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The estimation of a log-concave density on R is a canonical problem in the area of shape-
constrained nonparametric inference. We present a Bayesian nonparametric approach to this
problem based on an exponentiated Dirichlet process mixture prior and show that the posterior
distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger dis-
tance. Our proof proceeds by establishing a general contraction result based on the log-concave
maximum likelihood estimator that prevents the need for further metric entropy calculations.
We further present computationally more feasible approximations and both an empirical and
hierarchical Bayes approach. All priors are illustrated numerically via simulations.
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1. Introduction

Nonparametric shape constraints offer practitioners considerable modelling flexibility by
providing infinite-dimensional families that cover a wide range of parameters whilst also
including numerous common parametric families. Log-concave densities on R, that is
densities whose logarithm is a concave function taking values in [−∞,∞), constitute
a particularly important shape-constrained class. This class includes many well-known
parametric densities that are frequently used in statistical modelling, including the Gaus-
sian, uniform, Laplace, Gumbel, logistic, gamma distributions with shape parameter at
least one, Beta(α, β) distributions with α, β ≥ 1 and Weibull distributions with param-
eter at least one.

One of the original statistical motivations for considering log-concave density esti-
mation was the problem of estimating a unimodal density with unknown mode. While
this is a natural constraint in many applications, the nonparametric MLE over this class
does not exist [3]. Since the class of log-concave densities equals the class of strongly
unimodal densities [19], Walther [36] argues that this class provides a natural alter-
native to the full set of all unimodal densities. The class of log-concave densities also
preserves many of the attractive properties of Gaussian distributions, such as closure
under convolution, marginalization, conditioning and taking products. One can therefore
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2 E. Mariucci, K. Ray and B. Szabó

view log-concave densities as a natural infinite-dimensional surrogate for Gaussians that
retain many of their important features yet allow substantially more freedom, such as
heavier tails. For these reasons, estimation of log-concave densities has received signifi-
cant attention in recent years, particularly concerning the performance of the log-concave
MLE [9, 30, 4, 5, 10, 8, 22, 21].

Outside density estimation, log-concavity as a modelling assumption has found ap-
plications in many statistical problems, such as mixture models [36, 1], tail index esti-
mation [25], clustering [5], regression [10] and independent component analysis [29]. For
general reviews of inference with log-concave distributions and estimation under shape
constraints, see [37] and [15] respectively.

The Bayesian approach provides a natural way to encode shape constraints via the
prior distribution, for instance under monotonicity [31, 20, 28, 27] or convexity contraints
[32, 17, 16]. We present here a Bayesian nonparametric method for log-concave density es-
timation on R based on an exponentiated Dirichlet process mixture prior, which we show
converges to a log-concave truth in Hellinger distance at the (near-)minimax rate. To the
best of our knowledge, this is the first Bayesian nonparametric approach to this problem.
We also study two computationally motivated approximations to the full Dirichlet pro-
cess mixture based on standard Dirichlet process approximations, namely the Dirichlet
multinomial distribution and truncating the stick-breaking representation (see Chapter
4.3.3 of [13]). We further propose both an empirical and hierarchical Bayes approach that
have clear practical advantages, while behaving similarly to the above in simulations. All
of these priors are easily implementable using a random walk Metropolis-Hastings within
Gibbs sampling algorithm, which we illustrate in Section 3.

An advantage of the Bayesian method is that point estimates and credible sets can be
approximately computed as soon as one is able to sample from the posterior distribution.
In particular, the posterior yields easy access to statements on Bayesian uncertainty
quantification as we show numerically in Section 3. Our numerical results suggest that
pointwise credible sets have reasonable coverage at moderate sample sizes.

The Bayesian approach also permits inference about multiple quantities, such as func-
tionals, in a unified way using the posterior distribution. A particular functional of inter-
est is the mode of a log-concave density. While the pointwise limiting distribution of the
log-concave MLE is known [2], it depends in a complicated way on the unknown density
making it difficult to use to construct a confidence interval for the mode. An alterna-
tive approach to constructing a confidence interval based on comparing the log-concave
MLE with the mode constrained MLE has recently been proposed [6]. For the Bayesian,
the marginal posterior of the mode provides a natural approach to both estimation and
uncertainty quantification. Indeed, it is easy to construct Bayesian credible intervals as
we demonstrate numerically in Section 3. Whether such an approach is theoretically
justified from a frequentist perspective is a subtle question related to the semiparamet-
ric Bernstein-von Mises phenomenon (Chapter 12 of [13]) that is, however, beyond the
scope of this article. We also note that other constraints, such as a known mode [7], can
similarly be enforced through suitable prior calibration.

Given the good performance of the log-concave MLE, one might expect that Bayesian
procedures, being driven by the likelihood, behave similarly well. This is indeed the case,
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as we show below. Our proof relies on the classic testing approach of Ghosal et al. [11] with
interesting modifications in the log-concave setting. The existence and optimality of the
MLE in Hellinger distance is closely linked to a uniform control of bracketing entropy
[34]. In our setting, one can exploit the affine equivariance of the log-concave MLE
(Remark 2.4 of [10]) to circumvent the need to control the metric entropy of the whole
space by reducing the problem to studying a subset satisfying restrictions on the first
two moments of the underlying density. This is a substantial reduction, since obtaining
sharp entropy bounds in even this reduced case is highly technical, see Theorem 4 of Kim
and Samworth [22]. One can then use the MLE to construct suitable plug-in tests with
exponentially decaying type-II errors as in Giné and Nickl [14] that take full advantage
of the extra structure of the problem compared to the standard Le Cam-Birgé testing
theory for the Hellinger distance [23]. Indeed, a naive attempt to control the entropy
directly, as is standard in the Bayesian nonparametrics literature (e.g. [11]), results in an
overly small set on which the prior must place most of its mass. This leads to unnecessary
restrictions on the prior, which in particular are not satisfied by the priors we consider
in Section 2, see Remark 1. Beyond this, there remain significant technical hurdles to
proving that the prior places sufficient mass in a Kullback-Leibler neighbourhood of the
truth, in particular related to the approximation of log-concave densities using piecewise
log-linear functions with suitably spaced knots.

The paper is structured as follows. In Section 2 we introduce our priors and present our
main results, both on general contraction for log-concave densities and for the specific
priors considered here. In Section 3 we present a simulation study, including a more
practical empirical Bayes implementation, with some discussion in Section 4. In Section
5 we present the proofs of the main results with technical results placed in Section 6.
The proofs of certain technical lemmas and some additional simulations can be found in
the supplementary material [24].

Notation: For two probability densities p and q with respect to Lebesgue measure λ on
R, we write h2(p, q) =

∫
(
√
p−√q)2 for the squared Hellinger distance, K(p, q) =

∫
p log p

q

for the Kullback-Leibler divergence and V =
∫
p(log p

q )2. We denote by Pnf0 the product
probability measure corresponding to the joint distribution of i.i.d random variables
X1, . . . , Xn with density f0 and write Pf0 = P 1

f0
. For a function w, we denote by w′− and

w′+ its left and right derivatives respectively, that is

w′−(x) = lim
s↗x

w′(s) and w′+(x) = lim
s↘x

w′(s).

Let R+ = [0,∞) and for two real numbers a, b, let a∧b and a∨b denote the minimum and
maximum of a and b respectively. Finally, the symbols . and & stand for an inequality
up to a constant multiple, where the constant is universal or (at least) unimportant for
our purposes.

2. Main Results

Consider i.i.d. density estimation, where we observe X1, ..., Xn ∼ f0 with f0 = ew0 an
unknown log-concave density to be estimated. Let F denote the class of upper semi-
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4 E. Mariucci, K. Ray and B. Szabó

continuous log-concave probability densities on R. For α > 0 and β ∈ R, denote

Fα,β := {f ∈ F : f(x) ≤ eβ−α|x| ∀x ∈ R}.

By Lemma 1 of Cule and Samworth [4], for any log-concave density f0 there exist con-
stants αf0 > 0 and βf0 ∈ R such that f0(x) ≤ eβf0−αf0 |x| for all x ∈ R. Consequently,
any upper semi-continuous log-concave density f0 belongs to Fα,β for 0 < α ≤ αf0 and
β ≥ βf0 .

We establish a general posterior contraction theorem for priors on log-concave densities
using the general testing approach introduced in [11], which requires the construction of
suitable tests with exponentially decaying type-II errors. We construct plug-in tests based
on the concentration properties of the log-concave MLE, similar to the linear estimators
considered in [14, 26]. The MLE has been shown to converge to the truth at the minimax
rate in Hellinger distance in Kim and Samworth [22] and the following theorem relies
heavily on their result.

