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Collective excitation profiles and the dynamics of photonic condensates
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Photonic condensates are complex systems exhibiting phase transitions due to the interaction with their
molecular environment. Given the macroscopic number of molecules that form a reservoir of excitations,
numerical simulations are expensive, even for systems with few cavity modes. We present a systematic
construction of molecular excitation profiles with a clear hierarchical ordering, such that only modes in the
lowest order in the hierarchy directly affect the cavity photon dynamics. In addition to a substantial gain in
computational efficiency for simulations of photon dynamics, the explicit spatial shape of the mode profiles
offers a clear physical insight into the competition among the cavity modes for access to molecular excitations.
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I. INTRODUCTION

Photonic condensates [1–3] show intricate quantum many-
body dynamics caused by the interplay of drive and dissi-
pation. They can be understood as analogs of atomic Bose-
Einstein condensates [4,5], but they also show features, such
as particle number fluctuations in time [6], that cannot be
easily seen in their atomic counterpart.

Photonic condensates have many similarities with plas-
monic lattice systems [7], and they can also be described by
rate equations [8] derived from a fully quantized description
of bosons and dye molecules [9]. This model predicts con-
densation and mode competition at varying pump powers [10]
similar to behavior in multimode lasers [11].

Due to pump and dissipation, these systems are typically
out of equilibrium. This is not only reflected in steady-
state properties, but many interesting effects are likely to be
transient, and observable only in experiments probing the
temporal evolution. Iconic examples in atomic Bose gases are
memory effects [12] or the absence of thermalization [13].
Recent experimental progress in the creation and control of
photonic condensates opens the prospect of new experiments
on their dynamics.

Corresponding theory can be based on existing mod-
els [8,14,15] that have proven to be accurate descriptions of
experiments [16,17]. In practice, however, such simulations
will be limited by the effort required to describe the macro-
scopically large ensemble of dye molecules that is required
for the photonic gas to be pumped and to thermalize.

Such limitations are the standard bottleneck whenever a
small system interacts with a large environment. As soon
as assumptions that justify simplifying approximations (e.g.,
Markov) are not valid, one needs a well defined numerical
framework in order to reduce the effort required for the
description of the large environment.

Many approaches have managed to identify those envi-
ronmental degrees of freedom that directly affect the system
dynamics. The rest of the environment can then be treated in
an effective description [18], or with an identification of those

environmental modes that directly affect the modes identified
so far. Such a construction can be based on a physically
motivated notion of collective environmental modes [19] or
also on more abstract notions in the framework of hierarchical
equations of motion [20,21]. Whereas most prior approaches
begin such a construction with a microscopic system, we
describe an identification of the most relevant environmental
modes, based on the nonlinear equations of motion [8,22]
describing excitation of cavity modes and molecular excita-
tion. Our discussion is motivated by and focused on photonic
condensates, but readily generalizes to different types of sys-
tems, in which a small number of system degrees of freedom
interact with a large number of environmental degrees of
freedom. Similar models are known to describe, for example,
traffic jams, social networks, or ecosystems [23].

II. MODEL

Typical experimental setups for photon condensation [1–3]
include a multimode optical microcavity with curved mirrors
which confine the light and induce an effective mass for the
photons. Since photons can easily be lost to transmission
through the mirrors or scattering out of the cavity, the creation
of photon condensates requires continuous pumping in order
to compensate for these losses. The cavity is thus filled with a
large ensemble of dye molecules that can absorb light from an
external pump, and that enables the exchange of excitations
between the different modes of the cavity via absorption and
reemission. Due to the macroscopic number of dye molecules,
the molecular excitation can be treated as continuous in space.
For the techniques developed in this paper, it is however more
convenient to work in a discretized picture. We will therefore
define groups of molecules in small spatial regions, such that
the coupling between all molecules in a group and any cavity
mode is approximately constant within the group. In principle,
one can consider the limit of a continuum of groups, but for
the sake of the efficient numerical framework that we are
aiming for, it is more desirable to work with finite sums rather
than integrals over continuous variables.
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The starting point for our analysis is the set of rate equa-
tions [8] for the set {ni} of occupations of the cavity modes
and the excitation fractions for the molecules or groups of
molecules. Those equations can be put in a compact form if
the molecular excitation fractions are understood as elements
of a vector f . The equation of motion for ni then reads

