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Abstract 19 

Performance weighted aggregation of expert judgements, using calibration questions, has been 20 

advocated to improve pooled quantitative judgements for ecological questions. However, there 21 

is little discussion or practical advice in the ecological literature regarding the application, 22 

advantages or challenges of performance weighting. 23 

In this paper we 1) illustrate how the IDEA protocol with four-step question format can be 24 

extended to include performance weighted aggregation from the Classical Model, and 2) 25 

explore the extent to which this extension improves pooled judgements for a range of 26 

performance measures.  27 

Our case study demonstrates that performance weights can improve judgements derived from 28 

the IDEA protocol with four-step question format. However, there is no a-priori guarantee of 29 

improvement. We conclude that the merits of the method lie in demonstrating that the final 30 

aggregation of judgements provides the best representation of uncertainty (i.e. validation), 31 

whether that be via equally weighted or performance weighted aggregation.  32 

Whether the time and effort entailed in performance weights can be justified is a matter for 33 

decision-makers. Our case study outlines the rationale, challenges, and benefits of performance 34 

weighted aggregations. It will help to inform decisions about the deployment of performance 35 

weighting and avoid common pitfalls in its application.  36 

 37 

  38 
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1 Introduction 39 

Over the past 15 years a considerable body of research has emerged in the ecological literature 40 

emphasising the need for more rigorous and structured methods for collecting quantitative 41 

expert judgements. The literature has summarised existing structured elicitation protocols and 42 

key steps which could be adapted and applied to better suit the practical (e.g. geographically 43 

dispersed experts) and financial (lack of funding) constraints of most ecological contexts 44 

(Burgman 2004, Low Choy et al. 2009, Kuhnert et al. 2010, Burgman et al. 2011a, Martin et 45 

al. 2012, McBride et al. 2012a, McBride et al. 2012b, Drescher et al. 2013). 46 

A common approach that has been advocated is to recruit a diverse group of individuals and 47 

take an equally weighted aggregation of their independent judgements (Burgman et al. 2011b, 48 

Hemming et al. 2018b). This will often produce point estimates which are at least as accurate 49 

(i.e. closer to the truth) and interval judgements which are better calibrated than the median-50 

ranked individual for these scores (Burgman et al. 2011b, Budescu and Chen 2014, Hemming 51 

et al. 2018b). While one person can sometimes outperform the group aggregate, rarely can that 52 

person be predicted by credentials conventionally associated with expertise such as age, 53 

experience, or peer-identification (Aspinall and Cooke 2013, Burgman 2015, Mellers et al. 54 

2015).  55 

The performance of the equal weighted aggregation is largely explained as a statistical 56 

phenomenon (Lorenz et al. 2011) in which the judgments of individuals represent random 57 

independent samples. If those samples are diverse then not only should the information pool 58 

related to the questions increase (Clemen and Winkler 1999), but the errors made by 59 

individuals are more likely to cancel (Larrick and Soll 2006, Budescu and Chen 2014). This 60 

phenomenon is often termed the ‘wisdom of the crowd’ (Surowiecki 2004), or the ‘staticised 61 

group’ (Einhorn et al. 1977, Hogarth 1978). Interestingly, participants need not be experts and 62 
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can be biased, as long as they have some information related to the questions that can be 63 

combined for prediction (Budescu and Chen 2014).  64 

Equal weighting is advantageous as it’s relatively simple to apply (Hogarth 1978, Hora 2004, 65 

Hemming et al. 2018b). Typically, group sizes of 5-12 participants derive improved 66 

judgements, with diminishing returns thereafter (Hogarth 1978, Hora 2004, Hemming et al. 67 

2018b). It requires no additional work to develop questions or performance measures to score 68 

and aggregate experts. It can be applied to any type of prediction including point estimates, 69 

distributions and probabilities. The simplicity of equal weighting, and its ability to improve a 70 

wide range of estimates make it suitable for aggregating judgements under the practical and 71 

financial constraints typical of many ecological decisions.  72 

However, despite substantial testing and real-world applications, many people find equal 73 

weighting difficult to trust (Weiss and Shanteau 2004). This is partly because the method relies 74 

on the recruitment of a diversity of individuals, often including individuals who may normally 75 

be excluded from such elicitations because of their perceived limited knowledge (Shanteau et 76 

al. 2002, Weiss and Shanteau 2004, Burgman et al. 2011a). 77 

When uncertainty is elicited, the diversity of the group can also increase the uncertainty 78 

associated with group judgements, sometimes leading to uninformative judgements 79 

(MacDonald et al. 2008, Barons et al. 2018). Occasionally individuals will outperform the 80 

group aggregation, and ideally decision-makers would like to restrict elicitation to these better 81 

performing individuals, or at least have the judgments of those individuals weigh more than 82 

those of lesser performers. Finally, there is no single method for generating an equally weighted 83 

aggregation. For example, for point estimates, the arithmetic mean is commonly applied, but 84 

one could also use the median, geometric mean or harmonic mean (Armstrong 2001, Colson 85 

and Cooke 2017). Rarely is there any validation to support such choices made by the analyst, 86 
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which can lead to questions about the validity of the specific method chosen, and the influence 87 

of analyst’s subjective bias. The problems associated with equal weights can serve to 88 

undermine the credibility of the final judgements derived and the subsequent decisions and 89 

assessment based on such judgements. 90 

Performance weighted aggregation is often suggested as a way to address these challenges and 91 

perceived deficiencies (Cooke 1991, Budescu and Chen 2014, Mellers et al. 2015). It involves 92 

developing sets of questions related to the main elicitation questions for which the answers can 93 

be obtained but are not widely known to experts (Cooke 1991, Goossens et al. 2008, Tetlock 94 

and Gardner 2015). These are referred to as test, seed or calibration questions (we use the term 95 

calibration questions from hereon). Those who perform better on these questions are afforded 96 

more weight in the final aggregation of the main elicitation questions. The method is 97 

differentiated from other forms of weighted aggregation such as those based on self-rating, 98 

peer-rating, trimming, or representativeness in that weights are obtained via validation of 99 

judgements against an external truth (Armstrong 2001, Aspinall and Cooke 2013).  100 

The main reason decision-makers seek to apply performance weights is to create aggregated 101 

judgements which are more accurate (for point estimates), or well-calibrated and informative 102 

(for interval judgements, probabilities and probability distributions) (Budescu and Chen 2014, 103 

Mellers et al. 2015, Colson and Cooke 2017). However, the inclusion of calibration questions 104 

is also seen to create a sense of legitimacy. It provides evidence that those who have been 105 

included in the final aggregation have some knowledge in the relevant domain, and that they 106 

can communicate their knowledge together with their uncertainty in the format required by the 107 

analyst (Barons et al. 2018, Quigley et al. 2018). It can also be used to validate assumptions 108 

made by the analyst in combining expert judgements. 109 
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Despite advocacy, there has been little progress in ecology towards understanding or applying 110 

performance weighted aggregation, outside of a few applications (Metcalf and Wallace 2013, 111 

Wittmann et al. 2015, Barons et al. 2018). We contend this has led to an under-appreciation of 112 

the fundamental requirements of the method in ecology, of how the method can be practically 113 

applied more widely in ecology, and the extent to which implementation may improve 114 

outcomes.  115 

In this paper we 1) illustrate how the IDEA protocol with four-step question format can be 116 

extended to include performance weighted aggregation from the Classical Model, and 2) 117 

explore the extent to which this extension improves pooled judgements for a range of 118 

performance measures.  119 

We choose the IDEA protocol (“Investigate”, “Discuss”, “Estimate”, and “Aggregate”) as it is 120 

a structured elicitation protocol that has been tested and refined in the ecological literature and 121 

