
A Geometry Conforming, Isogeometric, Weighted Least Squares
(WLS) Method for the Neutron Transport Equation with Discrete

Ordinate (SN) Angular Discretisation
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Abstract

This paper presents the application of isogeometric analysis (IGA) to the spatial discretisation of
the multi-group, source iteration compatible, weighted least squares (WLS) form of the neutron
transport equation with a discrete ordinate (SN) angular discretisation. The WLS equation is
an elliptic, second-order form of the neutron transport equation that can be applied to neutron
transport problems on computational domains where there are void regions present. However, the
WLS equation only maintains conservation of neutrons in void regions in the fine mesh limit. The
IGA spatial discretisation is based up non-uniform rational B-splines (NURBS) basis functions
for both the test and trial functions. In addition a methodology for selecting the magnitude of
the weighting function for void and near-void problems is presented. This methodology is based
upon solving the first-order neutron transport equation over a coarse spatial mesh. The results
of several nuclear reactor physics verification benchmark test cases are analysed. The results
from these verification benchmarks demonstrate two key aspects. The first is that the magnitude
of the error in the solution due to approximation of the geometry is greater than or equal to the
magnitude of the error in the solution due to lack of conservation of neutrons. The second is the
effect of the weighting factor on the solution which is investigated for a boiling water reactor
(BWR) lattice that contains a burnable poison pincell. It is demonstrated that the smaller the area
this weighting factor is active over the closer the WLS solution is to that produced by solving
the self adjoint angular flux (SAAF) equation. Finally, the methodology for determining the
magnitude of the weighting factor is shown to produce a suitable weighting factor for nuclear
reactor physics problems containing void regions. The more refined the coarse solution of the
first-order transport equation, the more suitable the weighting factor.

1. Introduction

Neutron transport problems that contain void regions are typically solved using the first-order
form of the neutron transport equation or Monte Carlo simulations [1]. Both of these methods can
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be combined in order to reduce the variance in the Monte Carlo solution. The adjoint first-order
neutron transport is solved and the solution is used as an importance map for the Monte-Carlo
algorithm [2, 3].

There are certain desirable numerical properties of the second-order form of the neutron
transport equation compared to the first-order form. One important property is that when the
second-order forms of the neutron transport equation are spatially discretised using the Bubnov-
Galerkin finite element method they yield symmetric-positive definite (SPD) systems of linear
equations. Such SPD matrix systems of linear equations can be solved using computationally
efficient preconditioned conjugate gradient (PCG) solution algorithms [4, 5]. However, tradi-
tional second-order forms of the neutron transport equation, such as the even-parity (EP) [6],
odd-parity (OP), and self-adjoint angular flux (SAAF) [7] formulations cannot be solved in void
regions. This is due to the reciprocal of the total macroscopic neutron cross-section that appears
in these formulations.

There are two standard approaches to solving second order forms of the neutron transport
equation in void regions. The first approach involves using a very low absorption macroscopic
neutron cross-section within the void region [8]. This approach can lead to an increase in the
condition number of the resultant system of linear equations and a potentially erroneous solution
[9]. In particular, a flat neutron flux is often observed across the void region [10]. Further
research has been performed into improving the accuracy of this approach. These more complex
methods involve solving the EP neutron transport equation several times whilst varying the value
of the absorption macroscopic neutron cross-section used in the void region. For example, the
iteration and extrapolation methods proposed by Ackroyd [8, 11].

The other approach is to interface different forms of the neutron transport equation at the
boundaries between void and non-void regions. Research has been performed on interfacing with
both first-order [12] and other second-order forms [13, 14] of the neutron transport equations.
These attempts often lead to a loss of symmetry of the resulting system of linear equations which
precludes the possibility of using PCG solvers.

A second-order form of the neutron transport equation recently proposed by Hansen et. al.
is a source iteration compatible self-adjoint least squares method that is compatible with void
regions [15]. This allows the angular domain to be discretised using the discrete ordinate (SN)
method. The source iteration compatible LS equation removes the reciprocal of the total macro-
scopic neutron cross-section and therefore avoids the increase in condition number that is typ-
ically seen by second-order forms in optically transparent or fully void regions. However, this
approach means that conservation of neutrons is only guaranteed in the fine-mesh limit. This is-
sue of conservation only in the fine mesh limit is seen in other second-order forms of the neutron
transport equation that are utilised for modelling neutron transport in void regions [7].

Least squares (LS) formulations have been used in many areas of research such as: quantum
electrodynamics [16], fluid mechanics [17], and biomolecular systems [18]. In particular, LS
formulations of the neutron transport equation, where the scattering kernel is taken to be part of
the transport operator, have been considered before within the literature. LS based maximum
principles for the first-order neutron transport equation were derived by Ackroyd and shown to
be equivalent to the even and odd parity maximum principles [19]. Schofield expanded upon
this work with a generalised LS form of the first-order neutron transport equation that is valid
in void regions. Second-order maximum variation principles were derived for both the steady
state [20, 21] and time dependent neutron transport equation [22]. These maximum variational
principles were applied to neutron transport involving void problems and shown to compare
reasonably well to point kernel calculations, as well as the aforementioned interpolation and
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extrapolation methods [8].
Manteuffel & Ressel presented proofs for boundedness and coercivity of the LS formulation.

This means that the existence of a unique solution of the formulation can be proven using the
Lax-Milgram theorem [23]. Error bounds, independent of cross-section, that held in the dif-
fusion limit were also derived by applying a scaling to the neutron transport equation prior to
the discretisation. The LS equation was solved in slab geometry discretised spatially and an-
gularly using linear finite elements and spherical harmonics (PN) respectively. Varin & Samba
performed a similar analysis but compared the LS-PN equation to the diamond differenced first-
order neutron transport equation with discrete ordinate (SN) angular discretisation [24]. Both
of the previous references [23, 24] only addressed isotropic scattering and Austin & Manteuffel
produced a similar analysis but allowed for anisotropic scattering [25].

Chaudhry et. al. investigated adding an extra term to the LS formulation to provide additional
accuracy in the evaluation of prescribed quantities of interest (QoI) [26]. This was found to
provide more accuracy in the evaluation of the QoI but produce a larger L2 error for the solution
as a whole for both diffusion and convection-diffusion equations. Drumm showed a simpler
method of scaling the LS equation that allowed it to be solved accurately in thick diffusive media.
This method was applied to one and two-dimensional void problems using finite elements with
PN angular discretisation [27]. Ketelsen et. al. derived the LS equation from the first-order
neutron transport equation formulated in one-dimensional (1D) spherical coordinates [28]. This
mitigates the ray effects from the SN discretised solution at the cost of more strongly coupling
all of the angular unknowns. However, all of the problems that they analysed in their paper were
purely absorbing as opposed to problems involving scattering.