ṅi = (ni(Ei + Ai ) + Ei )[G f ]i − γini, (1)

where Ai and Ei are the rate of absorption and emission for
the cavity mode i; G is a matrix with the elements Gi j = gi jMj

comprised of the number Mj of molecules in the group around
position j and the coupling constant gi j between cavity mode
i and a single molecule in this group. The element i of the
vector G f is denoted by [G f ]i, and the overall decay constant
γi = Ai

∑
j Gi j + κ also includes the cavity decay rate κ .

The rate equation for the molecular excitation reads

ḟ =
Nc∑

i=1

niBi f − B0 f + v, (2)

in terms of the diagonal matrices Bi (defined for 1 � i � Nc)
with elements

[Bi]pq = −(Ei + Ai )gipδpq, (3)

the diagonal matrix

B0 =
Nc∑

i=1

Ei

Ei + Ai
Bi + (�↓ + P)1, (4)

the vector v with elements

[v] j = P +
Nc∑

i=1

gi jAi ni, (5)

the pump rate P, and the decay constant �↓ for nonradiative
decay or emission into free space.

Equations (1) and (2) together provide a complete descrip-
tion of the system dynamics, but typically only the dynamics
of the cavity populations ni is of interest. The number Nc of
cavity modes with non-negligible population is typically or-
ders of magnitude smaller than the number of dye molecules.
Even coarse-grained pictures in which many dye molecules
are grouped together require us to take into account a number
Nm of such groups that is orders of magnitude larger than Nc.

Our goal is therefore to define collective degrees of free-
dom of molecular excitation, and to identify the excitation
profiles that are most relevant to the cavity dynamics, so
that the dimension of the problem can be reduced substan-
tially without significant loss in numerical accuracy. More
specifically, we will pursue a hierarchical construction as
schematically sketched in Fig. 1, such that only the lowest
level in the hierarchy directly affects the cavity dynamics, and
all higher levels affect the cavity dynamics only by affecting
the next lowest level.

III. HIERARCHICAL CONSTRUCTION

Since the molecular excitation is described by an Nm-
dimensional vector, the following construction can be formu-
lated in terms of mutually orthogonal subspaces Hj of this
Nm-dimensional vector space and projectors P j onto those
subspaces.

FIG. 1. Schematic representation of the interaction between cav-
ity modes and their molecular environment. With the environment
described in terms of the position of individual molecules or groups
thereof (as depicted on the left), every cavity mode interacts with
every molecule as indicated by purple lines. This requires taking into
account the full molecular environment in a numerical simulation.
With the construction of suitable excitation profiles (as depicted
on the right), the interaction between the cavity modes and the
environment is limited to a few selected modes. Those modes are
considered to be of “level 0” and modes of higher level affect the
cavity dynamics only indirectly via their influence on the modes of
the next lowest level. Quite importantly, the interactions between
cavity and collective modes are not necessarily mutual: even though
the profiles of nonlowest level do not directly affect the cavity
dynamics, the dynamics of all excitation profiles are affected by the
mode populations ni as expressed in Eq. (2), indicated by green lines.
Similarly, red lines indicate the influence of mode populations on
level 0 modes without reciprocity.

The dynamics of mode population, described by Eq. (1),
shall depend only on vectors in H0. The component f j of
f in subspace Hj (i.e., f j = P j f ), evolving according to
Eq. (2), shall depend only on vectors in the subspaces ranging
from H0 to Hj+1. Such a construction will have the desired
property that excitation profiles of high hierarchical level j
affect the cavity dynamics indirectly, so that a truncation after
a reasonably low level promises an accurate, but efficient,
numerical description.

The matrix G in Eq. (1) is an Nc × Nm matrix, and thus has
at least Nm − Nc null vectors. Since only vectors orthogonal
to this null space affect the cavity dynamics, one can directly
see that H0 is given by the orthogonal complement to this null
space. Equivalently, H0 is spanned by the Nc Nm-dimensional
vectors that G is comprised of. With the additional constraint,
[Gei] j = δi j for a set of mode vectors ei in H0, one also assures
that the dynamics of ni depends on the molecular excitation
only via the single profile ei.