Theorem 1. Let F denote the set of upper semi-continuous, log-concave probability
densities on R and let Πn be a sequence of priors supported on F . Consider a sequence
εn → 0 such that n−2/5 . εn . n−3/8−ρ for some ρ > 0 and suppose there exists a
constant C > 0 such that

Πn

(
f ∈ F :

∫
R
f0

(
log

f0

f

)
≤ ε2

n,

∫
R
f0

(
log

f0

f

)2

≤ ε2
n

)
≥ exp(−Cnε2

n). (1)

Then for sufficiently large M ,

Πn(f ∈ F : h(f, f0) ≥Mεn|X1, ..., Xn)→ 0

in Pnf0-probability as n→∞.

The upper bound εn . n−3/8−ρ is an artefact of the proof arising from the exponential
inequality for the log-concave MLE that we use to construct our tests, see Lemma 1. Since
our interest lies in obtaining the optimal rate n−2/5, possibly up to logarithmic factors,
it plays no further role in our results. It is typical in Bayesian nonparametrics to require
metric entropy conditions, which come from piecing together tests for Hellinger balls into
tests for the complements of balls, see for instance Theorem 7.1 of [11]. The lack of such a
condition in Theorem 1 is tied to the optimality and specific structure of the log-concave
MLE. Using the affine equivariance of the MLE (Remark 2.4 of [10]), one can reduce the
testing problem to considering alternatives in the class F restricted to have zero mean
and unit variance. Unlike the whole space F , the bracketing Hellinger entropy of this
latter set can be suitably controlled, thereby avoiding the need for additional entropy
bounds.

Remark 1. Obtaining sharp entropy bounds for log-concave function classes is a highly
technical task and such bounds are only available for certain restricted subsets. Even in
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the case of mean and variance restrictions (Theorem 4 of [22]) and compactly supported
and bounded densities (Proposition 14 of [21]), the proofs are lengthy and require substan-
tial effort. To use such bounds for the classic entropy-based approach to prove posterior
contraction would therefore require the prior to place most of its mass on the above types
of restricted sets. For instance, the prior might be required to place all but exponentially
small probability on Fα,β for some given α > 0, β ∈ R. Such a prior construction is
undesirable in practice and in fact none of our proposed priors satisfy such a restriction.

We now introduce a prior on log-concave densities based on an exponentiated Dirichlet
process mixture. For any measurable function w : R→ R, define the density

fw(x) =
ew(x)∫

R e
w(y)dy

, (2)

which is well-defined if
∫
R e

w(y)dy <∞. Recall that any monotone non-increasing prob-
ability density on R+ has a mixture representation [38]

f(x) =

∫ ∞
x

1

u
dP (u),

where P is a probability measure on R+. Khazaei and Rousseau [20] and Salomond
[28] used the above representation to obtain a Bayesian nonparametric prior for mono-
tone non-increasing densities. Unfortunately, such a convenient mixture representation
is unavailable for log-concave densities and so the prior construction is somewhat more
involved. Integrating the right-hand side of the last display, we obtain a function w :
R+ → R as follows:

w(x) = γ1

∫ ∞
0

u ∧ x
u

dP (u)− γ2x,

where γ1 > 0, γ2 ∈ R and P is a probability measure on [0,∞). Since its (left and right)
derivative is monotone decreasing, w is concave. While not every concave function can be
represented in this way, any log-concave density on [0,∞) can be approximated arbitrary
well in Hellinger distance by a function of the form ew/(

∫
ew), where w is as above with

P a discrete probability measure, see Proposition 1. Translating the above thus gives a
natural representation for a prior construction for log-concave densities on R.

Consider therefore the following possibly n-dependent prior on the log-density w :
[an, bn]→ R, where possibly an → −∞ and bn →∞:

W (x) = γ1

∫ bn−an

0

u ∧ (x− an)

u
dP (u)− γ2(x− an), (3)

where

• P ∼ DP (H1[0,bn−an]), the Dirichlet process with base measure H1[0,bn−an] =
H(R+)H̄1[0,bn−an], where 0 < H(R+) <∞, H̄ is a probability measure on R+ and
every subset U ⊂ [0, bn − an] satisfies H(U) & λ(U)/(bn − an)η for some η ≥ 0,
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6 E. Mariucci, K. Ray and B. Szabó

• γi ∼ pγi , i = 1, 2, where pγ1 , pγ2 are probability densities on [0,∞) and R re-

spectively, satisfying pγi(|x|) & e−cix
1/4

, ci > 0, for all x ∈ [0,∞) and x ∈ R
respectively,

• γ1, γ2, and P are independent.

We denote by Πn the full prior induced by fW , where W is drawn as above. Some typical
draws from the prior are plotted in Figure 1.

Figure 1. Prior draws with [an, bn] = [0, 1], γ1 ∼ Cauchy+(0, 1), γ2 ∼ Cauchy(0, 1), H = U(0, 1) and
using the stick breaking construction.

Remark 2. If (bn − an) grows polynomially in n, then H must have polynomial tails.
On the other hand, if (bn − an) grows more slowly than any polynomial, one can relax
this condition. For instance, if H has a density h with respect to the Lebesgue measure,
then it is sufficient that mint∈[0,bn−an] h(t) & n−λ for some λ > 0. In particular, if
(bn − an) . log n, then h may have exponential tails.

We comment on several aspects of our prior. Firstly, since Dirichlet process draws are
atomic with probability one, the prior draws (3) will be piecewise linear and concave.
Moreover, we could add any concave function to (3), such as an −γ3x

2-type term, and still
have a suitable concave prior. This permits greater modelling flexibility but complicates
computation. In any case, the prior described above gives optimal contraction rates and
can be computed in practice, so we restrict our attention to it. Another point to note
is that if (bn − an) → ∞ and H is supported on the whole of R+, then the Dirichlet
process base measure has total mass H(R+)H̄([an, bn]) ≤ H(R+) for fixed n. This has
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the interpretation of assigning the prior more weight as n → ∞, up to the full prior
weight H(R+). An alternative would be to re-weight the base measure to have full mass
H(R+) to give it equal weight for all n. This plays no role asymptotically and so we
restrict to the first case for technical convenience.

A potentially more serious issue is that for fixed n, the support of the prior draws
may not contain the support of the true density f0, in which case observations outside
[an, bn] cause the likelihood to be identically zero. While this is not a problem for n large
enough if −an, bn → ∞ fast enough (see Theorem 3), it can be an issue for finite n. In
practice, if one has an idea of the support of f0, it is enough to select [an, bn] large enough
to contain supp(f0). A more pragmatic solution is to use an empirical Bayes approach
and make the prior data-dependent by setting an := X(1), bn := X(n) the first and last
order statistics. This ensures that the likelihood is never zero and the posterior is always
well-defined. Indeed, the MLE is supported on [X(1), X(n)] and so this can be thought of
as plugging-in an estimate of the approximate support based on the likelihood. Moreover,
since this approach yields the smallest support [an, bn] with non-zero likelihood, it also
brings computational advantages. In particular, it can prevent the need to simulate the
posterior distribution on potentially very large regions of R where the posterior draws
are essentially indistinguishable from zero. The empirical Bayes method behaves very
similarly to the prior (3) in simulations and we would advocate this approach in practice.

We first present a contraction result when the true density f0 has known compact
support.

Theorem 2. Let f0 ∈ Fα,β for some α > 0, β ∈ R and suppose further that f0 is
compactly supported. Let an ≡ a and bn ≡ b for all n and denote by Πn = Π the prior
described above. If supp(f0) ⊂ [a, b], then

Π(f : h(f, f0) ≥M(log n)n−2/5 | X1, ..., Xn)→ 0

in Pnf0-probability for some M = M(α, β) > 0.

If supp(f0) is not contained in a compact set or is unknown, it suffices to let −an, bn →
∞ fast enough. A slightly stronger lower bound on the tail of pγ1 is consequently required,
depending on the size of (bn − an).

Theorem 3. Let f0 ∈ Fα,β for some α > 0, β ∈ R and let Πn denote the prior
described above with −an, bn � log n. Assume further that (bn− an) . nµ/5 and that the

prior density pγ1 for γ1 satisfies the stronger lower bound pγ1(x) & e−c1x
1/(4+µ)

for some
0 ≤ µ ≤ 2. Then

Πn(f : h(f, f0) ≥Mεn | X1, ..., Xn)→ 0

in Pnf0-probability for some M = M(α, β) > 0 and

εn = max
(

(log n)n−2/5, (bn − an)n−4/5
)
. (4)
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8 E. Mariucci, K. Ray and B. Szabó

Theorem 2 follows immediately from Theorem 3 and so its proof is omitted. If (bn −
an) = O((log n)n2/5), then we obtain the minimax rate for log-concave density estimation
in Theorem 3, up to a logarithmic factor. Since the Hellinger distance dominates the total
variation distance, the above also implies posterior convergence in total variation at the
same rate εn given in (4). We also note that all the above statements are proved uniformly
over f0 ∈ Fα,β .

