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eleven dimensional supergravity that preserves 20 supersymmetries.

Dedicated to the memory of Sonia Stanciu

1 E-mail: j.p.gauntlett@qmul.ac.uk

2 E-mail: j.b.gutowski@qmul.ac.uk

3 E-mail: c.m.hull@qmul.ac.uk

4 E-mail: s.pakis@qmul.ac.uk

5 E-mail: h.s.reall@qmul.ac.uk

http://arXiv.org/abs/hep-th/0209114v3
http://arXiv.org/abs/hep-th/0209114


1 Introduction

Solutions of higher dimensional supergravity theories have played a key role in elucidating

the structure of string theory. Many interesting solutions have been found describing higher

dimensional black holes, black branes and their intersections, pp-waves and so on. However, two

recent discoveries suggest that higher dimensional gravity may harbour a much richer spectrum

of objects that remains to be discovered.

First, it has been suggested that there may exist a family of black brane solutions without

translational symmetry [1, 2]. There are no known exact solutions describing such objects but

there is numerical evidence [3, 4] that such solutions do exist. Secondly, an exact solution of the

five dimensional vacuum Einstein equations has been found that describes an asymptotically

flat black hole of topology S1 × S2: a rotating black ring [5]. This is the first example of a

black hole of non-spherical topology. Furthermore, the existence of this solution implies that

the black hole uniqueness theorems cannot be extended to five dimensions, except in the static

case [6].

It is tempting to suspect that these new solutions are just the tip of the iceberg, and that

many more surprises will be found in higher dimensions. It is clearly desirable to have a better

understanding of exact solutions of higher dimensional supergravity theories. Unfortunately,

solving the Einstein equations is notoriously difficult even in four dimensions.

Supersymmetric solutions of supergravity theories are of particular importance in string

theory because such solutions often have certain stability and non-renormalization properties

that are not possessed by non-supersymmetric solutions. For example, it has been possible to

give a microscopic description of certain supersymmetric black holes [7]. However, this work

relies on the assumption that there is a uniqueness theorem for supersymmetric black holes in

four and five dimensions. For supersymmetric rotating black holes (which only seem to exist in

five dimensions), this might not be the case if supersymmetric black rings exist. It is therefore

of interest to examine the extent to which supersymmetry excludes some of the more exotic

solutions of higher dimensional gravity discussed above, or alternatively provides a setting in

which they can be studied in more detail. To do so, we would like to know the general nature

of supersymmetric solutions of higher dimensional supergravity theories.

Although there are many partial results for D = 10 and D = 11 supergravities concerning

manifolds with special holonomy, various brane solutions etc, a systematic classification of all

supersymmetric solutions remains a challenging problem. A more modest goal is to attempt a

similar classification for simpler supergravity theories, which can be viewed as a truncation of

the D = 10 or D = 11 supergravity theories.

Some time ago, following [8], this was carried out for minimal N = 2 supergravity in D = 4
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by Tod [9]. It was shown that the supersymmetric solutions fall into two classes depending on

whether the Killing vector obtained from the Killing spinor is time-like or null. Moreover, the

general solution could be obtained explicitly in both cases. In the timelike case, one obtains the

Israel-Wilson-Perjes (IWP) class of solutions and the null case consists of pp-waves. There are

also supersymmetric solutions with sources, provided the sources saturate a BPS bound relating

the energy density to the electric and magnetic charge densities [8], [9]. Some generalizations

of this result for other D = 4 theories were presented in [10].

The goal of the present paper is to extend this classification to the simplest higher dimen-

sional supergravity theory: the minimal N = 1, D = 5 supergravity theory constructed in [11].

This is a similar theory in the sense that it has the same number of supercharges and further-

more after dimensional reduction on a circle it gives N = 2 supergravity in D = 4 coupled to

a vector multiplet. However, in five dimensions it is not possible to use the Newman-Penrose

formalism adopted in [9, 10] and new techniques are required.

Following [12, 13], the basic strategy is to assume the existence of at least one Killing

spinor, and consider the differential forms that can be constructed as bilinear quantities from

this spinor. These satisfy a number of algebraic and differential conditions that then can be

used to deduce the form of the metric and the gauge fields. It is clear from the outset that for

this theory one should not expect to be able to explicitly construct all solutions in closed form,

since, for example, a simple class of solutions is the product of K3 with a flat time direction

with vanishing gauge fields, and the explicit metric on K3 is not known. Nevertheless, we are

able to give a simple set of rules for the construction of all supersymmetric solutions in this

theory.

We find that the supersymmetric solutions fall into two classes, as in [9], depending on

whether the Killing vector ǭγµǫ obtained from the Killing spinor ǫ is timelike or null. In each

class the solutions preserve 1/2 or all of the supersymmetry. In the null case, the general

solution can be obtained explicitly. It is a plane-fronted wave, specified by three arbitrary

harmonic functions on R
3. This can be contrasted with the situation in the N = 2, D = 4

theory, where the null solutions are given by pp-waves. In our solution, pp-waves appear merely

as a special case specified by two harmonic functions on R
3. Perhaps somewhat surprisingly,

our null family of solutions contains some familiar static spacetimes such as the supersymmetric

magnetic black string solution [14], and its near horizon geometry, AdS3×S2. The point is that

these spacetimes are boost invariant and therefore admit a null Killing vector field, and it turns

out that this is what is obtained from a Killing spinor.

In the timelike case we find that supersymmetric solutions are specified by the following data:

a hyper-Kähler 4-manifold B describing the spatial base geometry orthogonal to the orbits of

the Killing vector field; a 1-form connection ω defined locally on B and a function f defined
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globally on B, satisfying a pair of simple equations. Solutions with non-vanishing ω generically

describe rotating, or boosted, spacetimes.

The electrically charged rotating supersymmetric black hole of Beckenridge, Myers, Peet

and Vafa (BMPV) [15] can be obtained as a solution of N = 1, D = 5 supergravity [16]. In our

classification, it has base manifold B = R
4. This solution has some rather peculiar properties.

For example, although the solution has angular momentum, the angular velocity of the horizon

is zero [16]. Furthermore, there are closed timelike curves (CTCs) behind the horizon [15],

and if the angular momentum is sufficiently large then the solution no longer describes a black

hole but is instead a geodesically complete asymptotically flat, supersymmetric time machine

[17]. The appearance of naked CTCs was related to a breakdown in unitarity of the underlying

microscopic description in [18].

One result of our investigation is that CTCs seem to be generic for the timelike solutions in

five dimensions (this is similar to D = 4 as closed time-like curves are generic for the D = 4 IWP

solutions [19]). It turns out to be rather difficult to find any new solutions which do not have

closed timelike curves or singularities. One of our solutions is of particular interest owing to

its close similarity to Gödel’s four dimensional rotating universe solution [20]. Gödel’s solution

motivated interest in time machines in General Relativity because it is a homogeneous solution

with trivial topology R
4 yet contains CTCs through every point. Our five dimensional solution

has very similar properties and is slightly simpler than Gödel’s.

It is interesting to note that there are some similarities with the equations arising in the

time-like case and those in the “Resolution through transgression” series of papers (see [32]

for a review). In particular, if the solutions are static then a harmonic function on the hyper-

Kähler base appears in the D = 5 solution. Generically these are singular solutions in D = 5.

Stationary solutions, on the other hand, have the harmonic function replaced by a function that

solves a Laplace equation modified by the square of a self-dual harmonic two form, and we show

that these can lead to non-singular solutions.

For the timelike case with base space given by a Gibbons-Hawking space (the most general

with a tri-holomorphic Killing vector), we are able to show that the most general solution is

specified by four arbitrary harmonic functions on R
3.

We have examined the further conditions required for our solutions to preserve maximal

supersymmetry. For the null case we are led to flat space, AdS3 × S2 and a certain plane-wave

solution [21]. In the timelike case, flat space, AdS2 × S3 and the near horizon geometry of the

BMPV solution are all known to be maximally supersymmetric but surprisingly it turns out

that the generalized Gödel solution also preserves all eight supercharges.

The maximally supersymmetric timelike solutions just listed all have flat base space. How-

ever, maximally supersymmetric solutions can also be obtained from non-flat base spaces. For
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example, there is a novel construction of AdS2 × S3 using a nakedly singular Eguchi-Hanson

space and another solution using negative mass Taub-NUT that gives rise to the Gödel space-

time. These examples show that the five dimensional geometry does not uniquely determine

the base space of maximally supersymmetric solutions. Furthermore, it turns out that the

maximally supersymmetric null solutions have some Killing spinors that correspond to timelike

Killing vectors and hence these solutions must lie in both classes. In the timelike description, the

plane wave arises from a base space describing a smeared distribution of Taub-NUT instantons

and AdS3 ×S2 arises from another singular hyper-Kähler base space. These examples illustrate

that physically interesting and regular five dimensional solutions can arise from a pathological

base space.

All of the solutions of minimal D = 5 supergravity can be uplifted to obtain solutions of

D = 10 and D = 11 supergravity. In general one expects that the uplifted solutions will

preserve either 4 or 8 supersymmetries for the generic and the maximally supersymmetric D=5

solutions, respectively. Surprisingly, we show that the Gödel solution uplifts to a solution of

D = 11 supergravity that preserves 20 supersymmetries. Although general arguments have been

put forward for the existence of supergravity solutions preserving all fractions of supersymmetry,

and in particular between 1/2 and 1 [22], to date the only such solutions that have been found

are in the plane wave category [23]-[28]. This Gödel solution thus constitutes a new class of

solution preserving an exotic fraction of supersymmetry.

Our results constitute the first analysis of all supersymmetric solutions of a higher dimen-

sional supergravity theory. The results of this work provide encouraging evidence that the

strategy of [12, 13] could be used to perform a similar classification of all supersymmetric so-

lutions of other higher dimensional supergravity theories. A key idea of [12, 13] is to relate

supersymmetric solutions to different kinds of G-structures and we will discuss this relationship

for D = 5. One motivation for studying the minimal D = 5 supergravity is that it is very

similar in structure to 11-dimensional supergravity. Supersymmetric solutions to D=5, N=1

supergravity coupled to matter have been studied in e.g. [29], [30].

The plan of the rest of the paper is as follows. In section 2 we show how various bosonic

quantities are constructed from a Killing spinor and derive differential and algebraic relations

between these quantities. Section 3 analyses the case when the Killing vector constructed from

the Killing spinor is timelike and includes several new solutions. Section 4 carries out a similar

analysis when the Killing vector is null. Section 5 discusses maximally supersymmetric solutions.

Section 6 discusses the connection with G-structures. Section 7 uplifts the Gödel solution to

D=11 supergravity and section 8 concludes. The paper contains two appendices.
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2 D=5 supergravity

The bosonic action for minimal supergravity in five dimensions is

S =
1

4πG

∫
(

−1

4
R ∗ 1 − 1

2
F ∧ ∗F − 2

3
√

3
F ∧ F ∧A

)

, (2.1)

We will adopt the conventions of [11] and these are outlined in appendix A1. The bosonic

equations of motion are

Rαβ + 2(FαγFβ
γ − 1

6
gαβF

2) = 0

d ∗ F +
2√
3
F ∧ F = 0 (2.2)

where F 2 ≡ FαβF
αβ . A bosonic solution to the equations of motion is supersymmetric if it

admits a a super-covariantly constant spinor obeying
[

Dα +
1

4
√

3

(

γα
βγ − 4δβαγ

γ
)

Fβγ

]

ǫa = 0. (2.3)

where ǫa is a symplectic Majorana spinor. We shall call such spinors Killing spinors. Our

strategy for determining the most general bosonic supersymmetric solutions2 is to analyse the

differential forms that can be constructed from commuting Killing spinors. We first investigate

algebraic properties of these forms, and then their differential properties.

From a single commuting spinor ǫa we can construct a scalar f , a 1-form V and three 2-forms

Φab ≡ Φ(ab):

fǫab = ǭaǫb, (2.4)

Vαǫ
ab = ǭaγαǫ

b, (2.5)

Φab
αβ = ǭaγαβǫ

b, (2.6)

f and V are real, but Φ11 and Φ22 are complex conjugate and Φ12 is imaginary. It is useful to

work with three real two-forms defined by

Φ(11) = X(1) + iX(2), Φ(22) = X(1) − iX(2), Φ(12) = −iX(3). (2.7)

These quantities give a total of 1 + 5 + 3 × 10 = 36 real degrees of freedom. To understand

this, note that ǫa has a total of 8 real components. The product ǫaαǫ
b
β is symmetric in (a, α)

1The sign of the Chern-Simons term corrects that appearing in [11].
2Note that there are spacetimes admitting a Killing spinor that do not satisfy the equations of motion. These

can be viewed as solutions of the field equations with additional sources, and supersymmetry imposes conditions
on these sources. For example, in the case of solutions with a timelike Killing vector, the source must be a
charged dust with charge density equal to the mass density, analogous to the sources in [8, 9]. Here we will
restrict ourselves to solutions of the field equations without sources.
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and (b, β). A symmetric 8 × 8 matrix has 36 components, corresponding to the 36 degrees of

freedom obtained above (by projecting with C, Cγα and Cγαβ) . Having said this, ǫaαǫ
b
β is not

a general symmetric 8 × 8 matrix because it has rank 1 and only 8 real degrees of freedom. It

follows that there should be algebraic relations between the above quantities that reduce the

number of independent components from 36 to 8.

It will be useful to record some of these identities which can be obtained from various Fierz

identities. We first note that

VαV
α = f 2 (2.8)

which implies that V is timelike, null or zero. The final possibility can be eliminated by noting

2V0 = ǫa
†ǫa > 0 in any region in which the Killing spinor is non-vanishing. We will work

in such a region, and analytically continue the metric to the fixed point sets of the isometry

generated by V at which V vanishes. In later sections we will analyse the time-like and null

cases separately. We also have

X(i) ∧X(j) = −2δijf ∗ V, (2.9)

iVX
(i) = 0, (2.10)

iV ∗X(i) = −fX(i), (2.11)

X(i)
γαX

(j)γ
β = δij

(

f 2ηαβ − VαVβ
)

+ ǫijkfX
(k)
αβ , (2.12)

where ǫ123 = +1 and, for a vector Y and p-form A, (iYA)α1...αp−1
≡ Y βAβα1...αp−1

. Finally, it is

useful to record

Vαγ
αǫa = fǫa , (2.13)

and

Φab
αβγ

αβǫc = 8fǫc(aǫb). (2.14)

For the remainder of the paper we will usually suppress the symplectic indices on the spinors.

We now turn to the differential conditions that can be obtained by assuming that ǫ is a

Killing spinor. We differentiate f , V , Φ in turn and use (2.3). Starting with f we find

df = − 2√
3
iV F. (2.15)

Taking the exterior derivative and using the Bianchi identity for F then gives

LV F = 0, (2.16)

where L denotes the Lie derivative. Next, differentiating V gives

DαVβ =
2√
3
Fαβf +

1

2
√

3
ǫαβγδǫF

γδV ǫ, (2.17)
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which implies D(αVβ) = 0 and hence V is a Killing vector [31]. Combining this with (2.16)

implies that V is the generator of a symmetry of the full solution (g, F ). Rewriting (2.17) as

dV =
4√
3
fF +

2√
3
∗ (F ∧ V ) (2.18)

and then taking the exterior derivative gives

0 =
2√
3

[

LV ∗ F − iV

(

d ∗ F +
2√
3
F ∧ F

)]

. (2.19)

The first term on the right hand side vanishes as a consequence of equations (2.16) and the fact

that V is a Killing vector. The second term vanishes3 if one imposes the equation of motion for

F .

Finally, differentiating X(i) gives

DαX
(i)
βγ = − 1√

3

[

2Fα
δ
(

∗X(i)
)

δβγ
− 2F[β

δ
(

∗X(i)
)

γ]αδ
+ ηα[βF

δǫ
(

∗X(i)
)

γ]δǫ

]

, (2.20)

which implies

dX(i) = 0, (2.21)

and

d ∗X(i) = − 2√
3
F ∧X(i). (2.22)

To make further progress we will examine separately the case in which the Killing vector is

time-like and the case in which it is null in the two following sections. More precisely, the case

in which f vanishes everywhere will be analyzed in section 4. If f does not vanish everywhere

then pick a point p at which f 6= 0. By continuity, f must be non-zero in a neighbourhood U of

p. The analysis of section 3 will give the general solution in U and this can then be analytically

extended to the whole spacetime.