Having identified H0, or any subsequent subspace Hj , it is
essential to ensure that the dynamics within this subspace de-
pends on as small a number of additional degrees of freedom
as possible. The equation of motion for f j reads

ḟ j =
Nc∑

i=1

niP jBi f − b f j − P jv, (6)

which can be understood as a linear differential equation for f j

with a matrix B j = ∑
i niP jBi. Analogous to the construction

053828-2



COLLECTIVE EXCITATION PROFILES AND THE … PHYSICAL REVIEW A 100, 053828 (2019)

of H0, it seems logical to identify the null space of B j ,
since vectors from this null space have no impact on the
dynamics within Hj . Since B j , however, depends on the cavity
occupations ni, which in turn are dynamical variables, we can
only exclude those parts of the full vector space that belong
to the null space of B j for all times. Without prior knowledge
of the dynamics, this can only be assured if one identifies the
joint null space of all matrices P jBi. The subspace Hj+1 can
then be defined as the orthogonal complement to the union of
this joint null space and all the subspaces Hk with k � j.

With this construction, one satisfies the relation P jBiPk =
0 for all i and k > j + 1, or, equivalently,

x jBixk = 0 for i, k > j + 1,

all vectors x j in Hj and

all vectors xk in Hk . (7)

If this is given, then Eq. (2) results in the desired coupling
between the excitation profiles of different hierarchical levels.
By construction, the dimension of H0 is no larger than Nc,
and also the dimensions of all higher-level subspaces Hj are
upper bounded by N j+1

c , but, as we will see later on, the simple
structure of the matrices Bj in Eq. (2) results in a much more
favorable scaling in Nc.

The definition of the hierarchy given so far includes an
explicit description for its construction. We can, however,
arrive at a more efficient construction, exploiting specific
properties of the coupling between the different levels of the
hierarchy. Since all the matrices Bi are Hermitian, we have

x jBixk = (xkBix j )
∗. (8)

Since the right-hand side vanishes for j > k + 1, also the
left-hand side vanishes, or, equivalently we can conclude that
x jBixk = 0 for j < k − 1 and all i.

This observation results in a substantial simplification of
the dynamics of the excitation profiles: originally, it was
required that the dynamics of profiles in Hj depend only on
profiles Hk with k � j + 1, but, in fact, it depends only on
profiles Hk with j − 1 � k � j + 1. The resulting equations
of motion for the cavity occupations ni and the vectors f j =
Pj f thus read

ṅi = (ni(Ei + Ai ) + Ei )[G f0]i − γini,

ḟ j =
j+1∑

k= j−1

∑

i

niP jBiPk fk − b0 f j − P jv, (9)

where it is understood that the sum in the equation ḟ0 includes
only the term k = 0 and k = 1. The operators P jBiPk describe
linear maps from Hk to Hj , i.e., subspaces with dimension
substantially smaller than Nm. Beyond this restriction to dy-
namics in low-dimensional subspaces, Eq. (9) also features
only a few interdependencies between the different degrees of
freedom: the dynamics of ni is dependent only on ni and f0,
and the dynamics of f0 is governed by f0, f1, and the ni. The
dynamics of f j (with j > 0) depends on f j−1, f j , f j+1, and the
ni as sketched in Fig. 1.

This reduced coupling between the different subspaces
Hj not only results in a substantial reduction of numerical
effort, but it also implies that one obtains a valid hierarchy by

FIG. 2. Moduli squared |�i(x)|2 for i = 0, 1, 2 of the three low-
est eigenfunctions of a quantum harmonic oscillator are depicted in
red. The corresponding harmonic potential and lines indicating the
eigenenergies are depicted in gray. These functions describe well the
profile of cavity eigenmodes. The excitation profile functions ei(x)
corresponding to each of these cavity modes are depicted in blue.
One can clearly see that each of the functions ei(x) has minima, and
even become negative, in spatial domains in which the cavity func-
tions |� j (x)|2 (with j �= i) have maxima, such that the corresponding
modes can couple strongly to the molecular environment.

requiring the condition x jBixk = 0 (for i � Nc) for j < k − 1
instead of j > k + 1, since the former condition necessarily
guarantees the latter.