(Hanea et al. 2016, Hemming et al. 2018a). The method involves first recruiting a diverse group 122 

of individuals, and allowing each individual to “Investigate” the problem before making a 123 

private individual estimate (often termed “Round 1”), following which experts see the 124 

judgements of others and then enter into a “Discussion” phase. Experts then provide a final 125 

private “Estimate” (“Round 2”). The judgements are “Aggregated”, typically using equal 126 

weights (Figure 1).  127 

Elicitation in the IDEA protocol can be undertaken remotely (i.e. via email), in a face-to-face 128 

workshop, or by combining the two formats. This flexibility provides a practical advantage for 129 

ecologists who usually have limited resources to convene experts face-to-face. 130 

Most applications of the IDEA protocol in ecology aim to obtain quantitative judgements 131 

together with uncertainty. When doing so, the four-step question format is often deployed 132 
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(Speirs-Bridge et al. 2010) (Figure 1). This method derives a credible interval with a ‘best’ 133 

point estimate based on the following questions: 134 

1. Realistically what is the lowest plausible value for x? 135 

2. Realistically what is the highest plausible value for x? 136 

3. Realistically what is your best estimate for x? 137 

4. Looking at your interval from lowest to highest, how confident are you that your 138 

interval will capture the realised truth. 139 

The four-step question format has been demonstrated to reduce overconfidence in interval 140 

judgements relative to eliciting fixed quantiles (Speirs-Bridge et al. 2010). It has also helped 141 

in obtaining quantitative judgements (with uncertainty) from experts who may eschew 142 

quantification. Its development and application has improved the quality of information 143 

derived from expert elicitation in ecology beyond that of categorial variables and point 144 

estimates, which can be imbued with considerable ambiguity or fail to provide crucial 145 

information about uncertainty (Wallsten et al. 1986, Gregory and Keeney 2017). 146 

The practical advantages of the IDEA protocol with the four-step question format has seen the 147 

adoption of the combined method spread rapidly in ecology (Adams-Hosking et al. 2016, 148 

Hudson et al. 2017, Barons et al. 2018, Carwardine et al. 2019, Estévez et al. 2019). However, 149 

it has been suggested that the aggregations derived could be further improved by incorporating 150 

the performance weighted aggregation (Metcalf and Wallace 2013, Hemming et al. 2018a, 151 

Hemming et al. 2018b). 152 

The Classical Model (Cooke 1991) is a method for performance weighted aggregation often 153 

cited in the ecological literature as a means to improve uncertain quantitative ecological 154 

judgements (Burgman et al. 2011a, Martin et al. 2012, Drescher et al. 2013, Metcalf and 155 

Wallace 2013, Hemming et al. 2018a). While it has been applied to a large number of 156 
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engineering case studies (Cooke and Goossens 2008, Colson and Cooke 2017) we are aware 157 

of only two ecological examples, both in the Laurentian Great Lakes (Rothlisberger et al. 2009, 158 

Wittmann et al. 2015).  159 

In this this study we apply the Classical Model to a case study in which judgements were 160 

elicited using the IDEA protocol (Hemming et al. 2018a) and four-step question format (Speirs-161 

Bridge et al. 2010). In doing so, we address the key aims of this study (outlined above), while 162 

providing an insight into key considerations required for the deployment of performance 163 

weighted aggregation more broadly.  164 

2 Methods 165 

2.1 Fundamentals of performance weighting 166 

There is a considerable body of literature describing the application of performance weighting 167 

with calibration questions, however, it is spread across a broad range of domains which can be 168 

difficult to access and synthesise. We summarise key points to be considered prior to 169 

application. 170 

Generating performance weights with calibration questions entails (a) the development of 171 

questions for which there are answers unknown to the participants, and (b) the selection of an 172 

appropriate scoring rule to measure the performance of expert estimates.  173 

There is little prescriptive guidance as to what makes a good calibration question, although 174 

some features are self-evident (Cooke and Goossens 2000, Aspinall and Cooke 2013, Tetlock 175 

and Gardner 2015, Quigley et al. 2018). They should relate to the knowledge needed to answer 176 

the main elicitation questions (i.e. domain knowledge). They should ask questions about 177 

uncertainty to capture an expert’s ability to adapt and communicate their knowledge. They 178 

should be in a similar format to the main elicitation questions. They should not be questions 179 
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which can be easily guessed, and not so hard that an expert could not reasonably form a 180 

judgement. A substantial number of calibration questions may be required to differentiate luck 181 

from good judgement, depending on the scoring rules. Ideally, questions should relate to 182 

predictions of events or quantities rather than estimating the outcomes of past events 183 

(retrodictions), although this is not always possible. The questions should be reviewed by at 184 

least two people with domain knowledge to ensure they provide fair and reasonable 185 

assessments of an expert’s ability to make good judgements related to the main elicitation 186 

questions.  187 

One of the most important aspects of scoring rules is that they should not influence experts in 188 

an undesirable way - termed proper scoring rules (Brier 1950). Strictly proper scoring rules are 189 

those for which an expert maximises the expected score, if and only if they state their true 190 

beliefs (Gneiting and Raftery 2007). There are many methods for scoring and assessing expert 191 

judgements (Brier 1950, Cooke 1991, Flandoli et al. 2011, Budescu and Chen 2014, Satopää 192 

et al. 2014, Hemming et al. 2018b), which vary depending on the types of judgements elicited 193 

(probabilities, intervals, distributions etc). Not all scoring rules are proper scoring rules, and 194 

few have been substantially tested and applied in real applications. The Brier Score is an 195 

exception and has been used to assess performance of individuals and groups on single event 196 

probabilities such as weather forecasts and geopolitical events, but has not been developed into 197 

a formal weighting scheme (Brier 1950, Tetlock and Gardner 2015, Barons et al. 2018). The 198 

other exception is the scoring rule of the Classical Model (discussed below) (Cooke 1991).  199 

Scoring rules aim to optimise judgements and the way in which they do this depends on their 200 

reward structure (Winkler and Murphy 1968, Tetlock 2005). For example, scoring rules for 201 

interval judgements may penalise overconfidence (e.g. intervals that are too narrow, which 202 

include the truth less often than the purported level of confidence provided by the expert) more 203 

than under-confidence (e.g. intervals that are too broad and capture more realisations than the 204 
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purported level of confidence of the expert). It’s therefore important to understand how such 205 

transgressions of judgement are handled by a proposed scoring rule, to ensure that the reward 206 

structure matches the preferences and needs of the decision-maker and the problem at hand. 207 

This of course requires an awareness among decision-makers about what aspects of judgement 208 

are most important to them.  209 

Obtaining an understanding of the reward structure can be challenging as research papers 210 

outlining the application of scoring rules rarely provide clear examples of how judgements are 211 

incorporated and combined. Few adequately discuss their embedded reward structure. A 212 

further complication arises in understanding scoring rules because the terms used to describe 213 

judgement, such as ‘calibration’, ‘accuracy’ and ‘overconfidence’, are used interchangeably 214 

and may refer to different concepts (Lichtenstein and Fischhoff 1977, Lichtendahl Jr et al. 215 

2013, Cooke 2018b, Hemming et al. 2018b).  216 

2.2 The Classical Model 217 

In this paper we choose to investigate the application of the Classical Model (Cooke 1991). 218 