The posterior mean, also considered in the simulation study, is not necessarily log-
concave. Nevertheless one can construct log-concave density estimators by separately
computing the posterior mean for each parameter θ, p, γ1, γ2 and then constructing the
corresponding log-concave density according to (2) and (3). Another approach is to take
the smallest Hellinger ball accumulating, say, 50% of the posterior mass and sample an
arbitrary log-concave density from that ball. It is straightforward to verify that both of
these estimators achieve the minimax concentration rate (up to the same logarithmic
factor).

It is also of interest to obtain a fully Bayesian procedure that does not require the
user to define the support of the prior draws. We therefore consider a hierarchical prior
where one places a prior on the end points a and b, now not necessarily depending on n.
This method has the advantage of employing a prior that does not depend on the data,
but is slightly more involved computationally than the simple empirical Bayes approach.
Assign to (a, b) a prior supported on the open half-space {(a, b) : a < b} that has a
Lebesgue density π(a, b) satisfying

π(a, b) ≥ Ce−c1|a|
q−c2|b−a|r for all a < b (5)

and some c1, c2, C, q, r > 0. Such a distribution can be easily constructed by first drawing
a ∼ π1, where the Lebesgue density π1(a) ≥ Ce−c|a|

q

, and then independently drawing
(b−a)|a ∼ π2, where π2 is a Lebesgue density on (0,∞) satisfying π2(b−a) ≥ Ce−c|b−a|r .
Conditionally on (an, bn) = (a, b), the prior is then exactly as above. This hierarchi-
cal construction leads to a fully Bayesian procedure that again contracts at the (near-
)minimax rate.

Theorem 4. Let f0 ∈ Fα,β for some α > 0, β ∈ R and let Πn denote the prior described
above with hyperprior (a, b) ∼ π(a, b) satisfying (5). Then

Πn(f : h(f, f0) ≥M(log n)n−2/5 | X1, ..., Xn)→ 0

in Pnf0-probability for some M = M(α, β) > 0.

Dirichlet process mixture priors are popular in density estimation due to the conju-
gacy of the posterior distribution, thereby providing methods that are highly efficient
computationally. However, due to the exponentiation (2), this conjugacy property no
longer holds, resulting in a less attractive prior choice that brings computational chal-
lenges. In practice, it is common to use approximations of the Dirichlet process to speed
up computations, see for instance Chapter 4.3.3 of [13].
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Bayesian log-concave density estimation 9

We firstly consider the Dirichlet multinomial distribution as a replacement for the
Dirichlet process in our prior. By the proof of Theorem 3, the underlying true log-
concave density can be well approximated by a piecewise log-linear density with at most
N = Cn1/5 log n knots, for some large enough constant C > 0. In view of this, it is
reasonable to take N atoms in the distribution. The corresponding prior on log-concave
densities then takes the form

θi
iid∼ H̄1[0,bn−an], for i = 1, ..., N,

p = (p1, ...pN ) ∼ Dir(α1, ...., αN ),

γi
iid∼ pγi , i = 1, 2,

fθ,p,γ1,γ2(x) =
exp{γ1

∑N
i=1

θi∧(x−an)
θi

pi − γ2(x− an)}1[an,bn](x)∫ bn
an

exp{γ1

∑N
i=1

θi∧(u−an)
θi

pi − γ2(u− an)}du
,

(6)

where αi, i = 1, ..., N, are chosen such that αi = α/N for some arbitrary 0 < α ≤ H(R+).
An alternative choice for the mixing prior is to truncate the stick-breaking represen-

tation of the Dirichlet process at a fixed level. Similarly to the Dirichlet multinomial
distribution, we truncate the stick-breaking process at level N = Cn1/5 log n, resulting
in the same hierarchical prior as in (6) with the only difference being that the distribution
of p in the N -simplex is given by

pi ∼ Vi
i−1∏
j=1

(1− Vj), where Vi ∼ Beta(1, H(R+)), i = 1, ..., N − 1. (7)

Both of these computationally more efficient approximations have the same theoretical
guarantees as the full exponentiated Dirichlet process prior Πn or its hierarchical Bayes
equivalent.

Corollary 1. Let f0 ∈ Fα,β for some α > 0, β ∈ R and let Π′n denote either the prior
(6) or (7). If −an, bn � log n, (bn− an) . nµ/5 and the prior density pγ1 for γ1 satisfies

the stronger lower bound pγ1(x) & e−c1x
1/(4+µ)

for some 0 ≤ µ ≤ 2, then

Π′n(f : h(f, f0) ≥Mεn | X1, ..., Xn)→ 0

in Pnf0-probability for some M = M(α, β) > 0 and εn given by (4).
If we additionally assign a hyperprior π(a, b) satisfying (5) to (a, b) and no longer

require the strong lower bound for pγ1 , then the above holds for the resulting posterior
with εn = (log n)n−2/5.

The proofs of Theorem 3 and Corollary 1 establish the small-ball probability (1) by
approximating a log-concave density in Fα,β with a suitable piecewise log-linear density.
This approximation requires several key properties, which make its construction non-
standard and technically involved, and it may be of independent interest. The proof of
Proposition 1 is deferred to Section 6.
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Proposition 1. Let f0 ∈ Fα,β and ([an, bn])n be a sequence of compact intervals such
that [− 8

5α log n, 8
5α log n] ⊂ [an, bn] and (bn − an) = o(n4/5). For any n ≥ n0, where n0

is an integer depending only on α and β, there exists a log-concave density f̄n that is
piecewise log-linear with N̄ ≤ C(α, β)n1/5 log n knots z1, ..., zN̄ ∈ [0, bn − an] satisfying
the following properties:

(i) h2(f0, f̄n) ≤ C(α, β)[(log n)2n−4/5 + (bn − an)2n−8/5],
(ii) {x ∈ R : f̄n(x) > 0} = [an, bn],

(iii) the knots are cn−6/5 log n-separated for some universal constant c > 0,
(iv) f0(x) ≤ C(α, β)f̄n(x) for all x ∈ [an, bn],
(v) there exist γ̄1 ∈ [0, 2(bn − an)n4/5], |γ̄2| ≤ n4/5, γ̄3 ∈ R and (p̄1, .., p̄N̄ ) satisfying

pi ≥ 0 and
∑N̄
i=1 pi = 1, such that

f̄n(x) = exp

γ̄1

N̄∑
i=1

zi ∧ (x− an)

zi
p̄i − γ̄2(x− an) + γ̄3

1[an,bn](x).

It is relatively straightforward to establish an approximation of f0 satisfying (i).
However, approximating f0 by f̄n in a Kullback-Leibler type sense, as in (1), neces-
sitates control of the support of f̄n via (ii) and uniform control of the ratio f0/f̄n
via (iv). The most difficult property to establish is the polynomial separation of the
points in (iii). This is needed to ensure that the Dirichlet process prior simultaneously
puts sufficient mass in a neighbourhood of each of the knots zi, i = 1, . . . , N̄ . Setting
[an, bn] = [− 8

5α log n, 8
5α log n] yields the following corollary.

Corollary 2. Let f0 ∈ Fα,β. For any n ≥ n0, where n0 is an integer depending only
on α and β, there exists a log-concave density f̄n supported on [− 8

5α log n, 8
5α log n] that is

piecewise log-linear with O(n1/5 log n) knots and satisfies h2(f0, f̄n) ≤ C(α, β)(log n)2n−4/5.
Moreover, we may take the knots to be cn−6/5 log n-separated for some universal constant
c > 0.

3. Simulation study

We present a simulation study to assess the performance of the proposed log-concave pri-
ors for density estimation. In particular, we investigate the prior based on the truncated
stick breaking representation (7), firstly with deterministically chosen support [an, bn],
secondly its empirical Bayes counterpart with support [X(1), X(n)], where X(1) and X(n)

denote the smallest and largest observations, respectively, and thirdly the hierarchical
Bayes version where the parameters a and b− a are endowed with independent Cauchy
and half-Cauchy distributions, respectively. In all cases we plot the posterior mean and
95% pointwise credible sets, and compare them with the log-concave maximum likelihood
estimator (computed using the R function “mlelcd”).