One can thus construct the hierarchy with the following
prescription: for a complete set of vectors x jk in Hj one can
construct the vectors yi jk = Bix jk for all i � Nc and all k. Then
one subtracts all components that lie in the subspaces Hq with
q � j, i.e., one obtains the vectors ỹi jk = yi jk − ∑ j

q=0 Pqyi jk .
Finally, Hj+1 is the space spanned by all the vectors ỹi jk .
Since this construction only requires the multiplication of ma-
trices and vectors, and orthogonalization of vectors, whereas
a construction directly following Eq. (7) would also require
the construction of many null spaces, this construction will
generally be more efficient.

IV. EXCITATION PROFILES

Besides the numerical benefits, the present construction
also helps one to understand the geometry of coupling be-
tween the cavity modes and the dye molecules. Equation (2)
is based on the vector f whose components describe the
excitation fraction of the group of molecules around given
positions. Each excitation profile ei, on the other hand, cor-
responds to a spatial mode of excitation, and the shapes of
these modes give valuable insight, as most easily exemplified
with a one-dimensional system.

Figure 2 depicts in red the moduli squared |�i(x)|2 of the
lowest three eigenfunctions of a quantum harmonic oscillator
as representatives of mode functions of a cavity. The coupling
constants that determine the matrix G, and consequently the
profiles ei, read gi j = |�i(x j )|2, where x j is the position of
the group j of molecules. The corresponding scaled profiles
ei(x j ) = [ei] j are depicted by blue lines.
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If there were only a single cavity mode, the function for
the excitation profile would coincide exactly with the mode
function of this cavity mode. The differences between the
profile and cavity functions reflect the competition among the
cavity modes: for example, the profile e0(x) has its maximum
at x = 0 due to the maximum of the mode function |�0|2.
Further out in the tails, however, the profile e0(x) becomes
negative, reflecting the fact that the lowest eigenmode of the
cavity couples to the molecular environment in those areas
more weakly than the higher frequency modes.

Similarly, the profile e1(x) has a clear minimum around
x = 0, where symmetric modes—in particular, the ground-
state mode—can strongly couple to the environment; and it
has additional, less pronounced minima in the tails, where
this mode loses the competition against the next excited and
further higher frequency modes. The same features can also
be observed in e2(x), and higher frequency functions that are
not shown here.

V. NUMERICAL ACCURACY

The central question remaining to be answered is how
accurate simulations with a truncation at a given level j in
the hierarchy are. To this end, we consider a two-dimensional
cavity such that the mode index i is a double index [mx, my].
We take the mode functions to be the eigenfunctions of a
two-dimensional harmonic oscillator, consistent with a cavity
with parabolically shaped mirrors. We take into account the
lowest four energy levels with degeneracy mx + my + 1, cor-
responding to 10 photonic cavity modes, and we can express
all system parameters in units of cavity decay constant κ and
the harmonic oscillator length lho.

We use eight molecular groups per oscillation of the
highest-frequency cavity-mode function in one spatial di-
rection; fewer groups were found empirically to give in-
accurate results. A system of ten modes therefore requires
at least 1521 molecular groups (i.e., 39 × 39) which, along
with a 2D molecular density of 1013/l2

ho, gives Mj = 1012

molecules in each group. For absorption and emission rate
we use A[mx,my] = 10−12κ [1.83, 4.21, 10.3, 25.6]mx+my and
E[mx,my] = 10−10κ [4.81, 5.69, 6.97, 8.31]mx+my , consistent
with Ref. [10]. The molecular decay rate is taken as �↓ = κ/4.

Figure 3 depicts an example for the dynamics of cavity oc-
cupations, obtained with a simulation without the hierarchical
construction of excitation profiles, i.e., a numerically exact
method, and with simulations using this construction and
truncation after level j with j = 0, 1, and 2, which we shall
refer to as the level- j approximation. The system is initialized
in the steady state for a pump power of 6.58 × 10−6κ , and
the pump power is instantaneously quenched (increased) to
2 × 10−5κ in order to induce dynamics.