The method was developed as a means for reaching rational consensus, which is defined by 219 

Cooke and Goossens (2008) as an agreement as to how to derive a consensus distribution from 220 

multiple, elicited distributions. Ultimately, it treats expert judgement as a form of empirical 221 

data and promotes adherence to four critical elements of scientific inquiry: accountability, 222 

empirical control, neutrality, and fairness (Cooke and Goossens 2008).  223 

In elicitations employing the Classical Model, experts are asked a set of calibration questions 224 

(usually 10-15), for which the answers can be obtained. As noted above, these questions should 225 

relate to the main questions of the elicitation (termed target variables or questions of interest). 226 

Unlike the four-step question format commonly used with the IDEA protocol, experts are asked 227 

to specify their judgements as quantiles of a continuous non-parametric probability distribution 228 
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(usually 5th, 50th, and 95th) for both calibration questions and questions of interest. The 229 

individual judgements of experts are typically elicited in a face-to-face elicitation with one or 230 

more facilitators present (Wittmann et al. 2015). Experts are scored on their performance using 231 

two performance measures (see section 2.4 for details): “statistical accuracy” (often termed 232 

“calibration”), and “information” (sometimes termed “informativeness”, or “relative 233 

information”). These are subsequently multiplied to provide an asymptotically proper scoring 234 

rule (the CM Score) (refer to Appendix S1: Section 4.2.3), and to derive differential weights.  235 

Experts who perform well on the calibration questions are afforded more weight in the final 236 

aggregations for the questions of interest. Both equally weighted and performance weighted 237 

linear pooled aggregations of distributions are then created and subsequently scored on their 238 

performance on the calibration questions (i.e. via in-sample validation, where the same 239 

questions used to develop the performance weighted aggregations are used to score the 240 

aggregations). To achieve rational consensus, experts or decision makers usually agree prior to 241 

the elicitation that the aggregation which achieves the highest combined score on the 242 

calibration questions will be used to weight expert judgements of the target questions.  243 

The primary purpose of performance weighting and calibration questions in the Classical 244 

Model is to come to an unbiased and empirically validated decision on how to combine the 245 

expert judgements. This step can help to overcome pre-judgements and exclusion of potentially 246 

knowledgeable individuals, as well arbitrary choices by analysts and decision makers about 247 

how to weight and aggregate experts. In analyses of 78 case studies using the Classical Model, 248 

performance weighted aggregations have outperformed equal weights in 76 studies (in-sample 249 

validation), suggesting the method can also be used to optimise aggregated judgements (Cooke 250 

and Goossens 2008, Colson and Cooke 2017). 251 

2.3 Case study 252 
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To demonstrate how the Classical Model could be applied in ecology, and to investigate 253 

potential improvements from its application, we use estimates for ecological questions from a 254 

previous case study by Hemming et al. (2018b). In brief, the case study used the IDEA protocol 255 

with the four-step question format to elicit judgements for thirteen questions relating to future 256 

abiotic and biotic events on the Great Barrier Reef. The elicitation was undertaken via email 257 

and the experts volunteered their time. The questions related to the types of events experts may 258 

be asked in assessing risk to the Great Barrier Reef (Ward 2014), for example, the percentage 259 

cover of coral bleaching that may be detected in the next monitoring event at a specified reef 260 

(see Appendix S1: Section 1). The questions related to future monitoring events, so that 261 

judgements could be scored against outcomes once monitoring data were collected. 262 

In total, 58 experts completed Round 2 of the elicitation exercise. These 58 individuals had 263 

been randomly assigned to one of eight groups within which judgments were aggregated. In 264 

Hemming et al. (2018b) the judgements were standardised to 80% credible intervals using 265 

linear extrapolation (outlined in Appendix S1: Section 1) and subsequently aggregated using 266 

an equal weighted quantile aggregation (taking the arithmetic mean) (refer to Appendix S1: 267 

Section 5). The judgements were then scored using performance measures of the IDEA 268 

protocol. The study found that 1) the equally weighted aggregate judgements were often more 269 

accurate and better calibrated than the median individual, 2) individuals could outperform the 270 

aggregation, however, they could not have been selected based on their credentials or 271 

demographic data, and 3) discussion and feedback led to improved final judgements (Appendix 272 

S1: Section 1). However, it was suggested further improvements may be made via performance 273 

weighted aggregation. 274 

2.3.1 Four-step to quantiles 275 
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To make responses of the four-step question format compatible with requirements of the 276 

Classical Model (quantiles of a continuous non-parametric distribution), individual judgements 277 

need to be standardised to 90% credible intervals. We then assume (a) that the best estimate is 278 

the 50th percentile (i.e. a median), and, (b) upper and lower estimates represent a central 279 

credible interval (i.e. whereby the probability mass beyond a judgment’s interval is apportioned 280 

equally above and below the upper and lower bounds, respectively). We interpret lower bounds 281 

as 5th quantiles and upper bounds as 95th quantiles.   282 

In zero-inflated settings it is possible for respondents to provide a judgment of zero for both 283 

their 5th and 50th quantile (which occurred in our case study but is not consistent with a 284 

continuous distribution - refer to Appendix S1: Section 2). In such cases, a small number may 285 

be added or deducted to separate the quantiles. For example, zeros may be replaced by the 286 

following numbers depending on where in the estimate the zeros occur (Cooke 2018a): 287 

• Lower / 5th : 0.00001 288 

• Best / 50th : 0.0001 289 

• Upper / 95th: 0.001 290 

In our case study, we also encountered circumstances where the lower estimate, or best estimate 291 

reasonably coincided with the upper bounds which led to similar adjustments (see Appendix 292 

S1: Sections 2-3). 293 

2.4 Scoring Judgements 294 

Assuming the judgements approximate quantiles of a continuous probability distribution, the 295 

judgements can then be scored using the Classical Model’s performance measures. There is 296 

substantial ambiguity and confusion in the ecological literature as to what the performance 297 

measures of the Classical Model actually reward. They have been cited as rewarding ‘accuracy’ 298 
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(Rothlisberger et al. 2009, Burgman et al. 2011a, Martin et al. 2012), which may give the 299 

impression they reward the accuracy of point estimates. They have also been noted to score 300 

‘calibration’ and ‘precision’ (width) which may give the impression they are designed to assess 301 

interval judgements according to definitions that arise in the psychological literature 302 

(Lichtenstein and Fischhoff 1977, Yaniv and Foster 1997, Burgman et al. 2011a, Wittmann et 303 

al. 2015).  304 

Verbal clarifications contained within the Classical Model literature often fail to clarify the 305 

reward structure, which may perpetuate misinterpretations. For example, statistical accuracy 306 

has been described as a measure of the likelihood that “at least 7 out of 10 realisations should 307 

fall outside an expert's 90% confidence bands, if each value really had an independent 90% 308 

chance of falling inside the bands?” (Rothlisberger et al. 2009, Colson and Cooke 2017). This 309 

may give the impression that it is designed primarily to score the calibration of the 90% credible 310 

interval judgements, rather than the calibration of the expert’s interquantile ranges. 311 

To better understand the reward structure of the Classical Model so that they are not misapplied 312 

we will contrast the performance measures for the Classical Model with those commonly used 313 

in the IDEA protocol (Hemming et al. 2018b). We outline these performance measures below. 314 

Equations and a worked example are provided in Appendix S1: Section 4. 315 

IDEA performance measures 316 

With the four-step question format in the IDEA protocol, individuals are scored by 317 

performance measures of accuracy, calibration and informativeness (Hemming et al. 2018b).  318 