Laboure et. al. presented the source iteration compatible LS equation angularly discretised
with both PN and SN [29]. The effect that the lack of conservation of neutrons has on the source
iteration compatible LS equations ability to solve criticality problems when compared to the
SAAF equation for void free problems was analysed. Furthermore, Laboure et. al presented
a hybrid SAAF & conservative least squares (SAAF-CLS) formulation of the neutron transport
equation that is valid in void and near void regions, but whose variational form is not symmetric
[13]. This methodology was shown to perform much better than the non-conservative LS formu-
lation, and performed similarly to other void treated second-order forms of the neutron transport
equation. Hammer et. al. derived a source iteration compatible weighted LS formulation by
including a weighting operator [30]. This weighting operator was chosen so that in non-void re-
gions the WLS formulation was identical to the SAAF formulation. In void, or near-void, regions
the formulation becomes more like Hansen’s LS form [15]. Therefore, conservation of neutrons
is not maintained in void regions. However, the weighting term helps to restore causality to the
formulation [30].

All of the aforementioned papers have spatially discretised the LS formulation using the finite
element (FE) method. In this paper spatial discretisation will be performed using isogeometric
analysis (IGA). IGA is a discretisation method that allows for the exact representation of ge-
ometries generated by commercial computer aided design (CAD) software. This is achieved by
using basis functions that are capable of exactly representing the known geometry as the trial or
shape functions to approximate the unknown solution. The functions chosen for this purpose in
this paper are the non-uniform rational B-splines (NURBS). Since the geometry is taken directly
from the CAD representation, no ancillary meshing is required and there is no error in the geo-
metric model, even on the coarsest level of refinement. In nuclear reactor physics problems this
avoids numerical errors that are caused by inaccuracies in the representation of the volume and
surface area of regions within the computational domain. For example, inaccuracies in represent-
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ing the volume of regions within the computational domain leads to problems with preserving
the fissile mass of fuel pins. Even when the volume of regions are exactly preserved, to machine
precision, there may still be inaccuracies in the surface area, of these same regions, which can
lead to numerical errors in representing the leakage of neutrons from fuel pins [31]. Further-
more, both spatial and polynomial refinement of the basis function space can be performed at
run time allowing for efficient integration with adaptive mesh refinement (AMR) algorithms [32]
and geometric multi-grid (GMG) solvers [33].

The aim of this paper in to investigate two issues. First, the magnitude and effect of the error
induced by the lack of conservation of neutrons will be investigated. Second, the benefits of the
IGA discretisation methodology will be studied by comparing IGA against traditional FE spatial
discretisation techniques. In section 2 the methodology of IGA is introduced. In section 3 the
source iteration compatible weighted least squares (WLS) form of the neutron transport equation
is derived. Furthermore, a procedure for determining the weighting operator is discussed. Section
4 describes how the weak form of the WLS equation is spatially and angularly discretised using
IGA and SN respectively. Finally the results of the WLS and LS equation applied to several
nuclear reactor physics verification benchmark test cases are presented in section 5.

2. Isogeometric Analysis

Isogeometric analysis (IGA) is a numerical discretisation technique that uses basis functions
capable of exactly representing the problem geometry as trial (shape) and test functions in the
Bubnov-Galerkin weak form of a given partial differential equation (PDE). The most widely used
basis functions for IGA are the non-uniform rational B-spline (NURBS) functions. While other
basis functions such as: T-splines [34], LR B-splines [35], and hierarchical B-splines [36] may be
used NURBS are typically chosen as they are also employed by the majority of commercial CAD
software to build geometric models [37]. Therefore, using NURBS as the basis functions for IGA
is a sensible choice as any CAD geometry model built using NURBS can be exactly represented
by the IGA numerical program. This means that geometries that include conic sections in two-
dimensions (2D), and quadric surfaces in three-dimensions (3D) will have their volume and
surface perfectly represented [37]. The theory, parameterisation, and generation of NURBS basis
functions and objects will now be explained. NURBS are built upon basis splines (B-splines)
so in order to describe NURBS functions B-splines will first be introduced. Furthermore, a
description will be provided of how general geometries are constructed from individual patches.

2.1. B-spline basis functions

B-splines are piece-wise polynomials that are defined over a knot vector. A knot vector is a
sequence of non-decreasing real numbers Ξ = {ξ1, ξ2, . . . , ξm−1, ξm}, with ξi ∈ R. The B-spline
basis functions over Ξ are defined as:

Ni,0(ξ) =

1 for ξ ∈
[
ξi, ξi+1) ,

0 otherwise,

Ni,q(ξ) =
ξ − ξi

ξi+q − ξi
Ni,q−1(ξ) +

ξi+q+1 − ξ

ξi+q+1 − ξi+1
Ni+1,q−1(ξ), for q = 1, . . . , p, (1)

where if the expression 0
0 occurs that term is assumed to be 0.
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Figure 1: B-spline basis functions for the 2nd order open knot vector Ξ = {0, 0, 0, 1, 1, 2, 3, 4, 4, 4}

The multiplicity of knot ξi is defined as the number of times it appears in Ξ and is denoted
mi. B-spline functions are Cp−mi continuous at ξ = ξi ∈ Ξ and C∞ at all other points. This
is referred to as the inter-element continuity of a function. By repeatedly inserting knots the
inter-element continuity of a B-spline function can be reduced as needed. For example, at a
material discontinuity where there may be a strong gradient in the solution. If each knot is
inserted p times then all basis functions are C0 over element boundaries similarly to traditional
finite element basis functions.

A knot vector where the first and last knots are repeated p + 1 times is referred to as an
open knot vector of order p. An open knot vector is capable of generating a set of B-spline
basis functions of order p that form a partition of unity over the entirety of Ξ [38]. This means
that the first and last B-spline basis functions are C0 and therefore, interpolatory at ξ1 and ξm

respectively. Some example two-dimensional B-spline functions are shown in figure 2. The
interpolatory nature of the B-spline functions can be seen in figure 2b where the maximum value
of this functions is one.

Open knot vectors are the de facto standard for CAD models generated using NURBS [37]
and are intuitive for designers to use due to the fact that the first and last basis functions are in-
terpolatory. The partition of unity property leads to the strong convex hull property which makes
the behaviour of B-spline objects more predictable when manipulating them in a commercial
CAD software [39]. It will be seen later on that the NURBS basis functions inherit the strong
convex hull property. From now on all knot vectors will be considered open knot vectors.

2.2. Non-uniform rational B-spline (NURBS) basis functions

Non-uniform rational B-splines (NURBS) are a generalisation of B-splines that, along with
a knot vector Ξ, require the specification of a set of weights {wi}

N
i=1 ∈ R, where N is the number

of basis functions. For an open knot vector Ξ of order p, N = m − (p + 1) where m is the length
of Ξ. The NURBS basis functions can then be generated using the following expression:

Rq
i (ξ) =

Ni,q(ξ)wi∑N
j=1 N j,q(ξ)w j

, for i = 1, 2, . . . ,N. (2)
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(a) The 8th B-spline basis function
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(b) The 16th B-spline basis function

Figure 2: A selection of the two-dimensional B-spline basis functions generated over a unit square with the linear open
knot vectors Ξξ = Ξη = {0.0, 0.0, 0.25, 0.5, 0.75, 1.0, 1.0}

It is assumed that wi > 0 for ∀i as this means the NURBS functions inherit several useful prop-
erties from B-splines, such as non-negativity, high inter-element continuity, and the convex hull
property [39]. Due to the partition of unity property of the B-spline basis functions it can be seen
that the B-spline basis functions are a proper subset of the NURBS basis functions. This can be
seen by setting wi = 1 for ∀i in which case expression (2) reads:

Rq
i (ξ) = Ni,q(ξ).

