Elsevier Editorial System(tm) for Science of

the Total Environment

Manuscript Draft

Manuscript Number: STOTEN-D-19-14613R2

Title: Gravimetry-based water storage shifting over the China-India border area controlled by regional climate variability

Article Type: Research Paper

Keywords: Water storage shifting; Gravity Recovery and Climate Experiment; climate variability; China-India border area

Corresponding Author: Dr. Kwok Pan Chun,

Corresponding Author's Institution: Hong Kong Baptist University

First Author: Kwok Pan Chun

Order of Authors: Kwok Pan Chun; Qing He; Hok Sum Fok; Subimal Ghosh; Omer Yetemen; Qiang Chen; Ana Mijic

Abstract: The regional water storage shifting causes nonstationary spatial distribution of droughts and flooding, leading to water management challenges, environmental degradation and economic losses. The regional water storage shifting is becoming evident due to the increasing climate variability. However, the previous studies for climate drivers behind the water storage shifting are not rigorously quantified. In this study, the terrestrial water storage (TWS) spatial shifting pattern during 2002-2017 over the China-India border area (CIBA) is developed using the Gravity Recovery and Climate Experiment (GRACE), suggesting that the northwestern India were wetting while western China was drying. Similar drying and wetting patterns were also found in the precipitation, snow depth, Palmer Drought Severity Index (PDSI) and potential evaporation data. Based on our newly proposed Indian monsoon (IM) and western North Pacific monsoon (WNPM) variation indices, the water shifting pattern over the CIBA was found to be affected by the weakening of the variation of IM and WNPM through modulating the regional atmospheric circulation. The weakening of IM and WNPM variations has shown to be attributed to the decreasing temperature gradient between the CIBA and the Indian Ocean, and possibly related to increasing regional temperatures associated with the increasing global temperature. As the global warming intensifies, it is expected that the regional TWS shifting pattern over the CIBA will be further exaggerated, stressing the need of advancing water resources management for local communities in the region.

Response to Reviewers: Dear Dr Ouyang, Thank you for being the editor of this manuscript. We also would like to thank the reviewers' comments and suggestions. Please find the revised version of "Gravimetry-based water storage shifting over the China-India border area controlled by regional climate variability" with one author's new affiliation. We also provide new supporting materials for this manuscript. Below are our responses to the reviewers' comments. Reviewer #2: Authors have addressed the review comments satisfactorily, and improved the presentation in the manuscript. For the benefit of readers, Authors should include the supporting codes used in the study as supporting material (or provide it in links/open source platform) Response to Reviewer 2 comment: Thank you for the comments. Following the suggestion, we have provided new supporting documents including a data resource list, codes and a data file of the new indices mentioned in the manuscript. The details are described in the Readme file.

Gravimetry-based water storage shifting over the China-India border area controlled by regional climate variability Kwok Pan Chun¹, Qing He¹, Hok Sum Fok², Subimal Ghosh³, Omer Yetemen⁴, Qiang Chen⁵, Ana Mijic⁶ ¹ Department of Geography, Hong Kong Baptist University, Hong Kong, China. ² School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China. ³ Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India. ⁴ Civil, Surveying, and Environmental Engineering, The University of Newcastle, Australia. ⁵ Geophysics Laboratory, Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg. ⁶ Imperial College London, Department of Civil and Environmental Engineering, London SW7 2AZ, UK. Corresponding author: Kwok Pan Chun (kpchun@hkbu.edu.hk)

Dear Dr Ouyang,

Thank you for being the editor of this manuscript. We also would like to thank the reviewers' comments and suggestions.

Please find the revised version of "Gravimetry-based water storage shifting over the China-India border area controlled by regional climate variability" with one author's new affiliation. We also provide new supporting materials for this manuscript.

Below are our responses to the reviewers' comments.

Reviewer #2: Authors have addressed the review comments satisfactorily, and improved the presentation in the manuscript.

For the benefit of readers, Authors should include the supporting codes used in the study as supporting material (or provide it in links/open source platform)

Response to Reviewer 2 comment: Thank you for the comments. Following the suggestion, we have provided new supporting documents including a data resource list, codes and a data file of the new indices mentioned in the manuscript. The details are described in the Readme file.

1	Gravimetry-based water storage shifting over the China-India border area
2	controlled by regional climate variability
3	Kwok Pan Chun ¹ , Qing He ¹ , Hok Sum Fok ² , Subimal Ghosh ³ , Omer Yetemen ^{4,7} ,
4	Qiang Chen ⁵ , Ana Mijic ⁶
5	¹ Department of Geography, Hong Kong Baptist University, Hong Kong, China.
6	² School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China.
7	³ Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai,
8	India.
9	⁴ Civil, Surveying, and Environmental Engineering, The University of Newcastle,
10	Australia.
11	⁵ Geophysics Laboratory, Faculty of Science, Technology and Communication,
12	University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette,
13	Luxembourg.
14	⁶ Imperial College London, Department of Civil and Environmental Engineering,
15	London SW7 2AZ, UK.
16	⁷ Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak 34469,
17	Istanbul, Turkey.
18	Corresponding author: Kwok Pan Chun (<u>kpchun@hkbu.edu.hk</u>)

Formatted: Superscript

19 Highlights:

20	• Terrestrial water storage showed a clear shifting pattern
21	• Pattern showed wetting in western China and drying in northwestern India.
22	• The shifting patterns were mainly due to the weakening of the monsoon
23	variations.
24	• Weakening monsoon were related to decreasing regional temperature gradients.
25	Abstract
26	The regional water storage shifting causes nonstationary spatial distribution of droughts
27	and flooding, leading to water management challenges, environmental degradation and
28	economic losses. The regional water storage shifting is becoming evident due to the
29	increasing climate variability. However, the previous studies for climate drivers behind
30	the water storage shifting are not rigorously quantified. In this study, the terrestrial

31 water storage (TWS) spatial shifting pattern during 2002-2017 over the China-India

32 border area (CIBA) is developed using the Gravity Recovery and Climate Experiment

33 (GRACE), suggesting that the northwestern India were wetting while western China

34 was drying. Similar drying and wetting patterns were also found in the precipitation,

35 snow depth, Palmer Drought Severity Index (PDSI) and potential evaporation data.

36 Based on our newly proposed Indian monsoon (IM) and western North Pacific

37 monsoon (WNPM) variation indices, the water shifting pattern over the CIBA was

found to be affected by the weakening of the variation of IM and WNPM through

39 modulating the regional atmospheric circulation. The weakening of IM and WNPM

40 variations has shown to be attributed to the decreasing temperature gradient between

41 the CIBA and the Indian Ocean, and possibly related to increasing regional

42 temperatures associated with the increasing global temperature. As the global warming

43 intensifies, it is expected that the regional TWS shifting pattern over the CIBA will be

44 further exaggerated, stressing the need of advancing water resources management for

45 local communities in the region.

46 Keywords

Water storage shifting; Gravity Recovery and Climate Experiment; climate variability;
China-India border area

49 **1 Introduction**

Terrestrial water storage (TWS), including canopy water, glaciers, snow, 50 surface water in rivers, lakes, wetlands and reservoirs, and underground water, 51 52 determines global and regional hydrological resilience (Alsdorf et al., 2007). It plays a 53 major role in the exchange of water with the atmosphere and oceans, and affects climate variability (Kim et al., 2009). Therefore, the TWS monitoring as well as the 54 underlying drivers for its spatiotemporal dynamics are crucial for understanding the 55 56 climatic-hydrological system (Humphrey et al., 2016). With the launch of the Gravity Recovery and Climate Experiment (GRACE) in March 2002, it provides a novel and 57 reliable tool for TWS monitoring (e.g., Long et al., 2015; Long et al., 2017; Reager 58 and Famiglietti, 2009b; Scanlon et al., 2019; Schmidt et al., 2006b; Sinha et al., 2016; 59 60 Syed et al., 2008; Tapley et al., 2004).

61	In recent years, the GRACE data has been widely used to assess the TWS
62	variability (e.g., Güntner et al., 2007; Long et al., 2015; Schmidt et al., 2006a), to
63	monitor droughts (e.g., Houborg et al., 2012; Thomas et al., 2014; Yi and Wen, 2016;
64	Zhao et al., 2017) and flooding (e.g., Chen et al., 2010; Reager and Famiglietti, 2009a;
65	Reager et al., 2014); it is also used to evaluate groundwater depletion (e.g., Long et al.,
66	2016; Rodell et al., 2009; Thomas and Famiglietti, 2019), and to estimate ice sheet or
67	glacier loss (e.g., Chen et al., 2009; Farinotti et al., 2015; Shepherd et al., 2018).
68	These studies have demonstrated the capability of GRACE to observe regional
69	hydrological variability and global climate abnormalities, which are used for
70	investigated water cycles linked with global and regional climates. For investigating
71	the GRACE long-term trend variability, Rodell et al. (2018) quantified the global
72	TWS trends during 2002-2016 and provided their corresponding causes. They found a
73	general wetting pattern at high- and low-latitudes and a drying pattern at mid-latitudes,
74	and these patterns are mainly due to the regular natural variability, groundwater
75	depletion, and climate change. Meanwhile, Scanlon et al. (2018) found the TWS in
76	some mid-latitude basins were decreasing, including Arkansas, Indus, Ganges,
77	Brahmaputra, Hai River, Euphrates. On the other hand, high- and low-latitude regions
78	showed an increasing TWS trend including Missouri, Amazon, Okavango, and
79	Murray basin.
80	The increasing water loss at mid-latitudes exerts great pressure on the water
81	supply in mid-latitude countries, in particular populous China and India. The
82	China-India border area (CIBA, Figure 1), covering the Qinghai-Tibet Plateau (QTP),

83	and mous-Ganges-Brannaputa basin (IGBB), is shared by multiple hadons,
84	including China, India, Nepal, Bhutan, Bangladesh, and Pakistan. The Tibetan Plateau
85	known as the 'third pole' of the Earth (Yao et al., 2012), affects regional thermal
86	gradients which modulate local circulations (Duan et al., 2018; Wu et al., 2014; Zhao
87	and Chen, 2001). Therefore, exploring how local climate mechanisms affect the TWS
88	variability over the CIBA can provide information to decision makers for managing
89	water resources shared among multiple populous nations. Over the IGBB, there have
90	been several studies focusing on the water storage variations over the IGBB (e.g.,
91	Khandu et al., 2016; Scanlon et al., 2018) and QTP regions (e.g., Song et al., 2015;
92	Xiang et al., 2016; Zhang et al., 2017). Related to the glacial processes, sharp water
93	mass losses were observed in the southeast QTP between 2003 and 2011 (Song et al.,
94	2015). Moreover, the lake volume in QTP region increased from 1970s to 2015
95	(Zhang et al., 2017). Over the IGBB, the TWS declined rapidly due to decreasing
96	precipitation during 2002-2014 (Khandu et al., 2016) and increasing irrigation
97	(Scanlon et al., 2018). Overall, previous studies clearly showed the separate trend
98	variations of TWS in QTP and IGBB. Although they attempted to explain the TWS
99	variations using meteorological forcing (e.g. precipitation and temperature) and
100	human influences (e.g. irrigation), the TWS variations over the IGBB can be
101	associated with the water conditions over the QTP, since the headwaters of the Indus,
102	Ganges and Brahmaputra rivers originate in the QTP region (Kuehl et al., 2011).
103	Therefore, there is a need to investigate the TWS dynamic in the QTP and the IGBB
104	as an integral system rather than individual separate components. Furthermore, the

and Indus-Ganges-Brahmaputra basin (IGBB), is shared by multiple nations,

105	TWS variations are not only directly controlled by the local precipitation and
106	temperature, but also indirectly affected by regional atmospheric circulations and
107	temperature gradients between land and ocean.

108	Over the IGBB, the spatiotemporal dynamic of the hydrological regime is
109	mainly under the control of the Indian monsoon (IM) (Khandu et al., 2017). Over the
110	IGBB from July to September, the IM contributes to around 60-90% of the annual
111	precipitation (Khandu et al., 2016). Due to the complex climate types, (Figure 1b), the
112	IGBB has unevenly distributed precipitation over the sub-basins. In the Ganges basin,
113	the northwest region is dryer than the coast area; in the Brahmaputra basin, there is
114	heavy precipitation because of the rain shadow effect (Mirza et al., 1998). The upper
115	Indus basin receives more precipitation than the lower basin, especially in the
116	mountain region (Archer et al., 2010). Furthermore, the formation and variation of the
117	IM are closely related to the QTP heating (Feng and Hu, 2005; Molnar et al., 1993;
118	Sato and Kimura, 2007), and the IM affects precipitation patterns and river
119	distributions over the QTP (Yao et al., 2009). Therefore, the IM plays an crucial role
120	in the water dynamics over the whole CIBA.
121	Apart from the influence of IM, the regional temperature gradient could be an
122	indirect contributor to the hydrological variability over the IGBB region. For instance,
123	Roxy et al. (2015) found that the decreasing land-sea thermal gradient weakens the
124	summer monsoon circulation and leads to the rainfall variations in India, due to rapid
125	Indian Ocean warming. Over the past decades, the regional temperature increase

126	caused wetter conditions in central and northern QTP (Yang et al., 2014). Moreover,
127	changing hydroclimatic extreme events over the QTP and IGBB region are suggested
128	to be related to shifting atmospheric and hydrological patterns due to increasing
129	global average temperatures (Wijngaard et al., 2017). In recent years, more frequent
130	droughts occurred in central India (Mallya et al., 2016; Rajeevan and Bhate, 2009),
131	Nepal (Baidya et al., 2008), and Bangladesh (Shahid, 2011), while the extreme
132	precipitation events were increased over the most parts of the India (Roxy et al., 2017;
133	Sen Roy and Balling, 2004). In the central QTP, grasslands were affected by flooding
134	due to the expansion of the surrounding lakes since the early 2000s (Zhu et al., 2010).
135	Over the CIBA, the changes of precipitation driven by IM variability affect the
136	TWS dynamic (e.g., Khandu et al., 2016; Papa et al., 2010; 2015). The relationships
137	between the IM and the TWS over the CIBA were only discussed qualitatively in
138	almost all previous studies, but few studies have quantified these relationships and
139	analyzed their mechanisms associated with regional temperature gradients at a
140	seasonal scale. In this study, a new IM variation index was proposed to explore how
141	the TWS is related to atmospheric circulations and regional temperature gradients.
142	Given the close interaction between the IM and the western North Pacific monsoon
143	(WNPM) (e.g., Gu et al., 2010; Li and Hsu, 2018; Wang et al., 2001), the WNPM was
144	also considered to be a possible contributor to the TWS shifting. Furthermore, the
145	spatiotemporal variability of precipitation and the Palmer Drought Severity Index
146	were also explored because the PDSI represents the soil moisture state which is a
147	difference between precipitation and potential evapotranspiration. 7

148	Overall, the main objectives of this study are: (1) to evaluate spatio-temporal
149	characteristics of TWS associated with the other meteorological patterns in CIBA (2)
150	to quantify the relationships between the TWS variations and monsoons (i.e. the IM
151	and the WNPM); (3) to identify the temperature drivers related to monsoons and TWS
152	variations; and (4) to develop a framework for explaining the relationships of
153	temperature, monsoons and the TWS.
154	This study was organized as follows. A summary of various data sets and data

analysis approaches employed in this study were given in Section 2. The results were
given in Section 3, and they are followed by the corresponding discussion in Section 4.
In Section 5, the major findings and implications of shifting TWS over the CIBA were
summarized.