Accuracy is designed to assesses the accuracy of point estimates. It is the difference between 319 

b, the expert’s best estimate, and the observed value, x. It is measured using the average log 320 

ratio error (ALRE) of expert responses. The measure is a relative measure, scale invariant, and 321 

emphasizes order of magnitude errors rather than linear errors. Smaller ALRE scores indicate 322 
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more accurate responses. For any given question the log ratio score has a maximum possible 323 

range of 0.31 (=log10(2)), which occurs when the true answer coincides with either the group 324 

minimum or group maximum (Burgman et al. 2011b) 325 

Calibration is the proportion of intervals provided by the experts containing the realised truth 326 

relative to their assigned confidence (Lichtenstein and Fischhoff 1977, Lin and Bier 2008). For 327 

example, if the expert’s intervals are standardised to 90% credible intervals then we expect for 328 

a well calibrated expert and 100 questions, that 90 of the realisations will fall between their 5th 329 

and 95th quantiles. If they capture fewer realisations, they may be considered overconfident, 330 

and if they capture more realisations they may be considered underconfident. The measure is 331 

an absolute measure and is scale invariant. If the realisations are equal to the expert’s 5th or 95th 332 

quantiles, then they are usually assessed as being included within the expert’s credible 333 

intervals.  334 

Informativeness is used to denote a measure of the width (or precision) of the intervals provided 335 

by experts (Yaniv and Foster 1997). It is a relative measure and scale invariant. For each 336 

question, the expert’s intervals are divided by a background range for the question, where the 337 

range is based on all estimates provided by the pool of experts for that question. Answers close 338 

to 0 indicate that an expert was highly informative, while a 1 would indicate the expert’s 339 

uncertainty spanned the entire range of responses for that question. The final score for 340 

informativeness for an expert is their average across all questions.  341 

Performance measures of the Classical Model 342 

The Classical Model has two main performance measures that assess the ability of an expert to 343 

provide useful probability distributions, statistical accuracy and information. 344 

Statistical accuracy (often referred to as calibration and often denoted by ‘C’) assesses the 345 

ability of experts to answer according to a theoretically optimal multinomial distribution. It 346 
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assesses the interquantile calibration of experts. For example, over a set of questions for which 347 

realisations could be obtained, we would expect for any high performing expert that: 348 

• For 5% of their judgements, the realisations would fall below their 5th quantile. We express 349 

the observed proportion as Q1. 350 

• For 45% of their judgements, the realisations would fall between their 5th and their 50th 351 

quantile. We express the observed proportion as Q2. 352 

• For 45% of their judgements, the realisations would fall between their 50th and their 95th 353 

quantile. We express the observed proportion as Q3. 354 

• For 5% of their judgements, the realisations would fall above their 95th quantile. We express 355 

the observed proportion as Q4. 356 

The expectation of where the realisations fall in relation to an expert’s interquantile ranges can 357 

be expressed as a theoretical multinomial distribution p=(0.05, 0.45, 0.45, 0.05) (Bedford and 358 

Cooke 2001). Under the Classical Model, the actual proportion of realisations within each 359 

inter-quantile range for each expert (or aggregation) e, is tallied to create a multinomial 360 

distribution for each expert: s(e)= (Q1, Q2, Q3, Q4).  361 

The realised distribution is then compared to the theoretical distribution using the Kullback-362 

Leibler (KL) divergence measure and a chi-square test with three degrees of freedom. 363 

Statistical Accuracy is the p-value of this test. Higher values indicate an expert’s distribution 364 

more closely matches the theoretical distribution. A statistical accuracy below 0.05 is often 365 

used as a cut-off point at which an expert is considered statistically inaccurate (i.e. Bamber et 366 

al. (2016), Colson and Cooke (2017)). The 0.05 level is often used in meta-analyses comparing 367 

the weighting and aggregation schemes in the Classical Model literature, but can also be used 368 

by the analyst as a cut-off point at which zero weight may be assigned to the expert’s 369 

judgement. 370 
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In scoring expert judgements, if the realisations are equal to the values provided by the experts 371 

for the 5th, 50th, and 95th quantiles, then the following rules are used to decide which probability 372 

bin the realisation should be placed into: 373 

• If the realisation equals the 5th quantile, it is placed in the first probability bin Q1. 374 

• If the realisation equals the 50th quantile, it is placed in the second probability bin Q2. 375 

• If the realisation equals the 95th, it is placed in the third probability bin Q3. 376 

We highlight this assumption as (on rare occasions) it can affect the score participants receive. 377 

For example, in the unlikely case that a participant was to estimate the median perfectly for 9 378 

of 10 questions, they could obtain a multinomial distribution of S(e)= (1, 9, 0, 0), which when 379 

compared to the theoretically optimal multinomial distribution means they would be 380 

considered statistically inaccurate at the 0.05 level, despite having perfect calibration and 381 

exceptional accuracy under the IDEA protocol scoring rules. 382 

Information (often referred to as relative information, or informativeness) under the Classical 383 

Model measures the degree to which the expert’s distribution is concentrated and to which it 384 

differs from a uniform or log-uniform distribution (which are considered the least informative 385 

distributions). It uses the KL divergence measure, which is scale invariant (Quigley et al. 2018). 386 

Information is calculated per question and does not depend on the realisation. The final 387 

information score of an expert is an average taken across all calibration questions. Larger 388 

numbers indicate better performance because they represent distributions which show greater 389 

departure from a uniform or log-uniform distribution.  390 

A simple example contrasting the performance measures is provided in Box 1, and Figure 2. 391 

In the results section, we plot outcomes for these measures against each other to gain a better 392 

understanding of the underlying reward structures.  393 
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2.5 Weighting and aggregating 394 

There are notable trade-offs between statistical accuracy and information in the Classical 395 

Model. By providing very wide intervals, an expert may achieve near perfect statistical 396 

accuracy, but will have low information (Quigley et al. 2018). Likewise, by providing very 397 

narrow intervals, they will have a high level of information, but usually at the cost of poor 398 

statistical accuracy. Ideally an expert should have both high statistical accuracy and 399 

information (Quigley et al. 2018). Therefore, the performance measures of the Classical Model 400 

are only proper if they are combined. 401 

Under the Classical Model, the scores for statistical accuracy and information are combined to 402 

provide weights for each expert. There are five basic ways in which experts may be weighted 403 

and combined (equations provided in the Appendix S1): 404 

Equal Weights (EW): is a linear pool of all expert distributions using the arithmetic mean of 405 

their distributions. It affords all experts the same weight regardless of how well they performed 406 

on calibration questions. It can be calculated without calibration questions.  407 

Global Weights (GW): is calculated based on the combined statistical accuracy and information 408 

scores (CM Score) averaged across all calibration questions. Experts who performed better on 409 

the calibration questions are afforded more weight than those who performed poorly. 410 
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Itemised Weights (IW): uses the same statistical accuracy scores as Global Weights, however, 411 

the weight each expert is awarded will change per question because it considers the information 412 

of the expert for each question of interest rather than the average calculated based on all of the 413 

calibration questions. This often leads to aggregations with higher information (and 414 

informativeness) on average than Global Weights.  415 

Global Weights Optimised (GWO) and Itemised Weights Optimised (IWO): are similar to their 416 

un-optimised variants described above (i.e. Global Weights (GW) and Itemised Weights (IW)). 417 