Furthermore, the NURBS basis functions generated over Ξ form a basis for the rational, piece-
wise polynomials over Ξ.

2.3. NURBS curves, surfaces, and volumes
A NURBS object of dimension d is defined as:

C(ξ) =

N∑
i=1

Rq
i (ξ)Bi, (3)

where the set of Bi’s ∈ R3 is known as the control points. In particular, Bi is the control point
corresponding the the ith NURBS basis function. The function C(ξ) is known as the geometry
map whose domain is the parametric domain V̂ and whose range is the physical domain V . The
Bi’s define a bounding polygon that contains the physical domain V . This is known as the strong
convex hull property and, as mentioned earlier, makes the design process more intuitive as well
as preventing spurious oscillations that may occur if high-order polynomials were used in an
attempt to ‘fit’ the geometry [39]. These spurious numerical oscillations are known as Runge’s
phenomenon [40].

For higher dimensional problems the basis functions in equation (2) are not suitable and
higher dimension basis functions are needed. Higher dimensional basis functions are generated
using a tensor product structure. For example, in two-dimensions the NURBS functions are:

Rq
i, j(ξ, η) =

Ni,q(ξ)N j,q(η)wi, j∑M
l=1

∑N
k=1 Nk,q(ξ)Nl,q(η)wl,k

, for i = 1, . . . ,N and j = 1, . . .M, (4)

where each dimension is parameterised by a different knot vector Ξξ and Ξη. Once generated,
the high dimension basis functions can be used in equation (3) to generate higher dimensional
NURBS objects.
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2.4. NURBS patches

Due to the tensor product structure used to generate higher-dimensional basis functions in
expression (4), the parametric domain of a NURBS object is topologically equivalent to a hyper-
cube. Therefore, in order to generate complex or multiply connected domains the concept of a
NURBS patch is introduced.

A NURBS patch of order p is a collection of open knot vectors, weights, and material co-
efficients. There are three main consequences of using NURBS patches. First, as mentioned
above, it allows the generation of geometries that are not topologically equivalent to a hyper-
cube. Second, the basis functions over the interfaces between patches are C0-continuous. At first
sight this appears to be a disadvantage as it has been demonstrated that maintaining maximal
continuity of NURBS basis functions within a NURBS patch leads to more accuracy per degree
of freedom (dof) [41, 42]. However, since patches are regions with constant material properties,
discontinuities in material properties can only occur at the interfaces between patches. Large
gradients in the solution may appear at discontinuities in material properties and in order to rep-
resent these gradients it is ideal to have basis functions that are C0 or even C−1 continuous in
order to avoid over-fitting the solution [37]. Therefore, the fact that the NURBS basis functions
are C0-continuous between NURBS patches is not as inefficient as it first seems. Finally, because
the NURBS basis functions are C0-continuous between NURBS patches, the patch-wise system
matrices can be formed and assembled independently. This provides a convenient way in which
to parallelise the assembly [37] and solution, via domain decomposition algorithms [43, 44], of
the global system of linear equations.

Consistency of the NURBS mesh is enforced by matching the control points of neighbouring
patches. While this leads to C0-continuous basis functions, the final geometric model can have
higher order continuity between patches [45]. This method of enforcing consistency, paired
with the tensor product structure of the basis functions, means that refinement within a NURBS
patch propagates to neighbouring patches. Local constraints can be applied in order to stop the
propagation of refinement throughout the problem domain and is the subject of future work.

3. Derivation of weighted least squares (WLS) method

The steady-state (time-independent), first-order, energy-dependent, neutron transport equa-
tion is given by:

Ω · ∇ψ(r,Ω, E) + σt(r, E)ψ(r,Ω, E) = Qscatter(r,Ω, E) + Qext(r,Ω, E), (5)

where

Qscatter(r,Ω, E) =

∫ ∞

0

∫
4π
σs

(
r,Ω′ → Ω, E′ → E

)
ψ(r,Ω′, E′)dΩ′dE′, (6)

and Qext(r, E) consists of neutron fission and extraneous (fixed) sources. Furthermore, the total
source is defined as:

Q(r,Ω, E) = Qscatter(r,Ω, E) + Qext(r,Ω, E).

The transport operator is defined as L = Ω · ∇+σt(r, E) such that equation (5) can be written as:

Lψ(r,Ω, E) = Q(r,Ω, E). (7)

7



By considering the inner product
∫

V

∫
4π

∫ ∞
0 dEdΩdr an expression for the adjoint transport oper-

ator L† can be derived by solving the equation:∫
V

∫
4π

∫ ∞

0
u(r,Ω, E)Lv(r,Ω, E)dEdΩdr =

∫
V

∫
4π

∫ ∞

0
L†u(r,Ω, E)v(r,Ω, E)dEdΩdr. (8)

This yields the following expression for the adjoint transport operator:

L† = −Ω · ∇ + σt(r, E). (9)

For this derivation the following notation for the inner product over the spatial domain is intro-
duced: (

u, v
)

V
=

∫
V

uvdr,〈
u, v

〉
Γ

=

∫
Γ

uvdrs,

where V is the physical domain, Γ is the boundary of V , and r ∈ V and rs ∈ Γ. Then the first-order
neutron transport equation in operator form, see equation (7), is operated on by L†W yielding:

L†WLψ(r,Ω, E) = L†WQ(r,Ω, E), (10)

whereW, known as the weighting operator, is to be chosen later on. This operator equation can
be written algebraically. The left hand side (LHS) and right hand side (RHS) of equation (10)
are considered separately yielding:
LHS:

L†WLψ = (−Ω · ∇ + σt)W (Ω · ∇ψ + σtψ)

= (−Ω · ∇ + σt) (WΩ · ∇ψ +Wσtψ)

= −Ω · ∇ (WΩ · ∇ψ) −Ω · ∇ (Wσtψ) + σtWΩ · ∇ψ +Wσ2
t ψ,

(11)

RHS
L†WQ = (−Ω · ∇ + σt)WQ = −Ω · ∇WQ + σtWQ. (12)

It is noted that the application of the product rule to the LHS would result in the combination
of the second and third terms in equation (11). However, this requires that both functions be
differentiable. SinceW has not been chosen yet nothing can be said about its differentiability.
Furthermore, σt is allowed to be discontinuous at patch boundaries. Since both functions are
not differentiable over the domain the product rule is not applicable here. Despite not being
allowed, its application would yield the same weak form. This derivation continues without any
application of the product rule. Equating sides gives:

−Ω · ∇ (WΩ · ∇ψ) −Ω · ∇
[
(Wσt)ψ

]
+ σtWΩ · ∇ψ +Wσ2

t ψ = (σt −Ω · ∇)WQ, (13)

which is then multiplied by a test function v and integrated over the entire spatial domain to give
the weak form:

−

(
Ω · ∇ (WΩ · ∇ψ) , v

)
V
−

(
Ω · ∇ (Wσtψ) , v

)
V

+

(
σtWΩ · ∇ψ, v

)
V

+

(
Wσ2

t ψ, v
)

V

=

(
WQ, σtv

)
V
−

(
Ω · ∇WQ, v

)
V
.