Consider first the posterior distribution arising from the prior with deterministic sup-
port [an, bn]. We have drawn random samples of size n = 50, 200, 500 and 2500 from a
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gamma distribution with shape and rate parameters 2 and 1, respectively. We took the
number of linear pieces in the exponent of the prior to be N = Cn1/5 log n, with C = 1,
set [an, bn] = [−2.3 log n, 2.3 log n], endowed the break-point parameters θ = (θ1, ..., θm)
with independent uniform priors on [0, bn−an], assigned the weight parameters p a stick-
breaking distribution truncated at level m, and endowed γ1 and γ2 a half Cauchy and a
Cauchy distribution, respectively, with location parameter 0 and scale parameter 1. Since
the posterior distribution does not have a closed-form expression, we drew approximate
samples from the posterior using a random walk Metropolis-Hastings within Gibbs sam-
pling algorithm for 10000 iterations out of which the first 5000 are discarded as burn-in
period. In Figure 2, we have plotted the true distribution (solid red), posterior mean
(solid blue), 95% pointwise credible band (dashed blue) and the maximum likelihood
estimator (solid green). The data is represented by a histogram on the figures.

We see that the posterior mean gives an adequate estimator for the true log-concave
density with similar, if not superior, performance compared to the more jagged maxi-
mum likelihood estimator, and the 95% pointwise credible bands mostly contain the true
function except for points close to zero. We further investigate the frequentist coverage
properties of the pointwise Bayesian credible sets. We repeat the above experiment for
the empirical Bayes procedure 100 times (each with 2000 iterations out of which half were
discarded as burn in) and report the frequencies where the density f(x) at given points
x ∈ {0.5, 1, 1.5, 2, 2.5, 3} is inside of the corresponding credible interval. We consider sam-
ple sizes n = 50, 200 and 500 and report the empirical coverage probabilities in Table 1.
One can see that in this particular example we get quite reliable uncertainty quantifica-
tion, especially for larger sample sizes. It should be noted, however, that the frequentist
coverage of Bayesian credible sets is a delicate subject in nonparametric statistics, see
for instance Szabó et al. [33], and is beyond the scope of this article.

Remark 3. The constant C in the number N = Cn1/5 log n of knots can be chosen
relatively freely from a theoretical point of view without affecting the convergence rate. In
practice, however, larger C results in smaller bias, larger variance and increased com-
putational cost. For the relatively large sample sizes we consider here (except perhaps
n = 50), taking C = 1 already gives reasonable estimators, see Figure 2. The optimal
choice of C depends on the unknown underlying density and one could experiment with
selecting C in a data-driven manner, for example by estimating it empirically or endow-
ing C with a prior. We think that C = 1 works sufficiently well for moderate sample
sizes, while for small samples sizes one can take C slightly larger, say 2 or 3, to have
enough knots.

We next investigate the behaviour of the empirical and hierarchical Bayes versions
of the proposed prior. We again simulate n = 50, 200, 500 and 2500 independent draws
from a Gamma(2,1) distribution and set the compact support of the prior densities to
be [an, bn] = [X(1), X(n)], that is the smallest and largest observations, for the empirical
Bayes procedure and [a, b], with a ∼ Cauchy(0, 1) and b − a ∼ Cauchy+(0, 1) indepen-
dent, for the hierarchical Bayes method. As before we set m = n1/5 log n and endowed
the parameters θ, p, γ1 and γ2 with the same priors as above. We ran the algorithm again

imsart-bj ver. 2014/10/16 file: LCBayes_main.tex date: June 6, 2019



12 E. Mariucci, K. Ray and B. Szabó

n \ x 0.5 1 1.5 2 2.5 3

50 0.51 0.81 0.88 0.85 0.87 0.93

200 0.68 0.97 0.94 0.87 0.94 0.97

500 0.83 0.96 0.88 0.87 0.86 0.91

Table 1. Frequencies out of 100 experiments when the empirical Bayes credible set contained the true
function values at points x = 0.5, 1, ..., 3. From top to bottom the sample size increases from n = 50

until n = 500.
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Figure 2. Prior with [an, bn] selected deterministically: the underlying Gamma(2,1) density function
(red), posterior mean (solid blue), pointwise credible bands (dashed blue), maximum likelihood estimator
(solid green) and data is represented with a histogram. We have increasing sample size from left to right
and top to bottom n = 50, 200, 500 and 2500.

for 10000 iterations, taking the first half of the chain as a burn-in period. We plot the
outcomes in Figures 3 and 4 for the empirical and hierarchical Bayes procedures, respec-
tively. One can see that for n ≥ 500 observations, the posterior mean (solid blue) closely
resembles the underlying gamma density (solid red), while the fit is already reasonable
for n = 200. The pointwise 95%-credible bands contain the true density, even near zero,
which was problematic in case of the prior with support selected deterministically. Com-
paring Figures 2, 3 and 4, we see that the empirical and hierarchical Bayes approaches of
selecting the support [an, bn] in a data-driven way outperform a deterministic selection.
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We also note that the algorithm for the empirical Bayes method was considerably faster
than the others due to the smaller support, which reduces the computation time of the
normalizing constants

∫
ew(y)dy of the densities.
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Figure 3. Empirical Bayes prior with data-driven support: the underlying Gamma(2,1) density function
(red), posterior mean (solid blue), pointwise credible bands (dashed blue) and data is represented with
a histogram. We have increasing sample size from left to right and top to bottom n = 50, 200, 500 and
2500.

We then investigate the performance of the posterior distribution corresponding to
the empirical and hierarchical Bayes methods for recovering different log-concave den-
sities and again compare them with the MLE. We have considered a standard normal
distribution, a gamma distribution with shape parameter 2 and rate parameter 1, a beta
distribution with shape parameters 2 and 3, and a Laplace distribution with location
parameter 0 and dispersion parameter 1. In all four examples we have taken sample size
n = 1500. The posterior mean (solid blue), the 95% pointwise credible bands (dashed
blue) and the MLE (green) are plotted in Figures 5 and 6 for the empirical and hierar-
chical Bayes procedures, respectively. All four subpictures for both data-driven methods
show satisfactory results, both for recovery using the posterior mean and for uncertainty
quantification using the pointwise credible bands. We note that the displayed plots con-
vey typical behaviour and are representative of multiple simulations. We hence draw the
conclusion that the proposed method seems to work well in practice for various choices
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14 E. Mariucci, K. Ray and B. Szabó

Figure 4. Hierarchical Bayes prior with data-driven support: the underlying Gamma(2,1) density func-
tion (red), posterior mean (solid blue), pointwise credible bands (dashed blue) and data is represented
with a histogram. We have increasing sample size from left to right and top to bottom n = 50, 200, 500
and 2500.

of common log-concave densities.
Lastly, we investigate the performance of the proposed Bayesian procedures for esti-

mating the mode of the underlying log-concave density. We consider the standard normal
distribution and take i.i.d. random samples of size ranging from 50 to 20000. We run the
Gibbs sampler for 20000 iterations and take the first half of the iterations as burn-in
period. For each posterior draw we compute the mode and use the resulting histogram to
approximate the one-dimensional marginal posterior. The histograms from the empirical
Bayes procedure are displayed in Figure 7. One can see that the posterior concentrates
around the true mode (i.e. 0) as the sample size increases.

The marginal posterior concentrates substantially slower than n−1/2-rate. This is as
expected, since the best possible minimax rate for estimating the mode m0 of a unimodal
or log-concave density f0 satisfying f ′′0 (m0) < 0 is n−1/5, see [18, 2]. Indeed, the mode of
the log-concave MLE attains this rate [2]. Interestingly, the marginal posterior does not
seem to be Gaussian, which may be linked to the irregular asymptotic distribution of the
mode of the log-concave MLE. This rather complicated distribution equals the mode of
the second derivative of the lower invelope of a certain Gaussian process, see [2] for full
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Figure 5. The underlying density function (red), empirical Bayes posterior mean (solid blue) and point-
wise credible bands (dashed blue). The data is represented with a histogram. The true density functions
are from left to right and top to bottom: standard Gaussian, Gamma(2,1), Beta(2,3) and Laplace(0,1).

details. A better understanding of the limiting shape of the marginal posterior would be
interesting, but is beyond the scope of this article.

In the supplementary material we provide additional simulations for the marginal pos-
terior for the mode from the empirical Bayes posterior for different underlying log-concave
densities, namely the beta and gamma distributions. We also numerically investigate the
applicability of our log-concave Bayesian prior for estimating mixtures of log-concave
densities.

4. Discussion

We have proposed a novel Bayesian procedure for log-concave density estimation. The
prior is defined on compactly supported densities, where the support can be chosen either
deterministically, empirically or using a fully Bayesian hierarchical procedure. We have
shown theoretically that both the deterministic and fully Bayesian choices of the support
give (near-)optimal posterior contraction rates, and have demonstrated the good small
sample performance of the posterior for all three methods in a simulation study. We have
also plotted the 95% pointwise credible bands, which in our simulation study provide
reliable frequentist uncertainty quantification. However, this might depend heavily on the
choice of the underlying true density and it is unclear at present whether our methods
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Figure 6. The underlying density function (red), hierarchical Bayes posterior mean (solid blue) and
pointwise credible bands (dashed blue). The data is represented with a histogram. The true density
functions are from left to right and top to bottom: standard Gaussian, Gamma(2,1), Beta(2,3) and
Laplace(0,1).

generally provide trustworthy frequentist uncertainty quantification. The rigourous study
of this question is beyond the scope of the present paper.