However, they optimise the statistical accuracy score by successively raising the level at which 418 

an expert is considered statistically inaccurate from an alpha level equal to the lowest 419 

calibration score. The weights are calculated and used to generate weighted aggregations that 420 

are scored on the calibration questions. The weighted aggregation with the highest performance 421 

on the calibration questions is chosen (Quigley et al. 2018). In decisions with one or two well 422 

calibrated experts, most or all of the weight may be assigned to those experts with no weight 423 

given to the other experts. 424 

For a set of calibration questions, an analyst may create a set of pooled judgements for each 425 

question under each weighting scheme. These pooled judgements can then be scored for their 426 

statistical accuracy and information (i.e. in-sample validation). These scores are then multiplied 427 

to create an overall score, which we term the Classical Model (CM) Score. The aggregation 428 

method which produces the highest CM Score on the calibration questions is usually taken as 429 

the preferred weighting scheme when combining expert judgements on the questions of interest 430 

(for which answers are not known). If two aggregations result in the same statistical accuracy, 431 

that with a higher information score is preferred (Bedford and Cooke 2001).  432 

2.5.1 Linear pooling versus quantile aggregation 433 
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The Classical Model uses linear pooling of distributions for both equal weighted and 434 

performance weighted aggregations, which differs from quantile aggregation commonly used 435 

by the IDEA protocol when the four-step question format is used (Hemming et al. 2018a) (refer 436 

to Appendix S1: Section 5 for discussion and a worked example). 437 

Quantile aggregation is simple to apply, and entails no additional assumptions about what the 438 

estimates represent beyond a best estimate with a credible interval. In general, it provides more 439 

accurate and better calibrated judgements compared to the best-regarded experts (Burgman et 440 

al. 2011b, Hemming et al. 2018b). However, Bamber et al. (2016) and Colson and Cooke 441 

(2017) found that quantile aggregation is much more overconfident than linear pooling (when 442 

assessed using the Classical Model’s Statistical Accuracy measure). To investigate these 443 

findings, we extend our analysis to compare how the two methods of equally weighted 444 

aggregation can affect judgements. Henceforth we use the term ‘equal weights’ (abbreviated 445 

to EW) to refer to linear pooling of distributions, and ‘quantile aggregation’ (abbreviated to 446 

QuA) to refer to quantile aggregation.  447 

2.6 Analysis 448 

For the eight groups of experts in our case study, we assessed the six alternative approaches to 449 

aggregation (two forms of equal weighted aggregations (EW (Classical Model), QuA (IDEA)), 450 

and four forms of performance weighted aggregation from the Classical Model (IW, GW, IWO, 451 

GWO) (described in Section 2.5). Individual and group performance was assessed using the 452 

five performance measures (statistical accuracy, information, calibration, informativeness, and 453 

accuracy) (described in Section 2.4), and the Classical Model scoring rule (CM 454 

Score)(described in Section 2.5).  455 

To obtain the performance measures and aggregations associated with the Classical Model, the 456 

analyst must enter judgements in software called Excalibur (Lightwist 2013, Cooke 457 
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2018a)(Appendix S1: Section 3). For measures associated with the IDEA protocol we 458 

developed R-code (available on the Open Science Framework (Hemming 2019)). More details 459 

are available in Appendix S1: Section 3. 460 

To contrast the differences of the aggregations, we use boxplots, constructed in R (version 3.4.1 461 

(2017-06-30) -- "Single Candle"), using the ggplot2 package. The boxes represent the 25th, 462 

50th and 75th percentiles. The whiskers represent the spread of the data referenced on the inter-463 

quartile range, (Q1-1.5*IQR, Q3+1.5*IQR). For normally distributed data this is 464 

approximately 2.7 standard deviations, or 99.3% of the data (Krzywinski and Altman 2014).  465 

3 Results 466 

3.1 Comparison of performance measures 467 

In Figure 3, we plot the two performance measures underpinning weights obtained under the 468 

Classical Model for the 58 participants. When scored on statistical accuracy, less than half (23) 469 

of participants were statistically accurate (obtaining scores higher than 0.05). For 13 questions 470 

the highest possible statistically accuracy score would have been 0.93. No individuals achieved 471 

this score (highest statistical accuracy score was 0.53).  472 

High statistical accuracy usually came at the expense of lower information. Participants who 473 

were statistically accurate were more likely to have lower information scores. Such 474 

observations reflect the trade-offs between statistical accuracy and information discussed by 475 

Quigley et al. (2018) and re-enforce the need to combine the two measures to derive a proper 476 

scoring rule. 477 

Figure 4 shows the scatter between statistical accuracy (the Classical Model) and calibration 478 

(IDEA Protocol) for the 58 participants over 13 questions. While the difference in the highest 479 

statistical accuracy score possible and that obtained by experts appears large (i.e. a change from 480 
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0.93 to 0.53 implies a 43% reduction in statistical accuracy), we can see that this change was 481 

due to just one additional realisation falling outside of the experts’ credible intervals. Thus, 482 

statistical accuracy can be highly sensitive to seemingly small variations in performance. 483 

Figure 4 also shows that while there is a positive correlation between the two measures 484 

(Spearman rank correlation= 0.84, 95% CI: 0.74, 0.90) there are also some notable differences. 485 

Importantly, an expert may have near perfect calibration under the scoring rules employed by 486 

the IDEA protocol, but be statistically inaccurate at the 0.05 level according to the Classical 487 

Model. These results further clarify that statistical accuracy does not reward calibration 488 

primarily between the expert’s 90% credible intervals, on which IDEA’s calibration depends. 489 

In Appendix S1: Section 7, we demonstrate that the differences occur because the Classical 490 

Model’s rules score a multinomial distribution with three degrees of freedom p= (0.05, 0.45, 491 

0.45, 0.05). As such, beyond very low levels of calibration (i.e. <50% calibration for 13 492 

questions), the statistical accuracy measure cannot be used to assess the calibration of 90% 493 

credible intervals (i.e. a multinomial distribution with one degree of freedom, or a binomial 494 

distribution).  495 

Figure 5 shows the correlation between information (Classical Model) and informativeness 496 

(IDEA Protocol). The two scores are negatively correlated (Spearman rank correlation = -0.69, 497 

95%CI: -0.80, -0.52), an artefact of the scoring rules, whereby under the IDEA protocol 498 

participants who receive a low score are more informative (narrower intervals), whereas for 499 

the Classical Model a higher score indicates that they provide more information relative to a 500 

uniform or log-uniform distribution. Figure 5 demonstrates that information and 501 

informativeness are slightly different measures of an expert’s judgement. The Classical Model 502 

does not only assess the width of intervals, it also accounts for their departure from a uniform 503 

distribution. This can mean that higher information score may be obtained in some cases simply 504 
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by reducing the symmetry of the ranges between an expert’s 2nd and 3rd quantiles (i.e. if the 505 

median does not fall squarely in the centre of the range then information can be increased).  506 

3.2 Performance of aggregations 507 

Figure 6 shows the CM Score for each of the aggregations. In the Classical Model, this 508 

combined score would be used to select the final aggregation for uncertainty by a decision-509 

maker. For this case study, if we were to use the median values of these scores, we would not 510 

choose quantile aggregation (QuA) because it has a low CM Score (median value of 0.14). 511 

Equally weighted linear pooling employed by the Classical Model does better (EW) (median 512 

value of 0.41), and there is some indication that performance weighted aggregation by the 513 

optimised variants (IWO, and GWO) may lead to further improvements (median values of 0.60 514 

and 0.50 respectively). 515 

Figures 7a and 7b decompose the CM Score provided in Figure 6, into statistical accuracy and 516 

information scores of the Classical Model. While quantile aggregation (QuA) performs well 517 

on information (median value of 1.51), it performs poorly in terms of statistical accuracy 518 

