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We collect here the proofs of Lemmas 1-4 and some additional simulations.

1. Technical lemmas

Lemma 1. For every ε > 0, there exist positive constants L0, C, c, n0, depending only
on ε, and positive universal constants D, d > 0, such that for all L ≥ L0 and n ≥ n0,

sup
g0∈F

0,1

Png0

(
h(ĝn, g0) ≥ Ln−2/5

)
≤ C exp

(
−cn1/(4+2ε)

)
+D exp

(
−dL2n1/5

)
,

where ĝn denotes the log-concave maximum likelihood estimator based on an i.i.d. sample
Z1, ..., Zn from g0.

Proof. It is shown in the proof of Theorem 5 of Kim and Samworth [3], p. 2772, that
for η = η(ε) ∈ (0, 1) to be defined below and L ≥ L0(η) = L0(ε),

sup
g0∈F

0,1

Png0

({
h(ĝn, g0) ≥ Ln−2/5

}
∩
{
ĝn ∈ F̃1,η

})
≤ 215/2 exp

(
−L

2n1/5

228

)
, (1)

so that it remains only to control sup
g0∈F

0,1 Png0(ĝn 6∈ F̃1,η). Lemma 6 of Kim and

Samworth [3] shows that this quantity is O(n−1) as n → ∞; we essentially follow their
proof, suitably sharpening the probability bounds in the case d = 1. Then

sup
g0∈F

0,1

Png0(ĝn 6∈ F̃1,η) ≤ sup
g0∈F

0,1

Png0(|µĝn | > 1) + sup
g0∈F

0,1

Png0(σ2
ĝn > 1 + η)

+ sup
g0∈F

0,1

Png0(σ2
ĝn < 1− η).

(2)

By Lemma 13 of [2], there exist universal constants α0, β0 > 0 such that for all x ∈ R,

sup
g∈F0,1

g(x) ≤ eβ0−α0|x|.
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2 E. Mariucci, K. Ray and B. Szabó

It is shown in [3], p. 2774, that the first term in (2) is bounded by 2α−1
0 eβ0−α0

√
n. For the

second term, by Remark 2.3 of Dümbgen et al. [1], one has σ2
ĝn
≤ σ̃2

n := n−1
∑n
i=1(Zi −

Z̄n)2 ≤ n−1
∑n
i=1 Z

2
i , where σ̃2

n denotes the sample variance and Z̄n = n−1
∑n
i=1 Zi the

sample mean. Letting C0 = C0(α0, β0, 2) denote the constant in Lemma 5 below, we can
apply that lemma to bound the second term in (2) by

sup
g0∈F

0,1

Png0

(
1

n

n∑
i=1

Z2
i > 1 + η

)
≤ exp(−

√
η/C0n

1/4)

for n ≥ max(16C2
0/η, e

2).

Consider now the third term in (2). For ε > 0, let P1/10,1/2

ε denote the class of
probability distributions on R such that µP =

∫
xdP (x) and σ2

P =
∫

(x − µP )2dP (x)
satisfy |µP | ≤ 1/10 and 1/2 ≤ σ2

P ≤ 3/2 and∫
|x|2+εdP (x) ≤ 4eβ0α−3−ε

0 Γ(3 + ε) =: τε,

where Γ(t) =
∫∞

0
xt−1e−xdx. This is exactly the same as the class P1/10,1/2 considered

in Lemma 6 of [3], except that we have replaced the 4th-moment condition with a (2 +
ε)-moment condition. Following the rest of the proof of Lemma 6 of [3] (noting that
sup

g0∈F
0,1

∫
|x|2+εg0(x)dx ≤ τε/2 and that uniform integrability of {Y 2

nk
: k ∈ N} in that

proof follows from the (2 + ε)-moment condition), one can similarly conclude that for
some η = η

(
α0, β0, ε

)
∈ (0, 1),

sup
g0∈F

0,1

Png0(σ2
ĝn < 1− η) ≤ sup

g0∈F
0,1

Png0

(
Pn 6∈ P

1/10,1/2

ε

)
,

where Pn = n−1
∑n
i=1 δZi is the empirical measure and δx is the Dirac measure at x.

