of less than maximal
rank that are not primitive. For an algebra of degree 3, these non-primitive idempotents
generate faces of the boundary of e/ which themselves have a boundary generated by the
primitive idempotents. An example is the (non-simple) Jordan algebra J = RGR SR for
which e” is the positive octant in E*; its boundary consists of three faces that meet on the
three axes generated by the three primitive idempotents (in this case there are only three
primitive idempotents, which are therefore orthogonal; details can be found in [@]) More
generally, for Jordan algebras of higher degree, the boundary of the associated convex cone
is a stratified set of faces. In particular, JJLR has degree 4 so the faces of the boundary of
its associated convex cone are generated by idempotents of trace 1,2 and 3, corresponding
to 3/4,1/2 and 1/4 supersymmetry respectively. The primitive idempotents, of unit trace,
correspond to 3/4 supersymmetry.
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3.5 Entropy of BPS fusion

In a quantum field theory realization of the D=4 N=1 supersymmetry algebra the central
charges Z are labels of quantum states. We have now seen that the set of these charges
naturally carries the structure of a Jordan algebra. This algebra may itself be regarded
as a finite-dimensional state space (not to be confused with infinite-dimensional space of
states of the field theory that carry these charges). This interpretation is of course how
Jordan algebras originally arose (see [@] for a review). The exceptional Jordan algebra
provides a state space more general than conventional quantum mechanics but for all
other Jordan algebras the formalism is equivalent to one in which a state is represented
by a density matrix. The general state is therefore a mixed state. The pure states
correspond to the primitive idempotents; these lie on the boundary of the convex cone
C(J) but do not in general exhaust it. Rather, the boundary is stratified by sets of states
of successively less purity, corresponding in our application to states with successively
less supersymmetry. Thus, the pure states in this sense are the charge configurations that
preserve 3/4 supersymmetry, the remaining supersymmetric configurations corresponding
to states on the boundary of the cone that are not pure.

We previously showed that a BPS state is stable against decay into any other pair
of states; in particular it cannot decay into two BPS states. Consider now the reverse
process, i.e. fusion of two BPS states to form a third via the inverse of the reaction (p3),
ie.

(BPS)l + (BPS)Q — (BPS)g, (90)

If the first two states preserve 3/4 supersymmetry then the third one will generally pre-
serve less supersymmetry. This is like passing from a pure to a mixed state. There is also a
formal resemblance here to classical thermodynamics. The Jordan algebra J, now viewed
as vector space V' containing the convex cone C(J), is spanned by the extensive quantities
while the dual vector space V* is spanned by the intensive variables. The function

S(z) =logw(x) (91)
of the extensive variables may be interpreted as entropy. Because it is convex
S(pz + (1 —p)a’) > pS(z) + (1 — p)S(z'), (92)

with equality when z is proportional to z’, the entropy can not decrease as a result of
a fusion process such as (P(). Conversely, the (marginal) stability of a single BPS state
against decay into two other BPS states can now be understood as being forbidden by a
version of the second law of thermodynamics.

4 BPS states for adS

The N=1 D=4 adS anticommutator (f]) may be written as

{Qu Qs = 5Man (CT47), . (93)

where
FA = (7”7’75) (94‘)

and Map = —Mpy are the generators of the adS group SO(3,2) (and so are no longer
central). The matrix C is the SO(3,2) charge conjugation matrix; we can choose a repre-
sentation in which

C =5 (95)
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and this choice will be implicit in what follows. Note that
{r4, 17} = 29p4%, (96)

where 7 is a flat metric on IE(2’4), such that n = diag(—1,1,1,1,—1) in cartesian co-
ordinates. Although (]) is preserved by GL(4;R), the automorphism group of the adS
supergroup OSp(1|4;R) is Sp(4;R) C SL(4;R) C GL(4;R).

The anticommutator ([]) can also be written in the form (f), with

Mos=H,  My=-P, Mo=-U, Ji= %eijkMﬂ’“ =-V; (97

where H is the hamiltonian, P the 3-momentum, J the angular momentum while the
3-vector U generates boosts. The analysis of supersymmetric charge configurations is
then exactly the same as in the super-Poincaré case considered earlier, and in particular
requiring i,% or % supersymmetry gives exactly the same conditions on the charges
H, U,V P as were found earlier.

The condition for preservation of supersymmetry can be expressed in terms of the
SO(3,2) Casimirs. We will first show how the values of these Casimirs are constrained
by the physical state condition, and then turn to the supersymmetric states.