In our simulation study, we further investigated the behaviour of the marginal posterior
for the mode functional. A natural next question is whether one can obtain semiparamet-
ric Bernstein-von Mises type results for the mode. In view of the irregular behaviour of
the log-concave MLE, this is an interesting problem as it is unclear whether the limiting
distribution of the posterior is indeed Gaussian.

A possible application of our proposed approach is clustering based on mixture models.
Assuming that clusters have log-concave densities instead of (say) Gaussians broadens
their modelling flexibility. We have executed a small simulation study to explore this
direction. For simplicity we have considered a mixture of only two log-concave densities
and modified our prior accordingly. In the considered examples (see the Supplementary
material) our procedure performs reasonably well. However, we should note that the
computational time is much worse than using simple Gaussian kernels. Extending this
to mixtures with more than two (possibly unknown number of) components seems to be
possible, but requires optimization of the Gibbs sampler and perhaps introducing other
approximation steps, which are beyond the scope of the present paper.

Another natural question if whether one can extend these results to multivariate den-
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Figure 7. The empirical Bayes posterior distribution of the mode for standard normal distribution with
increasing sample size from left to right and top to bottom, ranging between n = 50 and n = 20000. .

sity estimation, especially in view of the difficulty of computing the log-concave MLE
in higher dimensions. Since our present prior construction is based on using a mixture
representation to model a decreasing function, which corresponds to the derivative of
the concave exponent, this will require new ideas. A possible approach is presented in
Hannah and Dunson [17], who place a prior over all functions that are the maximum
of a set of hyperplanes. This yields a prior on the set of convex functions that could
potentially be adapted to the multivariate log-concave setting.

5. Proofs

Define the following classes of log-concave densities with mean and variance restrictions:

Fξ,η =

{
f ∈ F : µf :=

∫
xf(x)dx = ξ, σ2

f :=

∫
(x− µf )2f(x)dx = η

}
and

F̃ξ,η = {f ∈ F : |µf | ≤ ξ, |σ2
f − 1| ≤ η}.

Let f̂n denote the log-concave MLE based on i.i.d. random variables X1, . . . , Xn arising
from a density f0 ∈ F .
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18 E. Mariucci, K. Ray and B. Szabó

The proof of Theorem 1 relies on a concentration inequality for the log-concave MLE
based on data from moment-restricted densities. This is the content of the following
lemma, whose proof is essentially contained in Kim and Samworth [22] for the more
difficult case of general d ≥ 1. However, we require a sharper probability bound than
they provide and so make some minor modifications to their argument. The proof can
be found in the supplementary material [24].

Lemma 1. For every ε > 0, there exist positive constants L0, C, c, n0, depending only
on ε, and positive universal constants D, d > 0, such that for all L ≥ L0 and n ≥ n0,

sup
g0∈F

0,1

Png0

(
h(ĝn, g0) ≥ Ln−2/5

)
≤ C exp

(
−cn1/(4+2ε)

)
+D exp

(
−dL2n1/5

)
,

where ĝn denotes the log-concave maximum likelihood estimator based on an i.i.d. sample
Z1, ..., Zn from g0.

Proof of Theorem 1. As in the proof of Theorem 2.1 of [11], using the lower bound on
the small ball probability from (1), it suffices to construct tests φn = φn(X1, ..., Xn; f0)
such that

Pnf0φn → 0, and sup
f∈F :h(f,f0)≥Mεn

Pnf (1− φn) ≤ e−(C+4)nε2n

for n large enough, where the constant C > 0 matches that in (1).

For M0 a constant to be chosen below, set φn = 1{h(f̂n, f0) ≥ M0εn}, where f̂n
is the log-concave MLE based on i.i.d. observations X1, ..., Xn from a density f0 ∈ F .
Let µf0 = EXi, σ

2
f0

= Var(Xi) and define Zi = (Xi − µf0)/σf0 , so that EZi = 0 and

Var(Zi) = 1. Further set g0(z) = σf0f0(σf0z + µf0) and ĝn(z) = σf0 f̂n(σf0z + µf0), so

g0 ∈ F
0,1

. By affine equivariance (Remark 2.4 of [10]), ĝn is the log-concave maximum
likelihood estimator of g0 based on Z1, ..., Zn.

Using the invariance of the Hellinger distance under affine transformations and Lemma
1 with ε = 1/2, the type-I error satisfies

Pnf0φn = Png0(h(ĝn, g0) ≥M0εn) ≤ Png0(h(ĝn, g0) ≥ L0n
−2/5) ≤ Ce−cn

1/5

→ 0

as n→∞ for M0 large enough since εn & n−2/5. For f ∈ F such that h(f, f0) ≥Mεn,

Pnf (1− φn) = Pnf (h(f0, f̂n) < M0εn)

≤ Pnf (h(f0, f)− h(f, f̂n) < M0εn)

≤ Pnf ((M −M0)εn < h(f, f̂n)).

Since εn . n−3/8−ρ implies εn . n−3/8−ρ′ for any 0 < ρ′ ≤ ρ, we may take ρ > 0
arbitrarily small. Applying Lemma 1 with ε(ρ) > 0 to be chosen below and Ln = (M −
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M0)εnn
2/5, which satisfies Ln ≥ L0 for M > 0 large enough since εn & n−2/5, yields

sup
f∈F :h(f,f0)≥Mεn

Pnf (1− φn) ≤ sup
g∈F0,1

Png (h(ĝn, g) > (M −M0)εn)

= sup
g∈F0,1

Png (h(ĝn, g) > Lnn
−2/5)

≤ C(ρ) exp
(
−c(ρ)n

1
4+2ε(ρ)

)
+D exp

(
−dL2

nn
1/5
)

for all n ≥ n0(ρ). Since εn . n−3/8−ρ by assumption, it follows that nε2
n . n1/4−2ρ =

o(n1/(4+2ε(ρ))) for ε(ρ) > 0 small enough. Therefore,

sup
f∈F :h(f,f0)≥Mεn

Pnf (1− φn) ≤ (1 + o(1))De−d(M−M0)2nε2n .

Since we can make the constant in the exponent arbitrarily large by taking M > 0 large
enough, this completes the proof.

Proof of Theorem 3. Let f0 ∈ Fα,β for some α > 0 and β ∈ R. We may restrict to a
suitable compactly supported density approximating f0 using the first paragraph of the
proof of Theorem 2 of Ghosal and van der Vaart [12]. For completeness we reproduce
their argument in this paragraph. Let ψn(x) = 1[−tn,tn](x) for tn = a′ log n for some
a′ > α−1. Define new observations X̄1, ..., X̄n̄ from the original observations X1, ..., Xn

by rejecting each Xi independently with probability 1 − ψn(Xi). Since Pf0 [−tn, tn]c ≤
2eβα−1e−αtn = o(n−1), the probability that at least one of the Xi’s is rejected is o(1)
and so the posterior based on the original and modified observations are the same with
Pnf0-probability tending to one. Since posterior contraction is defined via convergence in
Pnf0-probability, this implies that the posterior contraction rates are the same. The new
observations come from a density f0,n that is proportional to f0ψn, which is log-concave
and upper semi-continuous. Since |1−

∫
f0ψn| ≤ Pf0 [−tn, tn]c = o(n−1),

h2(f0, f0,n) ≤ 2

∫
R
f0

(
1− 1√∫

f0ψn

)2

dx+
2∫
f0ψn

∫
R
f0(1−

√
ψn)2dx

≤ 2
(
∫
f0ψn − 1)2∫
f0ψn

+
2∫
f0ψn

∫
R\[−tn,tn]

f0dx = o(n−1).

(8)

It therefore suffices to establish contraction for the posterior based on the new observa-
tions about the density f0,n = f0ψn/

∫
f0ψn.

Under the assumed conditions on (bn − an), εn given by (4) satisfies n−2/5 . εn .
n−3/8−ρ for some ρ > 0 small enough. We thus apply Theorem 1 so that we need only
show the small-ball probability (1). Note that f0,n(x) ≤ eβ−α|x|(1 + o(n−1)), so that
f0,n ∈ Fα,2β for n large enough. Since −an, bn � log n and bn − an = o(n4/5), we may
construct an approximation f̄n of f0,n based on the interval [an, bn] for n large enough
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using Proposition 1. By Lemma 8 of [12],∫
R
f0,n

(
log

f0,n

fW

)k
.
(
h2(f0,n, f̄n) + h2(f̄n, fW )

)
×

(
1 + log

∥∥∥∥f0,n

f̄n

∥∥∥∥
L∞([an,bn])

+ log

∥∥∥∥ f̄nfW
∥∥∥∥
L∞([an,bn])

)k
for k = 1, 2. By Proposition 1(i) and (iv), the first term in the first bracket and the second
term in the second bracket are O((log n)2n−4/5 +(bn−an)2n−8/5) and O(1) respectively.

