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Abstract
We prove boundedness and polynomial decay statements for solutions of the spin
± 2 Teukolsky equation on a Kerr exterior background with parameters satisfying
|a| � M . The bounds are obtained by introducing generalisations of the higher order
quantities P and P used in our previous work on the linear stability of Schwarzschild.
The existence of these quantities in the Schwarzschild case is related to the transfor-
mation theory of Chandrasekhar. In a followup paper, we shall extend this result to
the general sub-extremal range of parameters |a| < M . As in the Schwarzschild case,
these bounds provide the first step in proving the full linear stability of the Kerr metric
to gravitational perturbations.
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1 Introduction

The stability of the celebrated Schwarzschild [100] and Kerr metrics [72] remains one
of the most important open problems of classical general relativity and has generated
a large number of studies over the years since the pioneering paper of Regge–Wheeler
[98]. See [42,43] and the introduction of [31] for recent surveys of the problem.

The ultimate question is that of nonlinear stability, that is to say, the dynamic
stability of the Kerr family (M, ga,M ) (including the Schwarzschild case a = 0),
without symmetry assumptions, as solutions to the Einstein vacuum equations

Ric[g] = 0, (1)

in analogy to the nonlinear stability of Minkowski space, first proven in the monu-
mental [26]. A necessary step to understand nonlinear stability is of course proving
suitable versions of linear stability, i.e. boundedness and decay statements for the
linearisation of (1) around the Schwarzschild and Kerr solutions. This requires first
imposing a gauge in which the equations (1) become well-posed. A complete study of
the linear stability of Schwarzschild in a double null gauge has been obtained in our
recent [31]. A key step in [31] was proving boundedness and decay for the so-called
Teukolsky equation, to be discussed below in Sect. 1.1, which can be thought to suit-
ably control the “gauge invariant” part of the perturbations. See already equation (2).
These decay results were then used in [31] to recover appropriate estimates for the
full linearisation of (1).

The purpose of the present paper is to extend the boundedness and decay results
of [31] concerning the Teukolsky equation (2) from the Schwarzschild a = 0 case to
the very slowly rotating Kerr case, corresponding to parameters |a| � M . We give a
rough statement of the main result already in Sect. 1.2 below.

In part II of this series, we shall obtain an analogue of our main theorem for the
case of general subextremal Kerr parameters |a| < M . The extremal case |a| = M is
exceptional; see Sect. 1.3 for remarks on this and other related problems. In a separate
paper, following our previous work on Schwarzschild [31], we will use the above
result to show the full linear stability of the Kerr solution in an appropriate gauge.

We end this introduction in Sect. 1.4 with an outline of the paper.
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1.1 The Teukolsky Equation for General Spin

The original approach to linear stability in the Schwarzschild case centred on so-
called metric perturbations, leading to the decoupled equations of Regge–Wheeler
[98] and Zerilli [113]. The Regge–Wheeler equation will in fact appear below as
formula (7). This approach does not, however, appear to easily generalise toKerr. Thus,
it was a fundamental advance when Teukolsky [107] identified two gauge invariant
quantities which decouple from the full linearisation of (1) in the general Kerr case.
The quantities, corresponding to the extremal curvature components in the Newman–
Penrose formalism [93], can each be expressed by complex scalarsα[±2] which satisfy
a wave equation, now known as the Teukolsky equation:

�gα
[s] + 2s

ρ2
(r − M)∂rα

[s] + 2s

ρ2

(
a(r − M)

�
+ i

cos θ

sin2 θ

)
∂φα

[s]

+ 2s

ρ2

(
M(r2 − a2)

�
− r − ia cos θ

)
∂tα

[s]

+ 1

ρ2
(s − s2 cot2 θ)α[s] = 0, (2)

with s = + 2 and− 2 respectively. The scalars aremore properly thought of as spin± 2
weighted quantities. This generalised an analogous property in the Schwarzschild case
identified by Bardeen and Press [14]. These quantities govern the “gauge invariant”
part of the perturbations in the sense that an admissible solution of the linearised
Einstein equations whose corresponding α[±2] both vanish must be a combination of
a linearised Kerr solution and a pure gauge solution [110].

Note that equation (2) can be considered for arbitrary values of s ∈ 1
2Z. For s = 0,

(2) reduces to the covariant wave equation �gψ = 0, while for s = ± 1, (2) arises as
an equation satisfied by the extreme components of the Maxwell equations in a null
frame [22].