4.1 Physical States in adS

Physical states lie either in the convex cone for which Z = %MABCFQE is positive, or on
its boundary, for which detZ = 0. This cone is a subspace of the 10-dimensional vector
space spanned by 5 X 5 skew-symmetric matrices M with entries Msp. The matrix
commutator turns this space into the Lie algebra so(3,2). This algebra has rank 2, with
quadratic Casimirﬂ

1
Coy = §MABMAB, (98)

and quartic Casimir
cy = MA gMP o M€ pMP 4. (99)

Since detZ is both a quartic polynomial of the charges and SO(3,2) invariant it must be
a linear combination of ¢4 and c3. In fact

detZ = ¢4 — 3, (100)

and hence
cq > cg (101)

for physical states.

There is a further constraint on the Casimirs required by physical states. To see
this, we begin by noting that the vacuum is the only physical state for which the energy
M4 vanishes. This follows from the fact that {Q,Q} is positive semi-definite, with a
trace equal to 4Mys. We next prove that My, must vanish if the kernel of M contains a
timelike 5-vector. Suppose that such a 5-vector exists. By an SO(3,2) transformation,
we can arrange for it to have only one non-vanishing component, in the 4-direction. It
then follows that the only non-vanishing components of M are M,,. In particular, the
energy Moy vanishes. Thus, for any non-vacuum physical state the kernel of M contains
no timelike vectors. Note that the kernel of M has dimension 1, 3 or 5, according to

"The quadratic Casimir provides a metric of signature (4,6) on the 10-dimensional vector space, but

this metric (which is inherited from the metric n on E(B’z)) does not play a crucial role in the following
analysis.
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whether M has rank 4, 2 or 0, respectively. The vacuum is the only physical state for
which M has rank 0.
Now consider the Pauli-Lubanski 5-vector

1
s4 = gEABCDEMBCMDE. (102)
This satisfies the identity
Maps? =0, (103)

which shows that, unless it vanishes, s is in the kernel of M. A timelike s would therefore
be in the kernel of M but, as we have just seen, the kernel of M cannot contain timelike
vectors unless M vanishes, but in that case s also vanishes. Thus, s cannot be timelike.
Now

)

(2¢3 — c4), (104)

FNgr.

s?=nBsysp =
so s will be non-timelike if and only if
s <265 (105)

This bound implies (for physical states) that ¢4 =0 when ¢ =0 .

4.2 Supersymmetric States

Our main interest is in BPS states, i.e. the subset of physical states that are supersym-
metric. These must saturate the bound ), so BPS states are those for which

ch=03. (106)
Using this in ([L04) we see that
1
s? = ch (107)

for supersymmetric states. We will organise our discussion of the supersymmetric states
according to whether s is zero, spacelike or non-vanishing null.

If s vanishes then M has either a 3-dimensional or a 5-dimensional kernel. M will
have a 5-dimensional kernel only if it vanishes. If the kernel is 3-dimensional then, as we
have seen, it cannot contain timelike vectors. It may contain null vectors but any such
null vector must be orthogonal to all other vectors in the kernel, spacelike or null, because
we could otherwise find a timelike linear combination. Since the maximum number of
mutually orthogonal null 5-vectors is 2, a 3-dimensional kernel must contain at least one
spacelike vector. There are three possible choices for the other two linearly independent
5-vectors: (i) both spacelike, (ii) one spacelike and one null, or (iii) both null. In all
cases M can be brought to a form in which My, = E > 0 is its only independent entry.
In case (i) Moy and Myg are the only entries, and the only supersymmetric state with
this property is the vacuum, with F = 0. In case (ii) M can be brought to a form for
which the only non-zero upper-triangular entries are Moy, = My = E. It then follows
from the discussion of section 2.4, on which we will elaborate below, that all such states
are 1/2 supersymmetric. In case (iii) M can brought to a form for which the only non-
zero upper-triangular entries are Moy = —Mps = Mas = Masy; all such states are 3/4
supersymmetric.