Figure 3 shows how this quench results in an initial growth
of all the cavity modes, with the numerically exact data
depicted by solid lines. The lowest cavity mode [0,0], depicted
in red, is initially condensed (having a photon occupation
much greater than 1), and quickly reaches its new steady state
with a higher occupation. Mode [0,1] (depicted in yellow)
condenses, but requires a time window of about 100/κ to
reach its new stationary state; mode [0,2] (green) condenses
on a time scale of 20/κ , but decondenses as mode [0,1]

FIG. 3. Upper panel depicts the occupation of several cavity
modes obtained with a numerically exact simulation (solid line), and
simulations with truncation after level 0, level 1, and level 2 (dashed
line, �, and �). Already truncation after level 1 results in very good
agreement with the exact dynamics. The lower panel depicts the error
ε j defined in Eq. (10) on a logarithmic scale, and helps to verify that
truncation after level 2 results in an accuracy below the % range.

has reached its stationary occupation. Mode [1,1] (turquoise)
shows cusplike maximum, with subsequent decline to its
stationary occupation.

Simulations in terms of excitation profiles and truncation
after level 1 or after level 2 capture all these features very well;
deviations from the exact dynamics are barely visible, i.e., a
truncation after level 1 already provides an excellent descrip-
tion. In order to assess the accuracy of those approximations
more quantitatively, we can define the error

ε j = max
i

∣∣∣∣∣log10
ne

i

n( j)
i

∣∣∣∣∣ (10)

for the level- j approximation, where ne
i denotes the cavity oc-

cupations obtained with the numerically exact simulation and
n( j)

i denotes the cavity occupations obtained with truncation
after level j, and the cavity mode that yields the largest error
is selected.

The lower panel of Fig. 3 depicts this error for truncation
after level 1 and level 2 as function of time, and provides a
representative example of the accuracy of the present method.
As one can see, the error for the level 1 approximation is
typically below 1/10 (on the relevant scale between 0 and 12),
but can exceed this threshold and reaches a maximum value of
0.44; the error for the level 2 approximation is always below
1/100 and typically substantially smaller. The enhanced error
for times in the interval between 20/κ and 35/κ can be
attributed to the fast population growth in the mode [1,1], and
the slight enhancement of errors between 100/κ and 150/κ

is due to the mode [0,2], where a slight misestimation of the
onset of the population drop can result in some inaccuracy.

Even a truncation after level 0—the roughest possible
approximation—manages to capture the occupation of the
mode [0,0] surprisingly well, and it also reproduces the slow
growth and saturation to a stationary value of the mode [0,1]
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qualitatively correctly. For the modes [0,2] and [1,1], however,
it misses the growth of occupation, and fails to describe
their dynamics, apart from a very short initial time window.
Given the roughness of approximation, this is not necessarily
a surprise, but it rather seems surprising that some features are
indeed obtained correctly.

The quench used in the example of Fig. 3 is sufficiently
large to result in changes of mode populations over several
orders of magnitude. Fast and substantial changes are the
features that are difficult to capture with a low-level approxi-
mation, as one can see in the lower inset of Fig. 3 that shows
enhanced errors whenever there are substantial changes in the
mode populations. We found that these errors do not so much
result from a failure in capturing the size of changes in the
mode populations, but rather in a slight temporal offset to
these transitions. Since a small temporal offset on the time
axis results in a large error in mode population if they grow
or decrease quickly, this explains the temporal dependence of
the errors in the lower inset of Fig. 3. Consistent with this,
we found that errors are smaller for smaller quenches in pump
power than used in Fig. 3, and they can become a bit larger
for stronger quenches resulting in even more rapid growth of
mode populations.

VI. NUMERICAL EFFICIENCY

Having assessed the accuracy of the simulations with the
different truncations, we can now discuss the corresponding
computational times. To this end we chose 33 pump powers
between 10−3.5κ and 10κ , geometrically spaced (i.e., with
the logarithm of the pump power evenly spaced), and we
selected all unequal pairs of those pump powers as initial
and final pump. With the system initialized in the steady state
corresponding to the initial pump power, dynamics is induced
with an instantaneous quench to the final pump power. We
consider the dynamics until fractional deviations from the true
steady state are below 10−6 for each mode. For the resulting
33 × 32 = 1056 situations, we can compare the CPU time re-
quired for the numerically exact simulation and the simulation
with truncation after level j with j = 0, 1, 2, and 3 in the
excitation profiles.