159

Figure 1. The general features (a) and Koppen climate types (b) of the CIBA. The

161 yellow and cyan shaded areas are Indus Basin and Ganges-Brahmaputra Basin

162 respectively in Figure 1a.

2 Materials and methods

164	2.1 Gravity Recovery and Climate Experiment (GRACE) data
165	The GRACE was designed to monitor the temporal and spatial variability of
166	the Earth's gravity field. Using the algorithm of Wahr et al. (1998), the gravity field
167	can be converted to the equivalent water height (EWH) for monitoring the TWS. In
168	this study, we used GRACE Level-2 Release 06 (RL06) from the Center for Space
169	Research (CSR; derived from <u>ftp://isdcftp.gfz-potsdam.de/grace/Level-2/CSR/RL06/</u>)
170	at University of Texas to explore the spatiotemporal dynamics of TWS over the CIBA,
171	in the form of Stokes spherical harmonic coefficients (SHCs) up to a degree and order
172	of 60. The TWS grid data derived from GRACE spans from April 2002 to March
173	2017 (total 15 years), with a spatial resolution of 1 degree and a global coverage. For
174	reducing the estimation errors of gravity anomalies, the pre-processing and
175	post-processing procedures for GRACE data were applied, and these procedures
176	include adding the degree-1 SHCs representing the geocenter motion (Swenson et al.,
177	2008), replacing of the C_{20} term with the results from Satellite Laser Ranging (SLR)
178	(Cheng and Ries, 2017), destripping, and applying the Gaussian filter with a radius of
179	350 km (Swenson and Wahr, 2006).
180	2.2 Meteorological data
181	For linking the TWS variation to precipitation pattern, the Tropical Rainfall
182	Measuring Mission (TRMM) 3B43 version 7 was used in this study. This TRMM
183	Multi-satellite Precipitation Analysis (TMPA) product were produced from

184	assimilating data from multiple precipitation satellites, radiometers, and rain gauges
185	by Huffman et al. (2007). The product was obtained from the NASA Goddard Space
186	Flight Center (<u>https://pmm.nasa.gov/data-access/downloads/trmm</u>), with a time span
187	ranging from 1998 to present, and a spatial coverage of 50°S-50°N with a resolution
188	of 0.25 degree.
189	Apart from the TWS and precipitation data, drought indices are used for
190	investigating the shift of hydrological conditions. In this study, the self-calibrating
191	Palmer drought severity index (PDSI) (Wells et al., 2004) was used due to its better
192	spatial comparability than traditional PDSI (Palmer, 1965), derived from the Research
193	Data Archive at National Center for Atmospheric Research (NCAR)
194	(https://rda.ucar.edu/datasets/ds299.0/) (Dai, 2017). The self-calibrating PDSI
195	(hereafter just called PDSI for simplicity) data ranges from 1850 to 2014 with a
196	monthly scale, covering the global land areas with a spatial resolution of 2.5 degree.
197	Other meteorological variables like the potential evaporation, snow melting
198	and temperature also play important roles in the hydrological dynamics. These
199	meteorological variables were derived from the ERA5-Land monthly averaged
200	datasets
201	(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-mea
202	ns?tab=form), produced by the European Centre for Medium-Range Weather
203	Forecasts (ECMWF). The ERA5 datasets covers the period from 2001 to present, with

a high spatial resolution of $0.1 \times 0.1^{\circ}$. <u>In addition, the sea surface temperature (SST)</u>

205	data are derived form the extended reconstructed SST version 5 (ERSST.v5;
206	https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html) of the National
207	Climate Data Centre (Huang et al., 2017).
208	2.3 Monsoon indices

209	The monsoon interaction zone of the IM and the WNPM is close to the edge
210	of our study area (i.e., the CIBA) over the Indochina Peninsula (Wang and LinHo,
211	2002). In order to quantify the effect of IM on the TWS variability over the CIBA, the
212	IM index was calculated, using the difference of zonal winds at 850-hPa between a
213	southern region (5°-15°N, 40°-80°E) and a northern region (20°-30°N, 70°-90°E)
214	(Wang et al., 2001). Based on the definition of Wang et al. (2001), the WNPM index
215	was also calculated, using the difference of zonal winds at 850-hPa a southern region
216	$(5^{\circ}-15^{\circ}N, 100^{\circ}-130^{\circ}E)$ and a northern region $(20^{\circ}-30^{\circ}N, 110^{\circ}-140^{\circ}E)$. The wind data
217	for the calculation of IM and WNPM indices were extracted from the National
218	Centers Environmental Prediction (NCEP) data (<u>https://www.ncep.noaa.gov/</u>).
219	2.4 Methodology
220	2.4.1 Moving standard deviation
221	Instead of using the conventional monsoon indices, we proposed to use the
222	moving standard deviation of monsoon indices, to examine how the monsoon
223	weakening affects the hydrological regimes over the CIBA. The moving standard
224	deviation of a given monsoon time series can be calculated as:

$$S(t) = \sqrt{\frac{\sum_{i=t}^{t+M} (x(i) - \mu(t))^2}{M - 1}}$$
(1)

where S(t) and $\mu(t)$ represent the standard deviation and average value of monsoon index x for the period from t to t + M at time t, respectively. M is the size of moving window, which is chosen as 12 months in this study. The time series formed by these standard deviations is hereafter called the monsoon variation index in this study.

231 2.4.2 Local Indicators of Spatial Association (LISA)

observations and its neighboring observations (Anselin, 1995). The general LISA for an observation Z_i at location *i* can be expressed as

The LISA was proposed to measure the local association between one

$$L_i = f(Z_i, Z_{I_i}) \tag{2}$$

where f is a function for association calculation, and the Z_{J_i} are the observations at the neighboring locations J_i of i. In this study, we used Moran's I (Moran, 1950) to be the calculation function. The LISA based on Moran's I for location i can be written as

 $I_{i} = \frac{(Z_{i} - \bar{Z})}{S_{i}^{2}} \sum_{j=1, j \neq i}^{n} w_{ij} (Z_{j} - \bar{Z})$ (3)

241 where

240

225

$$S_i^2 = \frac{\sum_{j=1, j \neq i}^n w_{ij}}{n-1} - \bar{Z}^2$$
12

where *n* is the total number of observations, Z_i and Z_j are the observations at location *i* and *j*; w_{ij} is the spatial weight between location *i* and *j*.

244 2.4.3 Singular spectral analysis

245	To capture the spatiotemporal characteristics of the precipitation, the singular
246	spectral analysis (SSA) method was applied in this study. The SSA was introduced by
247	Broomhead and King (1986), aiming at decomposing a time series into a sum of
248	independent series identified as trend, periodic component, and noise (Hassani, 2007)
249	The decomposition process of the SSA can be divided into two steps: embedding and
250	singular value decomposition (SVD). Given a univariate time series $Y = (y_1,, y_N)$,
251	the embedding procedure means transferring one dimensional Y into H-dimensional
252	vectors $\mathbf{X} = (X_1,, X_H)$, where $X_i = (y_i,, y_K)^T$, $i = 1,, K = N - L + 1$. The
253	parameter $2 \le L \le N$ is the window length, and its selection is very important for
254	the SSA.

256 X:

$$\boldsymbol{C} = \frac{1}{K} \boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^T$$

The covariance matrix C should be firstly derived from the trajectory matrix

257

255

(4)

where $\Lambda = \text{diag}(\lambda_1, ..., \lambda_d)$, a diagonal matrix, consists of the eigenvalues of the covariance matrix, and *d* is the rank of the *X*. The matrix $E = (e_1, ..., e_d)$ includes corresponding eigenvectors.

261 Based on the SVD, the trajectory matrix X can be written as follows

$$X = U \Sigma V^T$$
(5)

where the columns of U and V are orthogonal, containing the left and right

eigenvectors of X, Σ is a diagonal matrix. Combined equation (1) and (2), the

265 covariance matrix can be also denoted as

$$\boldsymbol{C} = \boldsymbol{U}(\Sigma^2/K)\boldsymbol{U}^T \tag{6}$$

Thus $\boldsymbol{U} = (\boldsymbol{u_1}, ..., \boldsymbol{u_d}) = \boldsymbol{E} = (\boldsymbol{e_1}, ..., \boldsymbol{e_d}), \quad \sum = \sqrt{K} \Lambda^{1/2} = diag(\sqrt{K\lambda_1}, ..., \sqrt{K\lambda_d}),$ and $\boldsymbol{V} = (\boldsymbol{v_1}, ..., \boldsymbol{v_d})$ can also be easily obtained based on the equation (2). The \boldsymbol{u}_i and \boldsymbol{v}_i are called temporal empirical orthogonal functions (EOFs) and principal components (PCs), respectively.

271 In addition, the SVD of the trajectory matrix can be also written as

$$X = X_1 + \dots + X_d \tag{7}$$

273 where $X_i = \sqrt{K\lambda_i} u_i v_i^T (i = 1, ..., d)$, are elementary matrices.

274 **3 Results**

266

275 3.1 The water shifting characteristics

276 Hovmöller diagrams (Hovmöller, 1949) were plotted to investigate the TWS

- spatiotemporal dynamic over the CIBA ($66^{\circ}E-101^{\circ}E$, $21^{\circ}N-40^{\circ}N$) between 2002 and
- 278 2017. According to the temporal variances of TWS along longitude and latitude,
- 279 seasonal clusters were found along both longitude and latitude. Moreover, TWS
- showed an increasing trend over 80°E-90°E (the Chinese side) but a decreasing trend

65 70 75

289	Figure 2. Hovmöller diagrams of TWS (mm) along longitude (a) and latitude (b), and
290	the seasonal anomalies along latitude (c) over the CIBA region. Spatial trend
291	distribution of the TWS (d) and corresponding local Moran's I distribution (e) over
292	the CIBA. The blue and red circles represent the increasing and decreasing trend,
293	respectively. The orange and green crosses are the locations in western China and
294	northwestern India, respectively. The red and blue in (e) represent the high-high
295	hotspots and low-low hotspots respectively.
296	According to Figure 2a-c, the temporal TWS variances had clear spatial shifts
297	over the CIBA. Moreover, the spatial trend distribution of TWS and its LISA map
298	displayed three clusters (also called hot spots); two of them represented decreasing
299	trend, and one was increasing trend (Figure 2d-e). The increasing hot spot was located
300	at the region of 80°E-95°E, 32°N-37°N (i.e., western China), while decreasing hot
301	spots covered the regions of 72°E-82°E, 26°N-32°N (northwestern India) and
302	85°E-100°E, 25°N-31°N (Bangladesh, Figure 2d-e). The spatial trend pattern of TWS
303	was consistent with the Hovmöller diagrams of TWS (Figure 2a-c), indicating there
304	was a TWS shifting over the CIBA during 2002-2017.

Figure 3. Hovmöller diagrams of PDSI along longitude (a) and latitude (b) over the
GBB. The mode 1 (c) and combination of mode 2 and mode 3 (d) of TRMM
precipitation based on the SSA.