(median value of 0.10) compared to equal weights (EW) (median value of 0.36) and 519 

performance weighted aggregations (IW, IWO, GW, GWO) (all achieving a median value of 520 

0.36, except for IW which achieves 0.27), with two groups considered statistically inaccurate 521 

at the 0.05 level. This supports the finding by Bamber et al. (2016) and Colson and Cooke 522 

(2017) that quantile aggregation used in the IDEA protocol with four-step question format can 523 

be overconfident relative to linear-pooling of distributions when assessed by statistical 524 

accuracy. 525 

There is little or no difference in the median performance of equally weighted (EW) and the 526 

performance weighted aggregations (IW, IWO, GW, GWO) in terms of statistical accuracy. 527 

However, both the optimised aggregations (GWO, and IWO) and itemised weights (IW) have 528 
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higher information (1.56 and 1.68) than equal weights (EW, median of 1.14) or global weights 529 

(GW, median of 1.18), and are equivalent to quantile aggregation (QuA, 1.51) suggesting 530 

performance weighting improves estimates in this case study by being more informative than 531 

equal weights (EW). 532 

Figures 7c-e assess each of the aggregation methods according to measures commonly used in 533 

the IDEA protocol. Even when scored according to calibration between the expert’s 90% 534 

credible intervals, the study finds that quantile aggregation (QuA) generates more 535 

overconfident estimates (median calibration of 0.77), having a lower calibration than all other 536 

aggregations (0.85, or on average by one question). It does, however, have a higher level of 537 

informativeness (0.25) than all other aggregations (medians ranging between 0.33 and 0.42), 538 

including optimised aggregations. The median accuracy of the best estimate is better for all 539 

aggregations than the median ranked individual for this measure. However, the optimised 540 

aggregations have some groups which perform worse than the median individual. This may not 541 

be surprising because (as discussed) the Classical Model was not designed to optimise point 542 

estimates. 543 

Quantile aggregation (QuA) performed relatively poorly on statistical accuracy and calibration 544 

(Figure 7). Recall that some questions related to count data, and the upper and lower bounds 545 

were adjusted so that they did not contain zero. In our case study, the lowest estimate which 546 

could be provided by an expert was 0.00001. This adjustment may have led to overconfident 547 

judgements for two questions which contained zeros.  548 

To check this, we replaced the answers for these two questions with 0.000011 and re-calculated 549 

the calibration and statistical accuracy of judgements of each of the groups (Figure 8, see also 550 

Appendix S1: Section 8). The adjustment improved the statistical accuracy of many groups 551 

across all aggregations. All but one aggregation (quantile aggregation, QuA) had a median 552 
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statistical accuracy above 0.53 (Figure 8a). Only one group was considered statistically 553 

inaccurate when their judgements were combined via quantile aggregation (QuA).  554 

Quantile aggregation (QuA) was overconfident, even when assessed according to calibration 555 

of interval judgements but many groups were less so than prior to accounting for the two 556 

questions with zeros (Figure 8b). Group judgements for quantile aggregation achieved good 557 

but not perfect median calibration of 0.76, although no group reached perfect calibration when 558 

quantile aggregation (QuA) was used. In contrast, each of the linear pooled distributions except 559 

for the itemised optimised weights achieved a median group calibration of 0.90 (i.e. perfect 560 

calibration). The data adjustments improved calibration and statistical accuracy, but they did 561 

not substantially alter the information or informativeness scores which meant that quantile 562 

aggregation (QuA) was still substantially more informative that the equal weights (EW) (a 563 

median informativeness score of 0.24 compared to 0.42). 564 

4 Discussion 565 

Performance weights have been proposed to improve expert judgements in ecology. However, 566 

there have been few applications and little discussion of their strengths and weaknesses in the 567 

ecological literature. Here, we outlined the key rationales and theories of performance weights, 568 

then described one of the most well-known methods, the Classical Model (Cooke 1991), and 569 

examined how it might be applied to improve judgements derived from the IDEA protocol with 570 

four-step question format (Hemming et al. 2018a, Hemming et al. 2018b).  571 

This study highlighted how the Classical Model and the IDEA protocol may be integrated, but 572 

clarified important differences between them that should be considered before applying 573 

performance weights.  574 

The four-step question format needs to first be converted into quantiles of a continuous 575 

probability distribution. It may be better to remove these assumptions by eliciting these 576 
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quantiles directly. However, the four-step question format is often used because it helps to 577 

overcome overconfidence relative to eliciting fixed intervals (Speirs-Bridge et al. 2010), and 578 

because experts who are unfamiliar with the language of statistical distributions are 579 

comfortable in providing quantitative judgements of uncertainty (a problem not only 580 

encountered in ecological domains (Walls and Quigley 2001, Hirsch et al. 2004)). These trade-581 

offs need to be considered when deciding how best to elicit estimates. If the four-step question 582 

format is to be used with the Classical Model, then we suggest that the assumptions about how 583 

the estimates will be interpreted are communicated to experts in introductory material and 584 

through the feedback and discussion stages of the IDEA protocol.  585 

Once judgements were converted into quantiles of a continuous probability distribution, we 586 

described key steps required to incorporate the judgements into Excalibur and to generate 587 

scores and aggregations for the Classical Model (outlined in more detail in the Appendix S1: 588 

Sections 2-3). These steps have not been substantially documented in the literature, inhibiting 589 

use of performance weights. The advice outlined here will make implementation of the method 590 

more accessible to those unfamiliar with the Classical Model and improve efficiencies when 591 

analysing data. 592 

We then described the performance measures underpinning the Classical Model, noting that 593 

there was considerable ambiguity in the literature as to how the Classical Model rewards 594 

judgements, with terms such as “calibration”, “accuracy”, information”, and “overconfidence” 595 

being differently interpreted (Rothlisberger et al. 2009, Burgman et al. 2011b, Metcalf and 596 

Wallace 2013, Wittmann et al. 2015, Colson and Cooke 2017).  597 

Insights from our results emphasise that the Classical Model was designed to assess probability 598 

distributions rather than point estimates or interval judgements (as some interpretations 599 

suggest). Specifically, ‘statistical accuracy’ measures the degree to which an expert’s 600 
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multinomial distribution matches a theoretically optimal multinomial distribution, and 601 

‘information’ measures the departure from a uniform or log-uniform background measure. As 602 

such the Classical Model is not focused primarily on avoiding surprises outside of the 90% 603 

confidence intervals, or the precision of the intervals (as assessed in the IDEA protocol) and 604 

may lead to counterintuitive outcomes in settings where this is a primary concern.  605 

The question therefore arises as to when each performance measure may be more appropriate? 606 

Calibration, informativeness and accuracy (as scored in the IDEA protocol) tend to be 607 

important in the contexts of risk assessments and structured decision-making in which 608 

decision-makers are deciding to take action, and are using the best estimate to understand the 609 

most likely scenario, or the uncertainty bounds to investigate how sensitive their decisions are 610 

to different risk attitudes (Gregory et al. 2012, Addison et al. 2015). In other words, the 611 

measures normally associated with IDEA may be most useful when assessing the outputs of a 612 

model or risk analysis (Morgan and Henrion (1990), page 78).  613 

On the other hand, it may be more important to understand the calibration within the expert’s 614 

interquartile ranges (i.e. the 2nd and 3rd quantiles) (as scored by the Classical Model) when they 615 

estimate probability distributions as inputs to a model, for example sampling in Monte Carlo 616 

simulations, especially where tail risks are a key concern (Morgan and Henrion (1990), page 617 