This last probability can be bounded by

sup
g0∈F

0,1

Png0(|Z̄n| > 1/10) + sup
g0∈F

0,1

Png0(|σ̃2
n − 1| > 1/2)

+ sup
g0∈F

0,1

Png0

(∫
|x|2+ε(dPn(x)− g0(x)dx) > τε/2

)
.

Using similar arguments to those used previously, the first two terms can be bounded by

Ce−c
√
n and Ce−cn

1/4

, respectively, where the constants depend only on α0 and β0. For
the last term, using Lemma 5 with C0 = C0(α0, β0, 2 + ε) the constant in that lemma,

sup
g0∈F

0,1

Png0

(
1

n

n∑
i=1

(
|Zi|2+ε − Eg0 |Zi|2+ε

)
>
τε
2

)
≤ exp

(
−
(
τε

2C0

)1/(2+ε)

n
1

4+2ε

)
for n ≥ max(4(2 + ε)4+2εC2

0/τ
2
ε , e

2+ε). In conclusion, we have shown that for any ε > 0
there exists η = η(ε) ∈ (0, 1) such that

sup
g0∈F

0,1

Png0
(
ĝn 6∈ F̃1,η

)
≤ C(ε) exp

(
− c(ε)n

1
4+2ε

)
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Bayesian log-concave density estimation 3

for all n ≥ n0(ε), where C(ε), c(ε) and n0(ε) are positive constants. Together with (1),
this establishes the result.

We recall the piecewise linear approximation of a continuous concave function w on a
compact interval [a, b] considered in the main article. For any partition a = x0 < x1 <
· · · < xm = b of [a, b], let w̃m denote the piecewise linear approximation of w given by

w̃m(x) :=

m∑
i=2

(
x− x∗i−1

x∗i − x∗i−1

1

xi − xi−1
θi +

x∗i − x
x∗i − x∗i−1

1

xi−1 − xi−2
θi−1

)
1(x∗i−1,x

∗
i ](x), (3)

where θi :=
∫ xi
xi−1

w(s)ds and x∗i := xi+xi−1

2 . On [a, x∗1] and (x∗m, b], the function is defined

by linearly extending the piecewise linear function defined above, that is

w̃m(a) :=
1

x∗2 − x∗1

(x∗2 − a
x1 − a

θ1 −
x∗1 − a
x2 − x1

θ2

)
,

w̃m(b) :=
1

x∗m − x∗m−1

(b− x∗m−1

b− xm−1
θm −

b− x∗m
xm−1 − xm−2

θm−1

)
.

(4)

The function w̃m takes value w̃m(x∗i ) = 1
xi−xi−1

∫ xi
xi−1

w(s)ds at the midpoint x∗i =
xi+xi−1

2 of the interval [xi−1, xi] and interpolates linearly in between.

Lemma 2. Let w : [a, b]→ R be a continuous concave function, where −∞ < a < b <
∞. For any partition a = x0 < x1 < · · · < xm = b of [a, b], let w̃m denote the piecewise
linear approximation of w defined in (3) and (4). Then w̃m is a concave function.

Proof. By rescaling, we may without loss of generality assume that [a, b] = [0, 1]. Note
that w̃m is concave if and only if

w̃m(x∗i ) ≥
x∗i − x∗i−1

x∗i+1 − x∗i−1

w̃m(x∗i+1) +
x∗i+1 − x∗i
x∗i+1 − x∗i−1

w̃m(x∗i−1) (5)

for i = 2, . . . ,m − 1. Indeed, since w̃m is piecewise linear, it is concave if and only if at
every point where the derivative is discontinuous (i.e. a knot), the left derivative is greater
than or equal to the right derivative. The above statement follows since the derivative
of w̃m is discontinuous (at most) at the points x∗i , i = 2, . . . ,m − 1, where the desired
inequality is:

w̃m(x∗i+1)− w̃m(x∗i )

x∗i+1 − x∗i
≤
w̃m(x∗i )− w̃m(x∗i−1)

x∗i − x∗i−1

,

which is equivalent to (5).
To see that (5) holds if w is concave, we argue by contradiction and suppose that

there exists i such that w̃m(x∗i ) <
x∗i−x

∗
i−1

x∗i+1−x∗i−1
w̃m(x∗i+1) +

x∗i+1−x
∗
i

x∗i+1−x∗i−1
w̃m(x∗i−1). Consider

the linear function l,

l(x) :=
x− x∗i−1

x∗i+1 − x∗i−1

w̃m(x∗i+1) +
x∗i+1 − x

x∗i+1 − x∗i−1

w̃m(x∗i−1).
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4 E. Mariucci, K. Ray and B. Szabó