309 Apart from the TWS, the Hovmöller diagrams of TRMM derived-precipitation

310	and PDSI	were shown	in	Figure 3.	The	Hovmöller	diagrams	of	PDSI	showed	that
-----	----------	------------	----	-----------	-----	-----------	----------	----	------	--------	------

311 central QTP (87°E-92°E, 35°N-40°N) has been wetting (blue regions in the diagrams)

312	since the late 1980s (Figures 3a-b). After 2000, the northwestern India (26°N-32°N)
313	has been drying (red regions in the diagram; Figure 3b). For precipitation, its seasonal
314	signals are very strong, which can mask the trend signals, leading to unclear
315	precipitation shifting pattern in the precipitation Hovmöller diagrams (not shown in
316	this paper). Therefore, we used SSA method to separate the seasonal and trend signals
317	(Figure 3c-d). The precipitation mode 1 represented the seasonal signal, which
318	accounts for 76% of the total variances. It explains 7 times of the variance explained
319	by the combination of mode 2 and mode 3 (hereafter called mode 2-3). The mode 2-3
320	accounts for 11% of the total precipitation variances, representing the secular trend
321	variances. It showed similar pattern with the spatial TWS trend distribution,
322	suggesting an increasing trend in western China and decreasing trend in other regions
323	of the GBB (Figure 3d).
324	In addition, the potential evaporation distribution in Figure S1a showed a
325	drying-wetting trend pattern which is similar with that of the TWS. Changing TWS
326	over the IGBB during 2002-2017 can be directly caused by a more precipitation (and
327	less evaporation) trend over the central QTP and a precipitation decline (and
328	strengthened evaporation) over the IGBB (Figure 3d and Figure S1a). Similarly,
329	Figure S1b showed sharp declines of snow depths during 2002-2017 over the
330	northwest and the southeast corners of the QTP. These downward trends corresponded
331	well with the rising temperatures (Figure S1c). With the rising of the local
332	temperatures, a reducing snow depth trend (i.e., more snow melting) during
333	2002-2017 can be linked to increasing downstream surface waters such as the 18

expansion of lakes in the central QTP (Zhang et al., 2017). Therefore, for the QTP
region, the snow melting could be another important contributor to the TWS
variations.

337	In summary, the TWS water shifting pattern over the CIBA is wetting for the
338	western China and drying for the northwestern India. This shifting pattern could be
339	directly affected by precipitation, potential evaporation and snow melting, which are
340	mainly driven by the Asian monsoons modulated by regional temperature gradients.
341	Therefore, the impacts of Asian monsoons, including IM and WNPM, on the water
342	shifting since 2002 were investigated in next section.
343	3.2 Monsoon as a driving mechanism behind the TWS shifting
344	The summer IM index (for the months of JJA) had a decreasing trend, whereas
345	the winter IM index (for the months of DJF) had an increasing trend (Figure 4a).
346	However, for the monsoon intensity, the IM was weakening in both summer and
347	winter. Although it is less clear, the WNPM index showed similar weakening trend.
348	The weakening of the IM and WNPM could be the underlying drivers of water
349	shifting over the CIBA. To quantify this weakening effect, IM and WNPM variation
350	(hereafter called IMV and WNPMV) index were proposed based on the moving
351	standard deviation of the IM and WNPM index, showing the both IM and WNPM
352	strength were decreasing during 2002 and 2017 (Figure 4c-d). Particularly, the IMV
353	index fell abruptly since 2010.

354

Figure 4. The monthly values of IM and WNPM indices during 1950-2017 (a-b) and the corresponding IMV and WNPMV indices during 2002-2017 (c-d). The red dots are the boreal summer (JJA) data and the blue dots are the winter (DJF) data in Figure 4a and 4b.

For investigating the relationships between IM (and WNPM) and TWS over the CIBA, two TWS time series located in western China and northwestern India (orange and green cross respectively in Figure 2d) were extracted. There were no significant relationships between IM (and WNPM) and TWS in both the western China and northwestern India (Figure S2). However, a significant negative trend for the western China and a significant positive trend for the northwestern India between the IMV (and WNPMV) index and TWS were shown in Figure 5a-d. The results

366	revealed that the weakening IM and WNPM could lead to an increasing TWS trend in
367	western China and a decreasing trend in northwestern India. Moreover, the LISA map
368	of the partial correlation of the IMV and TWS shared the similar pattern with that of
369	the WNPMV, showing significant negative and positive spatial clusters in western
370	China and northwestern India, respectively (Figure 5e-f), which was consistent with
371	the TWS trend patterns. Therefore, Figure 5a-f demonstrated that the TWS shifting
372	over the whole CIBA results from the weakening of the Asian monsoons. Additionally,
373	for the above-mentioned precipitation mode 2-3, representing the spatial precipitation
374	trend pattern, its temporal variation (hereafter called mode strength) was consistent
375	with the IMV and WNPMV step change (Figures S3), indicating that the precipitation
376	redistribution over the GBB was attributed to the IMV and WNPMV.

(e) Partial cor between GRACE and IMV (f) Partial cor between GRACE and WNPMV

WNPMV Index

378	Figure 5. IMV and WNPMV against the TWS over the China (a, c) and India region
379	(b, d). The LISA map of partial correlation between TWS and IMV (e), and WNPMV
380	(f) over the CIBA.

381	3.3 Temperature drivers behind monsoons and TWS
382	The above results showed that the TWS shifting over the CIBA was caused by
383	the weakening of the IMV and WNPMV through modulating the precipitation
384	distribution. The IM and WNPM variability have been showed to be related to the sea
385	surface temperature (SST) (e.g., Annamalai et al., 2005; Weare, 1979; Xu et al., 2019),
386	the temperature of the QTP (e.g., Boos and Kuang, 2010; Zhao and Chen, 2001;
387	Zhisheng et al., 2015), and the land-ocean thermal difference (e.g., Roxy et al., 2015;
388	Tao et al., 2016; Yang et al., 2007). Therefore, to explore the relationship between
389	monsoons and surface temperatures, the average temperature over three regions
390	located in the Indian Ocean (hereafter called Region A), the Ganges (hereafter called
391	Region B) and the Brahmaputra (hereafter called Region C) were extracted (Figure
392	S4).
393	The Figure 6 showed the relationships between mean annual temperature in
394	different regions and monsoon indices for 70 years. Both the IM and WNPM indices
395	were not related to the mean SST of Region A (Figure 6a and 6c), while the IMV and
396	WNPMV fitted well with negative and positive relationship for the SST, respectively
397	(Figure 6b and 6d). Moreover, negative relationships between the IMV and the near
398	surface air temperature (NSAT) were found in all regions (Figure 6e-g). For the

399	WNPMV, it showed a positive relation with the NSAT at Region A, but negatively
400	correlated with the NASTs at Region B and Region C (Figure 6h-j). These outcomes
401	showed that the local and ocean temperature can modulate the monsoon variations.
402	The negative relationships between temperatures and the IMV at three regions
403	revealed that rising regional air temperatures and SST caused by increasing global
404	temperatures may be the driver of the IM weakening. In addition, the IMV had a
405	positively weak but statistically significant relationship with the thermal difference
406	between Region A and Region C, while the WNPMV showed no significant
407	relationship with the land-ocean thermal difference (Figures 6k-l), because it was
408	more likely related to the thermal difference between the Asian land surface and the
409	tropical Pacific Ocean based on its definition (Li and Hsu, 2018). Therefore, the
410	land-Indian Ocean thermal difference may play a weak role for changing monsoons
411	and thus the TWS spatial patterns.

415 IMV and WNPMV index against the air temperature difference between Region A and

416 Region C (k-l).

417 4 Discussion

418	The TWS trend pattern and the Hovmöller diagrams clearly showed the spatial
419	clusters over the CIBA. There were (1) a significant decreasing cluster over the upper
420	Indus and Ganges (i.e., northwestern India), (2) an increasing cluster over the central
421	QTP (i.e., western China) and (3) a decreasing cluster over the southeastern
422	Brahmaputra basin (i.e., Bangladesh). In addition to decreasing precipitation and
423	increasing potential evaporation, the TWS decline in the IGBB was also probably
424	attributed to the over-exploitation of underground water for water supply in
425	agriculture and industrial sectors in northern India and Bangladesh (Rodell et al., 2009;
426	Shamsudduha et al., 2012). Given the TWS decline and population increase, the
427	IGBB region has now been facing severe water scarcity (Babel and Wahid, 2009), and
428	the situation will become more serious if no measure is taken.
429	Apart from the anthropogenic effect, the monsoon variability is a main natural
430	driver to the TWS shifting over the CIBA. Based on the monsoon variation analysis,
431	the weakening of the IMV and WNPMV were significant contributors to the
432	increasing TWS over the western China and the decreasing TWS over the
433	northwestern India. During winter (Figures 7a and 7c), less strong dry monsoon winds
434	come from the Himalaya over the Qinghai-Tibet Plateau; during summer (Figures 7b
435	and 7d), weak monsoons would bring less moist winds from the Arabian Sea to India.
436	Weaker and less moist winds would lead to drying windward side and wetting leeward

437 side of the Himalaya, and thus an increasing TWS over the western China and a

439

Figure 7. The average wind field of the lowest and highest 10% IM index (a-b),
representing the winter monsoons and summer monsoons, respectively. (c-d) are same
as (a-b) but for the WNPM.

According to the Figures 8a-b, the Indian Ocean (Region A) had a clear temperature increasing in both summer and winter. This temperature change led to the weakening of the IM, based on the negative relationship between IMV and SST in Region A (Figure 6b). The temperature over the Region B showed no obvious trend in both summer and winter (Figures 8c-d). The QTP (Region C) showed an increasing temperature trend in winter (Figure 8e), but no obvious trend in summer (Figure 8f). The increasing trends of temperature over the Indian Ocean were larger than that over

450	the QTP in both winter and summer, indicating that the thermal difference between
451	the Indian Ocean and QTP was decreasing, leading to the decrease in the IM intensity
452	based on the positive relationship between IMV and temperature difference shown in
453	the Figure 6k. For the WNPMV, the increasing temperature over the Region A
454	indicated the strengthening of the WNPMV based on the positive relationship
455	between WNPMV and SST over Region A (Figure 6d). However, this result is not
456	consistent with the WNPMV weakening. This inconsistency can be explained by the
457	complex interactions between the Indian Ocean and the Pacific Ocean, and the
458	WNPM is less important for the CIBA, compared to the IM (Luo et al., 2010; 2012).

Figure 8. The average temperature variation over time in winter (January) and
summer (July) over the Region A (a-b), Region B (c-d) and Region C (e-f).

5 Conclusion

463	In this study, we use the Hovmöller diagrams, the spatial TWS trend patterns
464	and their LISA maps to show that the TWS over the western China part was
465	increasing and the TWS over the northwestern India part was decreasing. The
466	precipitation and potential evaporation showed similar drying and wetting patterns
467	with the TWS, and snow melting due to the rising temperature can be an important
468	contributor to the TWS increase over western China (i.e., central QTP). The water
469	shifting pattern between 2002 and 2017 over the CIBA were controlled by the
470	changing Asian monsoon (i.e., IM and WNPM) and local temperature through the
471	modulation of precipitation, evaporation and snow melting.
472	The intensity of both IM and WNPM showed a gentle decreasing trend during
473	1950-2017. Furthermore, in order to emphasize the monsoon variation, IMV and
474	WNPMV were calculated based on the traditional monsoon indices, revealing that the
475	monsoon decreased dramatically during 2002-2017. In addition, the TWS over the
476	drying region (i.e., northwestern India) was positively correlated with IMV (and
477	WNPM), whereas the relationship between the TWS over the wetting zone (i.e.,
478	western China) and IMV (and WNPMV) was negative. This result suggested that the
479	weakening of the IM led to the decreasing and increasing trends of TWS over two
480	different regions of the CIBA. Moreover, similar clusters on the LISA maps further
481	show that the weakening monsoons caused the TWS redistribution over the CIBA.

482	Finally, the ocean and continental temperature difference changes modulated
483	the IM and WNPM variability, and they led to the TWS shifting over the CIBA. The
484	temperatures over the QTP, the Ganges, and the Indian Ocean were negatively
485	correlated with the IMV, indicating that increasing local temperatures weakened the
486	IM, and thus affecting the TWS shifting. Meanwhile, the decrease in the thermal
487	difference between the QTP and the Indian Ocean can also explain the weakening of
488	the IM because of their positive relationship.
489	In this study, we looked at monsoon roles for changing TWS. Although the
490	Glacial Isostatic Adjustment (GIA) were applied to the TWS data, the glacier effect
491	can be important for explaining the observed TWS shifts. The observed drying center
492	at the headwater of the Ganges can be related to the Gangotri glacier which is one of
493	the largest glaciers in the Himalayas. The Gangotri glacier has been retreating at a
494	significant rate between 22 and 27 m/year (Bhambri et al., 2011; Jain, 2008). The
495	glacier retreat could be another explanation of decreasing TWS over the Ganges due
496	to the temperature changes.
497	In summary, our findings have linked spatial water shifting over the CIBA to
498	monsoon variations and changing local or even global temperature gradients. The
499	main limitation of the study is whether the detected TWS shifting will last after 2017.
500	For future studies, it will be worthwhile to project future TWS distributions using the
501	temperature gradients derived from climate model outputs based on different
502	Representative Concentration Pathways (RCPs). Then, these projected water

503	conditions can help decision-makers to propose water management designs, including
504	(1) establishing water consumption quotas for regions having declining TWS and (2)
505	setting up flood control measures for places having increasing TWS. Therefore, the
506	dynamic relationships between temperature gradient, TWS and monsoons in this
507	study is not only building blocks for exploring the mechanisms of shifting
508	hydroclimatic systems, but also providing new insights for future water management
509	designs to the region.
510	Acknowledgments

- 511 This research was funded by the Hong Kong Baptist University Faculty research Fund
- 512 (FRG1/1617/005, FRG2/1617/082, FRG2/1516/085), and the National Natural Science
- 513 Foundation of China (NSFC) (Grant No. 41974003, 41674007), and The Scientific and
- 514 <u>Technological Research Council of Turkey (TUBITAK) 2232 grant (118C329)</u>. This
- 515 research was conducted using the resources of the High Performance Cluster
- 516 Computing Centre, Hong Kong Baptist University, which receives funding from
- 517 Research Grant Council, University Grant Committee of the HKSAR and Hong Kong
- 518 Baptist University. The datasets used in this study are publicly available, and the
- 519 corresponding URLs are provided in the section 2.