3 The timelike case

3.1 Introduction

In this section we shall consider the case in which f is non-zero and hence V is a timelike Killing

vector field. Equation (2.12) implies that the 2-forms X(i) are all non-vanishing. Introduce

coordinates such that V = ∂/∂t. The metric can then be written locally as

ds2 = f 2(dt+ ω)2 − f−1hmndx
mdxn (3.1)

3Note that this calculation indicates the consistency between the sign of the Chern-Simons term in the
supergravity action and the sign and factors appearing in the Killing spinor equation.

7



where we have assumed, essentially with no loss of generality, f > 0 (we shall return to this

point shortly). The metric f−1hmn is obtained by projecting the full metric perpendicular to

the orbits of V . The manifold so defined will be referred to as the base space B and we will

deduce that hmn is a hyper-Kähler metric.

Define

e0 = f(dt+ ω) (3.2)

and if η defines a positive orientation on B then we use e0 ∧ η to define a positive orientation

for the D=5 metric. The two form dω only has components tangent to the base space and can

therefore be split into self-dual and anti-self-dual parts with respect to the metric hmn:

fdω = G+ +G− (3.3)

where the factor of f is included for convenience. Equations (2.15) and (2.18) can now be solved

for F , giving

F =
√

3

(

−1

2
f−2V ∧ df +

1

6
G+ +

1

2
G−
)

, (3.4)

which can also be written

F =

√
3

2
de0 − 1√

3
G+. (3.5)

Note that for all previously known solutions, including the BMPV black hole [15, 16] (which will

be briefly reviewed below), dω is anti-self-dual so the second term on the right-hand-side of (3.5)

is absent. The Bianchi identity and equation of motion for F imply the following equations:

dG+ = 0 (3.6)

and

∆f−1 =
4

9
(G+)2 (3.7)

where ∆ is the Laplacian in the metric h, and (G+)2 ≡ (1/2)(G+)mn(G
+)mn where the indices

here are raised with hmn.

Equation (2.10) implies that the 2-forms X(i) can be regarded as 2-forms on the base space

and Equation (2.11) implies that they are anti-self-dual:

∗4 X
(i) = −X(i), (3.8)

where ∗4 denotes the Hodge dual associated with the metric hmn. Equation (2.12) can be written

X(i)
m
pX(j)

p
n = −δijδmn + ǫijkX

(k)
m
n (3.9)
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where indices m,n, . . . have been raised with hmn, the inverse of hmn. This equation shows that

the X(i)’s satisfy the algebra of imaginary unit quaternions. Furthermore, we find that (2.20)

yields

∇mX
(i)
np = 0, (3.10)

where ∇ is the Levi-Civita connection associated with hmn. Combined with (3.9) this shows

that the base space does indeed admit an integrable hyper-Kähler structure.

We have exhausted the content of the equations satisfied by the bosonic quantities. We next

examine the Killing spinor equation itself and find that it imposes no further conditions. In an

orthonormal basis with time direction e0 given by (3.2), equation (2.13) implies

γ0ǫ = ǫ. (3.11)

Using this with (A.3) one can show that γijǫ is anti-self-dual with respect to the base space

metric and hence

G+
ijγ

ijǫ = 0. (3.12)

Here i, j = 1 . . . 4 refer to components in a basis orthonormal with respect to hmn (but γij is still

defined in terms of the five dimensional gamma matrices). Using these results, the 0 component

of the Killing spinor equation then implies that ǫ is time-independent. The spatial components

are then solved if

ǫ(t, x) = f 1/2η(x) (3.13)

where η(x) is a covariantly constant spinor on the hyper-Kähler base space. Now any hyper-

Kähler space admits covariantly constant chiral spinors satisfying γ1234η = η if the Kähler-

forms are anti-self dual. Noting that this chirality condition is actually a consequence of (3.11)

implies that (3.11) is the only projection imposed on the Killing spinors and we deduce that

the configurations preserve at least 1/2 of the supersymmetry.

We have imposed the Bianchi identity for F and the F field equation, so we should also

check whether the Einstein equations are satisfied. They are in fact automatically satisfied as

one can deduce from the integrability condition for the Killing spinor equation presented in

appendix B. From there we have that

EµνV
ν = 0

EµνEµ
ν = 0 no sum on µ (3.14)

where Eµν = 0 is equivalent to the Einstein equations. Working in the orthonormal frame, the

first condition implies E00 = Ei0 = 0 and the second then implies Eij = 0.

In summary, the above analysis shows that the general supersymmetric solution in the

stationary case with f > 0 is determined by a hyper-Kähler base 4-manifold B with metric
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hmn and an orientation chosen so that the hyper-Kähler two-forms are anti-self-dual, together

with a globally defined function f and locally defined 1-form connection ω on B. Writing

fdω = G− + G+, we have dG+ = 0 and also ∆f−1 = (4/9)(G+)2. The field strength is then

determined as in (3.4). These solutions4 preserve at least 1/2 of the supersymmetry, with Killing

spinors satisfying (3.11).

When f < 0 an identical analysis reveals that the most general supersymmetric solution

is simply obtained from this solution by simply taking t → −t, ω → −ω and reversing the

orientation on the base manifold B. In other words

ds2 = |f |2(dt+ ω)2 − |f |−1hmndx
mdxn

F = −
(√

3

2
de0 − 1√

3
G−

)

. (3.17)

with e0 = |f |(dt + ω) and positive orientation e0 ∧ η, where η is a positive orientation on the

base manifold, is a supersymmetric solution with Killing spinors satisfying γ0ǫ = −ǫ provided

that h is a hyper-Kähler metric with self-dual hyper-Kähler two-forms, |f | is a globally defined

function and writing |f |dω = G+ +G− one demands dG− = 0 and also ∆|f |−1 = (4/9)(G−)2.

In subsequent subsections we will construct explicit solutions working with the case f > 0 for

definiteness. The subsections can be essentially read independently of each other. Subsection

3.2 discusses static solutions; 3.3 solutions when the base space is compact; 3.4 the maximally

supersymmetric Gödel-type solution; 3.5 some further solutions with a flat hyper-Kähler base

space including a quick review of the BMPV black hole; 3.6 focuses on solutions with base space

Eguchi Hanson and Taub-NUT as there are some similarities with the “Resolution Through

Transgression” papers; 3.7 the general solution for the case that the base space has a Gibbons-

Hawking metric [33] and a discussion of how the IWP solutions of N = 2, D = 4 supergravity

can be obtained via dimensional reduction.

3.2 Static solutions

Proposition. The stationary Killing vector field V is hyper-surface orthogonal if, and only, if

4Note that given a hyper-Kähler metric, the equations to be solved can be obtained from varying an action
functional on B. To see this we first introduce the field strength F = dω and then note that f must satisfy

d(fF+) = 0, ∆f−1 =
4

9
f2(F+)2 (3.15)

where F+ = 1

2
(F + ∗4F). These equations follow from varying the action on B

S =

∫

B

d4x
√
h

(

1

2
(∂σ)2 − 4

9
σ−1(F+)2

)

(3.16)

with respect to ω and σ, where σ = f−1.
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G− = 0.

Proof. It is easy to show that V is hyper-surface orthogonal if, and only if, dω = 0. Clearly

dω = 0 implies G− = 0. Conversely, assume G− = 0. Closure of G+ then gives

df ∧ dω = 0 ⇒ df ∧G+ = 0. (3.18)

The dual of this gives

∂mfG
+mn = 0, (3.19)

so that

(df ∧G+)mnpG
+np = 0 ⇒ ∂mf

(

G+
)2

= 0. (3.20)

Hence if G− = 0 then either df = 0 or G+ = 0. In the former case, the equation (3.7) for f

implies G+ = 0. Hence G− = 0 implies G+ = 0 and therefore dω = 0.

It follows from this proposition that if G− = 0 then, at least locally, there will be a function

λ(x) such that ω = dλ. A coordinate transformation t = t′ − λ(x) then brings the metric to a

manifestly static form. The solution can then be written

ds2 = f 2dt2 − f−1hmndx
mdxn,

F =

√
3

2
df ∧ dt, (3.21)

where f−1 is a harmonic function on the base space. For a harmonic function with a single

pointlike source on a flat base space this gives the non-rotating black hole solution.

Note that these static solutions have vanishing magnetic charge. This does not mean that

there are no supersymmetric magneto-static solutions but simply that the static Killing vector

of such a solution cannot be written as ǭγαǫ with ǫ a Killing spinor. For example, it will be

shown in section 4 that the magnetic black string solution corresponds to the null case f ≡ 0.

3.3 Solutions with compact base space

If the base space is compact then it must be K3 (with self-dual curvature) or T 4. Suppose

f is smooth and non-vanishing on the base space. Integrating equation (3.7) yields G+ = 0

and hence f−1 is harmonic. However there are no non-trivial smooth harmonic functions on a

compact manifold so f must be constant. By rescaling t, ω and hmn we can set f = 1. This

leaves

dω = G−, (3.22)

so G− is closed and anti-self-dual and therefore harmonic. Taking the wedge product of this

equation with G− and integrating over the base space shows that if G− is non-zero then ω

cannot be globally defined.
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The only anti-self-dual harmonic forms on K3 (with self-dual curvature) or T 4 are the com-

plex structures so it follows that

dω = 4γJ, (3.23)

where J is an anti-self-dual complex structure and γ a constant. The field strength is

F = 2
√

3γJ, (3.24)

and the metric is

ds2 = (dt+ ω)2 − hmndx
mdxn. (3.25)

These solutions describe rotating closed universes containing a constant magnetic field. The

case of T 4 can be discussed more explicitly. Local coordinates can be chosen such that

hmndx
mdxn = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2, (3.26)

and

J =
(

dx1 ∧ dx2 − dx3 ∧ dx4
)

. (3.27)

One could then take

ω = 2γ
(

x1dx2 − x2dx1 − x3dx4 + x4dx3
)

. (3.28)

This is clearly not globally defined on T 4. Rather than discuss this further we shall discuss the

analogous solution on the covering space of T 4, namely R
4.

3.4 A supersymmetric analogue of the Gödel universe

The supersymmetric Gödel universe has metric given by (3.25),(3.26),(3.28) and gauge field

given by (3.24). For simplicity we let γ = 1/4. On the base space R
4, write x1 = r1 cosφ1,

x2 = r1 sinφ1, x
3 = r2 cosφ2, x

4 = r2 sinφ2 and using ω as in (3.28) the solution can be written5

ds2 =

(

dt+
1

2
(r2

1dφ1 − r2
2dφ2)

)2

−
(

dr2
1 + r2

1dφ
2
1 + dr2

2 + r2
2dφ

2
2

)

F =

√
3

2
(r1dr1 ∧ dφ1 − r2dr2 ∧ dφ2). (3.29)

The metric has coordinate singularities at r1 = 0 and r2 = 0 but these can be removed by going

back to Cartesian coordinates. Note that ∂/∂φi is timelike for ri > 2 so this solution has closed

timelike curves in those regions. Note that the signature remains Lorentzian. This is very similar

to what happens in the four dimensional Gödel universe [20]. There are further similarities

between our solution and Gödel’s. The Gödel solution is defined on a manifold of topology

5This solution has previously appeared in [34] as a footnote.
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R
4. Ours has topology R5. The matter content of Gödel’s solution consists of pressureless dust

balanced by a negative cosmological constant. Calculating the energy-momentum tensor for the

Fµν of our solution one finds that it (and all the solutions of the previous section) has vanishing

pressure and constant energy density proportional to γ2, i.e., the electromagnetic field has the

same energy-momentum as pressureless dust. In addition, just like the Gödel universe, this

solution is homogeneous; it was shown in [35] that the near-horizon geometry of the BMPV

black hole is also homogeneous. It is straightforward to verify that the following vectors in

cartesian co-ordinates are Killing vectors:

V =
∂

∂t
,

B1 =
∂

∂x1
− x2

2

∂

∂t
, B2 =

∂

∂x2
+
x1

2

∂

∂t
,

B3 =
∂

∂x3
+
x4

2

∂

∂t
, B4 =

∂

∂x4
− x3

2

∂

∂t
,

R1 = x1 ∂

∂x2
− x2 ∂

∂x1
, R2 = x3 ∂

∂x4
− x4 ∂

∂x3
(3.30)

which act transitively. The last two Killing-vectors generate a U(1)×U(1) group of rotations in

R
4. In fact, as we will see later (see equation (3.43)) this is actually enlarged to an a SU(2)×U(1)

group of rotations, giving a 9 parameter family of isometries, the same number as for AdS2×S3

or AdS3 × S2.

Surprisingly, this solution is maximally supersymmetric preserving all 8 supersymmetries of

the theory. Explicitly, using the obvious frame (e0, ei) = (dt + ω, dxi), the Killing spinors are

given by

ǫ = θ+ + (1 + Jijx
iγj)θ− (3.31)

where θ± are constant spinors satisfying γ0θ± = ±θ±.

We can determine the symmetry superalgebra using the method of [36] (see also [37, 38, 39]).

This is a Lie-superalgebra whose even subspace B is spanned by the above Killing-vectors and

the odd subspace F by the Killing spinors. The bilinear map B × B → B is the Lie-bracket of

the above vector fields. The map B ×F → F is obtained from the Lie-derivative of the Killing

spinors with respect to the Killing vectors and the map F×F → B is deduced from the Killing-

vectors obtained by squaring the Killing spinors. It is straightforward to write all of these maps

out explicitly, but we shall just record the last map. We first note that for any two Killing

spinors ǫ, ǫ′ we can construct a Killing vector via Kµ = ǭγµǫ′. If we let ǫ = θ+ + (1 + Jijx
iγj)θ−

and ǫ′ = ρ+ + (1 + Jijx
iγj)ρ− we find

ǭγαǫ′Eα = θ+ρ+V + θ−ρ−(−V − 2R1 + 2R2) + (θ+γiρ− + θ−γiρ+)Bi (3.32)

where Eα are the vector fields dual to the frame introduced above.

13



3.5 Further solutions with flat base-space

Let us now present some additional new solutions with base space R
4 that admit at least an

SU(2) sub-group of isometries of the SO(4) rotation group of R
4. It will be useful to work with

SU(2) Euler-angles, which we introduce via

x1 + ix2 = r cos
θ

2
ei(

ψ+φ

2
)

x3 + ix4 = r sin
θ

2
ei(

ψ−φ

2
) (3.33)

with 0 ≤ θ < π, 0 ≤ φ < 2π and 0 ≤ ψ < 4π. We also work with left-invariant one-

forms σiR satisfying dσiR = 1/2ǫijkσjR ∧ σkR and right-invariant one-forms σiL satisfying dσiL =

−1/2ǫijkσjL ∧σkL. The subscripts refer to the fact that, for example, the left invariant one-forms

σiR are dual to right vector fields that generate right actions. Explicit expressions can be found in

appendix A. A positive orientation is fixed by dx1∧dx2∧dx3∧dx4 = dr∧( r
2
)σ1

R∧( r
2
)σ2

R∧( r
2
)σ3

R =

dr ∧ ( r
2
)σ1

L ∧ ( r
2
)σ2

L ∧ ( r
2
)σ3

L. The flat metric on R
4 is given by

ds2 = dr2 +
r2

4
[(σ1)2 + (σ2)2 + (σ3)2] (3.34)

for either left or right invariant one-forms.

Let us begin by recording the rotating BMPV solution [15, 16]. We write the flat base using

left-invariant one-forms σiR. As previously noted it has G+ = 0 and is given by:

f−1 = 1 +
µ

r2

ω =
j

2r2
σ3
R (3.35)

The ADM mass and angular momentum are given by

M =
3πµ

4G

J = − jπ

2G
(3.36)

This angular momentum corresponds to equal rotation in the 1-2 and 3-4 planes with opposite

sign. Recall that all closed timelike curves are hidden behind the horizon at r = 0 providing

that |j| ≤ µ3/2.

A simple generalization of the BMPV black hole solution with G+ 6= 0 can be obtained by

considering the general ansatz

ω = Ψ(r)σ3
R (3.37)
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and assuming f = f(r). Demanding that G+ is closed implies that f(rΨ′ + 2Ψ) = χr2 for

constant χ. Solving (3.7) we then find

f−1 = λ+
µ

r2
+
χ2

9
r2

Ψ =
j

2r2
+
χµ

2
+
χλ

4
r2 +

χ3

54
r4 (3.38)

for constant λ, µ, j. This solution has

G+ =
χ

4
d(r2σ3

R) = χ(dx1 ∧ dx2 + dx3 ∧ dx4) (3.39)

Supposing λ 6= 0 we can always choose λ = 1 by rescaling the radial and time co-ordinates. We

note that the solution will have closed time-like curves when Ψ2f 2 − f−1r2/4 is positive. When

χ = 0 we return to the rotating black hole solution. When χ 6= 0, the solution is no longer

asymptotically flat and is a rotating universe with both electric and magnetic fields and with

closed time-like curves.