1.1.1 Separability and the Mode Stability of Whiting and Shlapentokh-Rothman

An additional remarkable property of the Teukolsky equation (2) is that it can be
formally separated, in analogy with Carter’s separation [19] of the wave equation
(i.e. the case of s = 0). The separation of the θ -dependence is surprising in the case
a �= 0 for all s because the Kerr metric only admits ∂φ and ∂t as Killing fields. It turns
out that considering the ansatz

α[s](r)e−iωt S[s]
m�(aω, cos θ)e

imφ (3)

where S[s]
m�(ν, cos θ) denote spin-weighted oblate spheroidal harmonics, one can derive

from (2) an ordinary differential equation for α, which in rescaled form (see (151))
can be written as

u′′ + V [s](ω,m, �, r)u = 0 (4)

where for s �= 0, the potential V [s] is complex valued. (Here ′ denotes differenti-
ation with respect to r∗. See Sect. 2.1.) See already (153). The separation (3) was
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subsequently understood to be related to the presence of an additional Killing tensor
[73].

Of course, the problem of decomposing general, initially finite-energy solutions of
(2) as appropriate superpositions of (3) is intimately tied with the validity of bounded-
ness and decay results, in view of the necessity of taking the Fourier transform in time.
A preliminary question that can be addressed already solely at the level of (4) is that of
“mode stability”.Mode stability is the statement that there are no initially finite-energy
solutions of the form (3) with Im(ω) > 0. This reduces to showing the non-existence
of solutions of (4) with Im(ω) > 0 and exponentially decaying boundary conditions
both as r∗ → ∞ and r∗ → −∞.

In the case a = 0, s = 0, then mode stability can be immediately inferred by
applying the physical space energy estimate associated to the Killing vector field ∂t to
a solution of the form (3). The question is highly nontrivial for a �= 0, already in the
case s = 0, in view of the phenomenon of superradiance, connected to the presence of
the so-called ergoregion where ∂t is spacelike. For s = ± 2, the question is non-trivial
even in the case a = 0, as there does not exist an obvious conserved energy current.
(In separated form (4), this is related to the fact that the potential V [s] is now complex
valued.) In a remarkable paper, Whiting [111] nonetheless succeeded in proving mode
stability for (2) for all s in the general subextremal range of parameters |a| < M by
cleverly exploiting certain algebraic transformations of the ode (4).

Mode stability has been extended to exclude “resonances” on the real axis,
i.e. solutions u of (4) with ω ∈ R with appropriate boundary conditions, by
Shlapentokh-Rothman [104] in the case s = 0, who had the insight that the trans-
formations applied in [111] could be extended to the real axis using the theory of
oscillatory integrals. Together with a continuity argument in a, [104] can be used to
reprove the original [111], and this leads to certain simplifications. The argument gen-
eralises to s = ± 2. See also [6] where the techniques of [104] are combined with an
alternative complex analytic treatment.

We emphasise that mode stability is a remarkable property tied to the specific form
of the equation (2) and to the specific Kerr background, even for s = 0. Indeed, mode
stability fails for a �= 0 when an arbitrarily small Klein–Gordon mass is added, as
was first suggested by [28,112] and proven recently in [103]. Even more surprisingly,
mode stability fails when a well-chosen positive compactly supported potential is
added to (2), or when the Kerr metric is itself sufficiently deformed, keeping however
all its symmetries and separation properties, in a spatially compact region which can
be taken arbitrarily far from the ergoregion [89].

1.1.2 Previous Work on Boundedness and Decay

The quantitative study of the Cauchy problem for (2) with s = 0, beyond statements
for fixedmodes, has become an active field in recent years. The study for higher spin is
still less developed beyond the Schwarzschild case. We review some relevant previous
work below.

The case s = 0, |a| < M . An early result [75] obtained boundedness for solutions
to the Cauchy problem for the scalar wave equation on Schwarzschild (i.e. the case
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s = 0 and a = 0 of (2)) with regular, localised initial data. Even this involved non-
trivial considerations on the event horizon, which can now be understood in a more
robust way using the red-shift energy identity [39,43]. Following intense activity in
the last decade (e.g. [3,16,18,36,39–41,43,108]) there are now complete boundedness
and decay results for (2) with s = 0 in the full subextremal range of Kerr parameters
|a| < M [45].

The main difficulties in passing from a = 0 to a �= 0 arise from superradiance,
mentioned already in the context of mode stability, and the fact that trapped null
geodesics no longer approach a unique value of r in physical space. The latter is
relevant because integrated local energy decay estimates, an important step in the proof
of quantitative decay, must necessarily degenerate at trapping.1 One way of dealing
with the latter difficulty is employing the separation (3) as a method of frequency
localising integrated local energy decay estimates. See [40,43]. Once such an estimate
is obtained, the difficulty of superradiance can easily be overcome in the |a| � M
case as the error terms in the ergoregion are small and can be absorbed. For alternative
approaches, see [3,108].