520 **References:**

- Alsdorf DE, Rodriguez E, Lettenmaier DP. Measuring surface water from space. Reviews ofGeophysics 2007; 45.
- Annamalai H, Liu P, Xie S-P. Southwest Indian Ocean SST Variability: Its Local Effect and Remote
 Influence on Asian Monsoons. Journal of Climate 2005; 18: 4150-4167.
- 525 Anselin L. Local Indicators of Spatial Association—LISA. Geographical Analysis 1995; 27: 93-115.
- Archer DR, Forsythe N, Fowler HJ, Shah SM. Sustainability of water resources management in the
 Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci.
 2010; 14: 1669-1680.
- Babel MS, Wahid SM. Freshwater Under Threat South Asia: Vulnerability Assessment of Freshwater
 Resources to Environmental Change: Ganges-Brahmaputra-Meghna River Basin, Helmand
 River Basin, Indus River Basin: UNEP, 2009.
- Baidya SK, Shrestha ML, Sheikh MM. Trends in daily climatic extremes of temperature and
 precipitation in Nepal. Journal of Hydrology and Meteorology 2008; 5: 38-51.
- Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC. Glacier changes in the Garhwal Himalaya, India,
 from 1968 to 2006 based on remote sensing. Journal of Glaciology 2011; 57: 543-556.
- Boos WR, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus
 plateau heating. Nature 2010; 463: 218-22.
- Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D:
 Nonlinear Phenomena 1986; 20: 217-236.
- Chen JL, Wilson CR, Blankenship D, Tapley BD. Accelerated Antarctic ice loss from satellite gravity
 measurements. Nature Geoscience 2009; 2: 859.
- 542 Chen JL, Wilson CR, Tapley BD. The 2009 exceptional Amazon flood and interannual terrestrial water
 543 storage change observed by GRACE. Water Resources Research 2010; 46.
- Cheng M, Ries J. The unexpected signal in GRACE estimates of \$\$C_{20}\$\$C20. Journal of Geodesy
 2017; 91: 897-914.
- 546 Dai A. Dai Global Palmer Drought Severity Index (PDSI). Research Data Archive at the National
 547 Center for Atmospheric Research, Computational and Information Systems Laboratory,
 548 Boulder, CO, 2017.
- Duan A, Liu S, Zhao Y, Gao K, Hu W. Atmospheric heat source/sink dataset over the Tibetan Plateau
 based on satellite and routine meteorological observations. Big Earth Data 2018; 2: 179-189.
- Farinotti D, Longuevergne L, Moholdt G, Duethmann D, Mölg T, Bolch T, et al. Substantial glacier
 mass loss in the Tien Shan over the past 50 years. Nature Geoscience 2015; 8: 716.
- Feng S, Hu Q. Regulation of Tibetan Plateau heating on variation of Indian summer monsoon in the
 last two millennia. Geophysical Research Letters 2005; 32.
- Gu D, Li T, Ji Z, Zheng B. On the Phase Relations between the Western North Pacific, Indian, and
 Australian Monsoons. Journal of Climate 2010; 23: 5572-5589.
- Güntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B. A global analysis of temporal and spatial
 variations in continental water storage. Water Resources Research 2007; 43.
- Hassani H. Singular Spectrum Analysis: Methodology and Comparison. University Library of Munich,
 Germany, 2007.
- Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF. Drought indicators based on model- assimilated
 Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations.
 Water Resources Research 2012; 48.
- 564 Hovmöller E. The Trough-and-Ridge diagram. Tellus 1949; 1: 62-66.
- 565 Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, et al. Extended Reconstructed
 566 Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons.
 567 Journal of Climate 2017; 30: 8179-8205.

- Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, et al. The TRMM Multisatellite
 Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation
 Estimates at Fine Scales. Journal of Hydrometeorology 2007; 8: 38-55.
- Humphrey V, Gudmundsson L, Seneviratne SI. Assessing Global Water Storage Variability from
 GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surveys in
 Geophysics 2016; 37: 357-395.
- Jain SK. Impact of retreat of Gangotri glacier on the flow of Ganga River. Current Science 2008; 95:
 1012-1014.
- Khandu, Awange JL, Anyah R, Kuhn M, Fukuda Y. Assessing regional climate simulations of the last
 30 years (1982–2012) over Ganges–Brahmaputra–Meghna River Basin. Climate Dynamics
 2017; 49: 2329-2350.
- Khandu, Forootan E, Schumacher M, Awange JL, Müller Schmied H. Exploring the influence of
 precipitation extremes and human water use on total water storage (TWS) changes in the
 Ganges-Brahmaputra-Meghna River Basin. Water Resources Research 2016; 52: 2240-2258.
- 582 Kim H, Yeh PJ-F, Oki T, Kanae S. Role of rivers in the seasonal variations of terrestrial water storage
 583 over global basins. Geophysical Research Letters 2009; 36.
- 584 Kuehl SA, Allison MA, Goodbred SL, Kudrass H. The Ganges–Brahmaputra Delta. 2011: 413-434.
- Li T, Hsu P-c. Monsoon Dynamics and Its Interactions with Ocean. Fundamentals of Tropical Climate
 Dynamics. Springer International Publishing, Cham, 2018, pp. 185-229.
- Long D, Chen X, Scanlon BR, Wada Y, Hong Y, Singh VP, et al. Have GRACE satellites overestimated
 groundwater depletion in the Northwest India Aquifer? Scientific Reports 2016; 6: 24398.
- Long D, Longuevergne L, Scanlon BR. Global analysis of approaches for deriving total water storage
 changes from GRACE satellites. Water Resources Research 2015; 51: 2574-2594.
- Long D, Pan Y, Zhou J, Chen Y, Hou X, Hong Y, et al. Global analysis of spatiotemporal variability in
 merged total water storage changes using multiple GRACE products and global hydrological
 models. Remote Sensing of Environment 2017; 192: 198-216.
- Luo J-J, Zhang R, Behera SK, Masumoto Y, Jin F-F, Lukas R, et al. Interaction between El Niño and
 Extreme Indian Ocean Dipole. Journal of Climate 2010; 23: 726-742.
- Luo JJ, Sasaki W, Masumoto Y. Indian Ocean warming modulates Pacific climate change. Proc Natl
 Acad Sci U S A 2012; 109: 18701-6.
- Mallya G, Mishra V, Niyogi D, Tripathi S, Govindaraju RS. Trends and variability of droughts over the
 Indian monsoon region. Weather and Climate Extremes 2016; 12: 43-68.
- Mirza MQ, Warrick RA, Ericksen NJ, Kenny GJ. Trends and persistence in precipitation in the Ganges,
 Brahmaputra and Meghna river basins. Hydrological Sciences Journal 1998; 43: 845-858.
- Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian
 Monsoon. Reviews of Geophysics 1993; 31: 357-396.

Moran PAP. Notes on Continuous Stochastic Phenomena. Biometrika 1950; 37: 17-23.

- Palmer WC. Meteorological drought (Vol. 30). Washington, DC, USA: US Department of Commerce.
 Weather Bureau 1965.
- Papa F, Durand F, Rossow WB, Rahman A, Bala SK. Satellite altimeter-derived monthly discharge of
 the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008.
 Journal of Geophysical Research: Oceans 2010; 115.

- Papa F, Frappart F, Malbeteau Y, Shamsudduha M, Vuruputur V, Sekhar M, et al. Satellite-derived
 surface and sub-surface water storage in the Ganges–Brahmaputra River Basin. Journal of
 Hydrology: Regional Studies 2015; 4: 15-35.
- Rajeevan M, Bhate J. A high resolution daily gridded rainfall dataset (1971–2005) for mesoscale
 meteorological studies. Current Science 2009; 96: 558-562.
- Reager JT, Famiglietti JS. Global terrestrial water storage capacity and flood potential using GRACE.
 Geophysical Research Letters 2009a; 36.
- Reager JT, Famiglietti JS. Global terrestrial water storage capacity and flood potential using GRACE.
 Geophysical Research Letters 2009b; 36: L23402.
- Reager JT, Thomas BF, Famiglietti JS. River basin flood potential inferred using GRACE gravity
 observations at several months lead time. Nature Geoscience 2014; 7: 588.
- Rodell M, Famiglietti J, Wiese D, Reager J, Beaudoing H, Landerer FW, et al. Emerging trends in
 global freshwater availability. Nature 2018; 557: 651.
- Rodell M, Velicogna I, Famiglietti JS. Satellite-based estimates of groundwater depletion in India.
 Nature 2009; 460: 999.
- Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, et al. A threefold rise in
 widespread extreme rain events over central India. Nature Communications 2017; 8: 708.
- Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN. Drying of Indian subcontinent
 by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun
 2015; 6: 7423.
- Sato T, Kimura F. How Does the Tibetan Plateau Affect the Transition of Indian Monsoon Rainfall?
 Monthly Weather Review 2007; 135: 2006-2015.
- Scanlon BR, Zhang Z, Rateb A, Sun A, Wiese D, Save H, et al. Tracking Seasonal Fluctuations in Land
 Water Storage Using Global Models and GRACE Satellites. Geophysical Research Letters
 2019; 46: 5254-5264.
- Scanlon BR, Zhang Z, Save H, Sun AY, Schmied HM, van Beek LP, et al. Global models underestimate
 large decadal declining and rising water storage trends relative to GRACE satellite data.
 Proceedings of the National Academy of Sciences 2018; 115: E1080-E1089.
- 638 Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, et al. GRACE observations of
 639 changes in continental water storage. Global and Planetary Change 2006a; 50: 112-126.
- Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, et al. GRACE observations of
 changes in continental water storage. Global and Planetary Change 2006b; 50: 112-126.
- Sen Roy S, Balling RC. Trends in extreme daily precipitation indices in India. International Journal of
 Climatology 2004; 24: 457-466.
- Shahid S. Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology 2011;
 104: 489-499.
- Shamsudduha M, Taylor RG, Longuevergne L. Monitoring groundwater storage changes in the highly
 seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water
 Resources Research 2012; 48.
- Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, et al. Mass balance of the
 Antarctic Ice Sheet from 1992 to 2017. Nature 2018; 558: 219-222.

- Sinha D, Syed TH, Famiglietti JS, Reager JT, Thomas RC. Characterizing Drought in India Using
 GRACE Observations of Terrestrial Water Storage Deficit. Journal of Hydrometeorology 2016;
 18: 381-396.
- Song C, Ke L, Huang B, Richards KS. Can mountain glacier melting explains the GRACE-observed
 mass loss in the southeast Tibetan Plateau: From a climate perspective? Global and Planetary
 Change 2015; 124: 1-9.
- Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and
 ocean model output. Journal of Geophysical Research: Solid Earth 2008; 113.
- Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophysical
 Research Letters 2006; 33: L08402.
- Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR. Analysis of terrestrial water storage changes
 from GRACE and GLDAS. Water Resources Research 2008; 44.
- Tao Y, Cao J, Lan G, Su Q. The zonal movement of the Indian–East Asian summer monsoon interface
 in relation to the land–sea thermal contrast anomaly over East Asia. Climate Dynamics 2016;
 46: 2759-2771.
- Tapley BD, Bettadpur S, Watkins M, Reigber C. The gravity recovery and climate experiment: Mission
 overview and early results. Geophysical Research Letters 2004; 31.
- Thomas AC, Reager JT, Famiglietti JS, Rodell M. A GRACE-based water storage deficit approach for
 hydrological drought characterization. Geophysical Research Letters 2014; 41: 1537-1545.
- Thomas BF, Famiglietti JS. Identifying Climate-Induced Groundwater Depletion in GRACE
 Observations. Scientific Reports 2019; 9: 4124.
- Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic
 effects and their possible detection using GRACE. Journal of Geophysical Research: Solid
 Earth 1998; 103: 30205-30229.
- Wang B, LinHo. Rainy Season of the Asian–Pacific Summer Monsoon. Journal of Climate 2002; 15:
 386-398.
- Wang B, Wu R, Lau K-M. Interannual Variability of the Asian Summer Monsoon: Contrasts between
 the Indian and the Western North Pacific–East Asian Monsoons. Journal of Climate 2001; 14:
 4073-4090.
- Weare BC. A Statistical Study of the Relationships between Ocean Surface Temperatures and the
 Indian Monsoon. Journal of the Atmospheric Sciences 1979; 36: 2279-2291.
- Wells N, Goddard S, Hayes MJ. A Self-Calibrating Palmer Drought Severity Index. Journal of Climate
 2004; 17: 2335-2351.
- Wijngaard RR, Lutz AF, Nepal S, Khanal S, Pradhananga S, Shrestha AB, et al. Future changes in
 hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLOS
 ONE 2017; 12: e0190224.
- Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, et al. Tibetan Plateau climate dynamics: recent research
 progress and outlook. National Science Review 2014; 2: 100-116.
- Kiang L, Wang H, Steffen H, Wu P, Jia L, Jiang L, et al. Groundwater storage changes in the Tibetan
 Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth and Planetary
 Science Letters 2016; 449: 228-239.