In particular, we have that w̃m(x∗i−1)− l(x∗i−1) = w̃m(x∗i+1)− l(x∗i+1) = 0 and w̃m(x∗i ) <
l(x∗i ). We further denote g := w − l and observe that

g̃m(x∗i ) =
1

xi − xi−1

∫ xi

xi−1

(
w(s)− l(s)

)
ds = w̃m(x∗i )−

∫ xi

xi−1

l(s)ds = w̃m(x∗i )− l(x∗i ).

It follows that g̃m(x) = w̃m(x) − l(x) for all x ∈ [0, 1] and hence by the mean value
theorem,

g̃m(x∗i ) =
1

xi − xi−1

∫ xi

xi−1

g(s)ds = g(ξi)

for some ξi ∈ [xi−1, xi]. One can similarly prove the existence of two points, ξi−1 ∈
[xi−2, xi−1] and ξi+1 ∈ [xi, xi+1], such that g̃m(x∗i−1) = g(ξi−1) and g̃m(x∗i+1) = g(ξi+1).
Using the above results, we deduce the existence of three points ξi−1 < ξi < ξi+1 such
that g(ξi−1) = 0 = g(ξi+1) and g(ξi) < 0, which is a contradiction since g is concave by
the concavity of w and l.

Lemma 3. Let w : [a, b]→ R be a continuous concave function with w′+(a)−w′−(b) ≤M
and where −∞ < a < b <∞. Then there exists a partition a = x0 < x1 < · · · < xm = b
of [a, b] with mini=1,...,m(xi − xi−1) ≥ (b− a)(2m)−2 and such that

sup
x∈[a,b]

|w(x)− w̃m(x)| ≤ CM(b− a)

m2
,

where w̃m is the piecewise linear approximation of w defined in (3) and (4) and C > 0
is a universal constant (i.e. not depending on a, b,m).

Proof. By translation we may without loss of generality take a = 0. Recall that since w
is a continuous concave function, it has left and right derivatives at every point x ∈ [0, b].
Define ∆w′(x) = w′−(x) − w′+(x). For every r ≥ 1, let P1 := {xi,1 := ib

r , i = 0, . . . , r}
be the uniform partition of [0, b] and let x̃i,2, i = 1, . . . , r2, be the points such that
∆w′(x̃i,2) ≥M/r, setting r2 = 0 if no such point exists. By concavity of w,

M ≥ w′+(0)− w′−(b) ≥
r2∑
i=1

∆w′(x̃i,2) ≥ Mr2

r
, (6)

so that r2 ≤ r.
Consider a new partition P2 := {x0,2 < · · · < xr′2,2} of [0, b], consisting of the points

{xi,1} ∪ {x̃i,2} ∪ {x̃i,2 − br−2} ∪ {x̃i,2 + br−2} written in increasing order. Note that
r′2 ≤ r + 3r2. Colour in red all the points of the form x̃i,2 and x̃i,2 − br−2, so that each
red point is the left endpoint of an interval of length at most br−2. This colouring will
be used to keep track of points that have a close neighbour on the right.

We next refine the partition P2 by adding the point y between xi,2 and xi+1,2

y := sup
{
x > xi,2 : w′+(xi,2)− w′−(x) ≤ 2M

r

}
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if

w′+(xi,2)− w′−(xi+1,2) >
2M

r
.