(14)
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Performing integration by parts on the first and second terms on the left hand side and the second
term on the right hand side gives:(

WΩ · ∇ψ,Ω · ∇v
)

V
+

(
WΩ · ∇ψ, σtv

)
V

+

(
Wσtψ,Ω · ∇v

)
V

+

(
Wσtψ, σtv

)
V

−

〈
wΩ · ∇ψ, (Ω · n) v

〉
Γ

−

〈
Wσtψ, (Ω · n) v

〉
Γ

=(
WQ, σtv

)
V

+

(
WQ,Ω · ∇v

)
V
−

〈
WQ, (Ω · n) v

〉
Γ

,

(15)

which can be simplified to:(
WΩ · ∇ψ,Ω · ∇v + σtv

)
V

+

(
Wσtψ,Ω · ∇v + σtv

)
V
−

〈
WΩ · ∇ψ +Wσtψ, (Ω · n) v

〉
Γ

=

(
WQ,Ω · ∇v + σtv

)
V
−

〈
WQ, (Ω · n) v

〉
Γ

.

(16)

The boundary terms can be removed as they satisfy the first-order neutron transport equation
given in equation (5), leaving:(

WΩ · ∇ψ,Ω · ∇v + σtv
)

V
+

(
Wσtψ,Ω · ∇v + σtv

)
V

=

(
WQ,Ω · ∇v + σtv

)
V
. (17)

The removal of the boundary integral terms leaves no way to satisfy natural boundary condi-
tions. Therefore, these are implemented weakly by introducing an additional term with a penalty
parameter, c into equation (17). The final weak form is then:(

WΩ · ∇ψ,Ω · ∇v + σtv
)

V
+

(
Wσtψ,Ω · ∇v + σtv

)
V

+ c
∫

Γ−
Wv|Ω · n| (ψ − F) drs

=

(
WQ,Ω · ∇v + σtv

)
V
,

(18)

where Γ− = {Γ | Ω · n < 0} and F(r,Ω, E), defined for rs ∈ Γ−, is a function that represents the
boundary conditions. For example:

• F = 0⇒ vacuum boundary

• F = ψ(r,ΩR, E)⇒ reflective boundary, where ΩR is the angle of specular reflection of Ω

• F = ζ(r,Ω, E)⇒ incoming boundary source.

The penalty parameter c is taken to be:

c = max
(
σt,

1
h

)
,

where h is a measurement of element size, taken here to be the largest distance between succes-
sive knots in a patch. This is suggested by Laboure in order to ensure that the LS formulation is
consistent with the SAAF formulation, that is they differ only by their discretisation error when
c = σt [46].
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Equation (18) withW = 1 is the source iteration compatible LS form presented by Hansen
et. al [15]. A non unit weighting factor gives the source iteration compatible weighted LS (WLS)
form given by Hammer et. al. [30].

The weighting factor suggested by Hammer et. al. [30] is:

W = min
(

1
σt
,wmax

)
, (19)

where wmax ∈ R is the maximum weight. In non-void regions W = 1
σt

implies that the WLS
equation will be equivalent to the SAAF equation, up to boundary conditions. This means that
that the WLS equation conserves neutrons in non-void regions, unlike Hansen’s LS equation.
However, in near-void and void regions 1

σt
→ ∞ meaning equation (18) will tend towards a sin-

gularity. When this would happen the weighting factor becomes wmax, the singularity is avoided
but at the cost of losing conservation of neutrons in near-void and void regions.

3.1. Choice of the weighting operatorW

In the original WLS paper by Hammer et. al. [30] the dependence of the solution of the
WLS equation on the value wmax was analysed. It was suggested that the optimal value of wmax
is independent of mesh size. Furthermore, it is suggested that wmax should be angularly depen-
dent to account for the fact that neutrons streaming in different directions may travel different
distances in a given void region. A strategy, based on the assumption that wmax is independent
of the mesh size, for determining an appropriate value of wmax is presented here. The algorithm,
which requires the solution of the first-order neutron transport equation, is presented in figure 3
and is also explained below.

First a quantity of interest (QoI) is chosen, for example: the Keff, a reaction rate over part of
the domain, or a detector response at a given location. Once this has been selected the first-order
neutron transport equation can be solved for the given problem and the QoI recorded, denoted
here by Q f . In this paper, the WLS equation is spatially and angularly discretised using IGA and
SN respectively. Therefore, a first-order neutron transport IGA-SN code is used to ensure that no
errors caused by geometric approximation or differing angular discretisation enter the problem
here.

An interval I ⊂ R is selected and a set of weights wi ∈ I is chosen. This set of weights is
denoted P. The WLS equation is then solved for each wi ∈ P over a coarse mesh and the QoI
recorded, denoted here by Qwi . If there exists a Qwi such that |Q f − Qwi | < ε, where ε is is some
tolerance, then wmax = wi is chosen. If such a wi is not found then a new I and P are chosen
until a suitable weighting factor is found. In accordance with the assumption that wmax should be
almost independent of mesh size, this procedure should give a good value of wmax for a highly
spatially refined solution of the WLS neutron transport equation with the same level of angular
discretisation.

One potential issue with this algorithm is related to the error in the QoI calculated from the
first-order neutron transport solution, Q f . Since Q f is calculated over a coarse mesh there will
be some error in Q f relative to the exact answer, Qe

f . It would be ideal to minimise the error in
the QoI using |Qe

f − Qwi | < ε. However, the exact solution Qe
f is not available so the expression

|Q f − Qwi | is used. Therefore, it would be beneficial to minimise |Qe
f − Q f | to ensure that Qwi is

being matched with a value of Q f that is sufficiently close to the exact solution Qe
f . Minimising

|Qe
f − Q f | implies that the mesh for the first-order neutron transport calculation should be highly

refined. This causes two issues with respect to the execution time of the algorithm proposed in
10



this paper. First, the more refined the ‘coarse’ first-order neutron transport calculation, the more
refined the ‘coarse’ WLS calculation must be in order to find the value of wmax that produces a
matching QoI. Therefore, as a consequence, the more refined the ‘coarse’ mesh is, the longer the
algorithm takes to execute.

Second, if it is possible to obtain fine mesh solutions of the first-order neutron transport equa-
tion in a reasonable time for void problems then this algorithm, along with the WLS equation,
would be unnecessary. If it is not possible to obtain fine mesh solutions of the first-order neutron
transport equation in a reasonable time then the computational cost of applying this algorithm
for a fine ‘coarse’ mesh would be too high. Therefore, a coarse ‘coarse’ mesh should be used.
The effect of the refinement of the ‘coarse’ mesh will be investigated in section 5.