Further new solutions with flat base space can be found by working with right invariant

1-forms on SU(2), σiL. We now look for solutions with

ω = Ψ(r)σ3
L (3.40)

and f = f(r). Following the same steps as above we find the solution

f−1 = λ+
µ

r2
+

χ2

27r6

Ψ(r) = γr2 − χ(
λ

4r2
+

µ

6r4
+

χ2

270r8
) (3.41)

where λ, µ, χ are again constant. For this solution G+ is given by

G+ = −χ
4
d

[

1

r2
σ3
L

]

(3.42)

Let us now discuss this solution in more detail. We first restrict to λ = 1 which can be achieved

by rescaling the radial and time co-ordinates when λ 6= 0. It appears that these solutions are

non-singular at r = 0. For example, if one calculates F 2, which from Einstein’s equations is

proportional to the Ricci scalar, one finds for χ 6= 0 it goes to zero like r4, while for χ = 0 it

goes to a constant. Other curvature invariants also appear to be regular at r = 0.

Note also that if we set µ = χ = 0 and γ 6= 0, then the solution is given by

ds2 = (dt+ γr2σ3
L)

2 − (dr2 +
r2

4
[(σ1

L)2 + (σ2
L)2 + (σ3

L)
2])

F =

√
3γ

2
d(r2σ3

L) (3.43)

15



which is just the generalised Gödel solution introduced above. We already have shown that the

solution has a 7 parameter family of isometries including U(1)×U(1) rotations in R
4. In the co-

ordinates of this section, it is clear that the U(1)×U(1) symmetry is enlarged to SU(2)×U(1)

corresponding to right SU(2) actions and a left U(1) action (in the 3 direction).

Alternatively, we may set γ = 0, µ 6= 0, χ 6= 0. The metric is then asymptotically flat. The

ADM mass and angular momentum are given by

M =
3πµ

4G

J =
χπ

4G
(3.44)

Here the angular momentum corresponds to equal rotation in the 1-2 and 3-4 plane since dω is

self-dual6. Furthermore, it is clear from examining the sign of f 2Ψ2− 1
4
r2f−1 that there are closed

timelike curves for all values of µ > 0 within 0 < r < rcrit provided that χ 6= 0. By analysing

the behaviour of massive test particles it appears that this geometry is geodesically complete

and that r = 0 exhibits a repulson behaviour. Moreover by tuning the angular momentum of

the test particle it can approach r = 0 arbitrarily closely and thus enter the time-machine. The

global causal structure of this spacetime is similar to that of the over-rotating BMPV solution

presented in [17]. However, unlike the general family of rotating BMPV solutions, tuning M

and J in the region M > 0, J > 0 does not alter the causal structure of the spacetime.

There are a number of straightforward generalisations of the new solutions we have presented

here. For example, we could replace (3.37),(3.40) by Ψi(r)σ
i.

3.6 Rotating Eguchi-Hanson and Taub-NUT

When G+ = 0 the function f−1 is harmonic on the hyper-Kähler base. When G+ 6= 0 it is

modified by the square of a closed, self-dual and hence harmonic form via equation (3.7). This

is reminiscent of the equations arising in the “Resolution Through Transgression” papers (for a

review see [32]). In particular an interesting regular generalisation of both the Eguchi Hanson

space and Taub-NUT space with flux was constructed in section 3 of [40]. We therefore examine

the Eguchi-Hanson and the Taub-NUT cases in more detail, finding regular supersymmetric

solutions, albeit with closed time-like curves.

Let us first consider the Eguchi-Hanson case. The metric is given by

ds2 = W−1dr2 +
r2

4
((σ1

L)
2 + (σ2

L)
2) +W

r2

4
(σ3

L)2 (3.45)

where

W = 1 − a4

r4
(3.46)

6One can get a solution with the same quantum numbers as the black hole solution (3.35) by taking t →
−t, φ↔ ψ. This corresponds to switching to a solution with f < 0, as described at the end of section 3.1.
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This is a regular space provided that the range of ψ is 0 ≤ ψ ≤ 2π and of r is a ≤ r ≤ ∞ and

r = a is the S2 bolt. We choose positive orientation to be given by dr ∧ σ1
L ∧ σ2

L ∧ σ3
L so that

the three Kähler forms are anti-self-dual. If ω = 0 then the harmonic function f−1 is constant

or singular. The singular solutions can be resolved in the following sense. We choose

G+ = −χ
4
d(r−2σ3

L) (3.47)

and hence need to solve

∆f−1 =
8χ2

9r8
(3.48)

where ∆ is the Laplacian with respect to the Eguchi-Hanson metric, and one should note a key

sign difference with the similar equation in [40]. The general solution is given by

f−1 = λ− χ2

9a4r2
+ δ log

(r2 − a2)

(r2 + a2)
(3.49)

where λ, δ are arbitrary integration constants. If we seek solutions of the form

ω = Ψ(r)σ3
L (3.50)

we find

Ψ = − χλ

4r2
+

χ3

54r4a4
+

δχ

4r2a4
[(r4 − a4) log

(r2 − a2)

(r2 + a2)
+ 2a2r2] + γr2 (3.51)

A regular solution can be obtained by first setting setting δ = 0 to get

f−1 = λ− χ2

9a4r2

Ψ = − χλ

4r2
+

χ3

54r4a4
+ γr2 (3.52)

Restricting to χ2 ≤ λ9a6, f−1 will be non-zero for a ≤ r ≤ ∞. By calculating F 2 it appears

that this five-dimensional solution is regular, provided that we restrict χ as stated. To eliminate

closed time-like curves as r → ∞ we set γ = 0. However, it seems that there are always closed

time-like curves near r = a.

It is interesting to note that we can find analogous solutions if we start with a singular

hyper-Kähler space given by (3.45) with W = 1 + b4/r4. In this case there is no reason to take

φ or ψ to have particular ranges. If we again choose (3.47),(3.50) the solution is given by

f−1 = λ+
χ2

9b4r2
+ δ arctan

r2

b2

Ψ = − χλ

4r2
− χ3

54r4b4
− δχ

4r2b4
[(r4 + b4) arctan

r2

b2
+ b2r2] + γr2 (3.53)

These solutions appear to be singular in general. Note that if we take 0 ≤ φ ≤ 2π and

0 ≤ ψ ≤ 4π then the Eguchi-Hanson space is asymptotically Euclidean and the five dimensional

solution is asymptotically flat if the constants of integration are chosen appropriately.
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Surprisingly, if we set δ = λ = γ = 0 we obtain the maximally supersymmetric AdS2 × S3

solution as we will show in section 5.

Let us now consider the base space to be Taub-NUT space. The metric is given by

ds2 =
(r + a)

(r − a)
dr2 + (r2 − a2)((σ1

R)2 + (σ2
R)2) + 4a2 (r − a)

(r + a)
(σ3

R)2 (3.54)

When a is positive, the range of ψ is 0 ≤ ψ ≤ 4π, and that of r is a ≤ r ≤ ∞, so that the

topology of the space is R
4. If we take positive orientation to be given by adr ∧ σ1

R ∧ σ2
R ∧ σ3

R

then the hyper-Kähler forms are anti-self-dual. We now choose

G+ = χd

[

(r − a)

(r + a)
σ3
R

]

(3.55)

and hence

∆f−1 =
8χ2

9(r + a)4
(3.56)

where ∆ is the Laplacian with respect to the Taub-NUT metric. The solution to this is given

by

f−1 = λ− 2χ2

9a(r + a)
+

δ

r − a
(3.57)

As above we let

ω = Ψ(r)σ3
R (3.58)

and find

Ψ(r) = − 16χ3a

27(r + a)2(r − a)
+

2χ(2χ2 − 9δa+ 18λa2)

9(r + a)(r − a)
− 4χλa

(r − a)
+ γ

(r + a)

(r − a)
(3.59)

In order to construct a regular solution, we set δ = 0 and choose γ = χλ− χ3/27a2 to get

f−1 = λ− 2χ2

9a(r + a)

Ψ =
χ(r − a)(27λa2(r + a) − χ2(r + 5a))

27a2(r + a)2
(3.60)

Then f−1 will be non-zero for a ≤ r ≤ ∞ and note that Ψ(a) = 0, indicating the regularity of

the solution. It is straightforward to check that F 2 is also regular everywhere, providing that

we restrict χ as mentioned. Again this solution has closed time-like curves.

Once again we can build solutions from the singular negative mass Taub-NUT space by

letting a be negative. For example, if we take (3.60) with λ = 0 we will show in section 5 that

we get a maximally supersymmetric solution that is in fact the Gödel solution.
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3.7 Solutions with Gibbons-Hawking base space

In this subsection, the equations for f and ω will be examined in more detail for the case

of a Gibbons-Hawking base space. The solutions of the last three subsections will comprise

special cases. It has been shown [41] that if a four dimensional hyper-Kähler manifold admits a

triholomorphic Killing vector field, that is, a Killing vector field L that preserves the complex

structures (LLX(i) = 0), then it must be a Gibbons-Hawking [33] metric:

ds2 = H−1
(

dx5 + χidx
i
)2

+Hdxidxi, (3.61)

∇× χ = ∇H.

The Killing vector field is ∂/∂x5. ∇ is the flat connection on the Euclidean 3-space with

coordinates xi and H is harmonic on this space. The complex structures are given by [41]

X(i) =
(

dx5 + χjdx
j
)

∧ dxi − 1

2
Hǫijkdx

j ∧ dxk. (3.62)

Anti-self-duality of these forms fixes the orientation of the base space so that the volume form

is

Hdx5 ∧ dx1 ∧ dx2 ∧ dx3. (3.63)

Examples of Gibbons-Hawking metrics are: flat space (H = 1 or H = 1/|x|), Taub-NUT space

(H = 1 + 2M/|x|) and the Eguchi-Hanson space (H = 2M/|x| + 2M/|x − x0|) [41].

If the Killing vector ∂/∂x5 is a Killing vector of the full five dimensional spacetime (i.e. if f

and ω are independent of x5) then the equations for f and ω can be solved explicitly. Write

ω = ω5

(

dx5 + χidx
i
)

+ ωidx
i, (3.64)

and introduce an orthonormal basis

e5 = H−1/2
(

dx5 + χidx
i
)

, ei = H1/2dxi. (3.65)

Then

G± = −1

2
A±
i e

5 ∧ ei ∓ 1

4
ǫijkA

±
k e

i ∧ ej , (3.66)

where

A± = H−1f [H∇ω5 ∓ ω5∇H ∓∇× ω] . (3.67)

In equations such as this written in three-dimensional vector notation, ω refers to the three-

vector with components ωi. Closure of G+ reduces to

∇× A+ = 0, (3.68)
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and

∇ · (HA+ + χ × A+) = 0. (3.69)

The first of these yields

A+ = ∇ρ, (3.70)

for some locally defined function ρ. Substituting into the second gives

∇2(Hρ) = 0, (3.71)

and hence

ρ = 3KH−1 (3.72)

for some harmonic function K. The equation for f reduces to

∇2f−1 =
2

9
H (∇ρ)2 = ∇2

(

K2H−1
)

, (3.73)

and hence

f−1 = K2H−1 + L, (3.74)

where L is another harmonic function. It remains to solve for ω5 and ωi. Substituting the above

results into (3.67) gives

H∇ω5 − ω5∇H −∇× ω = 3
(

K2 + LH
)

∇
(

KH−1
)

. (3.75)

Taking the divergence of this gives the integrability condition

∇2ω5 = 3H−1∇ ·
[(

K2 + LH
)

∇
(

KH−1
)]

= ∇2

(

H−2K3 +
3

2
H−1KL

)

, (3.76)

with solution

ω5 = H−2K3 +
3

2
H−1KL+M, (3.77)

where M is an arbitrary harmonic function. Substituting the solution back into (3.75) then

gives an equation that determines ω up to a gradient (which can be absorbed into t). The

above analysis yields the general solution for which the base space admits a tri-holomorphic

Killing vector field that extends to a Killing vector field of the five dimensional spacetime. It

is specified by four arbitrary harmonic functions H , K, L, and M . Solutions with G+ 6= 0 are

much more complicated than those with G+ = 0 (i.e. K ∝ H), which are specified by three

harmonic functions H , f−1 and ω5.

It is worth remarking that the same solution can be derived under rather weaker assumptions,

namely that there exists a spacelike Killing vector field of the five dimensional spacetime that

commutes with V and leaves the three complex structures invariant.
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The solutions with a flat base space that were discussed above can be easily recovered in this

framework. Introduce spherical polar coordinates (R, θ, φ) on the three dimensional flat part of

the metric. Choosing

H =
1

R
, χ = cos θdφ, (3.78)

gives a flat base space. Let R = r2/4 and x5 = ψ and the metric takes the form

ds2 = dr2 +
r2

4

(

dψ2 + dφ2 + 2 cos θdψdφ+ dθ2
)

. (3.79)

The coordinates (θ, φ, ψ) are Euler angles on S3. The solutions constructed using the left-

invariant forms on SU(2) have ω = Ψ(r) (dψ + cosθdφ) and hence ω5 = Ψ, ω = 0. The full

solution is obtained by taking all of the harmonic functions to be spherically symmetric. The

solutions constructed using the right-invariant forms have ω = Ψ(r) (dφ+ cos θdψ) and hence

ω5 = Ψ(r) cos θ and ωidx
i = Ψ(r) sin2 θdφ. An example is the God̈el solution, which has G+ = 0

and is therefore specified by three harmonic functions: f−1 = 1, H = 1/R, ω5 ∝ R cos θ.

The form of the Gibbons-Hawking metric lends itself naturally to dimensional reduction, so

the above solution yields a large class of solutions of the theory obtained by KK reduction of

the minimal five dimensional supergravity theory, namely N = 2, D = 4 supergravity coupled

to a vector multiplet. It is interesting to see how the solutions of pure N = 2, D = 4 can

be embedded in the five dimensional theory (for maximally supersymmetric solutions, this was

done in [42]). To this end, consider a general five dimensional metric admitting a spacelike

Killing vector field ∂/∂x5 and write the metric as

ds2 = eαφds2
R − eβφ

(

dx5 + A
)2
, (3.80)

where ds2
R is the line element of the four dimensional Lorentzian metric and A is a one-form

potential on the reduced space. The constants α and β are chosen such that the reduced metric

is in the Einstein frame, with a canonically normalized scalar φ. Write the five dimensional

vector potential as

A = A′ + θdx5. (3.81)

where A′ is another one-form potential on the reduced space. The reduced theory has two

scalars φ and θ and two one-forms A′ and A. We want to truncate to get the pure N = 2,

D = 4 theory, so we have to set these scalars to zero. Consistency requires that their equations

of motion are satisfied, which gives

3

4
∗4 G ∧G+ ∗4F

′ ∧ F ′ = 0, (3.82)

and √
3

2
∗4 F

′ ∧G− F ′ ∧ F ′ = 0, (3.83)
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where G = dA and F ′ = dA′. The orientation η of the reduced spacetime has been chosen

such that dx5 ∧ η is negatively oriented in five dimensions because this is what happens for our

Gibbons-Hawking solutions. These equations are both satisfied by choosing

G = − 2√
3
∗4 F

′, (3.84)

which also eliminates the vector A as an independent field (its equation of motion is satisfied

using the Bianchi identity for F ′). Finally we are left with a theory whose equations of motion

can be derived from the action

S4 =
1

4πG4

∫
(

−1

4
R4 ∗4 1 − 2

3
∗4 F

′ ∧ F ′
)

, (3.85)

which is indeed the action for the bosonic sector of pure N = 2, D = 4 supergravity. To

summarize, a five dimensional solution with metric of the form (3.80) can be reduced to give

a solution of N = 2, D = 4 supergravity provided φ = 0, θ = 0 (equivalently, Fµ5 = 0) and

equation (3.84) is satisfied.