The |a| < M case appears a priori to be much more complicated. It turns out,
however, that the Schwarzschild-like structure of trapping survives, when appropri-
ately viewed in phase space. Moreover, in the high frequency regime, one can quantify
superradiancewith the help of the fact that, quite fortuitously, superradiant frequencies
happen not to be trapped. See [45]. These good high frequency properties, together
with Shlapentokh-Rothman’s real mode stability [104] and a continuity argument in
a, allow one to extend the exact same boundedness and integrated local energy decay
results originally obtained on Schwarzschild to the whole sub-extremal range |a| < M
of Kerr parameters. Suitable polynomial decay then follows from an application of
the method of r p weighted energy estimates [38,87]. See [45]. For comments on the
extremal case |a| = M , see Sect. 1.3.4.

The case s = ± 2, a = 0. As we remarked already above, the Teukolsky equation
with s = ± 2, a = 0 has been studied in our previous [31] as part of our complete
study of the linear stability of Schwarzschild.

The main difficulty of the s = ± 2 case as opposed to the case s = 0, is that,
as discussed already in the context of mode stability, there does not exist an obvious
analogue of the conserved energy associated to the Killing field ∂t . Thus, proving even
just boundedness for a = 0 is non-trivial, even just far away from the event horizon.
The key to understanding (2) for s = ± 2, a = 0 in [31] was associating quantities
P [±2] to α[±2] satisfying (2). These are physical space versions of transformations
first considered by Chandrasekhar [22] and are defined by the expressions2

1 In the non-trapping case, such estimates are non-degenerate and can be derived by classical virial identities
whose use goes back to [86].
2 Unlike in [31] the definitions are not entirely symmetric for s = ± 2. This is because the null vectors and
overall radial weights defining the α[±2] scale differently from the null vectors defining the tensorial α and
α in [31]. See Sect. 2.4.
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P [+2] = − 1

2(r − 2M)
L

(
r3

r − 2M
L

(
(r − 2M)2

r
α[+2]

))
, (5)

P [−2] = − 1

2(r − 2M)
L

(
r3

r − 2M
L
(

r−3α[−2])
)
. (6)

Here L = ∂t + ∂r∗, L = ∂t − ∂r∗ are a null frame, where r∗ is the Regge–Wheeler
coordinate. The quantities �[+2] = r3P [+2] and �[−2] = r3P [−2] can be shown to
satisfy the Regge–Wheeler equation3

L L�[±2] + �2

r2

(
/̊�[±2] ± 2

)
�[±2] +�2

(
4

r2
− 6M

r3

)
�[±2] = 0 , (7)

where /̊�[±2]
denotes the spin-2-weighted Laplacian on the unit sphere

/̊�[±2] = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ
∂2φ − 2 (±2) i

cos θ

sin2 θ
∂φ + 4 cot2 θ ∓ 2 .

(8)

Remarkably, (7) is precisely the same equation which appeared as one of the equations
governing the “metric perturbations” approach discussed at the beginning of Sect. 1.1!

Unlike (2) with s = ± 2, the above equation (7) can be estimated on Schwarzschild
just as for the wave equation s = 0, since (7) is indeed endowed with the usual
structure of energy estimates. In particular, both boundedness and integrated local
energy decay can be obtained. (For analysis of (7), see the previous [17,63] as well
as the self-contained treatment in [31].) Estimates for α[±2] could then be recovered
directly by integrating (5) as transport equations from initial data. Such integration
on its own would lead, however, to “loss of derivatives” in the resulting estimates for
α[±2]. The Teukolsky equation itself (2) can be viewed as a further elliptic relation
which allows one to gain back these derivatives, leading finally to boundedness results
without loss of derivative, as well as integrated local energy decay and pointwise
decay.

We remark that, beyond (2), in the context of the full proof of linear stability in [31],
further transport equations and elliptic equations could then be used to appropriately
estimate the remaining gauge dependent quantities.

Other spins. We note that the scheme of [31] has recently been applied also to the
s = ± 1 case by Pasqualotto [94]. This gives an alternative proof of boundedness and
polynomial decay for the Maxwell equations on Schwarzschild, proven originally by
Blue [12]. See also [105]. Decay for Maxwell in the case |a| � M was obtained in

3 See Sects. 2.4 and 3.3 for the precise relation between the tensorial Regge–Wheeler equation defined in

[31] and equation (7). Note in particular that �[+2] and �[−2] satisfy the same equation, which explains

the appearance of a single Regge–Wheeler equation in [31]. We also note that both the operators /̊�[±2]
and

/̊�[±2] ± 2 have non-negative eigenvalues. See Sects. 6.2.1 and 6.2.2.
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[4]. For a direct treatment of (2) for s = ± 1 in the case |a| � M , generalising some
of the results of [94], there is the recent [81]. (This has more recently been followed
by [Ma18b]; see Sect. 1.3.9.) For the cases s = ± 1/2 and s = ± 3/2 see [106]. See
[49] for the related massive Dirac equation not covered by (2). We note also the papers
[52,53].