- Ku K, Lu R, Kim B-J, Mao J, Park J-K. Influence of Tropical SSTs on the Interannual Variation of the
 Summer Monsoon Break over the Western North Pacific. Journal of Climate 2019; 32:
 2807-2821.
- Yang J, Liu Q, Xie S-P, Liu Z, Wu L. Impact of the Indian Ocean SST basin mode on the Asian
 summer monsoon. Geophysical Research Letters 2007; 34.
- Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y. Recent climate changes over the Tibetan Plateau and
 their impacts on energy and water cycle: A review. Global and Planetary Change 2014; 112:
 79-91.
- Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, et al. Different glacier status with atmospheric
 circulations in Tibetan Plateau and surroundings. Nature Climate Change 2012; 2: 663-667.
- Yao T, Zhou H, Yang X. Indian monsoon influences altitude effect of \$180 in precipitation/river water
 on the Tibetan Plateau. Chinese Science Bulletin 2009; 54: 2724-2731.
- Yi H, Wen L. Satellite gravity measurement monitoring terrestrial water storage change and drought in
 the continental United States. Scientific Reports 2016; 6: 19909.
- Zhang G, Yao T, Shum CK, Yi S, Yang K, Xie H, et al. Lake volume and groundwater storage
 variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters 2017; 44:
 5550-5560.
- Zhao M, Velicogna I, Kimball JS. Satellite observations of regional drought severity in the continental
 United States using GRACE-based terrestrial water storage changes. Journal of Climate 2017;
 30: 6297-6308.
- Zhao P, Chen L. Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in
 35 years and its relation to rainfall in China. Science in China Series D: Earth Sciences 2001;
 44: 858-864.
- Zhisheng A, Guoxiong W, Jianping L, Youbin S, Yimin L, Weijian Z, et al. Global Monsoon Dynamics
 and Climate Change. Annual Review of Earth and Planetary Sciences 2015; 43: 29-77.
- 717 Zhu L, Xie M, Wu Y. Quantitative analysis of lake area variations and the influence factors from 1971
 718 to 2004 in the Nam Co basin of the Tibetan Plateau. Chinese Science Bulletin 2010; 55:
 719 1294-1303.

720 Appendix

Figure S1. The potential evaporation (a), snow depth (b) and temperature trend (c) pattern over

the CIBA.

Figure S2. The IM and WNPM index against the TWS over the China (a, c) and India

region (b, d) of CIBA.

(a) Modes 2+3 IMV

(b) Modes 2+3 WNPMV

727

Figure S3. The mode strength of precipitation mode 2-3 (red) against the IMV (a) and

729 WNPM step change (orange) (b).

Figure S4. The selected temperature locations.

Highlights:

- Terrestrial water storage showed a clear shifting pattern
- Pattern showed wetting in western China and drying in northwestern India.
- The shifting patterns were mainly due to the weakening of the monsoon variations.
- Weakening monsoon were related to decreasing regional temperature gradients.

1	Gravimetry-based water storage shifting over the China-India border area
2	controlled by regional climate variability
3	Kwok Pan Chun ¹ , Qing He ¹ , Hok Sum Fok ² , Subimal Ghosh ³ , Omer Yetemen ^{4,7} ,
4	Qiang Chen ⁵ , Ana Mijic ⁶
5	¹ Department of Geography, Hong Kong Baptist University, Hong Kong, China.
6	² School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China.
7	³ Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai,
8	India.
9	⁴ Civil, Surveying, and Environmental Engineering, The University of Newcastle,
10	Australia.
11	⁵ Geophysics Laboratory, Faculty of Science, Technology and Communication,
12	University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette,
13	Luxembourg.
14	⁶ Imperial College London, Department of Civil and Environmental Engineering,
15	London SW7 2AZ, UK.
16	⁷ Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak 34469,
17	Istanbul, Turkey.
18	Corresponding author: Kwok Pan Chun (<u>kpchun@hkbu.edu.hk</u>)

19 Highlights:

20	•	Terrestrial water storage showed a clear shifting pattern
21	•	Pattern showed wetting in western China and drying in northwestern India.
22	•	The shifting patterns were mainly due to the weakening of the monsoon
23		variations.

24

Weakening monsoon were related to decreasing regional temperature gradients.

25 Abstract

The regional water storage shifting causes nonstationary spatial distribution of droughts 26 27 and flooding, leading to water management challenges, environmental degradation and 28 economic losses. The regional water storage shifting is becoming evident due to the increasing climate variability. However, the previous studies for climate drivers behind 29 30 the water storage shifting are not rigorously quantified. In this study, the terrestrial water storage (TWS) spatial shifting pattern during 2002-2017 over the China-India 31 border area (CIBA) is developed using the Gravity Recovery and Climate Experiment 32 (GRACE), suggesting that the northwestern India were wetting while western China 33 was drying. Similar drying and wetting patterns were also found in the precipitation, 34 snow depth, Palmer Drought Severity Index (PDSI) and potential evaporation data. 35 36 Based on our newly proposed Indian monsoon (IM) and western North Pacific monsoon (WNPM) variation indices, the water shifting pattern over the CIBA was 37 found to be affected by the weakening of the variation of IM and WNPM through 38 modulating the regional atmospheric circulation. The weakening of IM and WNPM 39

variations has shown to be attributed to the decreasing temperature gradient between
the CIBA and the Indian Ocean, and possibly related to increasing regional
temperatures associated with the increasing global temperature. As the global warming
intensifies, it is expected that the regional TWS shifting pattern over the CIBA will be
further exaggerated, stressing the need of advancing water resources management for
local communities in the region.

46 Keywords

Water storage shifting; Gravity Recovery and Climate Experiment; climate variability;
China-India border area

49 **1 Introduction**

Terrestrial water storage (TWS), including canopy water, glaciers, snow, 50 surface water in rivers, lakes, wetlands and reservoirs, and underground water, 51 determines global and regional hydrological resilience (Alsdorf et al., 2007). It plays a 52 53 major role in the exchange of water with the atmosphere and oceans, and affects climate variability (Kim et al., 2009). Therefore, the TWS monitoring as well as the 54 55 underlying drivers for its spatiotemporal dynamics are crucial for understanding the climatic-hydrological system (Humphrey et al., 2016). With the launch of the Gravity 56 57 Recovery and Climate Experiment (GRACE) in March 2002, it provides a novel and reliable tool for TWS monitoring (e.g., Long et al., 2015; Long et al., 2017; Reager 58 59 and Famiglietti, 2009b; Scanlon et al., 2019; Schmidt et al., 2006b; Sinha et al., 2016; 60 Syed et al., 2008; Tapley et al., 2004).

61	In recent years, the GRACE data has been widely used to assess the TWS
62	variability (e.g., Güntner et al., 2007; Long et al., 2015; Schmidt et al., 2006a), to
63	monitor droughts (e.g., Houborg et al., 2012; Thomas et al., 2014; Yi and Wen, 2016;
64	Zhao et al., 2017) and flooding (e.g., Chen et al., 2010; Reager and Famiglietti, 2009a;
65	Reager et al., 2014); it is also used to evaluate groundwater depletion (e.g., Long et al.,
66	2016; Rodell et al., 2009; Thomas and Famiglietti, 2019), and to estimate ice sheet or
67	glacier loss (e.g., Chen et al., 2009; Farinotti et al., 2015; Shepherd et al., 2018).
68	These studies have demonstrated the capability of GRACE to observe regional
69	hydrological variability and global climate abnormalities, which are used for
70	investigated water cycles linked with global and regional climates. For investigating
71	the GRACE long-term trend variability, Rodell et al. (2018) quantified the global
72	TWS trends during 2002-2016 and provided their corresponding causes. They found a
73	general wetting pattern at high- and low-latitudes and a drying pattern at mid-latitudes,
74	and these patterns are mainly due to the regular natural variability, groundwater
75	depletion, and climate change. Meanwhile, Scanlon et al. (2018) found the TWS in
76	some mid-latitude basins were decreasing, including Arkansas, Indus, Ganges,
77	Brahmaputra, Hai River, Euphrates. On the other hand, high- and low-latitude regions
78	showed an increasing TWS trend including Missouri, Amazon, Okavango, and
79	Murray basin.

80 The increasing water loss at mid-latitudes exerts great pressure on the water 81 supply in mid-latitude countries, in particular populous China and India. The 82 China-India border area (CIBA, Figure 1), covering the Qinghai-Tibet Plateau (QTP),

83	and Indus-Ganges-Brahmaputra basin (IGBB), is shared by multiple nations,
84	including China, India, Nepal, Bhutan, Bangladesh, and Pakistan. The Tibetan Plateau,
85	known as the 'third pole' of the Earth (Yao et al., 2012), affects regional thermal
86	gradients which modulate local circulations (Duan et al., 2018; Wu et al., 2014; Zhao
87	and Chen, 2001). Therefore, exploring how local climate mechanisms affect the TWS
88	variability over the CIBA can provide information to decision makers for managing
89	water resources shared among multiple populous nations. Over the IGBB, there have
90	been several studies focusing on the water storage variations over the IGBB (e.g.,
91	Khandu et al., 2016; Scanlon et al., 2018) and QTP regions (e.g., Song et al., 2015;
92	Xiang et al., 2016; Zhang et al., 2017). Related to the glacial processes, sharp water
93	mass losses were observed in the southeast QTP between 2003 and 2011 (Song et al.,
94	2015). Moreover, the lake volume in QTP region increased from 1970s to 2015
95	(Zhang et al., 2017). Over the IGBB, the TWS declined rapidly due to decreasing
96	precipitation during 2002-2014 (Khandu et al., 2016) and increasing irrigation
97	(Scanlon et al., 2018). Overall, previous studies clearly showed the separate trend
98	variations of TWS in QTP and IGBB. Although they attempted to explain the TWS
99	variations using meteorological forcing (e.g. precipitation and temperature) and
100	human influences (e.g. irrigation), the TWS variations over the IGBB can be
101	associated with the water conditions over the QTP, since the headwaters of the Indus,
102	Ganges and Brahmaputra rivers originate in the QTP region (Kuehl et al., 2011).
103	Therefore, there is a need to investigate the TWS dynamic in the QTP and the IGBB
104	as an integral system rather than individual separate components. Furthermore, the

105	TWS variations are not only directly controlled by the local precipitation and
106	temperature, but also indirectly affected by regional atmospheric circulations and
107	temperature gradients between land and ocean.
108	Over the IGBB, the spatiotemporal dynamic of the hydrological regime is
109	mainly under the control of the Indian monsoon (IM) (Khandu et al., 2017). Over the
110	IGBB from July to September, the IM contributes to around 60-90% of the annual
111	precipitation (Khandu et al., 2016). Due to the complex climate types, (Figure 1b), the
112	IGBB has unevenly distributed precipitation over the sub-basins. In the Ganges basin,
113	the northwest region is dryer than the coast area; in the Brahmaputra basin, there is
114	heavy precipitation because of the rain shadow effect (Mirza et al., 1998). The upper
115	Indus basin receives more precipitation than the lower basin, especially in the
116	mountain region (Archer et al., 2010). Furthermore, the formation and variation of the
117	IM are closely related to the QTP heating (Feng and Hu, 2005; Molnar et al., 1993;
118	Sato and Kimura, 2007), and the IM affects precipitation patterns and river
119	distributions over the QTP (Yao et al., 2009). Therefore, the IM plays an crucial role
120	in the water dynamics over the whole CIBA.
121	Apart from the influence of IM, the regional temperature gradient could be an
122	indirect contributor to the hydrological variability over the IGBB region. For instance,
123	Roxy et al. (2015) found that the decreasing land-sea thermal gradient weakens the
124	summer monsoon circulation and leads to the rainfall variations in India, due to rapid
125	Indian Ocean warming. Over the past decades, the regional temperature increase

126	caused wetter conditions in central and northern QTP (Yang et al., 2014). Moreover,
127	changing hydroclimatic extreme events over the QTP and IGBB region are suggested
128	to be related to shifting atmospheric and hydrological patterns due to increasing
129	global average temperatures (Wijngaard et al., 2017). In recent years, more frequent
130	droughts occurred in central India (Mallya et al., 2016; Rajeevan and Bhate, 2009),
131	Nepal (Baidya et al., 2008), and Bangladesh (Shahid, 2011), while the extreme
132	precipitation events were increased over the most parts of the India (Roxy et al., 2017;
133	Sen Roy and Balling, 2004). In the central QTP, grasslands were affected by flooding
134	due to the expansion of the surrounding lakes since the early 2000s (Zhu et al., 2010).
135	Over the CIBA, the changes of precipitation driven by IM variability affect the
136	TWS dynamic (e.g., Khandu et al., 2016; Papa et al., 2010; 2015). The relationships
137	between the IM and the TWS over the CIBA were only discussed qualitatively in
138	almost all previous studies, but few studies have quantified these relationships and
139	analyzed their mechanisms associated with regional temperature gradients at a
140	seasonal scale. In this study, a new IM variation index was proposed to explore how
141	the TWS is related to atmospheric circulations and regional temperature gradients.
142	Given the close interaction between the IM and the western North Pacific monsoon
143	(WNPM) (e.g., Gu et al., 2010; Li and Hsu, 2018; Wang et al., 2001), the WNPM was
144	also considered to be a possible contributor to the TWS shifting. Furthermore, the
145	spatiotemporal variability of precipitation and the Palmer Drought Severity Index
146	were also explored because the PDSI represents the soil moisture state which is a
147	difference between precipitation and potential evapotranspiration. 7

Overall, the main objectives of this study are: (1) to evaluate spatio-temporal 148 characteristics of TWS associated with the other meteorological patterns in CIBA (2) 149 to quantify the relationships between the TWS variations and monsoons (i.e. the IM 150 and the WNPM); (3) to identify the temperature drivers related to monsoons and TWS 151 variations; and (4) to develop a framework for explaining the relationships of 152 temperature, monsoons and the TWS. 153 This study was organized as follows. A summary of various data sets and data 154 analysis approaches employed in this study were given in Section 2. The results were 155 given in Section 3, and they are followed by the corresponding discussion in Section 4. 156

In Section 5, the major findings and implications of shifting TWS over the CIBA weresummarized.

Figure 1. The general features (a) and Koppen climate types (b) of the CIBA. The
yellow and cyan shaded areas are Indus Basin and Ganges-Brahmaputra Basin
respectively in Figure 1a.