Let’s apply this to our solutions with Gibbons-Hawking base space. The metric can be

written

ds2 = Λ−1fH−1
(

dt+ ωidx
i
)2 − f−1Hdxidxi − Λ

(

dx5 + χidx
i − f 2ω5

Λ

(

dt+ ωidx
i
)

)2

, (3.86)

where

Λ = f−1H−1 − f 2ω2
5. (3.87)

It can be verified that all of the consistency conditions for the dimensional reduction are satisfied

if we choose the harmonic functions L and M such that

f−1 =
K2

H
+H, ω5 =

K

H
f−1, (3.88)

and

∇× ω = 2K∇H − 2H∇K. (3.89)

The reduced metric can be written

ds2
4 = |V |2

(

dt+ ωidx
i
)

− |V |−2dxidxi, (3.90)

where

V −1 = H + iK, (3.91)

ω is given by

∇× ω = i
(

V̄ −1∇V −1 − V −1∇V̄ −1
)

, (3.92)
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and the field strength is

F ′ = F = −
√

3

4
∇i

(

V + V̄
)

ẽ0 ∧ ẽi −
√

3

8
iǫijk∇k

(

V − V̄
)

ẽi ∧ ẽj , (3.93)

where ẽ0 = |V | (dt+ ωidx
i) and ẽi = |V |−1dxi is an orthonormal basis for the four dimensional

metric. This is precisely the form of the IWP metric given in [9]. So the entire timelike class of

supersymmetric solutions of the N = 2, D = 4 theory can be obtained by reduction of a subset

of our solutions with Gibbons-Hawking base space. Note that the four dimensional metric is

static if ω = 0, which requires K ∝ H , which is true if, and only if, G+ = 0. For example,

setting K = 0 gives ω = ω5 = 0, f−1 = H and the five dimensional metric is

ds2 = H−2dt2 −H2dxidxi −
(

dx5 + χidx
i
)2
, (3.94)

which give the electrostatic Majumdar-Papapetrou solutions in four dimensions. Taking H =

1/|x| gives a flat base space and the four dimensional metric is AdS2 ×S2 (the five dimensional

metric is AdS2 × S3). H = 1 + 1/|x| gives a Taub-NUT base space and the four dimensional

metric is extremal Reissner-Nordstrom. Multi-centre Taub-NUT gives multi-centre Reissner-

Nordstrom. Eguchi-Hanson gives a two centre AdS2 × S2 solution, and multi-centre Eguchi-

Hanson gives multi-centre AdS2 × S2. Taking K to be a non-vanishing multiple of H just

corresponds to a duality rotation of the four dimensional gauge field.

4 The null case

4.1 The general solution

In this section we shall find all solutions of minimal N = 1, D = 5 supergravity for which the

function f introduced in section 2 vanishes everywhere.

First introduce coordinates as follows. From (2.18) it can be seen that V satisfies V ∧dV = 0

and is therefore hypersurface-orthogonal. Hence there exist functions u and H such that

V = H−1du. (4.1)

A second consequence of (2.17) is

V ·DV = 0, (4.2)

so V is tangent to affinely parametrized geodesics in the surfaces of constant u. One can choose

coordinates (u, v, ym), m = 1, 2, 3, such that v is the affine parameter along these geodesics, and

hence

V =
∂

∂v
. (4.3)
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The metric must take the form:

ds2 = H−1
(

Fdu2 + 2dudv
)

−H2γmn (dym + amdu) (dyn + andu) , (4.4)

where the quantities H , F , γmn and am depend on u and ym only (because V is Killing). Note

that there is a lot of gauge freedom remaining. For example, a coordinate transformation of

the form y → y′(u, y) could be used to eliminate am. However, this freedom will be more useful

shortly.

Equations (2.10) and (2.11) imply that X(i) can be written

X(i) = X(i)
m du ∧ dym. (4.5)

Closure of X(i) then gives

∂[mX
(i)
n] = 0, (4.6)

and hence locally there exist functions xi(u, y) such that

X(i)
m = ∂mx

i. (4.7)

Now we can exploit the freedom to do a coordinate transformation y → y′(u, y) by choosing

xi(u, y) as our new coordinates. The metric takes the same form as above but with xi replacing

ym. In these coordinates,

X(i) = du ∧ dxi. (4.8)

Equation (2.12) now gives

γij = δij , (4.9)

so in these coordinates, the surfaces of constant u and v are flat. The full metric can be written

ds2 = H−1
(

Fdu2 + 2dudv
)

−H2(dx + adu)2, (4.10)

where bold letters denote three dimensional quantities, e.g., (a)i ≡ ai, with no distinction

between “up” and “down” indices for such objects.

It is convenient to introduce a null basis of 1-forms as follows

e+ = V = H−1du, e− = dv +
1

2
Fdu, ei = H

(

dxi + aidu
)

. (4.11)

These obey the orthogonality relations

eα · eβ = ηαβ, (4.12)

where η+− = η−+ = 1, ηij = −δij and other components vanish. We also choose ǫ+−123 = 1.
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Equation (2.15) implies

F = F+ie
+ ∧ ei + 1

2
Fije

i ∧ ej . (4.13)

Substituting into equation (2.18) gives

Fij = −
√

3

2
H−2ǫijk∇kH, (4.14)

where ∇k ≡ ∂/∂xk . Equation (2.20) gives

F+i = − 1

2
√

3
Hǫijk∇jak. (4.15)

Hence the field strength is

F = −H
−2

2
√

3
ǫijk∇j

(

H3ak
)

du ∧ dxi −
√

3

4
ǫijk∇kHdx

i ∧ dxj. (4.16)

The Bianchi identity reduces to

∇2H = 0, (4.17)

∂u∇H =
1

3
∇×

(

H−2∇×
(

H3a
))

, (4.18)

The equation of motion for the field strength turns out to be identically satisfied.

Equation (2.13) implies that the Killing spinor satisfies

γ+ǫ = 0. (4.19)

Writing out the Killing spinor equation using the above expressions for the connection and field

strength, and using (4.19), one finds that it reduces to

∂µǫ = 0. (4.20)

Hence the Killing spinor is constant. Since the only restriction is equation (4.19), it follows

that, in the null case, as in the timelike case, all supersymmetric solutions preserve at least half

of the supersymmetry.

The above analysis yields the general spacetime that admits a constant Killing spinor and

satisfies the equations for the field strength. However, the function F(u, x) is still completely

unrestricted so it is necessary to look at the Einstein equations for further information. As in

the time-like case we can deduce a lot from the integrability conditions discussed in appendix

B. Working in the above basis, (B.5) implies that Eα− = 0 and (B.6) give E+i = Eij = 0. Hence

we just need to impose the ++ component of the Einstein equation, which gives

∇2F = 2H2DuWii + 2HW(ij)W(ij) +
2

3
HW[ij]W[ij], (4.21)
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where

Du ≡ ∂u − ai∇i, (4.22)

and

Wij = DuHδij −H∇jai. (4.23)

The solution is now specified as follows. First pick a harmonic function H(u,x). Next

consider equation (4.18). The general solution will be the sum of a particular integral and the

general solution of the homogeneous equation

∇×
(

H−2∇×
(

H3a
))

= 0. (4.24)

This equation can be integrated to give

∇×
(

H3a
)

= H2∇φ, (4.25)

for some function φ(u,x). The integrability condition for this is

0 = ∇ ·
(

H2∇φ
)

= H∇2(Hφ), (4.26)

and hence

φ = KH−1 (4.27)

for some harmonic function K(u,x). Next, equation (4.25) can be integrated to determine H3a

up to a gradient. This gradient arises from the gauge freedom v → v + g(u,x) and therefore

can be removed (see the next subsection). So the general solution to equation (4.18) involves

a single additional harmonic function K. Finally, equation (4.21) can be solved to determine

F up to another arbitrary harmonic function F0. Hence the general solution involves three

arbitrary u-dependent harmonic functions H , K and F0.

Recall that a spacetime is said to be a plane-fronted wave if it can be foliated by a family

of hypersurfaces u = constant such that du is null, geodesic and free of expansion, rotation and

shear. This is indeed the case for our solution. In other words the general null supersymmetric

solution is always a plane-fronted wave (even though it can be static in special cases, such as the

magnetic string). A plane-fronted wave is said to be a plane-fronted wave with parallel rays (pp-

wave) if du is also covariantly constant. For our solution, this occurs if, and only if, H = H(u).

For such a wave, it can be seen from the definition of u (equation (4.1)) that one can take H ≡ 1

without loss of generality (see next subsection) so this solution is specified by just two harmonic

functions. It is interesting to note that in four dimensions, the null supersymmetric solutions

are pp-waves but in five dimensions they are more general plane-fronted waves.
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4.2 Changes of coordinate

Note that there is some unfixed gauge freedom in the solution. These correspond to co-ordinate

transformations that leave the form of the metric and the field strength invariant. First, equation

(4.1) does not define u uniquely. One could instead work with u′ = u′(u) and H ′ = Hdu′/du.

This also affects the definition of x: x′ = xdu/du′. Next, in defining v by V = ∂/∂v, there is

freedom to specify the surface v = 0. This corresponds to the coordinate transformation

v = v′ + g(u, x), (4.28)

which has the effect of replacing a and F in the solution by

a′ = a −H−3∇g, F ′ = F + 2∂ug − 2a · ∇g +H−3 (∇g)2 . (4.29)

This gauge-freedom can be used to impose a gauge condition such as

∇ · a = 0 , (4.30)

or

Wii = 0. (4.31)

Finally, it is clear from the definition of the coordinates x that there is a gauge freedom x →
x − v(u) for an arbitrary u-dependent vector v(u). These three gauge transformations will be

used repeatedly to simplify solutions.

There are other coordinate transformations that do change the form of the solution but are

also useful. The coordinates xi defined above are not arbitrary Cartesian coordinates but are

related to the 2-forms X(i) by equation (4.8). Note that these coordinates are defined in terms

of covariantly constant 2-forms in exactly the same way as the Cartesian coordinates on the

transverse two-space of a four dimensional pp-wave [43]. Any other Cartesian coordinate system

on R
3 will be related to these coordinates by a u-dependent rotation and translation:

x = O(u) · x′ + v(u), (4.32)

where O(u) is an orthogonal matrix, which we choose to have determinant +1. The effect of

such a transformation is to rotate the 2-forms: X(i) → OijX(j). The derivative Du is invariant

under such a transformation. However, the general form of the solution does not transform

covariantly – the solution as given above is valid only in terms of the preferred coordinates xi.

In particular, the above transformation affect a differently in the metric and field strength. The

new metric will be of the same form of as the old one but with x replaced by x′ and a replaced

by

a′ = O−1
(

a + Ȯ · x′ + v̇
)

, (4.33)
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where a dot denotes a u-derivative. The left-hand side of equation (4.21) for the metric function

F is unchanged since ∇2 = ∇′2. Note that if one wants to write the right-hand-side in terms of

primed quantities, one should substitute W = OW ′O−1 +HȮO−1. The field strength is given

by

F = − 1

2
√

3
ǫijk

[

H−2∇′
j

(

H3a′k
)

+H
(

O−1Ȯ
)

jk

]

du ∧ dx′i −
√

3

4
ǫijk∇′

kHdx
′i ∧ dx′j . (4.34)

Note that one can reach a′ = 0 (and therefore eliminate dudxi cross terms from the metric)

precisely when a satisfies Killing’s equation ∇(iaj) = 0, i.e, when

a = x × ω(u) + b(u), (4.35)

for some vectors ω(u) and b(u). After changing coordinate to eliminate a from the metric, a

du∧ dx′i term remains in the field strength so the solution in the new coordinates is not of the

same form as the solution in the original coordinates.

4.3 pp-waves

As mentioned above, pp-waves have H ≡ 1. Equation (4.18) gives

∇× a = ∇φ (4.36)

for some function φ(u, x). The integrability condition for this equation is that φ must be

harmonic

∇2φ = 0. (4.37)

The solution then takes the form

ds2 = Fdu2 + 2dudv − (dx + adu)2

F = − 1

2
√

3
du ∧ dφ, ∇× a = ∇φ. (4.38)

The function F is given by solving (4.21).7 Without loss of generality, we impose the gauge

condition ∇ · a = 0, so that (4.21) becomes

∇2F = 2∇(iaj)∇(iaj) +
1

3
(∇φ)2. (4.39)

If ∇(iaj) = 0, i.e., if a = x × ω(u) + b(u) then one can remove a from the metric by a

coordinate transformation as described above, and ∇φ = −2ω(u) is independent of x. The

orthogonal matrix occuring in the coordinate transformation must obey

Ȯij(u) = −ǫiklOjk(u)ωl(u). (4.40)
7Some similar ten dimensional pp-wave solutions were given in [44].
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In the new coordinates, the solution is

ds2 = Fdu2 + 2dudv − dx′2

F =
1√
3
ω′
i(u)du ∧ dx′i, ∇′2F =

4

3
ω′2. (4.41)

where ω′(u) = O−1(u)ω(u). Note that ω̇′ = O−1(u)ω̇ using (4.40). Hence ω′ is independent

of u if, and only if, ω′ is (in this case, O can be taken as a rotation about an axis parallel to

ω, giving ω′ = ω). The maximally supersymmetric plane wave solution arising from a Penrose

limit (see below) is of this type.

Another special case is that in which F = 0, so that the space is a solution of pure gravity,

and the Killing spinors are covariantly constant. This case was analysed in [45], where it was

shown that the holonomy must be in R
3 ⊂ SO(4, 1). Setting F = 0 gives ∇× a = 0, so a is a

gradient and can therefore be set to zero by v = v′ + g(u,x). The solution is then

ds2 = Fdu2 + 2dudv − dx2, ∇2F = 0. (4.42)

The solution given in [45] (modulo a typo) is related to this by a Euclidean transformation.

In section 3.7, we saw how the timelike class of minimal N = 2, D = 4 supergravity (with

action (3.85)) can be oxidized to give a subset of our timelike class of minimal N = 1, D = 5

supergravity. We can now do the same for the null class given in [9]; this was done in [42] for the

special case of the maximally supersymmetric plane wave solution. Consider a pp-wave with

a = x × ω(u) and consider a coordinate transformation x = O(u)x′ with

Ȯij(u) = −4

3
ǫiklOkj(u)ωl(u). (4.43)

Note that this is not the same coordinate transformation as used to eliminate a from the metric.

In the new coordinates, the solution takes the form

ds2 = Fdu2 + 2dudv −
(

dx′ − 1

3
x′ × ω′(u)du

)2

,

F =
1√
3
ω′
idu ∧ dxi

′
, (4.44)

where ω′(u) = O−1(u)ω(u). Now take ω′ = (ω′
1(u), 0, ω

′
3(u)) and let v = v′ − 1

3
y′(ω′

3(u)x
′ −

ω′
1(u)z

′). The solution takes the form

ds2 = F ′du2 + 2dudv′ − dx′
2 − dz′

2 −
(

dy′ +
2

3
(ω′

3x
′ − ω′

1z
′)du

)2

,

F =
1√
3
ω′
i(u)du ∧ dxi

′
, (4.45)
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where

F ′ = F +
1

3
(ω′

3x
′ − ω′

1z
′)2 − 1

9
ω′2y′

2 − 2

3
y′(ω̇′

3x
′ − ω̇′

1z
′). (4.46)

It is always possible to choose F obeying (4.21) such that F ′ is independent of y′. The solution

can then be KK reduced on the Killing vector field ∂/∂y′. In the language of section 3.7, we

have A = 2
3
(ω′

3(u)x
′ − ω′

1(u)z
′)du and it can be checked that the consistency conditions for the

reduction are obeyed. Explicitly, the four dimensional solution is

ds2 = F ′du2 + 2dudv′ − dx′
2 − dz′

2
,

F ′ =
1√
3
du ∧ (ω′

1dx
′ + ω′

3dz
′) , (4.47)

where F ′(u, x′, z′), must obey (using (4.46) and (4.21))

(

∂2

∂x′2
+

∂2

∂z′2

)

F ′ =
16

9
ω′(u)2. (4.48)

4.4 Black String, Penrose limits and Plane Wave

Probaby the best known solutions in the null class are the static black string solutions [14].

These have F = a = 0 and H = H(x). A single black string is obtained by choosing the

harmonic function H to have a single centre:

ds2 = H−1 (2dudv)−H2(dx)2

F = −
√

3

4
ǫijk∇kHdx

i ∧ dxj , H = 1 +
R

2r
(4.49)

The tension and magnetic charge per unit length of the string are both proportional to R.

The near horizon limit of this solution is obtained by taking r → 0 and hence dropping the

1 in the harmonic function. One then obtains AdS3 × S2, which is maximally supersymmetric.

This can be written in global coordinates as

ds2 = R2[cosh2 ρdt2 − dρ2 − sinh2 ρdψ2 − 1

4
(dθ2 + cos2 θdφ2)]

F =

√
3R

4
cos θdθ ∧ dφ (4.50)

where 0 ≤ ψ, φ < 2π and 0 ≤ θ ≤ π.