1.2 TheMain Result and First Comments on the Proof

The aim of the present paper is to extend the analysis of (2) for s = ± 2 from the
Schwarzschild a = 0 case considered in [31] to the very slowly rotating Kerr case
with parameters |a| � M . A rough version of our main result is the following:

Theorem (Rough version)Let |a| � M. Solutions α[±2] to the spin s = ± 2 Teukolsky
equation (2) on Kerr exterior spacetimes (M, ga,M ) arising from regular localised
initial data on a Cauchy hypersurface �0 remain uniformly bounded and satisfy an
r p-weighted energy hierarchy and polynomial decay.

The precise statements embodying the above will be given as Theorem 4.1. See
also immediately Corollary 4.1 and (38) for the pointwise decay statements obtained.

The proof of our Theorem combines the use of the quantities P [±2] introduced in
our previous [31] with a simplified version of the framework introduced in [40,45]
for frequency localised energy estimates, which as discussed in Sect. 1.1.2 are useful
to capture the obstruction to decay associated with trapped null geodesics. (In the
special case of axisymmetric solutions, this frequency localisation can be avoided and
our proof can be expressed entirely in physical space. See already Sect. 1.2.5.)

The crucial observation which allows this technique to work is the following: In the
scheme introduced in [31], it is not in fact absolutely necessary that the quantities P [±2]
each satisfy a completely decoupled equation (7). It would have been permissible if
the equation (7) for P [±2] was somehow still coupled to α[±2] on the right hand side,
provided that this coupling was at a suitable “lower order”, in the sense that these
lower order terms can indeed be recovered by the transport (and elliptic equations)
which were used in [31] to estimate α[±2].

It turns out, remarkably, that when analogues of the quantities P [±2] are defined
for Kerr, even though the exact decoupling from α[±2], respectively, breaks down, the
resulting equations indeed only couple to α[±2] in the “weak” sense described above.

We explain below this structure in more detail, and how it is implemented in our
proof (where we will in fact be able to circumvent use of elliptic estimates).

1.2.1 The Generalisation of P [±2] to Kerr

Our physical-space definition for P [+2], generalising (5), is given as

P [+2] = − (r2 + a2)1/2

2�
L

(
(r2 + a2)2

�
L

(
�2

(
r2 + a2

)− 3
2
α[+2]

))
. (9)
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A similar formula holds for P [−2]. See already Sect. 3.1. A computation reveals that

the rescaled �[+2] = (r2 + a2)
3
2 P [+2] satisfies an equation of the form

R[+2]�[+2] = c1(r)∂φ(Lα[+2])+ c2(r)Lα[+2] + c3(r)∂φα
[+2] + c4(r)α

[+2],
(10)

where R[+2] is a second order operator defined on Kerr generalising the Regge–
Wheeler operator appearing on the left hand side of (7), which has good divergence
properties and thus admits energy currents. Consistent with the total decoupling in
the Schwarzschild case, the coefficient functions ci (r) above are all O(|a|). Provided
that α[+2] can indeed be viewed as being of two degrees lower in differentiability than
�[+2], then the right hand side is “zero’th order” in �[+2]. Let us note, however, that
if we use only the transport relation (9), then the right hand side of (10) can only be
viewed as “first order” in�[+2], as integration of (9) does not improve differentiability.
Thus, to exploit fully this structure, one must also invoke in general elliptic relations
connecting α[+2] and �[+2] that can be derived by revisiting equation (2) itself. As
we shall see below, it turns out, however, that we shall be able to avoid invoking
this by exploiting more carefully the special structure and the non-degeneration of
the derivative ∂r∗�[±2]. We describe in Sects. 1.2.2–1.2.3 how these terms can be
controlled.

We emphasise already that the above structure of the terms appearing on the right
hand side of (10) is surprising. Upon perturbing (7) one would expect higher order
terms in�[±2] to appear which cannot be incorporated in the definition ofR[+2] so as
to preserve its good divergence properties. We note already that in the axisymmetric
case, the right hand side of (10) is of even lower order, as the ∂φ derivatives vanish.
The deeper reason why these terms cancel is not at all clear. See also the remarks in
Sect. 1.2.6 below.