4. Spatial and angular discretisation of the weak form of the WLS neutron transport equa-
tion

4.1. Discrete ordinate (SN) discretisation of the WLS neutron transport equation
In this paper the angular variable is discretised using the discrete ordinates (SN) method. The

SN method is a quadrature rule that can be used to evaluate angular integrals as follows:∫
4π

f (Ω)dΩ ≈
N∑

m=1

wm f (Ωm). (20)

A quadrature set defining the quadrature weights and directions {wm,Ωm}
N
m=1 must be chosen.

Some examples of suitable angular quadrature sets are level-symmetric quadrature sets, and
Legendre-Chebyshev quadrature sets.

In order to find the scalar neutron flux the weak form is evaluated and solved for each angle
Ωm ∈ {Ωm}

N
m=1. Then the quadrature rule can be used to recover the scalar neutron flux from the

angular neutron fluxes as follows:

φ(r, E) =

∫
4π
ψ(r,Ω, E)dΩ =

N∑
m=1

wmψ(r,Ωm, E) =

N∑
m=1

wmψm(r, E), (21)

where ψm(r, E) B ψ(r,Ωm, E). This means that in order to use expression (21), equation (18)
must be solved for ∀Ωm. That is:

〈WLmψm,Lmv〉 +
∫

Γ−m

cWv (Ωm · n) (ψm − F (r,Ωm)) drs = 〈WQm,Lmv〉 . (22)

where Lm B Ωm · ∇ + σt(r, E) and Γ−m = {Γ | Ωm · n < 0}.
In Morel & McGhees paper [7] it is noted that the SAAF-SN formulation can be derived

either directly, by evaluating the final weak form in a direction Ωm, or indirectly by evaluating
the strong form in a direction Ωm and then proceeding to derive the weak form. It is stated
that these methods lead to the same set of equations. This is also the case for the WLS-SN
formulation. This can be seen by defining Lm = Ωm · ∇ +σt(r, E) and L†m = −Ωm · ∇ +σt(r, E).
Then it can be noted that equation (10) evaluated at Ω = Ωm gives

L†mWLmψm(r, E) = L†mWQm(r, E).

Following through with the same weak form procedure specified in section 3 yields a weak form
that is equivalent to equation (22).

11



Start

Choose the QoI

Calculate Q f , the QoI calculated from a
coarse first-order neutron transport problem

Identify an interval I and choose a list of values wi ∈ I

Calculate Qwi , the QoI for a coarse WLS problem ∀wi

Are any
of the Qwi

sufficiently
close to Q f ?

Set wmax = wi, corresponding to the matching value of Qwi

Finish

yes

no

Figure 3: The algorithm for determining a value of wmax based upon a solution of the first-order neutron transport
equation.
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4.2. IGA spatial discretisation of the weak form of the WLS neutron transport equation

The IGA discretisation of the weak form of the WLS begins by expanding the spatial depen-
dence of the solution as a linear combination of trial functions:

ψm(r, E) =

∞∑
i=1

di,m(E)vi(r), (23)

where the di,m(E) are referred to as the control variables. The vi ∈ TR are referred to as the trial
functions and belong to the infinite dimensional trial function space:

TR =
{

v | v ∈ H1(V), v|ΓD = g
}
, (24)

where H1(V) is the Sobolev space W1
2 (V) over the domain V [47]. The condition v|S D = g allows

for the implementation of essential boundary conditions, such as a Dirichlet boundary condition:
ψ(r) = g for r ∈ ΓD [37]. A test function w is chosen to belong to another infinite dimensional
space:

TE =
{

w | w ∈ H1(V), w|Γ = 0
}
, (25)

which is known as the test function space. The condition w|Γ = 0 is enforced so that the test
functions do not interfere with the essential boundary conditions.

In order to provide closure to expression (23) the expansion must be truncated. In order to
achieve this, finite dimensional analogues of the trial and test function spaces are defined:

T h
R =

{
vh

i | v
h
i ∈ H1(V), vh

i |ΓD = g, for i ∈ [1,N]
}
,

T h
E =

{
wh

i | w
h
i ∈ H1(V), wh

i |Γ = 0, for i ∈ [1,N]
}
,

and the solution can then be approximated by a truncated expansion:

ψm(r, E) ≈ ψh
m(r, E) =

N∑
i=1

di,m(E)vh
i (r). (26)

The Bubnov-Galerkin IGA discretisation is then formulated by making the choice vi(r) = Rq
i (r) ∈

T h
R and w j(r) = Rq

j (r) ∈ T h
E . The truncated expansion of the angular flux given by expression (26)

is substituted into the weak form given in equation (22). Furthermore, w j = Rq
j is substituted into

equation (22) in place of v yielding:

N∑
i=1

di,m

[ ∫
V

(WΩm · ∇Ri +WσtRi)(Ωm · ∇R j + σtR j)dr + c
∫

Γ−m

|Ωm·n|WR j(Ri − F)drs

]
=

∫
V
WQm(Ωm · ∇R j + σtR j)dr.

(27)

This global bilinear form can be split into the summation of local bilinear forms computed over
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knot spans as follows:

N∑
i=1

di,m

P∑
p=1

ep∑
e=1

∫
Ve

(WΩm · ∇Ri +WσtRi)(Ωm · ∇R j + σtR j)dr

+

N∑
i=1

di,m

P∑
p=1

bp∑
b=1

c
∫

Γ−m,b

|Ωm·n|WR j(Ri − F)drs

=

P∑
p=1

ep∑
e=1

∫
Ve

WQm(Ωm · ∇R j + σtR j)dr.

(28)

where P is the number of patches in the domain, ep is the number of knot spans in patch p, bp is
the number of knot spans on the external boundary of patch p, Ve is the volume of knot span e,
and Γ−m,b is the external surface of knot span b such that Ωm · n < 0.

5. Numerical Results

The nuclear reactor physics and radiation shielding verification benchmark test cases in this
section have been chosen to investigate two aspects of the numerical discretisation method pre-
sented in this paper.

First, the solutions of FE and IGA discretisation methods are compared for several nuclear
reactor physics extraneous (fixed) source and fission source problems. These problems will
illustrate the magnitude of errors that are incurred when the two-dimensional geometries are
approximated by quadrilaterals, as is the case in traditional FE discretisations. Whilst volume or
surface area preservation techniques can be applied to FE meshes, it is impossible to accurately
preserve both the fissile mass and the surface area of conic sections in 2D and quadric surfaces
in 3D using standard higher order FE basis functions. This is due to the fact that these basis
functions are not able to represent conic sections and quadric surfaces exactly [37]. However,
the basis functions associated with the IGA method are chosen such that they are able to exactly
represent both the volume and surface area of these geometries exactly.

Using curvilinear high order isoparametric FEs to approximate pincell geometries has been
investigated for the first-order neutron transport equation [48]. Furthermore, comparisons be-
tween curvilinear high order isoparametric FEs and IGA have been performed for the first-order
neutron transport equation [32] and the multigroup diffusion equation [42]. It was seen that,
even with a similar number of elements per pincell, the error in detector response for FE so-
lutions could be over one order of magnitude greater than similarly discretised IGA solutions.
Since isoparametric FEs preserve neither volume or surface area exactly for a pincell, in this
paper volume preserved higher order isoparametric finite elements with straight sides are inves-
tigated. This means that the error in approximating the surface area of the geometry is easily
determined and fissile mass can be preserved to machine precision.