Denote by r3 the total number of points y added in this manner to the sequence. We
further add the points y − br−2, y + br−2 and colour in red all points of the form y
and y − br−2, similarly to the previous case. Repeating this procedure results in a new
partition that separates intervals where the derivative decreases by at most 2M/r. Denote
by P3 := {0 = x0,3 < x1,3 < · · · < xr′3,3 = b} this new partition. We now show that
r′3 ≤ 7r.

Let y by any point added in the way just described. Suppose by contradiction that
w′+(xi,2)−w′−(y) < M/r. By definition, we know that for all x > y, w′+(xi,2)−w′−(x) >
2M/r. Subtracting the two inequalities gives w′−(y)−w′−(x) > M/r. However, since the
right derivative of a concave function is right continuous, taking the limit x → y+ (and
restricting to the points x where w is differentiable) yields ∆w′(y) ≥ M/r. This is a
contradiction however, because if this were the case, y would already belong to P2. Since
w′+(xi,2)− w′−(y) ≥M/r, using a similar argument to (6) gives r3 ≤ r so that r′3 ≤ 7r.

Finally, if the function w is not differentiable at the point x∗i,3 =
xi,3+xi−1,3

2 , we split
[xi−1,3, xi,3] into two parts in such a way that w is differentiable at the midpoints of
both new intervals and each interval has size at least (xi,3−xi−1,3)/3. We add the points
separating the new intervals to the previous partition, thereby obtaining P4 := {0 =
x0,4 < x1,4 < · · · < xν,4 = b}. The cardinality of P4, satisfies ν + 1 ≤ 14r + 1. We
now create a new partition P with polynomially separated points using the following
algorithm.

1. Set P = P4, keeping track of all the points coloured red. Set x̃ = x0,4.
2. If b− x̃ ≤ br−2, remove all points in P strictly between x̃ and b skip to Step 4.
3. Set y = inf{t ∈ P : t > x̃ + br−2}. Remove all elements of P between x̃ and y. If

at least one element was removed, add to P the point s = x̃ + br−2 + ε for some
0 < ε < br−2∧(y− x̃−br−2) such that w is differentiable at (s+y)/2 and (s+ x̃)/2.
Colour x̃ red to mark that s− x̃ < 2br−2. Set x̃ := s. If no point was removed from
P, set x̃ := y. Go to Step 2.

4. If x̃ = b then stop. Otherwise set y = max{t ∈ P : t < x̃} and remove x̃ from P.
If b − y > 2br−2, add the point s := b − br−2 − ε to P and colour it red, where
0 < ε < (b − y − 2br−2) ∧ br−2 is such that w is differentiable at (y + s)/2. If
b− y ≤ 2br−2, add the point s := (y + b)/2 and colour both y and s red.

Relabel the final partition P := {0 = x0 < x1 < · · · < xm = b} and note that

r ≤ m ≤ ν ≤ 14r + 1.

By construction mini=0,...,m−1(xi+1 − xi) ≥ 1
2br
−2 ≥ 1

2bm
−2 and

xi+1 − xi ≤

{
2C2

0bm
−2 if xi is coloured red (with C0 = 15),

C0bm
−1 otherwise,

since if xi is coloured red, xi+1 − xi ≤ 2br−2 ≤ 2C2
0bm

−2.
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6 E. Mariucci, K. Ray and B. Szabó

We now show that ‖w − w̃m‖∞ = O(bm−2). If xi−1 is red, then by the mean value
theorem, there exists ξi ∈ Ji := [xi−1, xi] such that w̃m(x∗i ) = w(ξi). Using the Lipschitz
continuity of w and w̃m,

|w(x)− w̃m(x)| ≤ 2C2
0

bM

m2
, ∀x ∈ Ji := [xi−1, xi].

If xi−1 is not red, Taylor expanding w at the points x∗i := xi+xi−1

2 (at which w is
differentiable by the construction of P) gives

w(x) = w(x∗i ) + w′(x∗i )(x− x∗i ) +Ri(x), x ∈ Ji. (7)

Due to the construction of P,

|Ri(x)| =
∣∣∣w(x)− w(x∗i )− w′(x∗i )(x− x∗i )

∣∣∣
=
∣∣(w′(ξi)− w′(x∗i ))(x− x∗i )∣∣,

where w′(ξi) stands here for some value in the interval [w′+(ξi), w
′
−(ξi)] for some point

ξi ∈ Ji. We then deduce that |Ri(x)| ≤ 2M
r
C0b
2m ≤ C

2
0bM/m2.