1.2.2 Estimates Away from Trapping

Away from trapping, it suffices to treat the right hand side of (10) as if it were at the
level of a general “first order” perturbation in �[+2].

To see this, let us note first that suitably away from r = 3M , the f and y-multiplier
estimate of [31] leads in the Schwarzschild case to a coercive spacetime integral
containing all first derivatives of �[+2] (with suitable weights towards the horizon
and infinity). This coercivity property away from trapping is manifestly preserved to
perturbations to Kerr for |a| < a0 � M sufficiently small. We may add also a small
multiple of the rη-current for an η > 0 to generate extra useful weights near infinity.
Moreover, wemay add a suitable multiple of the energy estimate associated to a vector
field ∂t + χω+∂φ which connects the Hawking vector field on the horizon with the
stationary vector field ∂t . This ensures positive boundary terms on suitable spacelike
and null boundaries, at the expense of generating an O(|a|) bulk term supported where
χ ′ = 0, which is chosen to be away from trapping. Thus, this bulk term can again be
absorbed by the coercive terms of the f and y-multipliers.
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On the other hand, commutation of equation (9) by the Killing fields ∂t and ∂φ
allows one to estimate all terms involving α and Lα and their derivatives appearing
on the right hand side of (10) from the spacetime estimate for �[+2] by appropriate
transport estimates. (Here, we note that we must make use of the extra rη weight, just
as in [31].) Thus, were it not for trapping, one could easily absorb the error terms on
the right hand side of (10).

1.2.3 Frequency Localised Analysis of the Coupled System Near Trapping

In view of the above discussion, the terms on the right hand side of (10) are most
dangerous near trapping. Let us take a more careful look at the structure of (9)–(10)
using our frequency analysis.

At the level of the formally separated solutions (3), the operator L takes the form

− L = d

dr∗ + iω − iam

r2 + a2 , (11)

where r∗ is a Regge–Wheeler type coordinate, the relation (9) reads

�[+2] = −1

2
w−1L

(
w−1L

(
w · u[+2])) (12)

where u[+2] = �
√

r2 + a2α[+2],

w := �

(r2 + a2)2
(13)

and the “Regge–Wheeler” type equation (10) takes the form

d2

(dr∗)2
�[+2] + (ω2 − V)�[+2] = a

(
c1(r)im + c2(r)

a

r

)
L(u[+2]w)

+ a2w

(
c3(r)

1

r
aim + c4(r)

)
(u[+2]w). (14)

Here V is a real potential depending smoothly on a which reduces to the separated
version of the Regge–Wheeler potential for a = 0 and the ci are bounded functions.
Cf. (10) and see Appendix A.3.

At the separated level, using a frequency localised version of the current f of [31],
chosen to vanish at the (frequency-dependent) maximum of the potential V as in of
[40], together with a frequency localised y-current and the frequency-localised energy
estimate (multiplication by ω�) one can prove the ODE analogue of a degenerating
integrated local energy decay for�[±2], with a right hand side involving the right hand
side of (14). Considerations are different in the “trapped frequency range”

1 � ω2 ∼ λ
[s]
m� + s, (15)
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and the non-trapped frequencies. (Here λm� are the eigenvalues of the spin-weighted
Laplacian (8) reducing to �(�+ 1)− s2 ≥ 2 in the case a = 0.)

In the trapped frequency range (15), the above multiplier gives an estimate which
can schematically be written as:

∫

r∼3M
|�[+2]|2 + |∂r∗�[+2]|2dr∗

� terms controllable by physical space estimates (cf. Sect. 1.2.2)

+ |a|
∫

r∼3M
(ω�[+2] + ∂r∗�[+2])

{
(aim + 1)L(u[+2]w)+ a2 (aim + 1) (u[+2]w)

}
dr∗ . (16)

This should be thought of as a degenerate integrated local energy decay bound for
�[+2]. Considering the right hand side of (16), we note that naive integration of (12)
as a transport equation is not sufficient to control the integral on the right hand side
by the left hand side. This is not surprising: In constrast to the considerations away
from trapping of Sect. 1.2.2, in general now only terms which can be truly thought of
as “zero’th order” in �[+2] can manifestly be absorbed by the left hand side of (16),
in view of the absence of an ω2|�[+2]|2 and �|�[+2]|2 coercive term.

One way to try to realise the right hand side of (16) as “zero’th order” in �[+2]
would be to invoke, in addition to the transport (12), also the elliptic estimates of
[31]. It turns out, however, that exploiting the presence of the good first order term
|∂r��

[+2]|2 on the left hand side of (16), one can argue in a more elementary manner:
Indeed, by commuting (12) with ∂r∗ and exploiting the relation (11), one can indeed
rewrite the right hand side so as to absorb it into the left hand side.