The second issue investigated in this section is the lack of conservation of neutrons over the
entire domain inherent in the LS and WLS methods. Several of the nuclear reactor physics and
radiation shielding verification benchmark test cases will highlight the errors associated with this
property. Furthermore, the effect of the magnitude of wmax ∈ R on the solution of the WLS
equation will be investigated for void and non-void problems.

The continuous IGA-WLS spatial discretisation method developed in this paper has been
implemented with a modified version of the Fortran code ICARUS (Isogeometric Continuous
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Region
Macroscopic neutron
cross-section (cm−1)

Extraneous source
strength (cm−3.s−1)

σt σa Q

Fuel 0.764 0.367 1.0

Table 1: Macroscopic neutron cross-sections and source strengths for the bare fuel pin extraneous (fixed) source nuclear
reactor physics verification test case.

1.0

Figure 4: Geometry for the bare fuel pin extraneous (fixed) source nuclear reactor physics verification benchmark test
case. A vacuum boundary condition is prescribed on the outer boundary of the bare fuel pin.

self-Adjoint Radiation Using Splines). ICARUS was originally developed to solve the SAAF
form of the neutron transport equation [49]. ICARUS is used to generate the WLS-SN, LS-SN,
and the SAAF-SN results in this paper for both IGA and FE discretisations. Inferno is a first-order
neutron transport code with local refinement capabilities [32, 50, 51]. It is a discontinuous IGA-
SN code and is used to generate reference solutions to both void and non-void nuclear reactor
physics verification benchmark test cases.

In all instances the number of degrees of freedom (dof) are considered along the x-axis as
opposed to the number of elements. In this paper the degree of the basis functions will remain
fixed and an increase in the number of dof refers to knot insertion (mesh refinement). This is
done so that the accuracy of a given set of basis functions can be fairly compared on a per dof
basis. This leads to a more relevant comparison between linear and higher order basis functions
than a per element comparison.

5.1. Bare fuel pin extraneous (fixed) source nuclear reactor physics verification benchmark test
case

This nuclear reactor physics test case is taken from work by Hall et. al. [31]. The verification
test case is comprised of a bare fuel pin with an extraneous (fixed) source. The macroscopic
cross-section data and the extraneous (fixed) source strength are presented in table 1 and the
geometry in figure 4. It has been noted the the LS equation lacks conservation of neutrons
except in the fine mesh limit. However, it is difficult to determine where the fine mesh limit
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Figure 5: Errors in the integral of the scalar neutron flux over the domain for the bare fuel pin extraneous (fixed) source
nuclear reactor physics verification test case. S10 angular quadrature has been used.
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will be for particular problems. In an attempt to quantify the magnitude of the error that lack
of conservation of neutrons may introduce in the solution the bare pin test case has been run
with several different discretisation techniques. The LS and SAAF equations have been spatially
discretised using FEs, volume-preserved FEs, and IGA and angularly discretised using an S10
quadrature set. The numerical results for the bare fuel pin verification benchmark test case are
presented in figure 5. The quantity of interest (QoI) considered is the integral of the scalar flux

over one quarter of the fuel pin, that is:
∫

V φ(r)dr
4 . The reference solution is generated using Inferno

with an S10 discrete ordinate discretisation and is given as 0.73596725097 with 2,359,296 dof
using quadratic NURBS basis functions.

Figure 5a shows the SAAF and LS equations discretised using quadratic, non volume-preserved
FEs. It can be observed that the SAAF and LS solutions seem to agree, that is the error caused
by the lack of conservation of neutrons is small compared to the error caused by approximat-
ing the volume and surface area of the geometry. Figure 5b shows the SAAF and LS equations
discretised using quadratic, volume-preserved FEs. The error between the two formulations can
now be observed showing that the ratio of the magnitude of the conservation error relative to
the magnitude of the surface area approximation is greater. Figure 5c shows the SAAF and LS
formulations discretised using IGA. Now the difference in the two formulations can be clearly
observed and gives a clearer picture of the magnitude of the conservation error. This leads to
the conclusion that, at least for some problems, the error induced by the lack of conservation of
neutrons is small when compared to the errors caused by the approximation of geometry.

A second point to note is that the error in the numerical solutions for the non volume preserv-
ing FE compared to the IGA differs by about six orders of magnitude for the SAAF solution. The
same comparison between volume preserved FE and IGA shows a difference of about 2-3 orders
of magnitude. Whilst some of this difference in accuracy is due to the C1 inter-element continuity
of the NURBS basis functions [41, 42], the main reason for this difference is the ability of IGA
to exactly represent the problem geometry.

5.2. Seven group, C5G7 UOX pincell lattice fission source nuclear reactor physics verification
benchmark test case

The seven-group, C5G7 UOX pincell lattice nuclear reactor physics test case has been se-
lected to further explore the relative magnitude of errors due to the lack of conservation of neu-
trons and geometric approximation. Lack of conservation of neutrons has been seen to more ad-
versely affect nuclear criticality and reactor physics problems so the C5G7 UOX pincell problem
could be considered more challenging for the LS method [30]. The geometry of the C5G7 UOX
pincell is displayed in figure 6. The macroscopic neutron cross-sections for the pin and modera-
tor are taken from the C5G7 nuclear reactor physics benchmark specification for materials ‘UO2
fuel-clad’ and ‘moderator’ respectively [52]. The macroscopic transport neutron cross-section
has been used in place of the macroscopic total neutron cross-section to account for anisotropic
scattering. All of the domain boundaries have prescribed reflective boundary conditions in order
to model an infinite lattice of pincells. This C5G7 UOX pincell test case is a nuclear reactor
physics problem so the Keff will be used to investigate the magnitude of errors that arise from
different discretisation methodologies and different second-order forms of the neutron transport
equation.

The errors in the Keff using various discretisations and second order formulations for this
problem can be seen in figure 7. All problems were angularly discretised using an S8 quadrature
set. The same general trend as was observed for the bare fuel pin test case in section 5.1 can
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0.54

1.26

Figure 6: Geometry for the seven group, C5G7 UOX pincell nuclear reactor physics verification benchmark test case.
All of the boundary conditions are prescribed to be reflective.

be seen. That is, the error in the IGA solution is less than both of the FE solutions for both the
LS and SAAF formulations. However, what is more apparent here is the error caused by lack
of conservation of neutrons. The Keff values from the LS and SAAF formulations differ by at
least one order of magnitude for matching levels of spatial discretisation. The errors in the Keff

values for the LS-FE results are of a similar order of magnitude as LS-FE results that have been
presented in other works [13, 30]. However, the errors between similar SAAF-FE and LS-FE
Keff values is much larger than the results presented in section 5.1.