The maximally supersymmetric plane-wave solution presented in [21] can be obtained as a

Penrose limit. Explicitly if we introduce the new coordinates

u = t+
φ

2
, v =

R2

2
(t− φ

2
),

ρ =
r

R
, θ = −2z

R
(4.51)
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and then take the limit R → ∞ we get

ds2 = 2dudv + (z2 +
r2

4
)du2 − (dr2 + r2dψ2 + dz2)

F =

√
3

2
du ∧ dz (4.52)

Note that this solution is of the form (4.41) with ω = (0, 0, 3/2). Note also that there is a

similar Penrose limit of AdS2 × S3, the near horizon limit of the electric black hole solution,

that gives the same maximal supersymmetric plane-wave solution.

5 Maximally supersymmetric solutions

5.1 Introduction

The above results for the timelike and null cases show that Killing spinors always come in pairs

(of Dirac spinors) obeying the same projection (3.11). Therefore the solutions all preserve at

least half of the supersymmetry. It is natural to ask which solutions preserve more than half of

the supersymmetry.

A pair spans a two dimensional subspace of spinors. Every spinor in this subspace gives

rise to the same function f and Killing vector V . Let ǫ1 and ǫ2 be a pair. If there is an extra

linearly independent Killing spinor ǫ3 then it must also have a partner ǫ4. Let f ′, V ′ denote the

function and Killing vector that arises from this second pair.

Consider first the case in which ǫ4 is not linearly independent: ǫ4 = αǫ1 + βǫ2 + γǫ3, for

some functions α, β, γ. Since each ǫi is Killing and, by assumption, ǫ1, ǫ2 and ǫ3 are linearly

independent, we conclude that α, β, γ are actually constants. In addition ǫ′ ≡ αǫ1 + βǫ2 is a

Killing spinor obeying the same projection as ǫ4, i.e., it forms a pair with ǫ3. It follows that ǫ′

gives rise to the function f ′ and Killing vector V ′. But, being a linear combination of ǫ1 and ǫ2,

ǫ′ must give rise to the Killing vector V . Hence we must have V = V ′ and similarly f = f ′ (at

least up to a positive constant of proportionality). However, this implies that ǫ4 obeys precisely

the same projection (equation (2.13)) as ǫ1 and ǫ2, which contradicts the linear independence

of ǫ3. Hence ǫ4 must be linearly independent of ǫ1, ǫ2 and ǫ3. So if a solution preserves more

than 1/2 supersymmetry then it must preserve all supersymmetry.

The goal of this section is to identify those solutions preserving all supersymmetry. This can

be done by examining the integrability conditions. If there are four independent Killing spinors

then it is easy to argue that there must exist an open set U in which these Killing spinors

are pointwise linearly independent and hence form a basis for all spinors. The integrability

conditions are algebraic and must therefore hold for an arbitrary spinor in U . This yields an
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identity of the form

Xαβγγ
γ + Yαβγδγ

γδ = 0, (5.1)

where X and Y are tensors formed from the field strength and Riemann tensor. By analytic

continuation, this must hold everywhere, not just in U . This expression can only be valid if X

and Y vanish separately. Our strategy will be to examine what further restrictions this gives

for the solutions classified above. Rather than computing X and Y directly from the Riemann

tensor and field strength, it turns out to be simpler to write out the Killing spinor equation

in components and rederive the integrability conditions component by component, which will

clearly give identical results.

5.2 Maximal null supersymmetry

In the above analysis, we showed that the null solutions admit Killing spinors obeying the

projection γ+ǫ = 0. We now want to find the maximally supersymmetric solutions and must

therefore relax this condition. Any spinor ǫ can be written as

ǫ = ǫ+ + ǫ−, (5.2)

where ǫ+ = (1/2)γ+γ−ǫ and ǫ− = (1/2)γ−γ+ǫ. Substituting the known form of the null solution

into the Killing spinor equation yields the following components:

∂vǫ+ +
1

2
H−2∇iHγ

iγ+ǫ− = 0, (5.3)

∂vǫ− = 0, (5.4)

∇iǫ+ − 1

2
H

[

1

3
H∇[iaj] +W(ij)

]

γjγ+ǫ− − 1

6
H2ǫijk∇jakγ

+ǫ− = 0, (5.5)

∇iǫ− −H−1ǫijk∇jHγ
kǫ− = 0, (5.6)

(

∂u − ai∇i

)

ǫ+ − 1

4
∇i

(

FH−1
)

γiγ+ǫ− = 0, (5.7)

(

∂u − ai∇i

)

ǫ− +
1

3
ǫijk∇jakγ

iǫ− = 0. (5.8)

Consider the integrability condition for (5.3) and (5.5). Using (5.4) and (5.6), this reduces to

[

H−2∇i∇jH − 3H−3∇iH∇jH +H−3 (∇H)2 δij
]

γjγ+ǫ− = 0. (5.9)

We now apply the argument outlined above: ǫ− can be replaced by ǫ in this expression, and

we are demanding that there exist eight independent solutions. This can only be true if the

expression within square brackets vanishes, which is equivalent to

∇i∇jH
−2 = 2

(

∇H−1
)2
δij . (5.10)
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This equation is easy to solve (e.g. first consider the components with i 6= j) and has solutions

H = H(u) or H−2 = f(u)−2 (x + b(u))2. In the latter case, one can exploit the unfixed

coordinate freedom x → x − c(u) to set b = 0. In the former case, it was argued above that

one can change coordinates so that H ≡ 1. Hence

H ≡ 1, or H =
f(u)

r
, (5.11)

where r ≡
√

x2.

Consider first the case H = f(u)/r. The integrability condition of (5.7) and (5.3) implies

(using (5.4) and (5.8))

∂u
(

H−2∇iH
)

− H−5

3
∇jH

[

∇i

(

H3aj
)

−∇j

(

H3ai
)]

= 0, (5.12)

and

∇H · ∇ × a = 0. (5.13)

Multiplying the first equation by ∇iH leads immediately to ∂uf = 0 and hence

H =
R

2r
, (5.14)

for some constant R, and a factor of 2 is inserted for convenience. Equations (5.12) and (5.13)

then imply

∇×
(

H3a
)

= 0, (5.15)

which implies that a can be gauged away by a transformation of the form v → v − g(u,x).

Hence we can assume a = 0. Integrability of (5.5) and (5.7) then implies

∇F ×∇H = 0, (5.16)

so F = F(u, r). Equation (4.21) implies that F is harmonic, hence

F =
f1(u)

r
+ f2(u). (5.17)

Finally, by considering a coordinate transformation of the form v = v′ + P1(u)/r
′ + P2(u),

r = r′P3(u), u = P4(u
′) for appropriate choices of the functions Pi one can bring the solution

to the form

ds2 = 4
r′

R
du′dv′ − R2

4

dr′2

r′2
− R2

4
dΩ2

2, F =

√
3

4
Rvol(S2), (5.18)

which is clearly the maximally supersymmetric AdS3×S2 solution (4.50). If we drop the primes

on the coordinates then this solution is simply given by setting F = a = 0, H = R/2r and,

continuing to use the frame (4.11), the Killing spinors are easily found to be

ǫ− = x̂iγiη−, (5.19)
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ǫ+ = η+ +
v

R
γ+η−, (5.20)

where x̂ = x/r and η± are arbitrary constant spinors obeying γ±η± = 0.

Now consider the case H ≡ 1. Integrability of (5.6) and (5.8) gives

∇× a = −2ω(u), (5.21)

where ω(u) is an arbitrary u-dependent vector and hence

a = x × ω(u), (5.22)

where an arbitrary gradient can be removed by a shift in v. Integrability of (5.5) and (5.7) then

gives

ω = constant, (5.23)

and

∇i∇jF =
2

9

(

δijω
2 + 3ωiωj

)

, (5.24)

with solution

F =
1

9

(

ω2x2 + 3 (ω · x)2)+ α(u) · x + β(u). (5.25)

The arbitrary functions α(u) and β(u) can be removed by a combined transformation of the

form x → x − γ(u) and v → v − λ(u) · x − δ(u). Hence the final form of the solution is

ds2 =
1

9

(

ω2x2 + 3 (ω · x)2) du2 + 2dudv − (dx + x × ωdu)2 ,

F =
1√
3
ωidu ∧ dxi, (5.26)

where ω is an arbitrary constant 3-vector. It is now easy to solve for the Killing spinors:

ǫ− =
[

cos (2ωu/3) + ω̂iγ
i sin (2ωu/3)

]

η−, (5.27)

ǫ+ = η+ +
1

6
(x ∧ ω)i γ

iγ+ǫ− − 1

3
x · ωγ+ǫ−, (5.28)

where ω = |ω|, ω̂ = ω/ω, and η± are arbitrary constant spinors obeying the projections

γ±η± = 0. In the coordinate system of equation (4.41), the solution is (using ω′ = ω)

ds2 =
1

9

(

ω2x′2 + 3 (ω · x′)
2
)

du2 + 2dudv − dx′2, F =
1√
3
ωidu ∧ dx′i. (5.29)

We thus conclude that the only maximally supersymmetric solutions in the null class are

AdS3 × S2 and the maximally supersymmetric plane wave. It turns out that both of these

solutions also belong to the timelike class. In other words, some of the Killing spinors correspond

to a null Killing vector but others correspond to a timelike Killing vector. This is easy to see
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using the explicit expressions for the Killing spinors given above. For the plane wave, take a

Killing spinor with η+ = 0 and imagine repeating the analysis of this paper with this spinor as

the fiducial spinor. One then obtains

f = −
√

2

3
x · ωη†−η−, (5.30)

which is clearly non-zero (although we need to restrict to x · ω < 0 for f > 0). Similarly, for

the AdS3 × S2 solution one obtains from the general Killing spinor

f = − 1√
2
x̂iℜ

(

η†−γ
iγ−η+

)

, (5.31)

where ℜ denotes the real part, which is also non-zero in general. These solutions can be cast

into the timelike form of section 3 as follows.

For the plane wave, a Killing spinor with η+ = 0 gives the Killing vector

V =
∂

∂u
− 4

3
ai

∂

∂xi
, (5.32)

where we have normalized so that η†−η− =
√

2. We want to write the solution in the timelike

form, so we need to choose new coordinates (t, ym) such that V = ∂/∂t. A natural guess is to

choose new coordinate (t, x5,x′) where t = u, x5 = v and

∂xi

∂t
= −4

3
ai. (5.33)

A solution is to take x = O(t)x′ where O(t) = exp(At) is orthogonal and the antisymmetric

matrix A is given by

Aij = −4

3
ǫijkωk. (5.34)

Note that the same coordinate transformation was used above in the dimensional reduction of

the null class. In these new coordinates, the solution takes the form

vds2 = f 2 (dt+ ω)2 − f−1
[

f−1
(

dx5 + χ · dx′)2 + fdx′2
]

,

F =
1√
3
ωidt ∧ dx′i , (5.35)

where

f = −2

3
x′ · ω, χ =

1

3
x′ × ω, ω = f−2

(

dx5 + χ · dx′) . (5.36)

The solution is now written in the timelike form. The base space is a Gibbons-Hawking space

with a linear harmonic function H = f , corresponding to a constant density planar distribution

of Taub-NUT instantons. In the language of our general analysis of solutions with a Gibbons-

Hawking base space, this solution has K = 1 and L = M = ω = 0. Note that K/H is not

constant, so this solution has G+ 6= 0.
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For AdS3 × S2, the Killing vector V constructed from the general Killing spinor turns out

to be rather complicated, but it is possible to proceed by trial and error. First, note that we

can rotate S2 and normalize the spinor so that f = cos θ. Now the solution can be massaged

into timelike form by writing AdS3 in a form with F = R/2r (as discussed above):

ds2 = du2 + 4
r

R
dudv − R2

4r2
dr2 − R2

4

(

dθ2 + sin2 θdφ2
)

,

F =

√
3

4
R sin θdθ ∧ dφ. (5.37)

Letting u = t, v = x5, φ = φ′ − 2t/R, the solution can be written

ds2 = f 2 (dt+ ω)2 − f−1

[

H
(

dr2 + r2dθ2 + r2 sin2 θdφ′2
)

+H−1

(

dx5 +
R2 sin2 θ

4r
dφ′
)2
]

,

F =

√
3

2
sin θ

(

dt ∧ dθ +
R

2
dθ ∧ dφ′

)

, (5.38)

where

f = cos θ, ω =
2r

R cos2 θ

(

dx5 +
R2 sin2 θ

4r
dφ′
)

, H =
R2 cos θ

4r2
. (5.39)

The base space is a Gibbons-Hawking solution with a dipole source for H . K has a monopole

source: K = R/2r and L = M = ω = 0. Once again, K/H is not constant so this solution has

G+ 6= 0.

It is noteworthy that both of these regular maximally supersymmetric solutions can be cast

in the time-like form using singular hyper-Kähler base spaces. Note also that for both solutions,

the null Killing vector field ∂/∂v coincides with the triholomorphic Killing vector field ∂/∂x5.

Both solutions are special cases of the class of timelike solutions given in section 3.7 with

L = M = ω = 0 (so f−1 = K2/H and ω5 = (K/H)f−1) for which ∂/∂x5 is null.

It was remarked in [42] that AdS3 × S2 can be obtained as a limit of the maximally super-

symmetric near horizon geometry of the BMPV black hole discussed in [16]. It is interesting

to see how this works in our framework. The near horizon geometry of BMPV has a flat base

space and G+ = 0. In Gibbons-Hawking form, H has a monopole source and f−1 and ω5 are

proportional to H . More generally, consider a solution with Gibbons-Hawking base, f−1 = H

and ω5 = cH for some constant c:

ds2 = H−2dt2 + 2cH−1dtσ − (1 − c2)σ2 −H2dx2, σ = dx5 + χidx
i,

F =

√
3

2

(

−dt ∧ d(H−1) +
c

2
ǫijk∇kHdx

i ∧ dxj
)

, (5.40)

For c2 < 1 one can KK reduce on ∂/∂x5 as described in section 3.7 (after rescaling co-ordinates).

If c2 = 1 then ∂/∂x5 is null and this reduction is no longer possible (although the metric remains
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non-degenerate). However, one can introduce new coordinates

t′ =
t√

1 − c2
, x5′ =

√
1 − c2x5, (5.41)

and then take the limit c2 → 1 with t′ and x5′ held fixed. This is not the same as setting c2 = 1

in the original solution. For c→ 1 we get

ds2 = H−1
(

−Hdx5′2 + 2dt′dx5′
)

−H2dx2, F =

√
3

4
ǫijk∇kHdx

i ∧ dxj , (5.42)

which is a solution belonging to the null class with u = x5′, v = t′, F = −H and a = 0.8 This

limit must therefore involve a boost. If H has a monopole source then the above procedure

takes the near horizon geometry of BMPV to AdS3 × S2 written in null form.

5.3 Maximal Timelike Supersymmetry

We now determine the maximally supersymmetric solutions which are associated with a timelike

killing vector by analysing the Killing spinor equations in the timelike background described in

section 3. We decompose the Killing spinor as ǫ = ǫ− + f
1

2 ǫ+ where γ0ǫ± = ±ǫ±. Then the

Killing spinor equations may be written as

∂tǫ
+ = −γi∇ifǫ

− (5.43)

∂tǫ
− =

f 2

6
γijG+

ijǫ
− (5.44)

∇iǫ
+ + ωiγ

j∇jfǫ
− − 1

3
G+

ijγ
jǫ− −G−

ijγ
jǫ− = 0 (5.45)

and

∇iǫ
− − f 2

6
ωiG

+
jkγ

jkǫ− +
1

2
f−1δij∇kfγ

jkǫ− +
1

2
f−1∇ifǫ

− = 0 (5.46)

In the above equations, all spatial indices are with respect to an orthonormal basis with respect

to the base space metric h, and ∇ is the covariant derivative with respect to h.