Let us note finally that for “non-trapped” frequencies (i.e. outside the fre-
quency range (15)), one can arrange the frequency localised multiplier so that terms
m2|�[+2]|2 and ω2|�[+2]|2 appear on the left hand side of (16) without degenera-
tion. One can then easily absorb the right hand side just as in Sect. 1.2.2 treating it
essentially as one would a general “first order” term.

1.2.4 Technical Comments

Let us discuss briefly the technical implementation of the above argument.
As in [40], by using the smallness of the Kerr parameter a, the fixed frequency

analysis of Sect. 1.2.3, restricted entirely to real frequencies ω ∈ R, can indeed be
implemented to general solutions α[±2] of the Cauchy problem for (2), despite the fact
that we do not know a priori that solutions are square integrable in time. This requires,
however, applying cutoffs to α in order to justify the Fourier transform, and thus one
must estimate inhomogeneous versions of (2) and thus also inhomogeneous versions
of the resulting ODE (14). These inhomogeneous terms must themselves be bound by
the final estimates.

As opposed to the cutoffs of [40,45], we here will only cut off the solution in
a region r∗ ∈ [2A∗

1, 2A∗
2] near trapping. Thus, the resulting inhomogeneous terms

will be supported in a fixed region of finite r∗. Moreover, the fixed frequency ODE
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estimates of Sect. 1.2.3 will only be applied in the region r∗ ∈ [A∗
1, A∗

2]. They will
be combined with physical space estimates of Sect. 1.2.2. These estimates are now
coupled however via boundary terms on r = A1 and r = A2. The fixed frequency
multipliers applied to �[+2] are chosen so as to be frequency independent near A1
and A2 and coincide precisely with those used in the physical space estimates in the
away region. As a result, after summation over frequencies, the boundary terms in the
mutliplier currents exactly cancel. This is similar to a scheme used previously in [7].
There are also boundary terms associated with the transport equations, but these can
be absorbed using the smallness of a.

The above argument leads to a degenerate energy boundedness and integrated local
energy decay for both �[±2] and α[±2]. This preliminary decay bound will be stated
as Theorem 9.1. From Theorem 9.1, we can easily improve our estimates at the event
horizon, using the red-shift technique of [39], and then we can easily infer polynomial
decay using the weighted r p method of [38]—all directly in physical space.

1.2.5 The Axisymmetric Case

We have already remarked that in the axisymmetric case ∂φα[±2] = 0, the right hand
side of (10) is of lower order. An evenmore important simplification is that trapped null
geodesics all asymptote to a single value of r = rtrap which is near 3M , independent of
frequency. As a result, there is no need for frequency-localised analysis and the whole
argument can be expressed entirely in physical space. This is convenient for non-linear
applications. We shall explain how this simplified argument can be explicitly read off
from our paper in Sect. 9.6.

1.2.6 Final Remarks

Given the analogue of [104] for s = ± 2, the argument can in principle be applied for
the whole subextremal range |a| < M following the continuity argument of [45], but
in the present paper we shall only consider the case |a| � M , where the lower order
terms also have a useful smallness factor bounded by a, and the relevant multiplier
currents can thus be constructed as perturbations of Schwarzschild. The general case
will be considered in part II of this series, following the more general constructions
of [45].

There are other generalisations of P [±2] to Kerr which have been considered pre-
viously in the literature, see [21,102] and the recent review [57]. In contrast to our
situation, the quantities of [21,102] do indeed satisfy decoupled equations, though the
transformations must now be defined in phase space, and the transformed potentials
are somewhat non-standard in their frequency dependence. It would be interesting to
find an alternative argument using these transformations. We hope to emphasise with
our method, however, that exact decoupling is not absolutely necessary for quantities
to be useful.
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1.3 Other Related Results

We collect other related recent results concerning the stability of black holes. The
literature has already become vast so the list below is in no way exhaustive. See also
the surveys [42,43].

1.3.1 Metric Perturbations

An alternative approach to linear stability in the Schwarzschild case would go through
the theory of so-called metric perturbations. See for instance [60,71] for estimates on
the additional Zerilli equation which must be understood in that approach. We note
the paper [35].

1.3.2 Canonical Energy

As discussed above, one of the difficulties in understanding linearised gravity is the
lack of an obvious coercive energy quantity for the full system, even in the a = 0 case.
The Lagrangian structure of the Einstein equations (1) does give rise however to a
notion of canonical energy, albeit somewhat non-standard in view of diffeomorphism
invariance, and this can indeed be used to infer certain weak stability statements. For
some recent results which have been obtained using this approach, see [69,97] and the
related [64].