It is suspected that this increase in magnitude of error is due to the following. The difference
in the scalar flux and the fission source for the SAAF and LS formulations at the ith iteration is
denoted φ(i)

E and F(i)
E . After one outer iteration φ(1)

E is small and since the flux is used to generate
the fission source, F(1)

E will also be small. However, this difference in fission sources causes a
larger difference in fluxes for the second outer iteration. Therefore, φ(2)

E > φ(1)
E and similarly,

since φ(2)
E is used to generate the fission source, F(2)

E > F(1)
E . This carries on until both solutions

have converged and the final error is greater than it would be in the fixed source case.

5.3. BWR supercell extraneous (fixed) source nuclear reactor physics verification benchmark
test case

The boiling water reactor (BWR) supercell nuclear reactor physics test case is based on
a mono-energetic, linearly anisotropic scattering problem presented by Wood & Willams [53]
and adapted for isotropic scattering by Owens [32]. It contains eight moderated fuel pins that
surround a central pin simulating a mixture of fuel and burnable poison. The description of the
geometry of the domain is presented in figure 8. All boundaries of the domain are prescribed with
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Figure 7: Error in the Keff for the UOX C5G7 pincell fission source nuclear reactor physics verification test case angularly
discretised with S8 discrete ordinate angular quadrature.

Region
Macroscopic neutron
cross-section (cm−1)

Extraneous source
strength (cm−3.s−1)

σt σs Q

Fuel 0.5145 0.3432 0.0
Moderator 0.7557 0.7504 1.0

Burnable poison circle 14.270 0.3400 0.0
Burnable poison annulus 21.60 0.3414 0.0

Table 2: Macroscopic neutron cross-sections and source strengths for the BWR supercell extraneous (fixed) source
nuclear reactor physics verification test case.
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Figure 8: Geometry of the BWR supercell extraneous (fixed) source nuclear reactor physics verification benchmark test
case.

reflective boundary conditions to simulate an infinite lattice. The macroscopic neutron cross-
section data for the extraneous (fixed) source problem with isotropic scattering are tabulated in
table 2. The BWR supercell nuclear reactor physics test case was selected in order to investigate
how the choice of wmax will effect the WLS equation when applied to a realistic problem with
strongly varying coefficients. The accuracy of the solution shall be investigated for the SAAF
equation, the LS equation, and the WLS equation with several values of wmax. The quantity of
interest (QoI) for the BWR supercell problem is the total flux in the middle side fuel pin. The
reference solution was generated using Inferno with quartic basis functions and 189,064 elements
per angle and using a S6 triangular Legendre-Chebyshev (LCT) discrete ordinate quadrature set.

The comparisons of the error in the QoI for the SAAF, LS, and WLS second-order forms of
the neutron transport equation are show in figure 9. All results were run using ICARUS with
quadratic basis functions and with S6 triangular Legendre-Chebyshev angular quadrature. The
WLS formulation has been run with three different weightings, wmax = 0.06, 1.0, 1.5. These
values were chosen as they cause the weighting operator to become active over different regions
of the BWR supercell geometry. When wmax = 1.0 the weighting operator will be active in
the fuel and moderator regions, wmax = 1.5 it will be active in only the moderator region, and
wmax = 0.06 it will be active in fuel, moderator, and the interior of the central pin.

In regions where the weighting operator is not active, that isW , wmax, the WLS formulation
is identical to the SAAF formulation, up to the weak enforcement of boundary conditions. Given
this, it would seem reasonable to predict that the value of wmax that produces a weighting operator
that is active over the smallest part of the domain would produce results closest to the SAAF
solution. Inversely, the value of wmax that produces a weighting operator that is active over the
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Figure 9: Error in the QoI for the BWR supercell extraneous (fixed) source nuclear reactor physics verification benchmark
test case discretised using an S6 LCT angular quadrature set.

largest part of the domain would produce results furthest from the SAAF solution.
This trend can be observed in figure 9. It can also be seen that WLS formulation with wmax =

1.5 has a lower error than the SAAF formulation at all points. This is most likely due to the
error caused by the lack of conservation of neutrons in certain areas of the problem cancelling
with the numerical discretisation error. The advantageous cancellation of errors may seem like
a benefit. However, the inability to predict the cancellation of errors introduces uncertainty into
the numerical solution. It is only clear that errors are cancelling out in the case of wmax = 1.5 as
a ‘reference’ SAAF solution is available. One final point that is evident from figure 9 is that the
WLS solutions are superior to the LS solution for all chosen values of wmax.

5.4. Dog-leg duct extraneous (fixed) source radiation shielding verification benchmark test case

The mono-energetic dog-leg duct radiation shielding test case is taken from work done by
Ackroyd [8, 54]. The problem consists of an extraneous (fixed) source in a voided duct sur-
rounded by a pure absorber. Ackroyd originally used the problem to investigate the efficacy of
the iteration and extrapolation methods for solving second-order forms of the neutron transport
equation in void regions [8]. In this paper the dog-leg duct test case is chosen to further inves-
tigate the effect of the value of wmax on solutions produced by the WLS equation, in particular
for void regions. The geometry of the dog-leg duct test case can be seen seen in figure 10. The
macroscopic neutron cross-sections and extraneous (fixed) source strengths are displayed in ta-
ble 3. All problems are run with S14 triangular Legendre-Chebyshev angular quadrature. The
reference results were produced using Inferno, a first-order neutron transport IGA-SN code
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Region
Macroscopic neutron
cross-section (cm−1)

Extraneous source
strength (cm−3.s−1)

σt σa Q

Absorber 0.5 0.5 0.0
Void 0.0 0.0 0.0

Source 0.0 0.0 1.0

Table 3: Macroscopic neutron cross-sections and source strengths for the dog-leg duct extraneous (fixed) source radiation
shielding verification benchmark test case.

Figure 10: Geometry of the two-dimensional dog-leg duct extraneous (fixed) source radiation shielding verification
benchmark test case.
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(a) Error in the scalar neutron flux for region 1

(b) Error in the scalar neutron flux for region 2

(c) Error in the scalar neutron flux for region 3

Figure 11: Error in various QoI for the two-dimensional S14 dog-leg duct extraneous (fixed) source radiation shielding
verification benchmark test case.
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(b) Scalar neutron flux profile along the line AB

Figure 12: Scalar neutron flux profiles for the S14 solution of the two-dimensional dog-leg duct extraneous (fixed) source
radiation shielding verification benchmark test case.
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Figure 13: Error in In with wmax = 16.8 and an S14 angular quadrature set for the two-dimensional dog-leg duct extrane-
ous (fixed) source radiation shielding verification benchmark test case.

Figure 11 shows the errors for three different quantities of interest (QoI) defined here as:

In =

∫
Vn

φ(r)dr for n = 1, 2, 3, (29)

where Vn is the nth region shown in figure 10. The value of wmax is varied and for the neutron
cross-section data in this problem wmax = 1 corresponds to the source iteration compatible LS
equation originally presented by Hansen [15].

In figure 11 it can be seen that increasing the value of wmax doesn’t necessarily yield a better
solution or QoI as was suggested by figure 9. A reason for this loss of accuracy in the QoI can
be observed in figure 12a. It can be seen that the solution for wmax = 100 exaggerates the peaks
and troughs in the computed scalar flux. Similarly, in figure 12b the solution is over estimated
over most of the line AB when wmax = 100. Furthermore, it is noted that the sign of the error in
In for wmax = 1 and wmax = 10 is negative, whilst the sign of the error for wmax = 100 is positive.
This implies that there is a locally optimal value of wmax located at some crossover point.