2 Materials and methods

164	2.1 Gravity Recovery and Climate Experiment (GRACE) data
165	The GRACE was designed to monitor the temporal and spatial variability of
166	the Earth's gravity field. Using the algorithm of Wahr et al. (1998), the gravity field
167	can be converted to the equivalent water height (EWH) for monitoring the TWS. In
168	this study, we used GRACE Level-2 Release 06 (RL06) from the Center for Space
169	Research (CSR; derived from <u>ftp://isdcftp.gfz-potsdam.de/grace/Level-2/CSR/RL06/</u>)
170	at University of Texas to explore the spatiotemporal dynamics of TWS over the CIBA,
171	in the form of Stokes spherical harmonic coefficients (SHCs) up to a degree and order
172	of 60. The TWS grid data derived from GRACE spans from April 2002 to March
173	2017 (total 15 years), with a spatial resolution of 1 degree and a global coverage. For
174	reducing the estimation errors of gravity anomalies, the pre-processing and
175	post-processing procedures for GRACE data were applied, and these procedures
176	include adding the degree-1 SHCs representing the geocenter motion (Swenson et al.,
177	2008), replacing of the C_{20} term with the results from Satellite Laser Ranging (SLR)
178	(Cheng and Ries, 2017), destripping, and applying the Gaussian filter with a radius of
179	350 km (Swenson and Wahr, 2006).
180	2.2 Meteorological data
181	For linking the TWS variation to precipitation pattern, the Tropical Rainfall
182	Measuring Mission (TRMM) 3B43 version 7 was used in this study. This TRMM
183	Multi-satellite Precipitation Analysis (TMPA) product were produced from 9

184	assimilating data from multiple precipitation satellites, radiometers, and rain gauges
185	by Huffman et al. (2007). The product was obtained from the NASA Goddard Space
186	Flight Center (https://pmm.nasa.gov/data-access/downloads/trmm), with a time span
187	ranging from 1998 to present, and a spatial coverage of 50°S-50°N with a resolution
188	of 0.25 degree.
189	Apart from the TWS and precipitation data, drought indices are used for
190	investigating the shift of hydrological conditions. In this study, the self-calibrating
191	Palmer drought severity index (PDSI) (Wells et al., 2004) was used due to its better
192	spatial comparability than traditional PDSI (Palmer, 1965), derived from the Research
193	Data Archive at National Center for Atmospheric Research (NCAR)
194	(https://rda.ucar.edu/datasets/ds299.0/) (Dai, 2017). The self-calibrating PDSI
195	(hereafter just called PDSI for simplicity) data ranges from 1850 to 2014 with a
196	monthly scale, covering the global land areas with a spatial resolution of 2.5 degree.
197	Other meteorological variables like the potential evaporation, snow melting
198	and temperature also play important roles in the hydrological dynamics. These
199	meteorological variables were derived from the ERA5-Land monthly averaged
200	datasets
201	(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-mea
202	ns?tab=form), produced by the European Centre for Medium-Range Weather
203	Forecasts (ECMWF). The ERA5 datasets covers the period from 2001 to present, with
204	a high spatial resolution of $0.1 \times 0.1^{\circ}$. In addition, the sea surface temperature (SST)

205	data are derived form the extended reconstructed SST version 5 (ERSST.v5;
206	https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v5.html) of the National
207	Climate Data Centre (Huang et al., 2017).
208	2.3 Monsoon indices
209	The monsoon interaction zone of the IM and the WNPM is close to the edge
210	of our study area (i.e., the CIBA) over the Indochina Peninsula (Wang and LinHo,
211	2002). In order to quantify the effect of IM on the TWS variability over the CIBA, the
212	IM index was calculated, using the difference of zonal winds at 850-hPa between a
213	southern region (5°-15°N, 40°-80°E) and a northern region (20°-30°N, 70°-90°E)
214	(Wang et al., 2001). Based on the definition of Wang et al. (2001), the WNPM index
215	was also calculated, using the difference of zonal winds at 850-hPa a southern region
216	(5°-15°N, 100°-130°E) and a northern region (20°-30°N, 110°-140°E). The wind data
217	for the calculation of IM and WNPM indices were extracted from the National
218	Centers Environmental Prediction (NCEP) data (<u>https://www.ncep.noaa.gov/</u>).
219	2.4 Methodology
220	2.4.1 Moving standard deviation
221	Instead of using the conventional monsoon indices, we proposed to use the
222	moving standard deviation of monsoon indices, to examine how the monsoon
223	weakening affects the hydrological regimes over the CIBA. The moving standard

224 deviation of a given monsoon time series can be calculated as:

225
$$S(t) = \sqrt{\frac{\sum_{i=t}^{t+M} (x(i) - \mu(t))^2}{M - 1}}$$
(1)

- 231 2.4.2 Local Indicators of Spatial Association (LISA)
- The LISA was proposed to measure the local association between one observations and its neighboring observations (Anselin, 1995). The general LISA for an observation Z_i at location *i* can be expressed as

$$L_i = f(Z_i, Z_{I_i}) \tag{2}$$

where f is a function for association calculation, and the Z_{J_i} are the observations at the neighboring locations J_i of i. In this study, we used Moran's I (Moran, 1950) to be the calculation function. The LISA based on Moran's I for location i can be written as

 $I_{i} = \frac{(Z_{i} - \bar{Z})}{S_{i}^{2}} \sum_{j=1, j \neq i}^{n} w_{ij} (Z_{j} - \bar{Z})$

(3)

240

241 where

$$S_i^2 = \frac{\sum_{j=1, j \neq i}^n w_{ij}}{n-1} - \bar{Z}^2$$

where *n* is the total number of observations, Z_i and Z_j are the observations at location *i* and *j*; w_{ij} is the spatial weight between location *i* and *j*.

244 2.4.3 Singular spectral analysis

257

261

To capture the spatiotemporal characteristics of the precipitation, the singular 245 spectral analysis (SSA) method was applied in this study. The SSA was introduced by 246 Broomhead and King (1986), aiming at decomposing a time series into a sum of 247 independent series identified as trend, periodic component, and noise (Hassani, 2007). 248 The decomposition process of the SSA can be divided into two steps: embedding and 249 singular value decomposition (SVD). Given a univariate time series $Y = (y_1, ..., y_N)$, 250 the embedding procedure means transferring one dimensional Y into H-dimensional 251 vectors $X = (X_1, ..., X_H)$, where $X_i = (y_i, ..., y_K)^T$, i = 1, ..., K = N - L + 1. The 252 parameter $2 \le L \le N$ is the window length, and its selection is very important for 253 the SSA. 254

255 The covariance matrix *C* should be firstly derived from the trajectory matrix
256 *X*:

$$\boldsymbol{C} = \frac{1}{K} \boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{E} \boldsymbol{\Lambda} \boldsymbol{E}^T \tag{4}$$

where $\Lambda = \text{diag}(\lambda_1, ..., \lambda_d)$, a diagonal matrix, consists of the eigenvalues of the covariance matrix, and *d* is the rank of the *X*. The matrix $E = (e_1, ..., e_d)$ includes corresponding eigenvectors.

Based on the SVD, the trajectory matrix X can be written as follows

$$\boldsymbol{X} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T \tag{5}$$

where the columns of U and V are orthogonal, containing the left and right 263 eigenvectors of X, Σ is a diagonal matrix. Combined equation (1) and (2), the 264 covariance matrix can be also denoted as 265 $\boldsymbol{C} = \boldsymbol{U}(\Sigma^2/K)\boldsymbol{U}^T$ 266 (6)Thus $\boldsymbol{U} = (\boldsymbol{u_1}, \dots, \boldsymbol{u_d}) = \boldsymbol{E} = (\boldsymbol{e_1}, \dots, \boldsymbol{e_d}), \quad \sum = \sqrt{K} \boldsymbol{\Lambda}^{1/2} = diag(\sqrt{K\lambda_1}, \dots, \sqrt{K\lambda_d}),$ 267 and $V = (v_1, ..., v_d)$ can also be easily obtained based on the equation (2). The u_i 268 and \boldsymbol{v}_i are called temporal empirical orthogonal functions (EOFs) and principal 269 components (PCs), respectively. 270 In addition, the SVD of the trajectory matrix can be also written as 271

$$X = X_1 + \dots + X_d \tag{7}$$

where
$$\mathbf{X}_i = \sqrt{K\lambda_i} \mathbf{u}_i \mathbf{v}_i^T (i = 1, ..., d)$$
, are elementary matrices.

274 3 Results

275 3.1 The water shifting characteristics

276 Hovmöller diagrams (Hovmöller, 1949) were plotted to investigate the TWS

spatiotemporal dynamic over the CIBA (66°E-101°E, 21°N-40°N) between 2002 and

- 278 2017. According to the temporal variances of TWS along longitude and latitude,
- seasonal clusters were found along both longitude and latitude. Moreover, TWS
- showed an increasing trend over 80°E-90°E (the Chinese side) but a decreasing trend

between 75°E and 80°E (the Indian side) (Figure 2a). In terms of latitude, the shift of
TWS was even clearer. Figure 2b shows a decreasing trend between 28°N and 32°N
and an increasing trend over 32°N-38°N. In order to get more apparent trend pattern,
the Hovmöller diagram of seasonal TWS anomalies was shown in Figure 2c. It
displays a distinctive increasing trend between 32°N and 38°N and a decreasing trend
between 28°N and 32°N. The dividing line between increasing and decreasing trends
was around the 32°N latitude.

(e) Local Moran's I of GRACE trend

289	Figure 2. Hovmöller diagrams of TWS (mm) along longitude (a) and latitude (b), and
290	the seasonal anomalies along latitude (c) over the CIBA region. Spatial trend
291	distribution of the TWS (d) and corresponding local Moran's I distribution (e) over
292	the CIBA. The blue and red circles represent the increasing and decreasing trend,
293	respectively. The orange and green crosses are the locations in western China and
294	northwestern India, respectively. The red and blue in (e) represent the high-high
295	hotspots and low-low hotspots respectively.
296	According to Figure 2a-c, the temporal TWS variances had clear spatial shifts
297	over the CIBA. Moreover, the spatial trend distribution of TWS and its LISA map
298	displayed three clusters (also called hot spots); two of them represented decreasing
299	trend, and one was increasing trend (Figure 2d-e). The increasing hot spot was located
300	at the region of 80°E-95°E, 32°N-37°N (i.e., western China), while decreasing hot
301	spots covered the regions of 72°E-82°E, 26°N-32°N (northwestern India) and
302	85°E-100°E, 25°N-31°N (Bangladesh, Figure 2d-e). The spatial trend pattern of TWS
303	was consistent with the Hovmöller diagrams of TWS (Figure 2a-c), indicating there
304	was a TWS shifting over the CIBA during 2002-2017.

305

Figure 3. Hovmöller diagrams of PDSI along longitude (a) and latitude (b) over the
GBB. The mode 1 (c) and combination of mode 2 and mode 3 (d) of TRMM
precipitation based on the SSA.

Apart from the TWS, the Hovmöller diagrams of TRMM derived-precipitation and PDSI were shown in Figure 3. The Hovmöller diagrams of PDSI showed that central QTP (87°E-92°E, 35°N-40°N) has been wetting (blue regions in the diagrams)

312	since the late 1980s (Figures 3a-b). After 2000, the northwestern India (26°N-32°N)
313	has been drying (red regions in the diagram; Figure 3b). For precipitation, its seasonal
314	signals are very strong, which can mask the trend signals, leading to unclear
315	precipitation shifting pattern in the precipitation Hovmöller diagrams (not shown in
316	this paper). Therefore, we used SSA method to separate the seasonal and trend signals
317	(Figure 3c-d). The precipitation mode 1 represented the seasonal signal, which
318	accounts for 76% of the total variances. It explains 7 times of the variance explained
319	by the combination of mode 2 and mode 3 (hereafter called mode 2-3). The mode 2-3
320	accounts for 11% of the total precipitation variances, representing the secular trend
321	variances. It showed similar pattern with the spatial TWS trend distribution,
322	suggesting an increasing trend in western China and decreasing trend in other regions
323	of the GBB (Figure 3d).
324	In addition, the potential evaporation distribution in Figure S1a showed a
325	drying-wetting trend pattern which is similar with that of the TWS. Changing TWS
326	over the IGBB during 2002-2017 can be directly caused by a more precipitation (and
327	less evaporation) trend over the central QTP and a precipitation decline (and
328	strengthened evaporation) over the IGBB (Figure 3d and Figure S1a). Similarly,
329	Figure S1b showed sharp declines of snow depths during 2002-2017 over the
330	northwest and the southeast corners of the QTP. These downward trends corresponded
331	well with the rising temperatures (Figure S1c). With the rising of the local
332	temperatures, a reducing snow depth trend (i.e., more snow melting) during
333	2002-2017 can be linked to increasing downstream surface waters such as the 18

expansion of lakes in the central QTP (Zhang et al., 2017). Therefore, for the QTP
region, the snow melting could be another important contributor to the TWS
variations.

337	In summary, the TWS water shifting pattern over the CIBA is wetting for the
338	western China and drying for the northwestern India. This shifting pattern could be
339	directly affected by precipitation, potential evaporation and snow melting, which are
340	mainly driven by the Asian monsoons modulated by regional temperature gradients.
341	Therefore, the impacts of Asian monsoons, including IM and WNPM, on the water
342	shifting since 2002 were investigated in next section.
343	3.2 Monsoon as a driving mechanism behind the TWS shifting
344	The summer IM index (for the months of JJA) had a decreasing trend, whereas
345	the winter IM index (for the months of DJF) had an increasing trend (Figure 4a).
346	However, for the monsoon intensity, the IM was weakening in both summer and
347	winter. Although it is less clear, the WNPM index showed similar weakening trend.
348	The weakening of the IM and WNPM could be the underlying drivers of water
349	shifting over the CIBA. To quantify this weakening effect, IM and WNPM variation
350	(hereafter called IMV and WNPMV) index were proposed based on the moving
351	standard deviation of the IM and WNPM index, showing the both IM and WNPM
352	strength were decreasing during 2002 and 2017 (Figure 4c-d). Particularly, the IMV
353	index fell abruptly since 2010.