By Proposition 1(v), f̄n has representation

f̄n(x) = exp

γ̄1

N̄∑
i=1

zi ∧ (x− an)

zi
p̄i − γ̄2(x− an) + γ̄3

1[an,bn](x), (9)

where (zi)
N̄
i=1 ⊂ [0, bn − an] are the knots written in increasing order, N̄ = N̄n =

O(n1/5 log n) and
∑N̄
i=1 p̄i = 1. Let w̄n(x) = (log f̄n(x)− γ̄3)1[an,bn](x)−∞1R\[an,bn](x)

so that f̄n = fw̄n using the transformation (2). We may thus without loss of generality
take γ̄3 = 0 since it is contained in the normalization (2).

Suppose that fw is a (log-concave) density with support equal to [an, bn] and such
that ‖w̄n−w‖L∞([an,bn]) ≤ cεn. Since

∫
ew = eO(εn)

∫
ew̄n , it follows that for x ∈ [an, bn],

f̄n(x)/fw(x) ≤ eO(εn) = eo(1). Since h2(f̄n, fw) . ε2
n by Lemma 3.1 of [35], we can

conclude that

{w : ‖w̄n − w‖L∞([an,bn]) ≤ cεn} ⊂ {w : K(f0,n, fw) ≤ ε2
n, V (f0,n, fw) ≤ ε2

n} (10)

for some c > 0. It therefore suffices to lower bound the prior probability of the left-hand
set.

Fix δ > 0 to be chosen sufficiently large below. Since the zi are n−6/5-separated by
Proposition 1(iii), we can find a collection of disjoint intervals (Ui)

N̄
i=1 in [an, bn] with

Lebesgue measure λ(Ui) = εδn and such that zi ∈ Ui for i = 1, ..., N̄ . Further denote
U0 := R\ ∪Mn

i=1 Ui. Let W be a prior draw of the form (3) with parameters γ1, γ2 and P .
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Writing pi = P (Ui), p̄0 = 0 and using the triangle inequality, for any x ∈ [an, bn],

|w̄n(x)−W (x)| =

∣∣∣∣∣∣γ̄1

N̄∑
i=1

zi ∧ (x− an)

zi
p̄i − γ̄2(x− an)− γ1

∫ ∞
0

θ ∧ (x− an)

θ
dP (θ)− γ2(x− an)

∣∣∣∣∣∣
≤ |γ̄1 − γ1|

∫ ∞
0

θ ∧ (x− an)

θ
dP (θ) + γ̄1

∣∣∣∣∫
U0

θ ∧ (x− an)

θ
dP (θ)

∣∣∣∣
+ γ̄1

∣∣∣∣∣∣
N̄∑
i=1

∫
Ui

θ ∧ (x− an)

θ
dP (θ)−

N̄∑
i=1

zi ∧ (x− an)

zi
pi

∣∣∣∣∣∣
+ γ̄1

∣∣∣∣∣∣
N̄∑
i=1

zi ∧ (x− an)

zi
(pi − p̄i)

∣∣∣∣∣∣+ (bn − an)|γ̄2 − γ2|

≤ |γ̄1 − γ1|+ γ̄1

N̄∑
i=1

sup
θ∈Ui

|θ − zi|
θ ∧ zi

pi + γ̄1p0 + γ̄1

N̄∑
i=1

|pi − p̄i|+ (bn − an)|γ̄2 − γ2|

≤ |γ̄1 − γ1|+ 2γ̄1

N̄∑
i=1

λ(Ui)

zi
pi + γ̄1

N̄∑
i=0

|pi − p̄i|+ (bn − an)|γ̄2 − γ2|,

(11)

where we have used in the second to last line that the maximal distance between the
(piecewise) lines (y∧a)/a and (y∧b)/b occurs at y = a∧b and in the last line that θ > zi/2
for all θ ∈ Ui for a sufficiently large choice of the parameter δ > 0. By Proposition 1(v),
we have γ̄1 ≤ 2n4/5(bn − an) . n(4+µ)/5. Furthermore, by the separation of the knots,
zi ≥ z1 ≥ cn−6/5, i = 1, ..., N̄ , and so by the assumptions on the (Ui), the second term
is bounded by 2c−1γ̄1n

6/5εδn ≤ c̃εn for some δ, c̃ > 0 large enough.
The remaining three terms are independent under the prior and so can be dealt with

separately. By the assumptions on the base measure of the Dirichlet process, we have that∑N̄
i=0H(Ui) ≤ H(R+) and H(Ui) = H(R+)H̄(Ui) & λ(Ui)/(bn−an)η ≥ εδn/(bn−an)η ≥

εδ
′

n for i = 1, ..., N̄ and some δ′ > δ. For i = 0, note that λ(U0) ≥ (bn − an)− N̄εδn & 1.
Using the lower the bounds for the λ(Ui), which come from the polynomial separation
of the knots in Proposition 1(iii), we can apply Lemma 10 of [12] to get

Πn

(
γ̄1

N̄∑
i=0

|pi − p̄i| ≤ εn
)

& e−cN̄ log(2γ̄1/εn) & e−c
′nε2n . (12)

From the tail assumption on the density of γ1 and the upper bound on γ̄1, we have

Πn

(
|γ1 − γ̄1| ≤ εn

)
& εne

−c(γ̄1+εn)1/(4+µ) ≥ e−c
′n1/5

≥ e−nε
2
n . (13)

By Proposition 1(v), |γ̄2| . n4/5, which, combined with the tail bound on the density of
γ2, yields

Πn((bn − an)|γ2 − γ̄2| ≤ εn) & εn
bn−an e

−c(|γ̄2|+εn/(bn−an))1/4 ≥ e−c
′n1/5

≥ e−nε
2
n (14)
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since εn/(bn − an)→ 0 no faster than polynomially in n. Combining the above, we have

that Πn(‖w̄n −W‖L∞([an,bn]) ≤ (3 + c̃)εn) ≥ e−(2+c′)nε2n .

Proof of Theorem 4. Since the proof follows that of Theorem 3, we only specify the
details where the present proof differs. Using the same arguments, we restrict to studying
posterior contraction based on observations arising from the log-concave density f0,n =
f0ψn/

∫
f0ψn for ψn(x) = 1[−tn,tn](x) with tn = a′ log n for some a′ > α−1. We again

apply Theorem 1 so that we only need to show the small-ball probability (1) for εn =
(log n)n−2/5.

Writing Πa,b for the prior conditional on (a, b) and setting ∆n = {(a, b) : −3tn ≤ a ≤
−2tn, 2tn ≤ b ≤ 3tn}, the small ball probability in (1) is lower bounded by∫

∆n

Πa,b

(
K(f0,n, fW ) ≤ ε2

n, V (f0,n, fW ) ≤ ε2
n

)
π(a, b)da db

≥ inf
(a,b)∈∆n

Πa,b

(
K(f0,n, fW ) ≤ ε2

n, V (f0,n, fW ) ≤ ε2
n

)
×
∫

∆n

π(a, b)da db.

(15)

Using the lower bound assumption (5) on π(a, b), the last integral is lower bounded

by Ce−c1(3tn)q−c2(6tn)r
∫

∆n
da db ≥ Ct2ne

−c3(logn)q∨r & e−C
′nε2n . It thus suffices to lower

bound the infimum in the last display.
Since [− 8

5α log n, 8
5α log n] ⊂ [a, b] and (b− a) = O(log n) = o(n4/5) for all (a, b) ∈ ∆n,

we may apply Proposition 1 to construct an approximation f̄n of f0,n based on the interval
[a, b] for any (a, b) ∈ ∆n. One can then proceed exactly as in the proof of Theorem 3

to lower bound the prior small-ball probability by e−Cnε
2
n for fixed (a, b) ∈ ∆n. Since

all constants in that argument depend only on α, β and the prior hyperparameters, the
lower bound is uniform over all (a, b) with (b − a) = O(n2/5) (to ensure εn in (4) takes
the value (log n)n−2/5) and −a, b ≥ 8

5α log n. In particular, the lower bound is uniform
over ∆n.