To investigate this crossover point further the algorithm proposed in section 3.1 (figure 3) is
applied. I1 is chosen as the QoI and the first-order neutron transport equation is solved with 1920
elements per angle. The Inferno code is used to determine the solution of the first-order neutron
transport equation. Then a series of WLS calculations with the same number of elements per
angle are run with varying weights until the error in I1 is as small as possible. Using this method
a value of wmax = 16.8 is decided upon to one decimal place. The WLS equation is then solved
over a highly refined spatial grid. All WLS solutions were calculated using the code ICARUS.
The errors in all In are displayed in figure 13.

It can be observed that for the finest mesh, with 123585 dof per angle, the errors in In for
∀n are lower than the In calculated from other values of wmax with the same resolution presented
in figure 11. Furthermore, it can be seen that the error in I1 is clearly the lowest. This is to be
expected as I1 is the QoI that was used to pick the value of wmax. The sudden dip in I1 that can
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Figure 14: Error in various QoI for the two-dimensional dog-leg duct extraneous (fixed) source radiation shielding
verification benchmark test case for values of wmax selected using the algorithm in figure 3. An S14 angular quadrature
set was used for all calculations.
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Number of elements Value of wmax

480 15.2
1920 16.8
7680 19.0

Table 4: Values of wmax produced by the algorithm in figure 3 for different coarse meshes applied to the two-dimensional
dog-leg duct extraneous (fixed) source radiation shielding verification benchmark test case.

be observed is located at the mesh refinement level that was used to generate the reference value
of I1.

In order to investigate the efficacy of the algorithm presented in figure 3 two more ‘coarse’
meshes are chosen for the first-order calculation. The two chosen levels of refinement yield 480
elements and 7680 elements per angle for each coarse mesh. The values of wmax produced for
each mesh are tabulated in table 4. The errors in each QoI for the values of wmax tabulated in
table 4 are presented in figure 14. It can be seen that the value of wmax calculated from the finest
‘coarse’ mesh causes errors in all QoI to be the smallest. This is not unexpected as the value of
Q f used in the algorithm shown in figure 3 will become more converged as the ‘coarse’ mesh is
refined. This means that the matching performed in the algorithm is against a more converged
QoI. However, this does not necessarily imply that the optimal value of wmax changes with mesh
refinement in two-dimensions. Further investigation is necessary to determine whether this is the
case.

It can be seen that the methodology presented in section 3.1 is useful for determining a value
of wmax for use in the WLS equation when solving problems involving void regions, particularly
where a given QoI is desired. The computational cost of applying this algorithm can be kept
low by choosing a sufficiently coarse mesh for the solution of the first-order neutron transport
equation. However, figure 14 suggests that using a finer coarse mesh for the first-order transport
solution leads to a value of wmax that is closer to optimal.

6. Conclusion

In this paper the weighted least squares (WLS) neutron transport equation was derived and
spatially discretised using non-uniform rational B-spline (NURBS) based isogeometric analysis
(IGA). The angular domain was discretised using the discrete ordinate (SN) method. IGA is a
spatial discretisation technique that is able to exactly represent the volume and surface area of
geometries that can be created using commercial CAD software. This includes conic sections in
two-dimensions (2D) and quadric surfaces in three-dimensions (3D).

The WLS formulation is an elliptic second-order form of the neutron transport equation.
It can be solved over void regions and is compatible with the source iteration method. The
WLS equation involves two weighting parameters. The first is used as a penalty parameter to
weakly impose boundary conditions whilst the second is used to weight void regions of the
problem domain. For the correct choices of these weighting parameters the WLS equation is
equivalent to the self-adjoint angular flux (SAAF) form of the neutron transport equation for
non-void problems. Therefore, the WLS equation conserves neutrons in non-void regions of the
domain. However, in void regions the choice of wmax can significantly impact the solution due to
lack of conservation of neutrons and the impact on the causality of the WLS formulation [30].
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In an attempt to ameliorate the error in void regions, a methodology for determining a value
of wmax that involves solving the first-order neutron transport equation over a coarse mesh was
presented. This algorithm is computationally efficient compared to solving the WLS on a fine
mesh.

Several nuclear reactor physics and radiation shielding verification benchmark test cases were
selected to evaluate the impact of two factors on the error in the solution: the effect of using a
NURBS based IGA discretisation, and the effect the choice of wmax can have on two-dimensional
problems. A single-group, extraneous (fixed) source bare fuel pin problem and an OECD/NEA
seven-group, two-dimension C5G7 UOX pincell fission source problem were discretised using
IGA and the FE method. The source iteration compatible least square (LS) equation and the
SAAF equation were solved for both of these discretisations. The LS equation is a particular case
of the WLS equation. It was shown that the error due to the geometric approximation inherent
in the FE discretisation was of a larger magnitude than the error due to lack of conservation of
neutrons for the bare fuel pin problem. For the fission source problem the two errors were of
roughly equal magnitudes.

The effect of the value of wmax on a selected QoI was investigated using a non-void two-
dimensional (2D) boiling water reactor (BWR) supercell nuclear reactor physics test case. It
was found that the greater the area of the domain where W = wmax the closer the solution of
the WLS equation was to the solution of the LS equation. Inversely, the greater the area of the
domain where W = 1

σt
the closer the solution of the WLS equation was to the solution of the

SAAF equation. Furthermore, a two-dimensional dog-leg duct radiation shielding test case that
included a void duct region was used to investigate the efficacy of the methodology presented to
determine a value of wmax. The methodology involves using a coarse solution to the first-order
transport equation. It was shown that the more refined the coarse solution was, the more suitable
the value of wmax that was calculated.

Overall the IGA spatial discretisation method seems a promising numerical discretisation
scheme, mostly due to its ability to exactly represent conic sections in two-dimensions (2D)
and quadric surfaces in three-dimensions (3D), but also due to the high inter-element conti-
nuity of the NURBS basis functions within a NURBS patch. Furthermore, the methodology
presented for determining wmax could enable the effective use of the WLS equation for a wide
variety of void problems. Future work could include making the value of wmax spatially or angu-
larly dependent over the problem domain in 2D. A methodology for selecting such a wmax(r,Ω)
would also need to be defined. Further research is required to extend the IGA-WLS method to
three-dimensional nuclear reactor physics and radiation shielding problems as well as incorpo-
rate energy-dependent, spatially adaptive meshes. As the geometry of the computational domain
is always represented exactly using IGA, even on the coarsest spatial representation, this enables
spatial refinement to be performed at run-time without the need for any ancillary unstructured
meshing software. Therefore, a locally refined IGA discretisation methodology, coupled with a
suitable goal-based adaptive mesh refinement (AMR) algorithm, could potentially improve the
numerical accuracy per dof as well as the computational efficiency compared to other unstruc-
tured mesh numerical discretisation schemes [41, 51].
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