The dimensions of subspace H0 for this system match
exactly the 10 cavity modes, but, with dim(H1) = 37,
dim(H2) = 79, and dim(H3) = 110, the subspaces for higher
orders are substantially smaller than the general bound
dim(Hj ) � N ( j+1)

c that is guaranteed by construction. This
favorable scaling in levels of the hierarchy is also reflected
in Fig. 4, which depicts a histogram for the relative runtime,
i.e., the ratio of computational time required for a simulation
with truncation and the computational time required for a
numerically exact simulation.

A simulation with a truncation after level 0 requires taking
into account 10 collective excitation profiles, as compared to
1521 molecular groups in the exact simulation. There is thus
a reduction by two orders of magnitude in the number of
dynamical variables, and this reduction is neatly reflected by
the typical relative runtime of about 10−2 as shown in Fig. 4.

The next level of approximation, i.e., truncation after level
1, requires keeping track of 37 excitation profiles, and results
in a typical speedup of a factor of 30; even the worst cases

FIG. 4. Histogram for the distribution of relative run times, i.e.,
ratio of computational time required for a simulation with truncation
after level j and computational time required for a numerically
exact simulation, for 1056 simulations of cavity dynamics following
a quench of pump. Data corresponding to j = 0, 1, 2, and 3 are
depicted in blue, orange, green, and red, respectively.

in the tail of the distribution are still an order of magnitude
faster than exact simulations. Truncation after level 2 with
79 profiles still yields saving of computational time of about
an order of magnitude, and a simulation with truncation after
level 3 with 110 profiles requires only a factor of two more
time than the next roughest approximation.

Independent of the accuracy sought in a simulation, one
can thus see that the construction of suitable excitation pro-
files results in a substantial improvement of computational
efficiency consistent with the number of dynamical variables
taken into account. Also, even though the rough level-0 ap-
proximation can at best make qualitatively correct predictions,
its efficiency can make it a viable option for preliminary
analyses. If, for example, a scan over a large parameter space
is required in order to identify points of interest, such a rough
but fast method can be used in order to decide which points
are likely to warrant more thorough analysis.

VII. PULSED CONDENSATION

The rich physics that can be explored with this computa-
tionally efficient framework can be illustrated with the system
behavior under pulsed pumping. In fact, varying the duty cycle
of a pulsed pump can have a dramatic effect on both the
spectrum and the time averaged intensity of the intracavity
light. Figure 5 shows the evolution of the population in
different cavity modes as a function of time over two time
periods of pulsing for a duty cycle of 0.01 and an average
power of 10−3.2κ . The time period of 40κ−1 is long enough
such that the system relaxes back to an equilibrium state
between pulses, but short enough for the system to show
nonequilibrium behavior. Besides this pulsed pumping, Fig. 5
is based on the system and parameters described in Sec. V.

As one can clearly see in Fig. 5, all cavity mode popula-
tions begin to rapidly increase immediately after the pulse.
Since the pump is spatially uniform, all molecular excitation
profiles obtain a similar occupation and, due to the strong

053828-5



WALKER, HESTEN, NYMAN, AND MINTERT PHYSICAL REVIEW A 100, 053828 (2019)

FIG. 5. Time resolved population of cavity mode populations for
pulsed pumping with a duty cycle of 0.01 and an average power of
10−3.2κ . In this case, modes which are degenerate but not symmetric
to one another, such as [1, 1] and [0, 2], have the same population and
so lie directly on top of one another on the graph, unlike in Fig. 3.

pumping, they do so in a short period of time. Since the
overlap of these excited molecules with different cavity modes
depends on their position in space, all cavity modes have
some molecules which emit into them more strongly than into
any other cavity mode, leading to a large photon population
in every mode. This is the process captured in the level 0
truncation of the equations of motion. Over longer time scales,
spatial redistribution of excitations through emission and re-
absorption starts to play a role in redistributing excitations
between molecular reservoirs, as described in the level 1
truncation and higher. This process of redistribution between
molecular reservoirs then allows the cavity ground state to
develop a much larger population than the other excited cavity
modes.