To proceed, we evaluate the integrability conditions of these equations. First, for maximal

supersymmetry, the integrability condition of (5.44) and (5.46) gives

∇i(f
2G+

pq) − fδip∇kfδ
kℓG+

lq + fδiq∇kfδ
kℓG+

lp + f∇pfG
+
iq − f∇qfG

+
ip = 0 (5.47)

8The observant reader will notice a discrepancy in the sign of the field strength between this equation and
(4.16). This arises because the null solutions have no preferred orientation. The sign can be fixed by x → −x.
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The integrability condition between (5.43) and (5.45) is

−∇i∇jf +
1

2f
δijδ

pq∇pf∇qf +
2

3
f 2(

1

3
G+

ip +G−
ip)δ

pqG+
qj = 0 (5.48)

The integrability condition of (5.46) is

Cijpq = f [ − 2

3
G+

ijG
+
pq +

1

18
G+

mnG
+mn(δipδjq − δjpδiq + ǫijpq)] (5.49)

where C is the Weyl tensor, and the integrability condition of (5.45) is

− f∇ℓG
−
ij + (∇ifG

−
jℓ −∇jfG

−
iℓ −∇ℓfG

−
ij) + (δjℓG

−
imδ

mn∇nf − δiℓG
−
jmδ

mn∇nf)

+
1

3
(∇ℓfG

+
ij + ∇ifG

+
jℓ −∇jfG

+
iℓ) −

1

3
(δjℓG

+
imδ

mn∇nf − δiℓG
+
jmδ

mn∇nf) = 0(5.50)

Let us first investigate the special case G+ = 0. From (5.49) we immediately conclude that

the base space is flat. In fact, the square of (5.49) relates the square of the Weyl tensor of the

base space to the square of G+ and hence a maximally supersymmetric solution has flat base

space if, and only if, G+ = 0. Solving (5.48) we find that the two possible solutions are:

f = α or, (5.51)

f =
α

2
xmxm =

α

2
r2 (5.52)

for α > 0 constant.

We consider first the case f = α. Then (5.50) implies that G− is covariantly constant. Now

any anti-self-dual two form can be expanded in terms of the standard anti-self-dual complex

structures J (i) = 1
4
d[r2σiL] on R

4 as G− = λiJ (i) and we deduce that the λi are constants; so

ω =
λir2

4α
σiL (5.53)

The five-dimensional metric is given by

ds2 = α2(dt+
λir2

4α
σiL)

2 − α−1[dr2 + r2dΩ3
2] (5.54)

and is the maximally supersymmetric Gödel type solution investigated previously.

Let us now consider the case f = α
2
r2. We introduce a new basis of anti-self-dual two forms

Q(i) = d[r−2σiR]. Then writing G− = λir2Q(i) we find on substituting into (5.50) that the λi

must be constant. Hence

ω =
2

αr2
λiσiR (5.55)

The five dimensional spacetime geometry is given by

ds2 =
α2

4
r4(dt+

2

αr2
λiσiR)2 − 2

αr2
[dr2 + r2dΩ3

2] (5.56)

This geometry is the near-horizon geometry of the rotating BMPV five-dimensional black hole

which was shown to be maximally supersymmetric in [16]. Setting λi = 0 gives AdS2 × S3.
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5.3.1 Maximal supersymmetry with G+ 6= 0

If G+ 6= 0 then the above equations are much more complicated. Before solving these equations,

it is useful to consider two examples of maximally supersymmetric solutions with G+ 6= 0. Both

examples use a singular hyper-Kähler base, the first a singular version of Eguchi-Hanson and

the second negative mass Taub-NUT. Surprisingly, both examples are related by co-ordinate

transformations to time-like solutions built from a flat base space with G+ = 0. This emphasizes

the point that G+ is defined with respect to a particular four dimensional base space, which

in turn is defined by a timelike Killing vector constructed from a Killing spinor. For solutions

with maximal supersymmetry it is possible that the extra Killing spinors give rise to a different

timelike Killing vector and hence a different base space, and in this case there will then be no

simple relation between the old and new G+.

Consider first the singular Eguchi-Hanson Solution with base metric on B given by

ds2 = W−1dr2 +
r2

4
((σ1

L)
2 + (σ2

L)
2) +

r2

4
W (σ3

L)
2 (5.57)

where W = 1 + b4

r4
. Take the solution given by (3.53) with δ = λ = γ = 0:

f−1 =
χ2

9b4r2
, ω = − χ3

54b4r4
σ3
L,

G+ = −χ
4
d(r−2σ3

L), G− =
χ

6r3
(dr ∧ σ3

L − r

2
σ1
L ∧ σ2

L). (5.58)

It is straightforward to show that all of the integrability conditions given above are satisfied.

The metric is

ds2 =

(

3b2

χ

)4

r4dt2 − 3b4

χ
dtσ3

L−
χ2

9b4r2

(

1 +
b4

r4

)−1

dr2 − χ2

36b4
[

(σ1
L)

2 + (σ2
L)

2 + (σ3
L)

2
]

. (5.59)

Now perform a coordinate transformation

dv = dt+ F (r)dr, dφ′ = dφ+G(r)dr ⇒ σ3
L
′
= σ3

L +G(r)dr, (5.60)

with F and G chosen so that the coefficients of dr2 and dr(σ3
L)

′ vanish. The new metric is

ds2 =

(

3b3

χ

)4(

1 +
r4

b4

)

dv2 − 6b2r

χ
dvdr − χ2

36b4

[

(σ1
L)2 + (σ2

L)2 +

(

σ3
L
′
+

54b8

χ3
dv

)2
]

. (5.61)

Finally, let

φ′′ = φ′ +
54b8

χ3
v, v′ =

(

3b3

χ

)2

v, ρ =
χr2

6b4
. (5.62)

The metric is now
[

1 +

(

6b2

χ

)2

ρ2

]

dv′
2 − 2dv′dρ− χ2

36b4

[

dθ2 + sin2 θdψ2 + (dφ′′ + cos θdψ)
2
]

. (5.63)
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This is clearly AdS2 ×S3 where the radius of the AdS2 is given by χ/(6b2) and the radius of the

S3 by χ/(3b2). Note that r corresponds to the global radial coordinate ρ, with r = 0 the origin

of AdS2. This contrasts with the description of AdS2 ×S3 with a flat base space, for which r is

the horospherical “radial” coordinate.

Our next example has negative mass Taub-NUT as its base space. The solution is given by

setting γ = 0, a = −b < 0 in (3.60). Explicitly, the base space metric is

ds2 =
(r − b)

(r + b)
dr2 + (r2 − b2)((σ1

R)2 + (σ2
R)2) + 4b2

(r − b)

(r − b)
(σ3

R)2 (5.64)

and the solution is given by

f−1 =
2χ2

9b(r − b)
, ω =

χ3

27b2
(r − 5b)(r + b)

(r − b)2
σ3
R

G+ = χd[
(r + b)

(r − b)
σ3
R], G− = − χ

6b

(r + b)

(r − b)2
[2bdr ∧ σ3

R + (r2 − b2)σ1
R ∧ σ2

R] . (5.65)

It is straightforward to show that these expressions satisfy the integrability conditions. Surpris-

ingly this solution is just the maximally supersymmetric Gödel type solution. To see this we

first note that in going from positive mass parameter Taub-NUT to negative mass Taub-NUT

there is a change of orientation. Hence it is natural to work with right invariant one-forms

rather than left-invariant one-forms. This is simply achieved by interchanging the coordinates

φ and ψ. If we do this then the metric becomes

ds2 =
81b2

4χ4
(r − b)2dt2 − 3

2χ
(r − 5b)(r + b)dtσ3

L − 2χ2

9b(r + b)
dr2

− 2χ2

9b
(r + b)((σ1

L)2 + (σ2
L)2) +

χ2

36b2
(r + b)(r − 7b)(σ3

L)2 (5.66)

Let φ′ = φ− (3/χ)3b2t and r = −b+ ρ2/(8b). The metric becomes

ds2 =

(

9b2

χ2

)2 [

dt−
(χ

3

)3
(

ρ2

16b4

)

(dφ′ + cos θdψ)

]2

−
(

9b2

χ2

)−1 [

dρ2 +
ρ2

4

(

dθ2 + sin2 θdψ2 + (dφ′ + cos θdψ)
2
)

]

, (5.67)

which, after rescaling t and ρ, is the generalized Gödel solution (3.43) with γ = −3/16χ.

To proceed with finding the maximally supersymmetric timelike solutions with G+ 6= 0 it is

convenient to prove the

Proposition. The hyper-Kähler base space B of the maximally supersymmetric solutions

is Gibbons-Hawking. Moreover, the tri-holomorphic Killing vector is a Killing vector of the

five-dimensional solution.

Proof.
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Using (5.47), (5.48) and (5.50) it follows that

Ki = f(G+ij − 3G−ij)∇jf (5.68)

satisfies ∇(iKj) = 0 and LKX(i) = 0. So if K 6= 0, as for the negative mass Taub-NUT example

presented in the previous section, it follows that the base space is Gibbons-Hawking. Moreover,

it is clear that LKf = 0. In order to show that this solution falls into the classification of

Gibbons-Hawking solutions presented previously, we also require LKω = 0. In fact, it suffices

to show locally that LKdω = 0. To do this, we note that on contracting (5.47) with f 2G+pq we

find z2 = f 4G+
ijG

+ij is constant; z 6= 0. Then it is straightforward to see from the integrability

constraints that

f−1Kj(G+
ij +G−

ij) = ∇i(
z2

12
f−3 − 3

4
fG−

mnG
−mn) (5.69)

and hence d(iKdω) = 0.

It is however also possible that K = 0, as it is for the singular Eguchi-Hanson example

discussed in the previous section. To proceed in this case, we note that K = 0 together with

(5.50) implies that f 2G− is covariantly constant. It is then convenient to define

K̂i = f 2G−
ij∇jf . (5.70)

Note that if K̂ vanishes, or f is constant, then the base space must be flat. Hence we shall

consider K̂ 6= 0. It is straightforward to show that K̂ is a Killing vector. Furthermore, without

loss of generality we have f 2G− = z
6
X(1). Next, note that (5.48) implies that

1

2
f−1∇if∇if =

z2

18
f−2 + α (5.71)

for constant α. Hence we find that

∇iK̂j = −αz
6
X

(1)
ij +

z2

54
G+

ij (5.72)

Furthermore, when K = 0 the integrability conditions imply the following useful identities:

ω =
1

f(αf 2 + z2

18
)
K̂ , 3G− +G+ = − 3

f(αf 2 + z2

18
)
df ∧ K̂

G+ =
3

2
d[

1

αf 2 + z2

18

K̂] , G− = − 1

2f 2
d[

f 2

αf 2 + z2

18

K̂] (5.73)

To proceed we define the following vector fields;

Si =
f

2(αf 2 + z2

18
)
∇if , (σ1)i =

f

(αf 2 + z2

18
)
(X1)ij∇jf

(σ2)i = (αf 2 +
z2

18
)−

1

2 (X2)ij∇jf , (σ3)i = (αf 2 +
z2

18
)−

1

2 (X3)ij∇jf (5.74)
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and we note that K̂ = z
6f

(αf 2 + z2

18
)σ1, so ω = z

6f2σ
1 and G− = − z

12f2 d(fσ
1). In addition, we

note that the following constitutes an orthonormal basis of 1-forms;

e1 =

√

f

2(αf 2 + z2

18
)
df , e2 =

√

(αf 2 + z2

18
)

2f
σ1 , e3 =

√

f

2
σ2 , e4 =

√

f

2
σ3 (5.75)

and so the metric on the base space is

ds2 =
f

2(αf 2 + z2

18
)
df 2 +

(αf 2 + z2

18
)

2f
(σ1)2 +

f

2
((σ2)2 + (σ3)2) (5.76)

where as a consequence of the integrability conditions the σi satisfy

dσ1 = σ2 ∧ σ3 , dσ2 = ασ3 ∧ σ1 , dσ3 = ασ1 ∧ σ2 . (5.77)

To continue, it is useful to introduce some local co-ordinates. In particular, we find from the

integrability conditions that [S, K̂] = 0 and so we can introduce local co-ordinates y and φ such

that

S =
∂

∂y
, K̂ =

∂

∂φ
(5.78)

and let the remaining two co-ordinates be θ, ψ. In particular, as S(f) = 1 and K̂(f) = 0, it

follows that f = y + Q(θ, ψ). Moreover, we note that iSσ
i = iK̂σ

2 = iK̂σ
3 = 0 and iK̂σ

1 = z
3

and therefore we find that LS((σ2)2 + (σ3)2) = LK̂((σ2)2 + (σ3)2) = 0. Hence we can write

((σ2)2 + (σ3)2) = H(θ, ψ)2(dθ2 + sin2 θdψ2)

σ1 =
z

3
dφ+ P(θ, ψ)dψ (5.79)

where H, P are constrained by the integrability conditions. In particular, requiring that f 2G−

be covariantly constant together with the vanishing of the Ricci tensor implies

∂P
∂θ

= ±H2 sin θ (5.80)

together with

� logH = 1 − αH2 (5.81)

where � denotes the Laplacian defined with respect to the 2-metric ds2
2 = dθ2 + sin θ2dψ2. It

is convenient to write the metric on the unit 2-sphere in terms of complex co-ordinates Z, Z̄

where Z = cot θ
2
eiψ, Z̄ = cot θ

2
e−iψ;

ds2
2 = dθ2 + sin θ2dψ2 =

4

(1 + ZZ̄)2
dZdZ̄ (5.82)
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then (5.81) can be written as (1 + ZZ̄)2 ∂2

∂Z∂Z̄
logH = 1 − αH2. On setting H = (1 + ZZ̄)G we

observe that
∂2

∂Z∂Z̄
log G = −αG2 . (5.83)

There are therefore three cases to consider. In the first, α = 0 and so G = eF+F̄ where F(Z)

is holomorphic in Z. Hence, by making a holomorphic co-ordinate transformation, we can set

G = 1 which corresponds to taking H = sin−2 θ
2
, P = ∓2 sin−2 θ

2
. The base metric is

ds2 =
9

z2
fdf 2 +

z2

36f
(
z

3
dφ∓ 2 sin−2 θ

2
dψ)2 +

f

2 sin4 θ
2

(dθ2 + sin2 θdψ2) (5.84)

and it is straightforward to show that this metric is Gibbons-Hawking with tri-holomorphic

Killing vector ∂
∂φ

, which clearly preserves σ1.

In the second case, α > 0 and so the general solution to the Liouville equation (5.83) is

G2 = α−1(1 + FF̄)−2 dF
dZ

dF̄
dZ̄

where F(Z) is holomorphic in Z. So by making a holomorphic

change of co-ordinates we can set H = 1√
α

which corresponds to P = ∓α−1cosθ. The metric on

the base is then

ds2 =
f

2
(αf 2 +

z2

18
)−1df 2 +

f

2α
(dθ2 + sin2 θdψ2) +

1

2f
(αf 2 +

z2

18
)(
z

3
dφ∓ α−1cosθdψ)2 (5.85)

which is Gibbons-Hawking with tri-holomorphic Killing vector ∂
∂ψ

which preserves σ1.

In the last case, α < 0, and so on setting β = −α, the general solution to the Liouville

equation (5.83) is G2 = β−1(F + F̄)−2 dF
dZ

dF̄
dZ̄

where F(Z) is holomorphic in Z. Hence, by making

a holomorphic co-ordinate transformation, we can take H = 1√
β sin θ cosψ

. Then the base metric

is given by

ds2 =
f

2
(−βf 2 +

z2

18
)−1df 2 +

f

2β sin2 θ cos2 ψ
(dθ2 + sin2 θdψ2) +

1

2f
(−βf 2 +

z2

18
)(
z

3
dφ+ Pdψ)2

(5.86)

where ∂P
∂θ

= ± 1
β sin θ cos2 ψ

. On making a change of co-ordinates dθ = sin θdχ together with a shift

in φ this metric can be rewritten as

ds2 =
f

2
(−βf 2+

z2

18
)−1df 2+

f

2β cos2 ψ
(dχ2+dψ2)+

1

2f
(−βf 2+

z2

18
)(
z

3
dφ∓β−1 tanψdχ)2 (5.87)

which is Gibbons-Hawking with tri-holomorphic Killing vector ∂
∂χ

which preserves σ1. Q.E.D.

5.3.2 Maximally Supersymmetric Gibbons-Hawking Solutions

We have shown that in all cases the base space corresponding to the maximally supersymmetric

timelike solutions is Gibbons-Hawking, and moreover, the tri-holomorphic Killing vector pre-

serves f and ω. Hence, these solutions fall into the classification of Gibbons-Hawking solutions
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given in Section 3.7. It remains to examine the constraints imposed on the harmonic functions

H , K, L and M by the integrability conditions.