1.3.3 Precise Power-Law Asymptotics

Though one expects that the decay bounds obtained here are in principle sufficient for
non-linear applications, it is of considerable interest for a wide range of problems to
obtain sharp asymptotics of solutions, of the type first suggested by [96]. For upper
bounds on decay compatible with some of the asymptotics of [96], see [47,90,91].
Lower bounds were first obtained in [76]. The most satisfying results are the sharp
asymptotics recently obtained by [1,2] for the s = 0, a = 0 case. Such results in
particular have applications to the interior structure of black holes (see [76]).

1.3.4 Extremality and the Aretakis Instability

Whereas some stability results for s = 0 carry over to the extremal case |a| = M , it
turns out that, already in axisymmetry [7], the transversal derivatives along the horizon
grow polynomially [7,8]. This phenomenon is now known as the Aretakis instability.
The Aretakis instability has been shown to hold also in the case s = ± 2 by [77].
Understanding the non-axisymmetric case is completely open; see [5] for some of the
additional new phenomena that arise.
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1.3.5 Nonlinear Model Problems and Stability Under Symmetry

Though nonlinear stability of both Schwarzschild and Kerr is still open, various model
problems have been considered which address some of the specific technical difficul-
ties expected to occur.

Issues connected to the handling of decay for quadratic nonlinearities in deriva-
tives are addressed in the models considered in [79,80]. The Maxwell–Born–Infeld
equations on Schwarzschild were recently considered in [95]. This latter system, of
independent interest in the context of high energy physics, can be thought to capture
at the same time aspects of both the quasilinear difficulties as well as the tensorial
difficulties (at the level of s = ± 1) inherent in (1).

Turning to stability under symmetry, the literature is vast. For the Einstein–scalar
field system under spherical symmetry, see [23,36]. For the vacuum equations (1),
[62] provides the first result on the non-linear stability of the Schwarzschild solution
in symmetry, considering biaxial symmetry in 4 + 1-dimensions. This again reduces
to a 1 + 1 problem. Beyond 1 + 1, some aspects of the vacuum stability problem in
axisymmetry are captured in a wave-mapmodel problemwhose study was initiated by
[70]. Very recently, Klainerman–Szeftel [74] have announced a proof of the non-linear
stability of Schwarzschild in the polarised, axisymmetric case.

1.3.6 Analogues with� �= 0

There are analogues of the questions addressed here when the Schwarzschild and Kerr
solutions are replaced with the Schwarzschild–(anti) de Sitter metrics and Kerr–(anti)
de Sitter metrics, which are solutions of (1) when a cosmological term�gμν is added
to the right hand side. These solutions are discussed in [20].

In the de Sitter case� > 0, the analogous problem is to understand the stability of
the spatially compact region bounded by the event and so-called cosmological hori-
zons. Following various linear results [13,37,48,59,109] the full non-linear stability of
this region has been obtained in remarkable work of Hintz–Vasy [67]. This de Sitter
case is characterized by exponential decay, so many of the usual difficulties of the
asymptotically flat case are not present. The stability of the “cosmological region”
beyond the event horizon has been considered in [101].

The case of � < 0 has been of considerable interest in the context of high energy
physics. Already, pure AdS spacetime fails to be globally hyperbolic. In general,
asymptotically AdS spacetimes have a timelike boundary at infinity where boundary
conditions must be prescribed to obtained well-posed problems.

For reflective boundary conditions, the analogue of equation (2) on pure AdS space
admits infinitely many periodic solutions. In view of this lack of decay in the reflective
case, it is natural to conjecture instability at the non-linear level [29], once backre-
action is taken into account.4 This nonlinear instability has indeed been seen in the
seminal numerical study [15], whichmoreover sheds light on the relevance of resonant
frequencies for calculating a time-scale for growth. Very recently, the full nonlinear

4 In contrast, good quantitative decay rates for solutions the Bianchi equations on pure AdSwith dissipative
boundary conditions have been proven in [61], suggesting nonlinear stability.
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instability of pure AdS space has been proven in the simplest model for which the
problem can be studied [88], exploiting an alternative physical-space mechanism.

In the case of Kerr–AdS, one has logarithmic decay [65]—but in general no faster
[66]—for the analogue of (2) with s = 0, on account of the fact that trapped null
geodesics, in contrast with the situation described in Sect. 1.1.2, are now stable. Again,
these results may suggest instability at the non-linear level, as this slow rate of decay
is in itself insufficient to control backreaction.