78).  618 

While calibration and informativeness of interval judgements may be of interest they have not 619 

yet been combined into a proper scoring rule (although telling experts they will be scored on 620 

both should minimise gaming behaviour). Our results demonstrate that the Classical Model 621 

does not by itself provide this information, which may be disappointing to those who seek to 622 

apply the Classical Model to optimise or assess such judgements. However, if this information 623 

was of interest the performance measures of the IDEA protocol may be used to provide this 624 
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information. Agreement as to which performance measures will be used should be made prior 625 

to application.  626 

Equal weighted aggregations are often used in ecology when combining expert judgments. 627 

However, there are numerous methods by which an equal weighted aggregation can be derived, 628 

and not all will perform equally well or have been validated. We contrasted two forms of equal 629 

weighted aggregation, quantile aggregation (QuA, used in Hemming et al. 2018), and equal 630 

weighting via linear pooling of distributions (EW, used by the Classical Model). We found that 631 

both forms of equal weighted aggregation were better than the median ranked individual for 632 

each measure of statistical accuracy, calibration, and accuracy. Furthermore, as was 633 

demonstrated in Hemming et al. (2018b), while some individuals could outperform the group 634 

aggregation they could not be predicted by standard metrics of expertise (years of experience, 635 

peer-recommendation, or self-rating). This suggests that taking the equal weighted aggregation 636 

is a more robust method than trying to select a single expert with good judgement based on 637 

their credentials and status. 638 

Our results corroborate those of the Bamber et al. (2016) and Colson and Cooke (2017), that 639 

while quantile aggregation is simpler to apply, and was more informative, it led to 640 

overconfident estimates compared to linear pooling of equally weighted distributions, and 641 

performance weighted distributions (Figure 7). This was true regardless of whether we assessed 642 

the judgements based on calibration or statistical accuracy.  643 

We found that the degree of overconfidence was reduced when we accounted for questions 644 

with zeros, and the way in which the Classical Model accounts for realisations which equal a 645 

participant’s estimates (i.e. if the realisation coincides with the lower bound it will be 646 

considered as falling outside of the expert’s 90% credible intervals). As these adjustments are 647 

not made when the four-step question format is used in the IDEA protocol, the degree of 648 
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overconfidence from quantile aggregation may not typically be as severe for many applications 649 

of the IDEA protocol. Nonetheless, we would suggest these findings warrant further 650 

investigation on more case studies with the four-step question-format. 651 

We then examined how performance weighting could be used to improve aggregated 652 

judgements. We found that there was little difference in the calibration or statistical accuracy 653 

of performance weighting and equal weighted linear pooled distributions. However, 654 

performance weighting produced more informative bounds than equal weighted linear pooling 655 

(by 10% of the background range when measured according to informativeness). These results 656 

suggest that if the aim is to reduce arbitrary uncertainty while achieving well-calibrated 657 

intervals, then performance weights can better achieve this.  658 

In our study, we demonstrated a modest improvement by performance weighted aggregation. 659 

However, we note that there is no guarantee that performance weighted aggregation will lead 660 

to improvements in all cases. However, a clear advantage of the Classical Model, and other 661 

methods which utilise calibration questions is that they provide empirical evidence for the 662 

legitimacy of final aggregations (often lacking in studies that use expert judgement). This is 663 

especially important because decisions regarding who should be included in an elicitation and 664 

how to aggregate these judgements may exclude potentially knowledgeable individuals, and 665 

often lack validation.  666 

Whether or not the decision context justifies (or can afford) the additional time and expense 667 

ultimately depends on the context of the case study, the decision-maker and the value of 668 

additional information. Wittmann et al. (2015) and Rothlisberger et al. (2009) justify their 669 

application based on the immense value of fisheries to the Great Lakes and the possibility of 670 

litigation following mismanagement. This suggests that there are contexts in ecology in which 671 

this additional time and expense can be justified. If resources are not available to deploy 672 
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calibration questions and performance weighted aggregation, then our study shows that an 673 

equal weighted aggregation (i.e. quantile aggregation or linear pooling of distributions) 674 

provides an effective means to improve judgements relative to selecting a single seemingly 675 

well-credentialed expert. 676 

However, there are obstacles to wider uptake of performance weighting and lines for further 677 

research. We found it difficult to develop questions about future events on the Great Barrier 678 

Reef for which we could obtain data in a reasonable time (3-6 months). Despite the substantial 679 

amount of monitoring which takes place there (GBRMPA 2014). Others have noted problems 680 

in obtaining access to ecological datasets (Meek et al. 2015). It may be possible to use existing 681 

datasets to generate calibration questions. However, especially with remote elicitation, there 682 

will always be a risk that experts discover the sources of the data when forming their 683 

judgements (as occurred in (Hemming et al. 2019a)). 684 

We found that questions relating to count data (particularly where the realisations are often 685 

zero inflated) should be avoided when using the Classical Model. In ecology, zero inflated 686 

count data are common (Martin et al. 2005).  687 

Calibration questions should be related to target variables, for which the answer is known or 688 

will become known (Cooke and Goossens 2000). However, ascertaining whether or not a 689 

question is relevant in many domains may be difficult because domains are often ill-defined, 690 

making the selection of relevant questions a subjective decision (Colyvan and Ginzburg 2003). 691 

If datasets are difficult to obtain, then the analyst may need to rely on past questions for which 692 

the data are available, or questions which are less relevant to the questions of interest. It would 693 

be useful to understand at what point calibration questions become so distantly related to target 694 

questions that in-sample validation is not a good predictor of performance. 695 
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We used Excalibur to generate aggregations and score experts, however, the program was 696 

challenging to use. The analysis was time consuming and it was difficult to provide a 697 

reproducible workflow for our analysis. The methods of aggregation and the scoring rules 698 

should be simple enough to re-code in R and other freely available software (we note that 699 

recently they have been re-coded in MATLAB (Leontaris and Morales-Nápoles 2018)). A 700 

revision of Excalibur could help to increase adoption of the method. 701 

Our study explored the effect of performance weights using in-sample validation (i.e. on the 702 

same questions used to score experts and generate aggregations) for one case study. However, 703 

the ideal test is how well it performs out-of-sample (i.e. on questions not used in the training 704 

set) (Clemen 2008). This has not been addressed by this study. When Colson and Cooke (2017) 705 

addressed this question they found some differences in out-of-sample performance that were 706 

not revealed by in-sample validation and suggested this would be the focus of further research.  707 

The scoring rules and aggregation methods of the Classical Model may not always be well-708 

understood. To avoid confusion, we suggest that in future, statistical accuracy scores should be 709 

accompanied by their corresponding multinomial distributions. We provide R and MATLAB 710 

code for this (Hemming et al. 2019b). While, it’s less easy to convey the reward structure of 711 

the information score, we believe it would be useful to display the intervals of the aggregations 712 

so that the relative improvements can be compared (this is already often presented in 713 

applications of the Classical Model).  714 

5 Conclusions 715 

Performance weighted aggregations with calibration questions has been proposed as a means 716 

to improve expert judgements in ecology, however, applications have been scarce. We 717 

explored how the Classical Model could be applied to the IDEA protocol with four-step 718 

question format.  719 
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Our study found that the Classical Model could be applied to the IDEA protocol with four-step 720 

question format provided the values of the four-step elicitation can be assumed to represent 721 

quantiles of a continuous distribution. A key finding of this paper is that the reward structures 722 

embedded in the performance measures of the two approaches to elicitation are often confused 723 

and differ in important ways. This should be understood prior to application to ensure that the 724 

methods for optimisation match the decision-maker’s preferences and problem setting.  725 