354

Figure 4. The monthly values of IM and WNPM indices during 1950-2017 (a-b) and the corresponding IMV and WNPMV indices during 2002-2017 (c-d). The red dots are the boreal summer (JJA) data and the blue dots are the winter (DJF) data in Figure 4a and 4b.

366	revealed that the weakening IM and WNPM could lead to an increasing TWS trend in
367	western China and a decreasing trend in northwestern India. Moreover, the LISA map
368	of the partial correlation of the IMV and TWS shared the similar pattern with that of
369	the WNPMV, showing significant negative and positive spatial clusters in western
370	China and northwestern India, respectively (Figure 5e-f), which was consistent with
371	the TWS trend patterns. Therefore, Figure 5a-f demonstrated that the TWS shifting
372	over the whole CIBA results from the weakening of the Asian monsoons. Additionally,
373	for the above-mentioned precipitation mode 2-3, representing the spatial precipitation
374	trend pattern, its temporal variation (hereafter called mode strength) was consistent
375	with the IMV and WNPMV step change (Figures S3), indicating that the precipitation
376	redistribution over the GBB was attributed to the IMV and WNPMV.

(e) Partial cor between GRACE and IMV (f) Partial cor between GRACE and WNPMV

378	Figure 5. IMV and WNPMV against the TWS over the China (a, c) and India region
379	(b, d). The LISA map of partial correlation between TWS and IMV (e), and WNPMV
380	(f) over the CIBA.

381 3.3 Temperature drivers behind monsoons and TWS

The above results showed that the TWS shifting over the CIBA was caused by 382 the weakening of the IMV and WNPMV through modulating the precipitation 383 distribution. The IM and WNPM variability have been showed to be related to the sea 384 surface temperature (SST) (e.g., Annamalai et al., 2005; Weare, 1979; Xu et al., 2019), 385 the temperature of the QTP (e.g., Boos and Kuang, 2010; Zhao and Chen, 2001; 386 Zhisheng et al., 2015), and the land-ocean thermal difference (e.g., Roxy et al., 2015; 387 Tao et al., 2016; Yang et al., 2007). Therefore, to explore the relationship between 388 monsoons and surface temperatures, the average temperature over three regions 389 located in the Indian Ocean (hereafter called Region A), the Ganges (hereafter called 390 Region B) and the Brahmaputra (hereafter called Region C) were extracted (Figure 391 S4). 392

The Figure 6 showed the relationships between mean annual temperature in different regions and monsoon indices for 70 years. Both the IM and WNPM indices were not related to the mean SST of Region A (Figure 6a and 6c), while the IMV and WNPMV fitted well with negative and positive relationship for the SST, respectively (Figure 6b and 6d). Moreover, negative relationships between the IMV and the near surface air temperature (NSAT) were found in all regions (Figure 6e-g). For the

399	WNPMV, it showed a positive relation with the NSAT at Region A, but negatively
400	correlated with the NASTs at Region B and Region C (Figure 6h-j). These outcomes
401	showed that the local and ocean temperature can modulate the monsoon variations.
402	The negative relationships between temperatures and the IMV at three regions
403	revealed that rising regional air temperatures and SST caused by increasing global
404	temperatures may be the driver of the IM weakening. In addition, the IMV had a
405	positively weak but statistically significant relationship with the thermal difference
406	between Region A and Region C, while the WNPMV showed no significant
407	relationship with the land-ocean thermal difference (Figures 6k-l), because it was
408	more likely related to the thermal difference between the Asian land surface and the
409	tropical Pacific Ocean based on its definition (Li and Hsu, 2018). Therefore, the
410	land-Indian Ocean thermal difference may play a weak role for changing monsoons
411	and thus the TWS spatial patterns.

Figure 6. IM, IMV, WNPM and WNPMV index against the SST in Region A (a-d);

4 Discussion

418	The TWS trend pattern and the Hovmöller diagrams clearly showed the spatial
419	clusters over the CIBA. There were (1) a significant decreasing cluster over the upper
420	Indus and Ganges (i.e., northwestern India), (2) an increasing cluster over the central
421	QTP (i.e., western China) and (3) a decreasing cluster over the southeastern
422	Brahmaputra basin (i.e., Bangladesh). In addition to decreasing precipitation and
423	increasing potential evaporation, the TWS decline in the IGBB was also probably
424	attributed to the over-exploitation of underground water for water supply in
425	agriculture and industrial sectors in northern India and Bangladesh (Rodell et al., 2009;
426	Shamsudduha et al., 2012). Given the TWS decline and population increase, the
427	IGBB region has now been facing severe water scarcity (Babel and Wahid, 2009), and
428	the situation will become more serious if no measure is taken.
429	Apart from the anthropogenic effect, the monsoon variability is a main natural
430	driver to the TWS shifting over the CIBA. Based on the monsoon variation analysis,
431	the weakening of the IMV and WNPMV were significant contributors to the
432	increasing TWS over the western China and the decreasing TWS over the
433	northwestern India. During winter (Figures 7a and 7c), less strong dry monsoon winds
434	come from the Himalaya over the Qinghai-Tibet Plateau; during summer (Figures 7b
435	and 7d), weak monsoons would bring less moist winds from the Arabian Sea to India.
436	Weaker and less moist winds would lead to drying windward side and wetting leeward

437 side of the Himalaya, and thus an increasing TWS over the western China and a

Figure 7. The average wind field of the lowest and highest 10% IM index (a-b),
representing the winter monsoons and summer monsoons, respectively. (c-d) are same
as (a-b) but for the WNPM.

```
According to the Figures 8a-b, the Indian Ocean (Region A) had a clear
temperature increasing in both summer and winter. This temperature change led to the
weakening of the IM, based on the negative relationship between IMV and SST in
Region A (Figure 6b). The temperature over the Region B showed no obvious trend in
both summer and winter (Figures 8c-d). The QTP (Region C) showed an increasing
temperature trend in winter (Figure 8e), but no obvious trend in summer (Figure 8f).
The increasing trends of temperature over the Indian Ocean were larger than that over
```

450	the QTP in both winter and summer, indicating that the thermal difference between
451	the Indian Ocean and QTP was decreasing, leading to the decrease in the IM intensity
452	based on the positive relationship between IMV and temperature difference shown in
453	the Figure 6k. For the WNPMV, the increasing temperature over the Region A
454	indicated the strengthening of the WNPMV based on the positive relationship
455	between WNPMV and SST over Region A (Figure 6d). However, this result is not
456	consistent with the WNPMV weakening. This inconsistency can be explained by the
457	complex interactions between the Indian Ocean and the Pacific Ocean, and the
458	WNPM is less important for the CIBA, compared to the IM (Luo et al., 2010; 2012).

458

460 Figure 8. The average temperature variation over time in winter (January) and
461 summer (July) over the Region A (a-b), Region B (c-d) and Region C (e-f).

5 Conclusion

463	In this study, we use the Hovmöller diagrams, the spatial TWS trend patterns
464	and their LISA maps to show that the TWS over the western China part was
465	increasing and the TWS over the northwestern India part was decreasing. The
466	precipitation and potential evaporation showed similar drying and wetting patterns
467	with the TWS, and snow melting due to the rising temperature can be an important
468	contributor to the TWS increase over western China (i.e., central QTP). The water
469	shifting pattern between 2002 and 2017 over the CIBA were controlled by the
470	changing Asian monsoon (i.e., IM and WNPM) and local temperature through the
471	modulation of precipitation, evaporation and snow melting.
472	The intensity of both IM and WNPM showed a gentle decreasing trend during
473	1950-2017. Furthermore, in order to emphasize the monsoon variation, IMV and
474	WNPMV were calculated based on the traditional monsoon indices, revealing that the
475	monsoon decreased dramatically during 2002-2017. In addition, the TWS over the
476	drying region (i.e., northwestern India) was positively correlated with IMV (and
477	WNPM), whereas the relationship between the TWS over the wetting zone (i.e.,
478	western China) and IMV (and WNPMV) was negative. This result suggested that the
479	weakening of the IM led to the decreasing and increasing trends of TWS over two
480	different regions of the CIBA. Moreover, similar clusters on the LISA maps further
481	show that the weakening monsoons caused the TWS redistribution over the CIBA.

Finally, the ocean and continental temperature difference changes modulated the IM and WNPM variability, and they led to the TWS shifting over the CIBA. The temperatures over the QTP, the Ganges, and the Indian Ocean were negatively correlated with the IMV, indicating that increasing local temperatures weakened the IM, and thus affecting the TWS shifting. Meanwhile, the decrease in the thermal difference between the QTP and the Indian Ocean can also explain the weakening of the IM because of their positive relationship.

In this study, we looked at monsoon roles for changing TWS. Although the 489 Glacial Isostatic Adjustment (GIA) were applied to the TWS data, the glacier effect 490 491 can be important for explaining the observed TWS shifts. The observed drying center at the headwater of the Ganges can be related to the Gangotri glacier which is one of 492 the largest glaciers in the Himalayas. The Gangotri glacier has been retreating at a 493 494 significant rate between 22 and 27 m/year (Bhambri et al., 2011; Jain, 2008). The glacier retreat could be another explanation of decreasing TWS over the Ganges due 495 496 to the temperature changes.

In summary, our findings have linked spatial water shifting over the CIBA to monsoon variations and changing local or even global temperature gradients. The main limitation of the study is whether the detected TWS shifting will last after 2017. For future studies, it will be worthwhile to project future TWS distributions using the temperature gradients derived from climate model outputs based on different Representative Concentration Pathways (RCPs). Then, these projected water

conditions can help decision-makers to propose water management designs, including
(1) establishing water consumption quotas for regions having declining TWS and (2)
setting up flood control measures for places having increasing TWS. Therefore, the
dynamic relationships between temperature gradient, TWS and monsoons in this
study is not only building blocks for exploring the mechanisms of shifting
hydroclimatic systems, but also providing new insights for future water management
designs to the region.

510 Acknowledgments

- 511 This research was funded by the Hong Kong Baptist University Faculty research Fund
- 512 (FRG1/1617/005, FRG2/1617/082, FRG2/1516/085), the National Natural Science
- 513 Foundation of China (NSFC) (Grant No. 41974003, 41674007), and The Scientific and
- 514 Technological Research Council of Turkey (TUBITAK) 2232 grant (118C329). This
- 515 research was conducted using the resources of the High Performance Cluster
- 516 Computing Centre, Hong Kong Baptist University, which receives funding from
- 517 Research Grant Council, University Grant Committee of the HKSAR and Hong Kong
- 518 Baptist University. The datasets used in this study are publicly available, and the
- 519 corresponding URLs are provided in the section 2.

520 **References:**

- Alsdorf DE, Rodriguez E, Lettenmaier DP. Measuring surface water from space. Reviews of
 Geophysics 2007; 45.
- Annamalai H, Liu P, Xie S-P. Southwest Indian Ocean SST Variability: Its Local Effect and Remote
 Influence on Asian Monsoons. Journal of Climate 2005; 18: 4150-4167.
- 525 Anselin L. Local Indicators of Spatial Association—LISA. Geographical Analysis 1995; 27: 93-115.

- Archer DR, Forsythe N, Fowler HJ, Shah SM. Sustainability of water resources management in the
 Indus Basin under changing climatic and socio economic conditions. Hydrol. Earth Syst. Sci.
 2010; 14: 1669-1680.
- Babel MS, Wahid SM. Freshwater Under Threat South Asia: Vulnerability Assessment of Freshwater
 Resources to Environmental Change: Ganges-Brahmaputra-Meghna River Basin, Helmand
 River Basin, Indus River Basin: UNEP, 2009.
- Baidya SK, Shrestha ML, Sheikh MM. Trends in daily climatic extremes of temperature and
 precipitation in Nepal. Journal of Hydrology and Meteorology 2008; 5: 38-51.
- Bhambri R, Bolch T, Chaujar RK, Kulshreshtha SC. Glacier changes in the Garhwal Himalaya, India,
 from 1968 to 2006 based on remote sensing. Journal of Glaciology 2011; 57: 543-556.
- Boos WR, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus
 plateau heating. Nature 2010; 463: 218-22.
- Broomhead DS, King GP. Extracting qualitative dynamics from experimental data. Physica D:
 Nonlinear Phenomena 1986; 20: 217-236.
- Chen JL, Wilson CR, Blankenship D, Tapley BD. Accelerated Antarctic ice loss from satellite gravity
 measurements. Nature Geoscience 2009; 2: 859.
- 542 Chen JL, Wilson CR, Tapley BD. The 2009 exceptional Amazon flood and interannual terrestrial water
 543 storage change observed by GRACE. Water Resources Research 2010; 46.
- Cheng M, Ries J. The unexpected signal in GRACE estimates of \$\$C_{20}\$\$C20. Journal of Geodesy
 2017; 91: 897-914.
- Dai A. Dai Global Palmer Drought Severity Index (PDSI). Research Data Archive at the National
 Center for Atmospheric Research, Computational and Information Systems Laboratory,
 Boulder, CO, 2017.
- Duan A, Liu S, Zhao Y, Gao K, Hu W. Atmospheric heat source/sink dataset over the Tibetan Plateau
 based on satellite and routine meteorological observations. Big Earth Data 2018; 2: 179-189.
- Farinotti D, Longuevergne L, Moholdt G, Duethmann D, Mölg T, Bolch T, et al. Substantial glacier
 mass loss in the Tien Shan over the past 50 years. Nature Geoscience 2015; 8: 716.
- Feng S, Hu Q. Regulation of Tibetan Plateau heating on variation of Indian summer monsoon in the
 last two millennia. Geophysical Research Letters 2005; 32.
- Gu D, Li T, Ji Z, Zheng B. On the Phase Relations between the Western North Pacific, Indian, and
 Australian Monsoons. Journal of Climate 2010; 23: 5572-5589.
- Güntner A, Stuck J, Werth S, Döll P, Verzano K, Merz B. A global analysis of temporal and spatial
 variations in continental water storage. Water Resources Research 2007; 43.
- Hassani H. Singular Spectrum Analysis: Methodology and Comparison. University Library of Munich,
 Germany, 2007.
- Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF. Drought indicators based on model- assimilated
 Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations.
 Water Resources Research 2012; 48.
- Hovmöller E. The Trough-and-Ridge diagram. Tellus 1949; 1: 62-66.
- Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, et al. Extended Reconstructed
 Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons.
 Journal of Climate 2017; 30: 8179-8205.

- Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, et al. The TRMM Multisatellite
 Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation
 Estimates at Fine Scales. Journal of Hydrometeorology 2007; 8: 38-55.
- 571 Humphrey V, Gudmundsson L, Seneviratne SI. Assessing Global Water Storage Variability from
 572 GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surveys in
 573 Geophysics 2016; 37: 357-395.
- Jain SK. Impact of retreat of Gangotri glacier on the flow of Ganga River. Current Science 2008; 95:
 1012-1014.
- Khandu, Awange JL, Anyah R, Kuhn M, Fukuda Y. Assessing regional climate simulations of the last
 30 years (1982–2012) over Ganges–Brahmaputra–Meghna River Basin. Climate Dynamics
 2017; 49: 2329-2350.
- Khandu, Forootan E, Schumacher M, Awange JL, Müller Schmied H. Exploring the influence of
 precipitation extremes and human water use on total water storage (TWS) changes in the
 Ganges-Brahmaputra-Meghna River Basin. Water Resources Research 2016; 52: 2240-2258.
- 582 Kim H, Yeh PJ-F, Oki T, Kanae S. Role of rivers in the seasonal variations of terrestrial water storage
 583 over global basins. Geophysical Research Letters 2009; 36.
- 584 Kuehl SA, Allison MA, Goodbred SL, Kudrass H. The Ganges–Brahmaputra Delta. 2011: 413-434.
- Li T, Hsu P-c. Monsoon Dynamics and Its Interactions with Ocean. Fundamentals of Tropical Climate
 Dynamics. Springer International Publishing, Cham, 2018, pp. 185-229.
- Long D, Chen X, Scanlon BR, Wada Y, Hong Y, Singh VP, et al. Have GRACE satellites overestimated
 groundwater depletion in the Northwest India Aquifer? Scientific Reports 2016; 6: 24398.
- Long D, Longuevergne L, Scanlon BR. Global analysis of approaches for deriving total water storage
 changes from GRACE satellites. Water Resources Research 2015; 51: 2574-2594.
- Long D, Pan Y, Zhou J, Chen Y, Hou X, Hong Y, et al. Global analysis of spatiotemporal variability in
 merged total water storage changes using multiple GRACE products and global hydrological
 models. Remote Sensing of Environment 2017; 192: 198-216.
- Luo J-J, Zhang R, Behera SK, Masumoto Y, Jin F-F, Lukas R, et al. Interaction between El Niño and
 Extreme Indian Ocean Dipole. Journal of Climate 2010; 23: 726-742.
- Luo JJ, Sasaki W, Masumoto Y. Indian Ocean warming modulates Pacific climate change. Proc Natl
 Acad Sci U S A 2012; 109: 18701-6.
- Mallya G, Mishra V, Niyogi D, Tripathi S, Govindaraju RS. Trends and variability of droughts over the
 Indian monsoon region. Weather and Climate Extremes 2016; 12: 43-68.
- Mirza MQ, Warrick RA, Ericksen NJ, Kenny GJ. Trends and persistence in precipitation in the Ganges,
 Brahmaputra and Meghna river basins. Hydrological Sciences Journal 1998; 43: 845-858.
- Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian
 Monsoon. Reviews of Geophysics 1993; 31: 357-396.
- Moran PAP. Notes on Continuous Stochastic Phenomena. Biometrika 1950; 37: 17-23.
- Palmer WC. Meteorological drought (Vol. 30). Washington, DC, USA: US Department of Commerce.
 Weather Bureau 1965.
- Papa F, Durand F, Rossow WB, Rahman A, Bala SK. Satellite altimeter-derived monthly discharge of
 the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008.
 Journal of Geophysical Research: Oceans 2010; 115.

- Papa F, Frappart F, Malbeteau Y, Shamsudduha M, Vuruputur V, Sekhar M, et al. Satellite-derived
 surface and sub-surface water storage in the Ganges–Brahmaputra River Basin. Journal of
 Hydrology: Regional Studies 2015; 4: 15-35.
- Rajeevan M, Bhate J. A high resolution daily gridded rainfall dataset (1971–2005) for mesoscale
 meteorological studies. Current Science 2009; 96: 558-562.
- Reager JT, Famiglietti JS. Global terrestrial water storage capacity and flood potential using GRACE.
 Geophysical Research Letters 2009a; 36.
- Reager JT, Famiglietti JS. Global terrestrial water storage capacity and flood potential using GRACE.
 Geophysical Research Letters 2009b; 36: L23402.
- Reager JT, Thomas BF, Famiglietti JS. River basin flood potential inferred using GRACE gravity
 observations at several months lead time. Nature Geoscience 2014; 7: 588.
- Rodell M, Famiglietti J, Wiese D, Reager J, Beaudoing H, Landerer FW, et al. Emerging trends in
 global freshwater availability. Nature 2018; 557: 651.
- Rodell M, Velicogna I, Famiglietti JS. Satellite-based estimates of groundwater depletion in India.
 Nature 2009; 460: 999.
- Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, et al. A threefold rise in
 widespread extreme rain events over central India. Nature Communications 2017; 8: 708.
- Roxy MK, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami BN. Drying of Indian subcontinent
 by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun
 2015; 6: 7423.
- Sato T, Kimura F. How Does the Tibetan Plateau Affect the Transition of Indian Monsoon Rainfall?
 Monthly Weather Review 2007; 135: 2006-2015.
- Scanlon BR, Zhang Z, Rateb A, Sun A, Wiese D, Save H, et al. Tracking Seasonal Fluctuations in Land
 Water Storage Using Global Models and GRACE Satellites. Geophysical Research Letters
 2019; 46: 5254-5264.
- Scanlon BR, Zhang Z, Save H, Sun AY, Schmied HM, van Beek LP, et al. Global models underestimate
 large decadal declining and rising water storage trends relative to GRACE satellite data.
 Proceedings of the National Academy of Sciences 2018; 115: E1080-E1089.
- Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, et al. GRACE observations of
 changes in continental water storage. Global and Planetary Change 2006a; 50: 112-126.
- 640 Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, et al. GRACE observations of
 641 changes in continental water storage. Global and Planetary Change 2006b; 50: 112-126.
- Sen Roy S, Balling RC. Trends in extreme daily precipitation indices in India. International Journal of
 Climatology 2004; 24: 457-466.
- Shahid S. Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology 2011;
 104: 489-499.
- Shamsudduha M, Taylor RG, Longuevergne L. Monitoring groundwater storage changes in the highly
 seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin. Water
 Resources Research 2012; 48.
- Shepherd A, Ivins E, Rignot E, Smith B, van den Broeke M, Velicogna I, et al. Mass balance of the
 Antarctic Ice Sheet from 1992 to 2017. Nature 2018; 558: 219-222.

- Sinha D, Syed TH, Famiglietti JS, Reager JT, Thomas RC. Characterizing Drought in India Using
 GRACE Observations of Terrestrial Water Storage Deficit. Journal of Hydrometeorology 2016;
 18: 381-396.
- Song C, Ke L, Huang B, Richards KS. Can mountain glacier melting explains the GRACE-observed
 mass loss in the southeast Tibetan Plateau: From a climate perspective? Global and Planetary
 Change 2015; 124: 1-9.
- Swenson S, Chambers D, Wahr J. Estimating geocenter variations from a combination of GRACE and
 ocean model output. Journal of Geophysical Research: Solid Earth 2008; 113.
- Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data. Geophysical
 Research Letters 2006; 33: L08402.
- Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR. Analysis of terrestrial water storage changes
 from GRACE and GLDAS. Water Resources Research 2008; 44.
- Tao Y, Cao J, Lan G, Su Q. The zonal movement of the Indian–East Asian summer monsoon interface
 in relation to the land–sea thermal contrast anomaly over East Asia. Climate Dynamics 2016;
 46: 2759-2771.
- Tapley BD, Bettadpur S, Watkins M, Reigber C. The gravity recovery and climate experiment: Mission
 overview and early results. Geophysical Research Letters 2004; 31.
- Thomas AC, Reager JT, Famiglietti JS, Rodell M. A GRACE-based water storage deficit approach for
 hydrological drought characterization. Geophysical Research Letters 2014; 41: 1537-1545.
- Thomas BF, Famiglietti JS. Identifying Climate-Induced Groundwater Depletion in GRACE
 Observations. Scientific Reports 2019; 9: 4124.
- Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic
 effects and their possible detection using GRACE. Journal of Geophysical Research: Solid
 Earth 1998; 103: 30205-30229.
- Wang B, LinHo. Rainy Season of the Asian–Pacific Summer Monsoon. Journal of Climate 2002; 15:
 386-398.
- Wang B, Wu R, Lau K-M. Interannual Variability of the Asian Summer Monsoon: Contrasts between
 the Indian and the Western North Pacific–East Asian Monsoons. Journal of Climate 2001; 14:
 4073-4090.
- Weare BC. A Statistical Study of the Relationships between Ocean Surface Temperatures and the
 Indian Monsoon. Journal of the Atmospheric Sciences 1979; 36: 2279-2291.
- Wells N, Goddard S, Hayes MJ. A Self-Calibrating Palmer Drought Severity Index. Journal of Climate
 2004; 17: 2335-2351.
- Wijngaard RR, Lutz AF, Nepal S, Khanal S, Pradhananga S, Shrestha AB, et al. Future changes in
 hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLOS
 ONE 2017; 12: e0190224.
- Wu G, Duan A, Liu Y, Mao J, Ren R, Bao Q, et al. Tibetan Plateau climate dynamics: recent research
 progress and outlook. National Science Review 2014; 2: 100-116.
- Kiang L, Wang H, Steffen H, Wu P, Jia L, Jiang L, et al. Groundwater storage changes in the Tibetan
 Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth and Planetary
 Science Letters 2016; 449: 228-239.

- Ku K, Lu R, Kim B-J, Mao J, Park J-K. Influence of Tropical SSTs on the Interannual Variation of the
 Summer Monsoon Break over the Western North Pacific. Journal of Climate 2019; 32:
 2807-2821.
- Yang J, Liu Q, Xie S-P, Liu Z, Wu L. Impact of the Indian Ocean SST basin mode on the Asian
 summer monsoon. Geophysical Research Letters 2007; 34.
- Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y. Recent climate changes over the Tibetan Plateau and
 their impacts on energy and water cycle: A review. Global and Planetary Change 2014; 112:
 79-91.
- Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, et al. Different glacier status with atmospheric
 circulations in Tibetan Plateau and surroundings. Nature Climate Change 2012; 2: 663-667.
- Yao T, Zhou H, Yang X. Indian monsoon influences altitude effect of δ18O in precipitation/river water
 on the Tibetan Plateau. Chinese Science Bulletin 2009; 54: 2724-2731.
- Yi H, Wen L. Satellite gravity measurement monitoring terrestrial water storage change and drought in
 the continental United States. Scientific Reports 2016; 6: 19909.
- Zhang G, Yao T, Shum CK, Yi S, Yang K, Xie H, et al. Lake volume and groundwater storage
 variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters 2017; 44:
 5550-5560.
- Zhao M, Velicogna I, Kimball JS. Satellite observations of regional drought severity in the continental
 United States using GRACE-based terrestrial water storage changes. Journal of Climate 2017;
 30: 6297-6308.
- Zhao P, Chen L. Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in
 35 years and its relation to rainfall in China. Science in China Series D: Earth Sciences 2001;
 44: 858-864.
- Zhisheng A, Guoxiong W, Jianping L, Youbin S, Yimin L, Weijian Z, et al. Global Monsoon Dynamics
 and Climate Change. Annual Review of Earth and Planetary Sciences 2015; 43: 29-77.
- 717 Zhu L, Xie M, Wu Y. Quantitative analysis of lake area variations and the influence factors from 1971
 718 to 2004 in the Nam Co basin of the Tibetan Plateau. Chinese Science Bulletin 2010; 55:
 719 1294-1303.

- Figure S1. The potential evaporation (a), snow depth (b) and temperature trend (c) pattern over
- the CIBA.

Figure S2. The IM and WNPM index against the TWS over the China (a, c) and India
region (b, d) of CIBA.

(a) Modes 2+3 IMV

(b) Modes 2+3 WNPMV

727

Figure S3. The mode strength of precipitation mode 2-3 (red) against the IMV (a) and

729 WNPM step change (orange) (b).

Figure S4. The selected temperature locations.

Figure Click here to download high resolution image

(d) GRACE Trend

(e) Local Moran's I of GRACE trend

Figure Click here to download high resolution image

(a) Modes 2+3 IMV

Year

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: 20191214b_A1Readme.docx

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Z0Code.R

Supplementary material for on-line publication only Click here to download Supplementary material for on-line publication only: Z2Indices.csv

Declaration of interests

 \boxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

M.S.Frk 1 ma