Consider now spacelike s. In this case we may choose the only non-vanishing compo-
nent of s to be its 1-component. Since s now spans the kernel of M, this 5 x 5 matrix M
then reduces to a 4 x 4 matrix F' acting on the 4-dimensional (0234) subspace orthogonal
to s, on which 7 restricts to a metric 7 of signature (2,2). The matrix F' is equivalent to a
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second-rank antisymmetric tensor in E?? that can be written uniquely as F = F* + F~
where F'T is real and self-dual while F~ is real and anti-self-dual matrix. Now
ey — ¢ = [tr(AFT)?] [tr(7F )] . (108)
We can write F' as
0 U b FE
-u 0 —-v c
F=1 _ bow 0 —p (109)
—-E —c p 0
provided that
vE4+bc+up #0, (110)

since s would otherwise vanish. Now
—tr(AFE)? = (EFv)? — (utp)? — (b+c)%. (111)

Configurations with self-dual or anti-self-dual F', for which £ = Fv, u = +p and b = =,
are 1/2 supersymmetric. However, any configuration for which

(Exv)?=(utp)?+(b+ec)? (112)
is also supersymmetric. In fact
Q@Y =[(EFv) = (b2 +@wxpy™] + (v -y +p®) (1£7) . (113)

Given (), the term in square brackets is proportional to a 1/2 supersymmetry pro-
jector that commutes with the 1/2 supersymmetry projector (1/2) (1 + 71) which leads
generically to 1/4 supersymmetry.

The final case to consider is s null but non-zero. By means of an SO(3,2) transfor-
mation we may choose

s x (1,0,1,0,0) (114)

This choice is preserved by an SO(1,2) ‘stability’ subgroup, and by a transformation in
the SO(2) subgroup of this group we can bring M to the standard form

0 0 —a 0 1
0 0 a 0 -1
M=E| a —-a 0 t —gq (115)
0 0O —t 0 —r
-1 1 qg r 0

One then finds that
o =E*(t* —¢* —1?), (116)

so that supersymmetric states are those with
t==+vVq>+1r2. (117)

Actually, in arriving at the above form of M we have used only that the null 5-vector
(1,1,0,0,0) is in the kernel of M. To ensure that this 5-vector is proportional to s (with
non-zero constant of proportionality) we require that

t+ra#0. (118)

This condition also ensures (as it must) that M has rank 4. When combined with ([[17)
it implies that
t#0. (119)

22



For M of the form ([[1) we have

{Q,Q} = E{(1 —av3) (L —701) — tn [1 = (a/t)y012 — (r/t)7013]} (120)
A spinor ¢ is in the kernel of {Q, Q} if
[(a/t)v012 + (r/t)y0138] € = €, (121)
and
Yo1€ = €, (122)

and these two constraints imply 1/4 supersymmetry. Note that when ¢ = +1 and ¢ =0
and hence t = +r, the latter constraint can be replaced by v3e = +¢, which again yields
1/4 supersymmetry.

4.3 Examples

Many of the possibilities for BPS configurations just noted are illustrated by the class
of examples considered in section 2.4. This means, in the language of this section, that
the non-zero upper-triangular components of M 4p are taken to be My, = E, M3q4 = —p,
Mys = uw and Ms3 = —v. The Pauli-Lubanski 5-vector is then

s=(0,Ev+up,0,0,0), (123)

so s is spacelike unless it vanishes. The Casimirs for this class are given by
o = FE*+0?—p? P (124)
ca = 2[E*+ut +0t +pt =207 + E?)(u? + p?) — 4Euvp] (125)

The BPS condition ¢4 = ¢ becomes
(E-u—v—p)(E—u—v+p)(E-—ut+v—p)(E+u—v—p) =0, (126)

in agreement with (5.

Let us first consider vanishing s. We have seen above that M can be brought to
a standard form in which all charges are determined in terms of My, = E. The non-
vacuum BPS states occured for cases (ii) and (iii) discussed above. An example of case
(ii) within the class of configurations now under discussion is found by setting v =p =0
and E = |ulf}. Finally, an example of case (iii), with 3/4 supersymmetry, is obtained by
setting u = v = p = —F < 0, although there is no known field theoretic realization of this
case.

We next to turn to examples with s spacelike. Let us first consider v = p = 0 and set
v = —J, where J is the spin about the 1-axis. We then have

co=E*+J?, ¢y =2E"+2J%, (127)
which is equivalent to
Co 1
E = 5 + 5 Cq C% N
J 12 2 (128)
= — — —1\/cqg — 5.
2 V™™

8The charge u can be interpreted as a membrane charge. To see this note that there is a static planar
solution of the equations of motion of a _test membrane in adSy at a fixed radial distance, in horospherical
coordinates, from the Killing horizon [@} This solution must preserve 1/2 supersymmetry of the adSa
supersymmetry because adSs can itself be interpreted as a membrane, at the horizon, to which the test
membrane is parallel. Because this test membrane remains at a fixed distance from the horizon, the
worldline of a point on it is uniformly accelerated, and therefore naturally associated with a non-zero
boost u.