To proceed, we note that (5.47) implies that

d(
K

H
) ∧ d( L

H
) = 0 (5.88)

We shall assume that K
H

is not constant, as if K
H

is constant then G+ = 0 and the base is flat;

we have already considered these solutions. Hence L
H

= F(K
H

) for some function F ; in fact as a

consequence of the harmonicity of L, H and K we have L = βH + γK for constants β, γ. In

addition, it is clear that as K is defined only up to a shift of a multiple of H , we may without

loss of generality set γ = 0, and so L = βH . To continue, we note that (5.48) implies that

d(
K

H
) ∧ d(M +

β

2
K) = 0 (5.89)

and hence M + β
2
K = H(K

H
) for some function H to be determined. However (5.48) also forces

H to be constant, and so without loss of generality we obtain M = −β
2
K. The remaining

components of (5.48) together with (5.49) imply the following constraints of on H and K:

2ρδij = ∇i∇j[HK(βH2 +K2)−2]

2χδij = ∇i∇j[(K
2 − βH2)(βH2 +K2)−2] , (5.90)

where ∇ denotes the covariant derivative with respect to the flat metric on R
3, and

ρ ≡ −(βH2 +K2)−4[2HK(βH2 −K2)(|∇K|2 − β|∇H|2) + (K4 − 6βH2K2 + β2H4)∇H.∇K]

χ ≡ (βH2 +K2)−4[(K4 − 6βH2K2 + β2H4)(|∇K|2 − β|∇H|2) + 8βHK(K2 − βH2)∇H.∇K]

(5.91)

Note that (5.90) imply that ρ and χ are constant, and it is straightforward to show that ρ = 0

iff K = 0. Given these constraints, all of the remaining integrability conditions then hold

automatically.

So, setting Y1 = ρr2 + λix
i + σ and Y2 = χr2 + µix

i + γ for λi, σ, µi, γ constants, (5.90)

imply

HK(βH2 +K2)−2 = Y1

(K2 − βH2)(βH2 +K2)−2 = Y2 (5.92)

Hence (5.92) fixes H and K according to

K = δH (5.93)
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where δ satisfies

δ2 − Y2

Y1
δ − β = 0 (5.94)

and H is given by

H2 =
δ

Y1
(β + δ2)−2 =

Y1

δ(4βY 2
1 + Y 2

2 )
. (5.95)

With these constraints the five-dimensional spacetime geometry is simplified. In particular,

f =
H

βH2 +K2

ω5 =
K

H2
(βH2 +K2)

∇× ω = 2β(K∇H −H∇K) . (5.96)

Using these identities, the five-dimensional metric can be written as

ds2 = −β[dx5 − β−1K(βH2 +K2)−1dt+ (χi − β−1K(βH2 +K2)−1ωi)dx
i]2

+ β−1(βH2 +K2)−1(dt+ ωidx
i)2 − (βH2 +K2)dx2 (5.97)

for β 6= 0 and

ds2 = H2K−4dt2 + 2K−1dt(dx5 + χidx
i) −K2dx2 (5.98)

for β = 0.

5.3.3 Classifying the Solutions

We shall neglect cases in which Y2 or Y1 vanish, or for which Y2 ∝ Y1 as this corresponds to

setting G+ = 0, which we have already classified. To proceed we shall consider the cases β = 0

and β 6= 0 separately; in the following (r, θ, φ) are standard spherical polar co-ordinates on R
3.

If β = 0 then from (5.92) it is clear that there are two possibilities. In the first,

K = m , H = nix
i (5.99)

for m, ni constants; m 6= 0 and ni not all vanishing. By changing co-ordinates according as

xi = m−1x̂i, t = m3t̂ and x5 = m−2x̂5 we can without loss of generality set m = 1; hence it is

clear that this solution is the maximally supersymmetric plane wave.

Alternatively, one has

K =
m

r
, H =

k

r
+
nix

i

r3
(5.100)

for m, k, ni constants, m 6= 0. The five dimensional metric can be written as

ds2 = m−4r4(
k

r
+
n cos θ

r2
)2dt2 + 2m−1rdt(dx5 + (k cos θ − n sin2 θ

r
)dφ)

− m2r−2(dr2 + r2(dθ2 + sin2 θdφ2)) . (5.101)
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It is then convenient to change co-ordinates as φ = φ′ − 1
m3 t

′, r = nr′, t = n−1t′. In these new

co-ordinates the metric is

ds2 = m−4(1+k2r′2)dt′2+2m−1r′dt′(dx5+k cos θdφ′)−m2r′−2dr′2−m2(dθ2+sin2 θdφ′2) . (5.102)

If k = 0 then this metric is AdS3×S2. If k 6= 0 then by a re-scaling of r′ and x5 we may without

loss of generality set k = 1, and the curvature invariants of this metric are unchanged from the

case when k = 0.

Next consider the cases when β 6= 0. Then H2 and K2 can be written as

H2 = − 1

2β
[

Y2

4βY 2
1 + Y 2

2

∓ 1
√

4βY 2
1 + Y 2

2

]

K2 =
1

2
[

Y2

4βY 2
1 + Y 2

2

± 1
√

4βY 2
1 + Y 2

2

] . (5.103)

It is useful to define P± =
√

Y2 ± 2
√
−βY1. Then

(P+ ± P−)2

P 2
+P

2
−

= 2[
Y2

4βY 2
1 + Y 2

2

± 1
√

4βY 2
1 + Y 2

2

] (5.104)

Hence, if β < 0 then P± are real, and it follows that

H =
1

2
√
−β [

1

P−
∓ 1

P+
]

K =
1

2
[

1

P−
± 1

P+

] , (5.105)

so 1
P±

must be harmonic. This then implies that there are two sub-cases. In the first

H =
1√
−β [m+

n

r
] , K = [m− n

r
] . (5.106)

If there exists a point at which H > 0 and f > 0 then we require βmn > 0. So m and n have

opposite sign, and the Taub-NUT base space has negative mass.

For this solution,

χidx
i =

n√
−β cos θdφ , ωidx

i = −4mn
√

−β cos θdφ (5.107)

and hence the five-dimensional metric is

ds2 = −β[dx5 +
1

4mnβ
(mr − n)dt+

m√
−β cos θdφ]2 − r

4mnβ
[dt− 4mn

√

−β cos θdφ]2

+
4mn

r
[dr2 + r2(dθ2 + sin2 θdφ2)] . (5.108)
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By changing co-ordinates as x5 = 1√
−β (t′ − nψ), t = 4mn

√
−βψ and r = − ρ2

16mn
, (5.108) can be

simplified as

ds2 = [dt′ +
1

4n
(dψ − cos θdφ)]2 − [dρ2 +

ρ2

4
(dθ2 + sin θ2dφ2 + (dψ − cos θdφ)2)] (5.109)

This is the Gödel solution.

In the second sub-case H and K have two poles given by R± =
√
r2 ± 2λr cos θ + λ2

H =
1√
−β [

m

R+

+
n

R−
] , K =

m

R+

− n

R−
(5.110)

for λ > 0 constant. Again, if there exists a point at which H > 0 and f > 0 then βmn > 0,

so m and n have opposite sign. For this solution, it is most convenient to make the following

changes of co-ordinate:

x1 = λ
√
R2 − 1 sin θ′ cosφ′ , x2 = λ

√
R2 − 1 sin θ′ sin φ′ , x3 = λR cos θ′

x5 =
1√
−β t

′ , t =

√
−β
λ

ψ (5.111)

and we obtain

H =
1

λ
√
−β(R2 − cos2 θ′)

((m+ n)R + (n−m) cos θ′)

K =
1

λ(R2 − cos2 θ′)
((m− n)R − (m+ n) cos θ′)

χidx
i =

1√
−β(R2 − cos2 θ′)

((m+ n) cos θ′R2 + (m− n) sin2 θ′R− (m+ n) cos θ′)dφ′

ωidx
i = −4mn

√
−β

λ

(R2 − 1)

(R2 − cos2 θ′)
dφ′ (5.112)

and defining χ by χ = φ′ − ψ
4mn

we obtain the metric

ds2 = (dt′ +
1

4
(m−1 + n−1) cos θ′dψ + (m− n)Rdχ)2 + 4mn(

dR2

R2 − 1
+ (dθ′)2)

+
1

4mn
sin2 θ′(dψ)2 + 4mn(R2 − 1)dχ2 . (5.113)

Next consider the case when β > 0. Then P± are complex and

H =
1

2
√
−β [

1

P−
− 1

P+
] =

1√
β

Im(
1

P−
)

K =
1

2
[

1

P−
+

1

P+
] = Re(

1

P−
) . (5.114)

Write P− =
√
τr2 + Ωixi + ν where τ , Ωi and ν are generically complex constants. Requiring

that 1
P−

be harmonic imposes the constraint τν − 1
4
(Ω2

1 + Ω2
2 + Ω2

3) = 0. There are again two

sub-cases.
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In the first, τ 6= 0 and by making appropriate real shifts and rotations we can set

P− = ζ
√
r2 + 2iλr cos θ − λ2 (5.115)

for ζ ∈ C/{0} constant, and λ > 0 a real constant. Note that if iζ ∈ R then the harmonic

functionH corresponds to a singular Eguchi-Hanson base space. For this solution it is convenient

to change coordinates as

x1 = λ
√
R2 + 1 sin θ′ cosφ′ , x2 = λ

√
R2 + 1 sin θ′ sinφ′ , x3 = λR cos θ′

x5 =
1√
β
ψ , t =

√
β

λ
α (5.116)

so that, on setting ζ = a + ib for a, b ∈ R, P− = ζλ(R+ i cos θ′) and

H = − 1√
β|ζ |2λ(R2 + cos2 θ′)

(bR + a cos θ′) , K =
1

|ζ |2λ(R2 + cos2 θ′)
(aR − b cos θ′)

χidx
i =

1√
β|ζ |2(R2 + cos2 θ′)

(−b cos θ′R2 + a sin2 θ′R − b cos θ′)dφ′

ωidx
i =

√
β

λ|ζ |2
(R2 + 1)

(R2 + cos2 θ′)
dφ′ (5.117)

and on defining t′ by t′ = φ′ + |ζ |2α the five dimensional geometry is given by

ds2 = −(dψ + b cos θ′dα− aR

|ζ |2dt
′)2 +

1

|ζ |2 (R2 + 1)(dt′)2

− 1

|ζ |2 (
dR2

R2 + 1
+ (dθ′)2) − |ζ |2 sin2 θ′(dα)2 . (5.118)

In the second sub-case, τ = 0 and without loss of generality we can set

P− = ζ
√
r sin θe

iφ

2 (5.119)

for ζ ∈ C/{0} constant. By making a rotation, we can take ζ ∈ R/{0}. The metric for this case

is given by taking

H = − 1

ζ
√
β

sin φ
2√

r sin θ
, K =

1

ζ
√
r sin θ

cos
φ

2
, ωidx

i = −ζ−2
√

βr−1 cot θdr ,

χidx
i = − 1

ζ
√
β
r

1

2 (sin θ)−
3

2 ( cos
φ

2
dθ + sin θ cos θ sin

φ

2
dφ) . (5.120)

In fact this solution is once more the maximally supersymmetric plane wave. To see this first

note that by examining HK(βH2 + K2)−2 it is clear that this solution has ρ = 0 and hence

corresponds to one of the degenerate cases (5.84), (5.85) or (5.87) for which K = 0 as discussed

previously. Moreover, the Ricci scalar of the five-dimensional geometry vanishes, and so the
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solution must correspond to (5.84), as this is the only case for which the Ricci scalar vanishes.

Hence the five-dimensional geometry is given by

ds2 = f 2(dt+
z

6f 2
(
z

3
dφ+ 2 sin−2 θ

2
dψ))2

− f−1[
9

z2
fdf 2 +

z2

36f
(
z

3
dφ+ 2 sin−2 θ

2
dψ)2 +

f

2
sin−4 θ

2
(dθ2 + sin2 θdψ2)] . (5.121)

This metric is however equivalent to that given in (5.35) under the co-ordinate transformation

f = z
3
x1, x2 =

√
2 cot θ

2
cosψ , x3 =

√
2 cot θ

2
sinψ, t = 3

z
t̂ and x5 = z

6
φ−ψ with the identification

ω = (−3
2
, 0, 0) with respect to Cartesian co-ordinates x1, x2, x3. Hence the solution is the

maximally supersymmetric plane wave.

5.4 Summary

In this section we have determined the most general solutions preserving maximal supersym-

metry. We analysed the solutions that exist in the null class and the timelike class separately.

In the null class we found flat space, the plane wave and AdS3 × S2 and we subsequently saw

that each of these also arise in the timelike class. The base space of the timelike class is always

of Gibbons-Hawking (GH) type. Ignoring flat space, let us summarise our findings:

• Plane wave: this is in the null class and also in the time-like class, where it arises with

a smeared Taub-NUT base space (see (5.99)). It also arose with the GH base space given in

(5.120); it would be interesting to check whether or not this base space is distinct from smeared

Taub-NUT.

• AdS3 × S2: this is in the null class and also arises in the timelike class with a GH base

with a dipole source (5.38).

• AdS2 × S3: this has two timelike forms with base space given by flat space or singular

negative Eguchi Hanson (see discussion following (5.57)).

• Generalised Gödel: this has two timelike forms with base space given by flat space or

negative mass Taub-NUT (see the discussion following (5.64)).

• Near Horizon BMPV: this has a timelike form with flat base space.

In addition the timelike analysis revealed three more geometries with GH base spaces given in

(5.102) with k 6= 0, (5.113) and (5.118). It seems plausible to us that these are all related to the

BMPV solution. Strictly speaking we analysed necessary conditions for maximal supersymmetry

and to confirm that these three geometries are indeed maximally supersymmetric solutions, one

either needs to find a coordinate transformation confirming that they are indeed the BMPV

solution, or perhaps another maximally supersymmetric solution listed above, all of which are

known to be explicitly supersymmetric, or alternatively exhibit the Killing spinors directly.
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6 G-Structures

We have obtained simple forms for all bosonic solutions of minimal D = 5 supergravity that

preserve some supersymmetry. Following [12, 13], our method can be related to the notion of

G-structures. Recall that a G-structure is a reduction of the principal frame bundle F with

structure group GL(n,R), to a subbundle P with structure group G (see eg [47]). Typically such

a reduction is equivalent to the existence of certain globally defined tensors which are invariant

under the group G and it is often convenient to refer to this set of tensors when talking about

a G-structure. In the present setting we assume that the D = 5 manifold has a Lorentzian

metric g and a spin structure and hence generically has a Spin(1, 4) structure. The existence

of a globally defined Killing spinor ǫ, with isotropy group G ⊂ Spin(1, 4), gives rise to a G-

structure. In particular, various G-invariant tensors can be formed from bilinears in the Killing

spinor and these are equivalent to a G-structure.

There are two maximal subgroups of Spin(1, 4) that leave a spinor invariant [46]. They are

characterised by whether the corresponding vector built from the spinor is time-like or null. In

the former case the subgroup is SU(2) while in the latter case it is R
3. In other words for the

supersymmetric solutions admitting a Killing spinor giving rise to a time-like Killing vector the

D=5 geometry admits an SU(2) structure while if it gives rise to a null killing vector it gives rise

to an R
3 structure. In each case the G-structures are characterised by the algebraic properties

satisfied by the metric g, the vector V and the two forms X i, which we derived in section 2.

Actually, we should be a little more precise. In the null case, the vector is null everywhere

and hence the R
3 structure is indeed globally defined. However, in the timelike case the vector

can become null, for example at the horizon of a black hole. Our analysis in section 2 was

based on a neighbourhood where K was timelike. In this topologically trivial neighbourhood

the Killing spinor defines an SU(2) structure. This fact in itself is rather trivial since locally

the frame bundle can always be trivialised. However, the Killing spinor defines a privileged

SU(2) structure satisfying certain differential conditions which are not trivial and in fact allow

one to deduce the local form of the solution. The full solution can then be obtained by analytic

continuation. Note that outside of regions where K becomes null it defines a global SU(2)

structure.

Following [46], these structures can be seen rather explicitly by exploiting the isomorphism

Spin(1, 4) ≃ Sp(1, 1). We realize Spin(4, 1) as 2 × 2 quaternionic matrices A that satisfy

A†QA = Q, where

Q =
(

1 0
0 −1

)

.

The spinors are identified with vectors in H
2 and the action on spinors is just given by matrix
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multiplication, A · s = As. The two types of spinors together with the stabilizer groups are:

s =
( 1

1

)

with stabilizer G =
{( 1 + q −q

q 1 − q

)
∣

∣

∣
q ∈ ImH

}

≃ R
3 (6.1)

and,

s =
( r

0

)

with stabilizer G =
{( 1 0

0 q

)
∣

∣

∣
q ∈ Sp(1)

}

≃ SU(2) . (6.2)

We can identify R
4,1 with matrices of the form m =

( t q
q̄ t

)

, with q = x1 + ix2 +jx3 +kx4 ∈ H.