Since w̃m is piecewise linear, we can write

w̃m(x) = w̃m(x∗i ) + w̃′m(x∗i )(x− x∗i ), x ∈ Ji,

where w̃′m denotes the left or right derivative of w̃m at x∗i , depending on whether x < x∗i
or x > x∗i . We now show that |w̃′m(x∗i ) − w′(x∗i )| ≤ max{w′+(xi−1) − w′(x∗i ), w′(x∗i ) −
w′−(xi+1)} for i = 1, . . . ,m−1. Consider the case of right derivatives (the same argument
also works for left derivatives). Using the definition of w̃m and that θi =

∫
Ji
w(s)ds,

w̃′m,+(x∗i ) =
w̃m(x∗i+1)− w̃m(x∗i )

x∗i+1 − x∗i
=

1

x∗i+1 − x∗i

(
θi+1

xi+1 − xi
− θi
xi − xi−1

)
=

1

(xi − xi−1)(x∗i+1 − x∗i )

∫ xi

xi−1

[
w
(xi+1 − xi
xi − xi−1

t+
x2
i − xi+1xi−1

xi − xi−1

)
− w(t)

]
dt

and ∫ xi

xi−1

[
xi+1 − xi
xi − xi−1

t+
x2
i − xi+1xi−1

xi − xi−1
− t
]
dt = (x∗i+1 − x∗i )(xi − xi−1).

By the continuity and concavity of w, (v−u)w′−(xi+1) ≤ w(v)−w(u) ≤ (v−u)w′+(xi−1)
for any xi−1 ≤ u ≤ v ≤ xi+1. Combining all of the above yields

w′−(xi+1) ≤ w̃′m,+(x∗i ) ≤ w′+(xi−1). (8)

We remark that max{w′+(xi−1)− w′(x∗i ), w′(x∗i )− w′−(xi+1)} ≤ 5M
r . Indeed, since xi −

xi−1 > C2
0b/m

2, the point xi is not equal to x′j,4 for any j and hence both ∆w′(xi) < M/r
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Bayesian log-concave density estimation 7

and w′+(xi) − w′−(xi+1) ≤ 2M/r hold. Together with w′+(xi−1) − w′(x∗i ) ≤ 2M/r and
w′(x∗i )− w′−(xi) ≤ 2M/r, this verifies the preceding statement. Then

w′(x∗i )− w′−(xi+1) ≤ w′(x∗i )− w′−(xi) + w′−(xi)− w′+(xi) + w′+(xi)− w′−(xi+1) ≤ 5M

r
.

We hence deduce that |w′(x∗i ) − w̃′m(x∗i )| ≤ 5MC0m
−1. Finally, using (7) and the fact

that
∫
Ji

(x− x∗i )dx = 0,

∣∣w(x∗i )− w̃m(x∗i )
∣∣ =

1

xi − xi−1

∣∣∣∣ ∫
Ji

(
w(x∗i )− w(x)

)
dx

∣∣∣∣ ≤ sup
x∈Ji
|Ri(x)| ≤ C2

0bM

m2
.

Collecting together all the pieces, we have that for any x ∈ [xi−1, xi],

|w(x)− w̃m(x)| ≤ |w(x∗i )− w̃m(x∗i )|+ |x− x∗i ||w̃′m(x∗i )− w′(x∗i )|+ |Ri(x)| ≤ 9

2
C2

0Mbm−2.

Lemma 4. Any piecewise linear concave function w : [a, b]→ R with N knots {z1, ..., zN}
can be written in the form

w(x) = γ1

N∑
i=1

zi ∧ (x− a)

zi
pi − γ2(x− a) + γ3,

with parameters 0 ≤ γ1 ≤ (w′+(a) − w′−(b))(b − a), |γ2| ≤ |w′−(b)|, γ3 ∈ R,
∑N
i=1 pi = 1

and pi ≥ 0 for i = 1, . . . , N .