A further sign of this suppressed interaction between ex-
citation profiles can be seen in the relative populations of
degenerate but spatially distinct modes, such as [1, 1] and
[0, 2], in Figs. 5 and 6. While for long times and continuous
pumping as shown in Fig. 3, two degenerate modes can
develop different populations due to the difference in overlap
of the molecular excitation profiles with other cavity modes,
in the pulsed pumping regime these dynamics which appear
at the higher order truncations of the equations of motion
do not play a significant role. The populations of modes
rather depends primarily on their absorption and emission
coefficients as they interact with their molecular excitation
profiles.

Figure 6 shows how the spectrum and intensity of intracav-
ity light varies with duty cycle of pulsing, from continuous
pumping to a duty cycle of 0.01. By fixing the average power,
the total number of excitations pumped into the system in one
cycle is fixed. Pumping these excitations into the system in a
short period of time favors stimulated emission, particularly
in the lower energy modes which have greater emission rates
relative to their absorption rates, leading to the dramatic
change in spectrum. Since excited molecules can emit directly
into free space at a rate of κ/4, the total number of photons

FIG. 6. Time average population of cavity modes for different
duty cycles, with average power fixed at 10−3.2κ in a pulsed pumping
scheme. Solid lines represent pulsed pumping with duty cycles
shown in the legend. The dotted lines represent the results for
continuous pumping at the same average power. Symmetric modes
such as [0, 1] and [1, 0] were all considered in the simulation, but
only one of the pair is plotted.

emitted from cavity modes into free space after a pulse of
fixed energy can vary, depending on the balance of excitations
between cavity photons and excited dye molecules, leading to
the observed trend in average intracavity light intensity with
duty cycle.

As well as providing insights into transient photonic con-
densates, these pulsed pumping schemes also give a method
for experimental study of condensates previously inaccessible
due to the requirements for high pump power. For example,
experimental observation of decondensation under increasing
pump power [10] would require pump powers that cause
photobleaching of dye molecules if such an experiment was
performed with continuous pumping. However, with pulsed
pumping, such an experiment could be performed with pump-
ing that is orders of magnitude weaker, and thus substantially
less challenging. The behavior uncovered in Fig. 6 thus sug-
gests that many interesting transient phases and the study of
their new physics will become experimentally accessible with
a trick as simple as using pulsed instead of continuous driving.

VIII. CONCLUSION

Investigation into photonic condensates is moving towards
transient, high power regimes, which require the full evolution
of the cavity-mode populations to be properly understood.
With the construction of the excitation profiles and their
hierarchical classification one can substantially reduce the
numerical effort required for such analyses. Simulations that
are being enabled with this approach feature dynamical phase
transitions [24], and pronounced changes in the equilibra-
tion time under changes in pump power. Beyond the well-
established phenomenon of slowing down of system dynamics
close to such phase transitions, photonic condensates also
feature this phenomenon far away from phase transitions
where the system does not behave critically.
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The construction of profiles of molecular excitation not
only offers substantial numerical speedup, but it also pro-
vides a very clear physical picture of mode competition that
helps us to gain intuitive understanding of the nonlinear
dynamics of condensation and decondensation in photonic
condensates.

The comparison in computational effort between approx-
imate and exact simulations in this work was based on low-
energy modes of cavities giving rise to harmonic-oscillator
eigenfunctions. This allowed us to start with a rather coarse-
grained description of the molecular environment with many
molecules on a spatial group, resulting in a reduced complex-
ity of the underlying problem. More strongly pumped systems
and/or more complicated cavity geometries, as used in current
and upcoming experiments [25,26], however, do not admit
such a straightforward reduction of numerical effort. Since the
effort for the present approach scales only with the number

of considered cavity modes, but is largely independent of the
required spatial resolution, we believe that the construction
of excitation profiles presented in this paper will enable
many investigations of complex nonequilibrium many-body
dynamics that otherwise would be prohibitively expensive in
computational resources.
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