The physical states satisfy E > |J| and states that saturate this bound preserve 1/2
supersymmetry. For these configurations the matrix F' of is either self-dual or anti-
self-dual. An example of states with s spacelike and F neither self-dual or anti-self-dual
can be obtained by taking u, v, p to be positive and solving () via E=u4+v+p. We
then have

{Q,Q} = u(1+7") +p(1 +1") +v(1 +~") (129)

and 1/4 of the supersymmetry is preserved.

5 Comments

We have seen that a full analysis of the D=4 N=1 supersymmetry algebra not only con-
firms the existence of 1/2 and 1/4 supersymmetric states, realizable within the WZ model,
and determines some of their properties, but it also permits states with 3/4 supersym-
metry [@, , @] which, as we have shown, cannot be realized by solutions of the WZ
model. However, it has been argued that such ‘exotic’ fractions might play a role in other
contexts, and with this in mind we have provided a detailed analysis of the BPS states
of D=4 N=1 supersymmetry. We have also seen that these states can be understood in

terms of the geometry associated with the convex cone of the Jordan algebra JJLR, and
that this leads to a natural generalization of the rotation, Lorentz and conformal groups.

In general, the U(1)g symmetry will be broken to at most a discrete subgroup. For
theories with domain walls (e.g. the WZ model), the R-symmetry will be explicitly broken
by the scalar potential. In theories with only massless particles, and no domain walls, the
U(1)g symmetry will be generically broken to a discrete subgroup by chiral anomalies.
For theories in which the domain wall charges are quantized, the U(1)g symmetry will
be broken to the discrete subgroup preserving the quantization condition. An example of
this is given by M-theory compactified on a 7-manifold of G2 holonomy, yielding a D=4
N=1 theory in which the domain walls are M2-branes and wrapped Mb5-branes, with the
M2-brane and M5-brane charges quantized. Given that only a discrete subgroup of U(1) g
survives the same is true of the larger group SU(2)g.

We noted that, in the classical theory, the automorphism group of the full supertrans-
lation algebra is GL(4,R), but it seems that any realization of this on fields, and any
realisation of the generalized conformal group Sp(8,R), requires an enlargement of 3-
space to include coordinates conjugate to the ‘domain-wall’ charges U and V. Of course,
the domain wall interpretation is probably no longer appropriate in this case. Other
interpretations are certainly possible in the context of particle mechanics [@] In such
one-dimensional field theories it is possible to realize the SU(2)r symmetry between the
three 3-vector ‘charges’ P, U,V as an internal symmetry. For such models that arise
from the toroidal compactification of some D=4 theory with quantized U and V, the
3-momentum will also be quantized and the classical GL(4;R) symmetry will be broken
to the discrete GL(4;Z) subgroup preserving the 9-dimensional charge lattice.

Many of the observations made here for N = 1 D = 4 can of course be generalized
to N > 1 or to D > 4. For example the general N extended D = 4 supersymmetry
algebra has automorphism group GL(4N;R) and det{Q, @} is preserved by the subgroup
SL(4N,R). This leads to the sequence

SO(4N) C SL(4N;R) C Sp(8N;R). (130)
for the Jordan algebra JE\, of 4N x 4N symmetric matrices over the reals. The generalised
conformal symmetry of the BPS condition is then Sp(8N;R), as deduced from a different

analysis in ().
A D > 4 case of particular interest is the D=11 ‘M-theory algebra’ {Q,Q} = Z where
Q@ is now a 32 component real spinor of the D=11 Lorentz group and Z is a 32 x 32
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real symmetric matrix containing the Hamiltonian and 527 central charges carried by M-
branes [@] This supersymmetry algebra has automorphism group GL(32;R), as noted
independently in [, and Z takes values in the convex cone associated with the Jordan

algebra JBI,%. The sequence (@) of groups associated with this algebra is
SO(32) € SL(32;R) C Sp(64;R), (131)

so that Sp(64;R) is the M-theoretic generalisation of the D=11 conformal group. As
in the D=4 case, the realization of any of these larger ‘spacetime’ symmetry groups, or
discrete subgroups such as GL(32;7Z), would seem to require consideration of an enlarged
space of 527 coordinates, as considered for other reasons in [@]

Finally, we have found many possibilities for new BPS states in anti de Sitter space. It
seems likely that some of these, in particular those with 1/4 supersymmetry, will have a
realization in the context of N=1 D=4 supersymmetric field theories in an adS spacetime.
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