Proof. The left derivative of w is a step function g : (a, b] 7→ R with g(a+ε) = w′+(a) for
sufficiently small ε > 0 and g(b) = w′−(b). By shifting this function vertically by −w′−(b),
we arrive at a non-negative, bounded, monotone decreasing step function, which can
therefore be written as a monotone decreasing probability density times a normalizing
constant γ1. It is easy to see that γ1 ≤ (b − a)(w′+(a) − w′−(b)). The step function can
therefore be represented as

g(x) = γ1

∫ b−a

x−a

1

z
dPN (z) + w′−(b), x ∈ [a, b],

with PN an atomic probability measure with N atoms on [0, b−a] and γ1 the normalizing
constant. Integrating the step function g yields

w̄N (x) = γ1

∫ b−a

0

z ∧ (x− a)

z
dPN (z) + w′−(b)(x− a) + C,

which is equal to w for an appropriately chosen constant C > 0.
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8 E. Mariucci, K. Ray and B. Szabó

Lemma 5. Let Z1, ..., Zn be i.i.d. random variables from a density f ∈ Fα,β, where
α > 0 and β ∈ R. Then for any r ≥ 1, t ≥ rr and n ≥ er,

Pnf

(
1√
n

∣∣∣∣∣
n∑
i=1

(|Zi|r − E|Zi|r)

∣∣∣∣∣ ≥ C0(α, β, r)t

)
≤ exp(−t1/r).

Proof. For notational convenience, write λ = 1/r ∈ (0, 1]. Let xλ = (1/λ)1/λ and define

Ψλ(x) =

{
ex
λ

x ≥ xλ,
τλx x < xλ,

where τλ = Ψλ(xλ)/xλ = (λe)1/λ. This defines a Young function, that is a convex,
increasing function Ψλ : R+ → R+ with Ψλ(0) = 0. Denote the corresponding Orlicz
norm ‖X‖Ψλ := inf{a > 0 : E[Ψλ(|X|/a)] ≤ 1}. Note that the density function gλ of

|Z1|1/λ satisfies gλ(x) = λx−(1−λ)
(
f(xλ) + f(−xλ)

)
1{x≥0} ≤ λx−(1−λ)eβ−αx

λ

1{x≥0}.

Then for fixed a > α−1/λ,

EΨλ(|Z1|1/λ/a) ≤ λτλe
β

a

∫ xλ

0

uλe−αu
λ

du+ λeβ
∫ ∞
xλ

u−(1−λ)e−(α−a−λ)uλdu

= K0(a, α, β, λ) <∞.

If K0 = K0(a, α, β, λ) > 1, it follows by convexity that ‖|Z1|1/λ‖Ψλ ≤ aK0.
By Theorem 6.21 of Ledoux and Talagrand [4], there exists a constant Kλ such that∥∥∥∥∥
n∑
i=1

(|Zi|
1
λ − E|Zi|

1
λ )

∥∥∥∥∥
Ψλ

≤ Kλ

(∥∥∥∥∥
n∑
i=1

(|Zi|
1
λ − E|Zi|

1
λ )

∥∥∥∥∥
1

+

∥∥∥∥ max
1≤i≤n

∣∣|Zi| 1λ − E|Zi|
1
λ

∣∣∥∥∥∥
Ψλ

)
.

The first-term on the right-hand side can be bounded by the ‖ · ‖2-norm of the same

quantity, which equals the square root of nE(|Zi|
1
λ − E|Zi|

1
λ )2 ≤ nE|Zi|

2
λ . For any δ ∈

(0, 1],

E|Z1|
1
δ =

∫ ∞
0

xgδ(x)dx ≤ 2δeβ
∫ ∞

0

xδe−αx
δ

dx =
2eβ

α1+ 1
δ

∫ ∞
0

y
1
δ e−ydy =

2eβ

α1+ 1
δ

Γ(1+1/δ).

Since this is finite for any δ ∈ (0, 1], we can bound the ‖·‖1-norm above by C(α, β, λ)
√
n.