The norm of a vector is then given by det(m) = t2 − qq̄. Given a spinor s =
( p
q

)

we can

construct a vector V (s) by:

V (s) =
( pp̄+qq̄

2
pq̄

qp̄ pp̄+qq̄
2

)

. (6.3)

Using this explicit construction we see that the spinors with stabilizer SU(2) give timelike

vectors, while the ones with R
3 give null vectors.

Lets consider first the timelike spinors which define an SU(2)-structure. Let g0 = dt2 −
∑4

i=1 dx
2
i be the standard Minkowski metric on R

4,1 and let,

V0 = ∂t

X
(1)
0 = dx12 − dx34

X
(2)
0 = dx13 + dx24

X
(3)
0 = dx14 − dx23 . (6.4)

The subgroup of Spin(1, 4) that leaves (g0, V0, X
(i)
0 ) invariant is SU(2)L ⊂ SU(2)L× SU(2)R ≃

SO(4) ⊂ Spin(1, 4). The three forms X
(i)
0 define an almost hyper-Kähler structure on the

space transverse to the orbits of the vector V0. A five dimensional manifold M is said to

admit an SU(2)-structure if there exists a non-degenerate metric g, a vector V and three one

forms X(i) such that at each point p there is a map α : TpM → R
4,1 under which (g, V,X(i))

are identified with (g0, V0, X
(i)
0 ). Using these tensors one can consistently reduce the structure

group to SU(2)L.

Let us now discuss the null case. We saw above that we have an R
3 structure in this case.

Consider the metric g0 = 2dx+dx− − dxidxi on R
4,1 and let:

V0 = ∂+

X
(i)
0 = dx− ∧ dxi . (6.5)

A five dimensional manifold M is said to admit an R
3 structure if there exist (g, V,X(i)) such

that at each point p there exists a map α : TpM → R
4,1 under which (g, V,X(i)) are identified
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with (g0, V0, X
(i)
0 ). The action of ai ∈ R

3 on T ∗
R

1,4 is given by:

dx−
′

= dx−

dx+′

= dx+ + r2dx− +
√

2aidxi

dxi
′

= dxi +
√

2aidx− (6.6)

where r2 = aiai. Given this explicit action it is clear that (g0, V0, X
i
0) are left invariant under

the action of R
3 and thus form an R

3 structure.

The G-structures of interest here can be classified by taking the covariant derivative of the

tensors defining the G-structure with respect to Levi-Civita connection and then decomposing

into G-modules. Such a decomposition defines the intrinsic torsion of the G-structure. For

example, if all of the G-modules vanish, which is equivalent to the tensors defining the G-

structure being covariantly constant, then the Levi-Civita connection has holonomy contained

in G. This is what occurs in the D=5 supersymmetric solutions for vanishing field strength:

R
3 and SU(2) holonomy for the null and timelike cases, respectively. When the field strength

is non-vanishing the R
3 and SU(2) structures are more general and their type is specified by

the differential conditions imposed upon the tensors that we derived using the Killing spinor

equation in section 2. For example, the vector V in both cases is not arbitrary but must

be a Killing vector and, for the time-like case, the almost hyper-Kähler structure is actually

integrable.

Since we were able to fully characterize the supersymmetric configurations by the condi-

tions imposed on the tensors g, V,X i we conclude that the types of G-structure that arise in

each case provide both necessary and sufficient conditions for the existence of supersymmetric

configurations of D = 5 minimal supergravity. This was also true for the class of solutions of

D = 10 supergravity discussed in [12, 13].

7 The Gödel solution in D = 11 supergravity

All of the solutions of N = 1, D = 5 supergravity can be uplifted on a flat six space to

obtain solutions of D = 11 supergravity. Perhaps the most surprising solution that we found is

the maximally supersymmetric Gödel solution. Uplifting it to D = 11 gives another surprise:

naively one would have expected it to still preserve 8 supersymmetries but in fact it preserves

20 supersymmetries.

The solution in D = 11 can be written

ds2 = −(dt+ ω)2 + ds2(E4) + ds2(E6)

F = −γJ ∧K (7.1)
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where J,K are Kähler forms on E
4, E

6, respectively given by

J = dx1 ∧ dx2 + dx3 ∧ dx4

K = dx5 ∧ dx6 + dx7 ∧ dx8 + dx9 ∧ dx♯ (7.2)

and

ω =
γ

2
(−x2dx1 + x1dx2 − x4dx3 + x3dx4) (7.3)

and hence

dω ≡ γJ . (7.4)

It is straightforward to show that this solves the equations of motion given by

Rµν −
1

12
(Fµσ1σ2σ3

F ν
σ1σ2σ3 − 1

12
gρµF

2) = 0

d ∗ F +
1

2
F ∧ F = 0 (7.5)

where ǫ0123456789♯ = 1. To determine the amount of supersymmetry we first note that the

conventions we are using have Γ0123456789♯ = 1 and hence the Killing spinor equation is given by

∇µǫ+
1

288
[Γµ

ν1ν2ν3ν4 − 8δν1µ Γν2ν3ν4]Fν1ν2ν3ν4ǫ = 0 . (7.6)

Next introduce the obvious orthonormal frame: (dt+ω), dxi, dxa with i = 1, 2, 3, 4, a = 5, . . . , ♯.

It is useful to introduce spinors with three upper indices, ǫ···, each taking the value ± which

specify the chirality with respect to Γ5678,Γ789♯ and Γ056:

Γ5678ǫ
±·· = ±ǫ±··

Γ789♯ǫ
·±· = ±ǫ·±·

Γ056ǫ
··± = ±ǫ··± . (7.7)

We then find that the following constant chiral spinors are killing spinors:

ǫ+++, ǫ+−−, ǫ−++ . (7.8)

In addition

ǫ = θ−−+ + (1 − γJijx
iΓj56)θ−−− (7.9)

for constant θ−−+, θ−−− are also Killing spinors. There are no other Killing spinors. Hence the

solution admits precisely 20 Killing spinors corresponding to 5/8 supersymmetry.

The solution has topology R
11 and has closed time-like curves. Note that one can dimension-

ally reduce this solution on the x♯ direction to obtain a type IIA solution and then T-dualise to

obtain a type IIB solution each of which preserves 20 supersymmetries. These solutions would
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involve Ramond-Ramond fields but their simplicity and high degree of symmetry suggests that

it might be interesting to study string propagation in these backgrounds.

It is interesting to note that Gödel-like solutions of string theory have been obtained before.

A class of exact string backgrounds with vanishing Ramond-Ramond fields was obtained in

[48]. One of these solutions (equation 4.11) was interpreted as a rotating universe. String

quantization in this background was studied in [49, 50]. Surprisingly, it was not noticed in any

of these papers that the solution contains closed timelike curves or that it describes a Gödel-like

solution.

8 Discussion

We have shown that any supersymmetric solution of minimal N = 1, D = 5 supergravity can

be written in one of two simple forms. Solutions with Killing spinors giving rise to timelike

vectors have SU(2) structures while those giving rise to null Killing vectors have R
3-structures.

We have also determined the most general solutions preserving maximal supersymmetry. We

have presented many new solutions but reasons of space have prevented us from analyzing most

of them in any depth. It is obviously desirable to study our solutions more carefully to see if

they contain any further surprises.

Our work generalizes the analysis of Tod [9] on the minimal N = 2, D = 4 theory, which can

be obtained via dimensional reduction and truncation. The obvious next step is to undertake a

similar analysis of the minimal N = 1, D = 6 supergravity theory, which also has 8 supercharges.

In D = 4, all solutions could be obtained in explicit form but in D = 5 this is only possible in

the null case, with the timelike case involving an arbitrary hyper-Kähler manifold. In D = 6

there is only a null case [46] and this seems to lead to the supersymmetric solutions exhibiting

SU(2) ⋉ R
4 structures. It will be interesting to see if integrable hyper-Kähler structures appear

or whether something more general happens.

It would also be interesting to know the extent to which the method can be extended to

non-minimal theories. Tod examined the minimal N = 4, D = 4 theory [10] (which is non-

minimal in N = 2 language) but was unable to find all solutions, or provide (as we have) a

simple algorithm for constructing solutions. However, since minimal N = 1, D = 5 reduces to

minimal N = 2, D = 4 coupled to a vector multiplet, our results show that the latter theory

must be tractable. Indeed, it is natural to conjecture that the dimensional reduction of our

solutions with Gibbons-Hawking base space gives the entire timelike class of this D = 4 theory.

The tractability of this theory suggests examining the general case of minimal N = 2, D = 4

coupled to arbitrarily many vector multiplets.

Gauged supergravities play an important role in the AdS/CFT correspondence, so a full

54



understanding of the supersymmetric solutions of these theories is clearly desirable. As far as

we know, no-one has examined this problem even for the simplest case of minimal N = 2,

D = 4 gauged supergravity. We expect that this theory and the minimal N = 1, D = 5 gauged

supergravity can both be analyzed using the techniques presented in this paper.

Our interest in understanding the general supersymmetric solutions of a higher dimensional

supergravity theory was motivated in part by a desire to know whether there exist exotic

supersymmetric black holes in five dimensions. Although we have not found any such solutions,

our general solution is sufficiently complicated that it is not obvious that such solutions do not

exist. It is clearly desirable to have a uniqueness theorem for supersymmetric black holes in

order to justify the assumptions made in the black hole entropy calculations.9 For the minimal

N = 1, D = 5 theory, proving black hole uniqueness would involve showing that the only

black hole solution belonging to our general solution is the BMPV solution. A first step might

be to use asymptotic flatness to constrain the base space to be asymptotically Euclidean and

therefore flat, if complete [51]. However, as we have seen, there is no reason to suppose that

the base space has to be complete and once one permits incomplete metrics, there are many

asymptotically Euclidean hyper-Kähler manifolds.

It is interesting that the maximally supersymmetric Gödel type solution of D = 5 supergrav-

ity lifts to a solution of D = 11 supergravity that preserves 20 supersymmetries. The simplicity

of the solution suggests that there may well be other similar solutions preserving exotic frac-

tions of supersymmetry. Of course the solution does have closed time like curves and thus its

interpretation is not clear. More generally, one of the conclusions of the work presented here

is that closed time-like curves are a commonplace amongst supersymmetric solutions. Perhaps

there is a good reason why such solutions are not relevant in M-theory. On the other hand

maybe they have a novel dual description waiting to be discovered.
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A Conventions

We shall essentially use the conventions of [11], but it should be noted that unlike that reference

our spinors are commuting spinors, throughout. The metric has signature (+,−,−,−,−).

Tangent space indices will be denoted α, β . . . and curved indices by µ, ν, . . .. The gamma

matrices obey

{γα, γβ} = 2ηαβ (A.1)

and satisfy

(γα)
† = γα = γ0γαγ0. (A.2)

The antisymmetrization of five gamma matrices is given by

γαβγδǫ = ǫαβγδǫ, (A.3)

where ǫ01234 = ǫ01234 = +1.

We use symplectic Majorana spinors ǫaα, a = 1, 2, which are defined as follows. First let

ǫa = ǫabǫ
b, (A.4)

where ǫab is antisymmetric with ǫ12 = 1. It is convenient to introduce ǫab such that ǫ12 = 1.

Now define

ǭa = ǫa
†γ0. (A.5)

The symplectic Majorana condition is

ǭa = ǫatC, (A.6)

where the charge conjugation matrix is real and antisymmetric and satisfies

CγtαC
−1 = γα (A.7)

Note that

ψ̄aγα1...αmχ
b = −χ̄bγαm...α1

ψa, (A.8)

Given a spinor ǫa, one can construct bosonic quantities

Xab
α1...αp ≡ ǭaγα1...αpǫ

b. (A.9)

These quantities obey

Xab
α1...αp = −Xba

αp...α1
(A.10)

as a consequence of equation (A.8). Furthermore,
(

Xab
α1...αp

)∗
= ǫacǫbdX

cd
α1...αp

. (A.11)
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The Fierz identity is given by:

ǭ1ǫ2ǭ3ǫ4 =
1

4

(

ǭ1ǫ4ǭ3ǫ2 + ǭ1γαǫ4ǭ3γ
αǫ2 −

1

2
ǭ1γαβǫ4ǭ3γ

αβǫ2

)

. (A.12)

Most of the algebraic identities we recorded in section 2 were obtained by using the Fierz identity

with ǭ1 = ǭa, ǫ2 = ǫd, ǭ3 = ǭc and then setting in turn ǫ4 = ǫb, γαǫ
b and γαβǫ

b. The remaining

identites were obtained using ǭ1 = ǭa, ǫ2 = γαǫ
d, ǭ3 = ǭc and ǫ4 = γβǫ

b.

In various places we parametrise the 3-sphere SU(2) by Euler angles (θ, φ, ψ) with ranges

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ < 4π. The detailed parametrisation we use is described in

more detail in Appendix A of [53]. The left-invariant or “right” one-forms on SU(2) are given

by

σR1 = − sinψdθ + cosψ sin θdφ

σR2 = cosψdθ + sinψ sin θdφ

σR3 = dψ + cos θdφ (A.13)

The right-invariant or “left” one-forms are given by

σL1 = sin φdθ − cosφ sin θdψ

σL2 = cosφdθ + sin φ sin θdψ

σL3 = dφ+ cos θdψ. (A.14)

The superscript R (L) refers to the fact that the left (right) invariant one forms are dual to left

(right) invariant vector fields ξRi (ξLi ) which generate right (left) group actions. We will also

refer to ξRi as a right vector field and to ξLi as a left vector field. The right vector fields are

given by

ξR1 = − cot θ cosψ∂ψ − sinψ∂θ +
cosψ

sin θ
∂φ

ξR2 = − cot θ sinψ∂ψ + cosψ∂θ +
sinψ

sin θ
∂φ

ξR3 = ∂ψ (A.15)

and the left vector fields by

ξL1 = −cos φ

sin θ
∂ψ + sinφ∂θ + cot θ cosφ∂φ

ξL2 =
sinφ

sin θ
∂ψ + cos φ∂θ − cot θ sinφ∂φ

ξL3 = ∂φ. (A.16)
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B Integrability condition

We record here an integrability condition obtained from the Killing spinor equation. Taking the

second covariant derivative of the Killing spinor equation and anti-symmetrising we obtain:

∇[ρ∇µ]ǫ = − 1

4
√

3
(γ[µ

ν1ν2 + 4γν1δν2[µ )∇ρ]Fν1ν2ǫ

+
1

48
(γ[µ

ν1ν2 + 4γν1δν2[µ )(γρ]
σ1σ2 + 4γσ1δσ2

ρ] )Fν1ν2Fσ1σ2
ǫ (B.1)

and hence

1

8
Rρµν1ν2γ

ν1ν2ǫ = − 1

4
√

3
(γ[µ

ν1ν2 + 4γν1δν2[µ )∇ρ]Fν1ν2ǫ

+
1

48
(−2F 2γµρ − 4F 2

ρνγ
ν
µ + 4F 2

µνγ
ν
ρ + 12Fµν1Fρν2γ

ν1ν2

+ 4Fν1ν2Fν3ργµ
ν1ν2ν3 − 4Fν1ν2Fν3µγρ

ν1ν2ν3)ǫ (B.2)

where F 2 ≡ FµνF
µν and F 2

µν ≡ FµσFν
σ. Now contracting both sides of this equation with γµ

and using the Bianchi identity Rµ[νρσ] = 0 we deduce the integrability condition:

0 = (Rρµ + 2(F 2
ρµ −

1

6
gρµF

2))γµǫ

− 1√
3

[

∗(d ∗ F +
2√
3
F ∧ F )

]ν

(2gνρ − γρν)ǫ

− 1

6
√

3
dFν1ν2ν3(γρ

ν1ν2ν3 − 6δν1ρ γ
ν2ν3)ǫ (B.3)

If we assume that a configuration admits Killing spinors and satisfies the equation of motion

and the Bianchi identity for F we conclude that

Eµνγ
νǫ = 0 (B.4)

where Eµν = 0 is equivalent to the Einstein equations. If we hit this with ǭ we deduce that

EµνV
ν = 0 (B.5)

On the other hand if we hit it with Eµσγ
σ we conclude that

EµνEµ
ν = 0 no sum on µ (B.6)
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