Proof of Corollary 1. We use the notation employed in the proof of Theorem 3. By
(10), it suffices to lower bound the prior probability of an L∞-small ball about w̄n, where
f̄n = fw̄n is the approximation (9). Since N̄ ≤ N (at least for n large enough), we
can add additional breakpoints to the piecewise linear function w̄n with weights p̄i = 0,
i = N̄+1, ..., N , without changing w̄n. Without loss of generality, pick any such additional
breakpoints to be no smaller than cn−6/5. Using similar computations to (11), for any
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x ∈ [an, bn],

|w̄n(x)− w(x)| =

∣∣∣∣∣γ̄1

N∑
i=1

zi ∧ (x− an)

zi
p̄i − γ̄2(x− an)− γ1

N∑
i=1

θi ∧ (x− an)

θi
pi − γ2(x− an)

∣∣∣∣∣
≤ |γ̄1 − γ1|

N∑
i=1

θi ∧ (x− an)

θi
pi + γ̄1

∣∣∣∣∣
N∑
i=1

θi ∧ (x− an)

θi
pi −

N∑
i=1

zi ∧ (x− an)

zi
pi

∣∣∣∣∣
+ γ̄1

N∑
i=1

zi ∧ (x− an)

zi
|pi − p̄i|+ (bn − an)|γ̄2 − γ2|

≤ |γ̄1 − γ1|+ γ̄1

N∑
i=1

|θi − zi|
θi ∧ zi

pi + γ̄1

N∑
i=1

|pi − p̄i|+ (bn − an)|γ̄2 − γ2|.

The first and fourth terms are bounded from above by εn with prior probability at least
e−nε

2
n by (13) and (14), respectively, for both priors. For the second term note, similarly

to the proof of Theorem 3, that z1 ≥ cn−6/5. Taking θi ∈ [zi, zi+cn
−6/5εn/γ̄1], the second

term is bounded by γ̄1

∑N
i=1 piεn/γ̄1 = εn. The probability of this set under the base mea-

sure is H([zi, zi+cn
−6/5εn/γ̄1]) & cn−6/5εn/

(
γ̄1(bn−an)η

)
by the assumptions on H̄. The

joint probability that θi ∈ [zi, zi+cn
−6/5εn/γ̄1] for every i = 1, ..., N is therefore bounded

from below by a multiple of (cn−6/5εn/γ̄1)N/(bn − an)ηN & e−c1N logn ≥ e−c2nε
2
n , for

sufficiently large constants c1, c2 > 0.
It remains to show that the third term is bounded from above by εn with probability

at least e−cnε
2
n for some c > 0. In the case where (p1, ..., pN ) is endowed with a Dirichlet

distribution, this statement follows from (12). In the case of the truncated stick-breaking
prior, writing (p̄1, . . . , p̄N ) in decreasing order, we note that there exist 0 ≤ v̄1, ..., v̄N−1 ≤
1 such that p̄i =

∏i−1
j=1(1 − v̄j)v̄i, i = 1, ..., N − 1, and p̄N =

∏N−1
j=1 (1 − v̄j). Define for

i = 1, 2, ..., N − 1 the intervals

Ii =
[
(v̄i − εnn−4/5N−2) ∨ εnn−4/5N−2/2, (v̄i + εnn

−4/5N−2) ∧ (1− εnn−4/5N−2/2)
]
.

For vi ∈ Ii ⊂ [0, 1], i = 1, .., N − 1, we have∣∣∣(1− v1)...(1− vi)vi+1 − (1− v̄1)...(1− v̄i)v̄i+1

∣∣∣ ≤ |v1 − v̄1|+ |v2 − v̄2|+ ...+ |vi+1 − v̄i+1|

≤ (i+ 1)εnn
−4/5N−2 ≤ εnn−4/5N−1.

Hence for pi := (1 − v1)(1 − v2)...(1 − vi−1)vi, i = 1, ..., N − 1, (p1, .., pN ) is in the

N -dimensional simplex and γ̄1

∑N
i=1 |p̄i − pi| ≤ γ̄1Nεnn

−4/5N−1 . εn. Finally, we note
that for vi ∼ Beta(a, b), we have P (vi ∈ Ii) & (εnn

−4/5N−2)a∨b and we can therefore
conclude

P

(
γ̄1

N∑
i=1

|pi − p̄i| ≤ cεn
)
≥
N−1∏
i=1

P (vi ∈ Ii) ≥ eN(a∨b) log(εnN
−2n−4/5) ≥ e−c1N logn ≥ e−c2nε

2
n ,
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for some large enough constants c1, c2 > 0, thereby completing the proof.
For the hierarchical case where we assign a prior to (a, b), the proof follows as in that of

Theorem 4 using (15) and the lower bound for the small-ball probability just derived.

6. Proof of Proposition 1

In this section, we construct the piecewise log-linear approximation for an upper semi-
continuous log-concave density given in Proposition 1. In particular, we require that the
number of knots in the approximating function does not grow too quickly and that the
knots are polynomially separated, thereby rendering the construction somewhat involved.
The proof relies on firstly approximating any continuous concave function on a given
compact interval using a piecewise linear function. One then splits supp(f0) into sets,
depending on the size of both log f0 and |(log f0)′|, and obtains suitable piecewise linear
approximations defined locally on each of these sets. Piecing together these local functions
gives the desired global approximation.

We now construct a piecewise linear approximation of a continuous concave function
w on a compact interval [a, b]. For any partition a = x0 < x1 < · · · < xm = b of [a, b], let
w̃m denote the piecewise linear approximation of w given by

w̃m(x) :=

m∑
i=2

(
x− x∗i−1

x∗i − x∗i−1

1

xi − xi−1
θi +

x∗i − x
x∗i − x∗i−1

1

xi−1 − xi−2
θi−1

)
1(x∗i−1,x

∗
i ](x), (16)

where θi :=
∫ xi
xi−1

w(s)ds and x∗i := xi+xi−1

2 . On [a, x∗1] and (x∗m, b], the function is defined

by linearly extending the piecewise linear function defined above, that is

w̃m(a) :=
1

x∗2 − x∗1

(x∗2 − a
x1 − a

θ1 −
x∗1 − a
x2 − x1

θ2

)
,

w̃m(b) :=
1

x∗m − x∗m−1

(b− x∗m−1

b− xm−1
θm −

b− x∗m
xm−1 − xm−2

θm−1

)
.

(17)

The function w̃m takes value w̃m(x∗i ) = 1
xi−xi−1

∫ xi
xi−1

w(s)ds at the midpoint x∗i =
xi+xi−1

2 of the interval [xi−1, xi] and interpolates linearly in between. We next state
several technical lemmas whose proofs can be found in the supplementary material [24].

Lemma 2. Let w : [a, b]→ R be a continuous concave function, where −∞ < a < b <
∞. For any partition a = x0 < x1 < · · · < xm = b of [a, b], let w̃m denote the piecewise
linear approximation of w defined in (16) and (17). Then w̃m is a concave function.

Lemma 3. Let w : [a, b]→ R be a continuous concave function with w′+(a)−w′−(b) ≤M
and where −∞ < a < b <∞. Then there exists a partition a = x0 < x1 < · · · < xm = b
of [a, b] with mini=1,...,m(xi − xi−1) ≥ (b− a)(2m)−2 and such that

sup
x∈[a,b]

|w(x)− w̃m(x)| ≤ CM(b− a)

m2
,
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where w̃m is the piecewise linear approximation of w defined in (16) and (17) and C > 0
is a universal constant (i.e. not depending on a, b,m).

Lemma 4. Any piecewise linear concave function w : [a, b]→ R with N knots {z1, ..., zN}
can be written in the form

w(x) = γ1

N∑
i=1

zi ∧ (x− a)

zi
pi − γ2(x− a) + γ3,

with parameters 0 ≤ γ1 ≤ (w′+(a) − w′−(b))(b − a), |γ2| ≤ |w′−(b)|, γ3 ∈ R,
∑N
i=1 pi = 1

and pi ≥ 0 for i = 1, . . . , N .