Note that for any random variable X, ‖X − EX‖Ψλ ≤ 2‖X‖Ψλ . Indeed, setting a =
‖X‖Ψλ , since Ψλ is convex and increasing,

EΨλ

(
|X − EX|

2a

)
≤ 1

2
EΨλ

(
|X|
a

)
+

1

2
Ψλ

(
E|X|
a

)
≤ EΨλ

(
|X|
a

)
≤ 1.

Using this and Lemma 2.2.2 of van der Vaart and Wellner [5],∥∥ max
1≤i≤n

∣∣|Zi| 1λ − E|Zi|
1
λ

∣∣∥∥
Ψλ
≤ K(Ψλ)Ψ−1

λ (n) max
1≤i≤n

∥∥|Zi| 1λ ∥∥Ψλ
≤ K(α, β, λ)(log n)

1
λ ,
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so that we have shown ∥∥∥∥∥
n∑
i=1

(|Zi|
1
λ − E|Zi|

1
λ )

∥∥∥∥∥
Ψλ

≤ C(α, β, λ)
√
n.

By Markov’s inequality, for any random variableX, P(|X| ≥ x‖X‖Ψλ) = P(Ψλ(|X|/‖X‖Ψλ) ≥
Ψλ(x)) ≤ 1/Ψλ(x). Applying this to the above sum completes the proof.

2. Additional simulations

We firstly provide some additional figures for the empirical Bayes posterior of the mode.
We consider the Beta(2, 5) and Gamma(2, 1) distributions and take i.i.d. samples of size
ranging from n = 50 to n = 20000 in both cases. As in the Gaussian example, we run
the Gibbs sampler for 20000 iterations of which half were considered as burn in and
discarded. The resulting marginal posteriors for the mode based on the empirical Bayes
posterior are displayed in Figures 1 and 2.
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Figure 1. The marginal posterior distribution for the mode based on the empirical Bayes posterior for
the Beta(2, 5) distribution with increasing sample size from left to right and top to bottom, ranging
from n = 50 to n = 20000.
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Figure 2. The marginal posterior distribution for the mode based on the empirical Bayes posterior for
the Gamma(2, 1) distribution with increasing sample sizes from left to right and top to bottom, ranging
from n = 50 to n = 20000.

Next we provide a brief simulation study to demonstrate the (possible) applicability
of our procedure for cluster analysis. Here we consider only the simple case where the un-
derlying density is a mixture of two log-concave densities. We have modified our Bayesian
procedure to accommodate mixtures of log-concave densities in a straightforward way,
again using a Gibbs sampler. We consider various combinations of log-concave densities
including two Gaussians, two Laplace distributions, a Laplace and a Gamma distribu-
tion and two Beta distributions. We consider two sample sizes, n = 100 and n = 500, see
Figures 3 and 4, respectively. In all pictures we have plotted the posterior mean (solid
blue), 95% pointwise credible sets (dashed blue) and the underlying density (solid red).
One can see that in all cases our procedure provides reasonable estimators and seemingly
reliable uncertainty quantification.
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Figure 3. Empirical Bayes posterior distribution for the mixture of two log-concave densities for sample
size n = 100. Top left corner: 0.5N(1, 1) + 0.5N(4, 0.5), top right corner: 0.5 ∗ Laplace(0, 1) + 0.5 ∗
Laplace(5, 2.5), bottom left corner: 0.5 ∗Gamma(2, 2) + 0.5 ∗Laplace(−3, 2), bottom right corner: 0.5 ∗
Beta(2, 5) + 0.5 ∗Beta(5, 1).

imsart-bj ver. 2014/10/16 file: LCBayes_supp.tex date: November 29, 2018



12 E. Mariucci, K. Ray and B. Szabó
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Figure 4. Empirical Bayes posterior distribution for the mixture of two log-concave densities for sample
size n = 500. Top left corner: 0.5N(1, 1) + 0.5N(4, 0.5), top right corner: 0.5 ∗ Laplace(0, 1) + 0.5 ∗
Laplace(5, 2.5), bottom left corner: 0.5 ∗Gamma(2, 2) + 0.5 ∗Laplace(−3, 2), bottom right corner: 0.5 ∗
Beta(2, 5) + 0.5 ∗Beta(5, 1).
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