We demonstrated that equal weighted aggregations can achieve relatively well-calibrated 726 

aggregated judgements. However, linear pooling of distributions may produce better calibrated 727 

but less informative distributions than quantile aggregation as found by Bamber et al. (2016) 728 

and Colson and Cooke (2017). We found that performance weighted aggregations can 729 

outperform equal weighted aggregations, in our case by providing more informative 730 

judgments, however, we emphasise that there is no guarantee they will do so in every case. The 731 

main reason that the candidate alternatives for aggregation should be explored is to ensure the 732 

final representation of uncertainty is the best possible (whether that be via equal weights or 733 

performance weights).  734 

Whether the time and investment in applying performance weights is worth the benefits is 735 

ultimately a matter of context. Our example illustrates that there are contexts in which this 736 

additional time and effort may be justified.  737 

Our paper will help ecologists to better understand the fundamental steps, challenges, and 738 

advantages involved in deploying performance weighted aggregation, and to avoid common 739 

pitfalls which may arise. We welcome more research to understand how these methods could 740 

be adapted to better suit the practical and financial constraints of a wider range of ecological 741 

applications and estimates (i.e. point estimates, interval judgements, and single event 742 

probabilities). 743 
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Box 1 Scoring rules IDEA protocol vs. The Classical Model 966 
In Figure 2, two experts have been asked to provide their estimates for 10 calibration 

questions. They have then been scored on their performance using the scoring rules 

outlined Section 2.4 from the Classical Model and the IDEA protocol. 

Statistical accuracy (Classical Model) vs Calibration (IDEA) 

Expert A, has an inter-quantile distribution of s(A)= (0.10, 0.40, 0.40, 0.10), that is, over 

10 questions one realisation fell below their 5th interval, four between their 5th and their 

50th, four between their 50th and their 95th, and one above their 95th. When compared to 

the theoretically optimal inter-quantile distribution of p= (0.05, 0.45, 0.45, 0.05), using a 

chi-squared test with three-degrees of freedom they receive a statistical accuracy (SA) of 

0.83, which is the highest statistical accuracy that can be achieved on 10 questions. 

Expert B, provides a theoretical distribution s(B)= (0.10, 0.90, 0.0, 0.0), which is quite 

different to the theoretically optimal inter-quantile distribution p. Their statistical accuracy 

is low, 0.003. Having a statistical accuracy below 0.05 they would be deemed statistically 

inaccurate under the Classical Model.  

In contrast, when scored using calibration (CA) from the IDEA protocol, Expert B would 

be perfectly calibrated having nine of their ten 90% credible intervals capturing the 

realised truth. Expert A would also be considered well-calibrated, but less so than Expert 

B, only capturing eight out of 10 realisations in their 90% credible intervals. 

Information (Classical Model) vs Informativeness (Four-step question format) 
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Expert A and B provide intervals which are exactly the same width for each question. 

However, Expert B consistently provides a median close to the tails. This means the mass 

of their intervals departs from a uniform distribution whereby we would expect 5% of the 

total width of their interval to fall below their 5th quantile, 45% between their 5th and 50th, 

and again between their 50th and 95th, and 5% above their 95th quantile. Assuming this is 

the only difference in their intervals, Expert B would achieve a higher information score 

under the Classical Model than Expert A. However, as experts have intervals that are the 

same width, both experts would receive the same score for informativeness under the 

IDEA protocol.  

 967 

  968 
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Figure 1 Key steps of the IDEA protocol (figure from Hemming et al. (2018b)). The 969 

four-step question format (Speirs-Bridge et al. 2010) (depicted in Step 2) is commonly 970 

used to derive a best estimate and credible interval in Round 1 and Round 2. 971 

Figure 2 Judgements provided by two hypothetical experts over 10 questions. The 972 

blue lines represent their 90% credible intervals, the blue dots their ‘best estimate’ or 973 

their ‘median’. The crosses represent where the realisation fell in relation to their 974 

estimates. To calculate statistical accuracy (SA) according to the Classical Model, the 975 

proportion of questions answered where realisations fell, 1) below their lowest interval 976 

(i.e. 5th quantile), 2) between their lowest estimate and their best estimate / median, 3) 977 

between their best estimate / median and their upper estimate / 95th quantile, and 4) above 978 

their upper / 95th quantile is calculated and compared to a theoretically optimal 979 

distribution p=(0.05, 0.45, 0.45, 0.05). CA refers to calibration as calculated according to 980 

the IDEA protocol, which is defined as the proportion of credible intervals capturing the 981 

realisation. 982 

Figure 3 The statistical accuracy and information of n = 58 participants. A trade-off 983 

exists between the two measures used by the Classical Model. Those who are statistically 984 

accurate (above 0.05, red horizontal line) often have a lower information score than the 985 

median score for individuals (grey vertical line). The blue dashed line shows the highest 986 

statistical accuracy score possible for 13 questions (0.93), and the black line shows the 987 

highest score obtained by individuals in the elicitation (0.53).  988 

Figure 4 Statistical accuracy of the Classical Model (CM) compared to IDEA 989 

calibration for n = 58 participants. The graph shows that participants with perfect 990 

calibration when assessed by the IDEA protocol, can have poor statistical accuracy for 991 

the Classical Model. On the righthand side, we show where the realisations fell in each of 992 
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the expert’s multinomial distributions (used to calculate statistical accuracy), and 993 

contrast this with how many realisations fell within the participant’s 90% credible 994 

intervals (calibration). Bold numbers indicate the highest scores possible for statistical 995 

accuracy and calibration. 996 

Figure 5 The spearman correlation between information calculated for the Classical 997 

Model, and informativeness calculated for the IDEA protocol for n = 58 participants. The 998 

shaded area represents a 95% confidence interval. 999 

Figure 6 CM Scores derived for each aggregation.  1000 

Figure 7 Component performance measures of the Classical Model (CM) and IDEA 1001 

protocol for n = 8 groups under six alternative procedures for aggregation. a) Statistical 1002 

accuracy, the red-dashed line represents the 0.05 threshold for statistically inaccurate 1003 

scores, (Classical Model), the blue dashed line represents a perfect statistical accuracy 1004 

score for 13 questions, and the black dashed line represents the highest score obtained by 1005 

any individual, b) information score (Classical Model), the red line represents the median 1006 

information of an individual c) calibration, (IDEA) the red line represents perfect 1007 

calibration (0.90), d) informativeness (IDEA), the red line represents the informativeness 1008 

of the median individual, e) accuracy (IDEA) of the best estimate, the red line represents 1009 

the accuracy of the median individual.  1010 

Figure 8 The scores of aggregations under the Classical Model and the IDEA 1011 

protocol when adjustments are made to correct for questions for which the realised truth 1012 

had been zero. a) Statistical accuracy, the red-dashed line represents the 0.05 threshold 1013 

for statistically inaccurate scores, (Classical Model), the blue dashed line represents a 1014 

perfect statistical accuracy score for 13 questions, and the black dashed line represents 1015 
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the highest score obtained by any individual prior to the adjustment; b) calibration, 1016 

(IDEA) the red line represents perfect calibration (0.90).  1017 
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