Proof of Proposition 1. Let ψn(x) = 1[−sn,sn](x) for sn = 4
5α log n. The log-concave

density function f1 = f1,n = f0ψn/
∫
f0ψn supported on [−sn, sn] satisfies |1−

∫
f0ψn| ≤

Pf0 [−sn, sn]c ≤ 2eβα−1n−4/5. Arguing as in (8), one has h2(f0, f1,n) ≤ 12eβα−1n−4/5

for n ≥ (4eβ/α)5/4.
We write f1 = ew1 and construct the approximating function f̄n according to the value

of w1 and its left and right derivatives w′1,− and w′1,+. Let

An0 = {x ∈ [an, bn] : w1(x) < − 4
5 log n},

An1 = {x ∈ [an, bn] : w1(x) ≥ − 4
5 log n, |w′1,±(x)| > n4/5},

An2,j = {x ∈ [an, bn] : w1(x) ≥ − 4
5 log n, 2−j−1n4/5 < |w′1,±(x)| ≤ 2−jn4/5}, j = 0, . . . , jn,

An3 = {x ∈ [an, bn] : w1(x) ≥ − 4
5 log n, |w′1,±(x)| ≤ D},

where D > 0 is some fixed constant, |w′1,±(x)| = max(|w′1,+(x)|, |w′1,−(x)|) and jn =

dlog2(n4/5/D)e − 1. In fact the set where the left and right derivatives of the concave
function w1 do not agree has measure zero. Note that the above sets are all disjoint except
An2,jn and An3 : since jn is the smallest integer such that 2−jn−1n4/5 ≤ D, these last two
sets may overlap. In particular, we can express [an, bn] as the almost disjoint union of
the above sets. Write Bn = (∪jnj=0A

n
2,j) ∪ An3 ⊂ [an, bn] and note that by the concavity

of w1, this is an interval. Since ‖f1‖∞ ≤ 2eβ for n ≥ (4eβ/α)5/4, the set An1 consists of
at most two intervals, each of width O(n−4/5 log n). Using again the boundedness of f1,
the definition of An0 and that |supp(f1)| . log n,∫

Bn

f1dx = 1−O(n−4/5 log n), (18)

so that in particular, Bn 6= ∅ for n ≥ n0(α, β) large enough.
We now construct a partition Pn of Bn based on which we take the piecewise lin-

ear approximation (16)-(17) of the function w1. Note that An2,j consists of at most
two disjoint intervals, An2,j,+ and An2,j,−, which by the boundedness of f1 are each of

length O(2j+1n−4/5 log n). Let Pn,An2,j,+ denote the partition of the interval An2,j,+ given

by Lemma 3 with partition size m = d2−j/2n3/5|An2,j,+|1/2/
√

log ne = O(n1/5) and let
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Pn,An2,j,− be the analogous partition constructed on An2,j,−. Similarly, An3 ∩ (An2,jn)c con-

sists of a single interval of length O(log n). Let Pn,An3∩(An2,jn )c denote the corresponding

partition of An3 ∩ (An2,jn)n given by Lemma 3 with partition size m = dn1/5(D|An3 ∩
(An2,jn)c|/ log n)1/2e = O(n1/5). Define the overall partition

Pn = Pn,An3∩(An2,jn )c ∪
jn⋃
j=0

(Pn,An2,j,+ ∪ Pn,An2,j,−)

of Bn, which has O(jnn
1/5) = O(n1/5 log n) points. The associated piecewise linear func-

tion w̃n defined in (16)-(17) based on Pn is concave by Lemma 2 and by construction
corresponds to the partition given in Lemma 3 for each of the sets comprising Bn. It
therefore satisfies the conclusions of Lemma 3 on each such set (with the appropriate m),
so that in particular,

• ‖w1 − w̃n‖L∞(An2,j)
≤ Cn−2/5 log n for some universal constant C > 0 independent

of j,
• the partition points in An2,j are distance at least c2jn−6/5 log n ≥ cn−6/5 log n apart

for some universal constant c > 0 independent of j,
• on An3 ∩ (An2,jn)c, we have the same L∞-bound with the partition points being

cn−2/5 log n-separated.

Moreover, since these intervals meet only at their boundaries, and the boundary points of
the intervals are contained in the partition presented in Lemma 3, the interval boundaries
will be contained in Pn. Consequently, the separation property continues to hold even
across the different subpartitions. In conclusion, we have shown that w̃n is concave and
piecewise linear with O(n1/5 log n) knots, which are cn−6/5 log n-separated, and satisfies

sup
x∈Bn

|w̃n(x)− w1(x)| = O(n−2/5 log n). (19)

We now extend the approximating function to [an, bn] ⊃ Bn. Write Pn = (xi)
M
i=0,

where min(Bn) = x0 < x1 < ... < xM = max(Bn) and M = O(n1/5 log n). Define
w̄n : [an, bn]→ R as

w̄n(x) =


w̃n(x0) +

(
w′1,−(x0) ∧ n4/5 ∨ (−n4/5)

)
(x− x0) x ∈ [an, x0],

w̃n(x) x ∈ Bn,
w̃n(xM ) +

(
w′1,+(xM ) ∧ n4/5 ∨ (−n4/5)

)
(x− xM ) x ∈ [xM , bn].

(20)

This is simply the function w̃n extended linearly from the boundary points of Bn with
slope w′1,−(x0) ∧ n4/5 ∨ (−n4/5) and w′1,+(xM ) ∧ n4/5 ∨ (−n4/5) on [an, x0] and [xM , bn]
respectively. We now verify that w̄n is concave, for which it is enough to show that
w̄′n,+(x0) ≤ w̄′n,−(x0) and w̄′n,+(xM ) ≤ w̄′n,−(xM ). For the first inequality, using equation
(8) in the supplement [24], the concavity of w1 and the boundary construction of w̃n given
by (16), w̄′n,+(x0) = w̃′n,+(x0) = w̃′n,+(x∗1) ≤ w′1,+(x0) ≤ w′1,−(x0). Since x0 ∈ Bn, it also

holds that |w̄′n,+(x0)| ≤ n4/5. The second inequality can be proved analogously.
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Since log(1 + z) = O(z) as |z| → 0, it follows that log
∫
f0ψn = O(n−4/5). Using this

and (19),

|w̄n(x0)− log f0(x0)| ≤
∣∣∣ log

∫
f0ψn

∣∣∣+O(n−2/5 log n) = O(n−2/5 log n).

By concavity, the slope of the linear extension on [an, x0] satisfies w′1,−(x0) = (log f0)′−(x0) ≤
(log f0)′+(x) for all x < x0 such that f0(x) > 0. Combining the above yields w̄n(x) ≥
log f0(x)−O(n−2/5 log n) for all x ∈ [an, x0]. The same computation also gives the result
for x ∈ [xM , bn], so that for some C > 0,

sup
x∈[an,bn]\Bn

(log f0(x)− w̄n(x)) ≤ Cn−2/5 log n. (21)

Define the log-concave density

f̄n(x) =

{
ew̄n(x)/

∫ bn
an
ew̄n x ∈ [an, bn],

0 x 6∈ [an, bn].

This function is piecewise log-linear, has O(n1/5 log n) knots and satisfies (ii) and (iii)
by construction. We have

h2(f1, f̄n) ≤ 2

∫
Bcn

f1 + 2

∫
Bcn

f̄n +

∫
Bn

(f
1/2
1 − f̄1/2

n )2. (22)

The first integral is O(n−4/5 log n) by (18). Using (19),
∫
Bn

ew̄n = eo(1)
∫
Bn

f1. Write

the second integral as
∫
Bcn

f̄n =
∫
An0

f̄n +
∫
An1

f̄n. By the definition of An0 and (21),∫
An0

ew̄n ≤
∫
An0

e−(4/5) logn+n−2/5 logn ≤ (x0 − an + bn − xM )eo(1)n−4/5 = O((bn −
an)n−4/5). For the integral over An1 we simply observe that by (21), w̄n ≤ β+n−2/5 log n,
and recall that the measure of An1 is at most 2n−4/5(β+ 4

5 log n). Since bn−an ≥ 16
5α log n,

then
∫
An1

f̄n is also O((bn − an)n−4/5). This implies that the second integral in (22) is

O((bn − an)n−4/5).
Using (18), (19), Lemma 3.1 of [35] and the above, the third term of (22) is bounded

by a multiple of∫
Bn

ew1

(
1− 1√∫

Bn
ew1

)2

+

∫
Bn

(
ew1/2√∫
Bn

ew1

− ew̄n/2√∫
Bn

ew̄n

)2

+

∫
Bn

ew̄n

(
1√∫
Bn

ew̄n
− 1√∫ bn

an
ew̄n

)2

.

(∫
Bn

f1 − 1

)2

+ ‖w̄n − w1‖2L∞(Bn)e
‖w̄n−w1‖L∞(Bn) +

(∫
Bn

ew̄n −
∫ bn

an

ew̄n

)2

= O((log n)2n−4/5 + (bn − an)2n−8/5),
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which establishes (i).
Consider (iv). Note that this is trivial if f0(x) = 0, so assume f0(x) 6= 0. If x ∈ Bn,

then by (19),

f0(x)/f̄n(x) = ew1(x)−w̄n(x)

∫
f0ψn

∫ bn

an

ew̄n = eO(n−2/5 logn)(1 + o(1)) = 1 + o(1).

If x ∈ [an, bn]\Bn, then the result follows from (21).
Consider lastly (v). Since w̄n defined in (20) is piecewise linear with |w′+(an)| ∨

|w′−(bn)| ≤ n4/5, in view of Lemma 4 it takes the form

w̄n(x) = γ1

M∑
i=1

zi ∧ (x− an)

zi
− γ2(x− an) + γ3, x ∈ [an, bn],

with M = O(n1/5 log n), γ1 ≤ |w′+(an) − w′−(bn)|(bn − an) ≤ 2n4/5(bn − an) and |γ2| ≤
|w′−(bn)| ≤ n4/5. This completes the proof.
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