1.3.7 Scattering Theory

A related problem to that of proving boundedness and decay is developing a scat-
tering theory for (2). Fixed frequency scattering theory for (2) is discussed in [22].
It was in fact the equality of the reflexion and transmission coefficients between the
Teukolsky, Regge–Wheeler and Zerilli equations that first suggested the existence of
Chandrasekhar’s transformations [22]. A definitive physical space scattering theory
was developed in the Schwarzschild case in [32,33] for s = 0, see also [92], and was
recently extended to the Kerr case in [44] for the full sub-extremal range of parameters
|a| < M .

Turning to the fully non-linear theory of (1), a scattering construction of dynamic
vacuum spacetimes settling down to Kerr was given in [30]. The free scattering data
allowed in the latter were very restricted, however, as the radiation tail was required to
decay exponentially in retarded time, and thus the spacetimes produced are measure
zero in the set of small perturbations of Kerr relevant for the stability problem.

For scattering for the Maxwell equations, see [9]. For results in the � > 0 case,
see [56,85] and references therein.

1.3.8 Stability and Instability of the Kerr Black Hole Interior

The conjectured non-linear stability of the Kerr family refers only to the exterior of
the black hole region. Considerations in the black hole interior are of a completely
different nature. The Schwarzschild case a = 0 terminates at a spacelike singularity,
whereas for the rotating Kerr case 0 < |a| < M , the Cauchy development of two-
ended data can be smoothly extended beyond a Cauchy horizon. The s = 0 case of (2)
in the Kerr interior (as well as the simpler Reissner–Nordström case) has been studied
in [46,50,51,58,76,78,83,84], and both C0-stability but also H1-instability have been
obtained. See [54,55] for the extremal case. In the full nonlinear theory, it has been
proven that if the Kerr exterior stability conjecture is true, then the bifurcate Cauchy
horizon is globallyC0-stable [34]. This implies in particular that theC0 inextendibility
formulation of “strong cosmic censorship” is false. See [24].

1.3.9 Note Added

Very recently, [82] gave a related approach to obtaining integrated local energy decay
estimates for the Teukolsky equation in the |a| � M case, following the frequency
localisation framework of [40] and again based on proving estimates for� defined by
generalisations of the transformations used in [31].
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1.4 Outline of the Paper

We end this introduction with an outline of the paper.
We begin in Sect. 2 by recalling the notation from [45] regarding the Kerr metric

and presenting the Teukolsky equation in physical space for spin s = ± 2.
We then define in Sect. 3 our generalisations to Kerr of the quantities P [±2], the

rescaled quantities �[±2] and the intermediate quantities ψ[±2], as used in [31], and
derive our generalisation of the Regge–Wheeler equation for �[±2], now coupled to
ψ[±2] and α[±2].

In Sect. 4 we shall define various energy quantities which will allow us in particular
to formulate our definitive (non-degenerate) boundedness and decay results, stated as
Theorem 4.1.

The first step in the proof of Theorem 4.1 is to obtain integrated local energy decay.
In Sect. 5, we shall prove a conditional such estimate, using entirely physical space
methods, for the coupled system satisfied by�[±2],ψ[±2, andα[±2]. In viewof theway
this will be used, we must allow also inhomogeneous terms on the right hand side of
the Teukolsky equation.We apply the physical spacemultiplier estimates and transport
estimates and transport estimates directly from [31], except that these estimates must
now be coupled. The resulting estimates (see the propositions of Sects. 5.1 and 5.2)
contain on their right hand side an additional timelike boundary term on r = A1
and r = A2 for A1 < 3M < A2. To control these terms, we will have to frequency
localise the estimates in the region r ∈ [A1, A2].Wealso give certain auxiliary physical
space estimates for the homogeneous Teukolsky equation and its derived quantities
(Sect. 5.3).

The next three sections will thus concern frequency localisation. Sect. 6 will inter-
pret Teukolsky’s separation of (2) for spin s = ± 2 in a framework generalising that
introduced in [45] for the s = 0 case. In Sect. 7, we define the frequency localised
versions of P [±2] and derive the coupled system of ordinary differential equations
satisfied by the P [±2] and α[±2]. In Sect. 8 we then obtain estimates for this coupled
system of ODE’s in the region r ∈ [A1, A2]. The main statement is summarised as
Theorem 8.1 and can be thought of as a fixed frequency version of the propositions
of Sects. 5.1–5.2, now valid in r ∈ [A1, A2]. The estimate is again conditional on
controlling boundary terms, but the energy currents will have been chosen so that the
most difficult of these, when formally summed, exactly cancel those appearing in the
proposition of Sect. 5.1.

In Sect. 9, we shall turn in ernest to the study of the Cauchy problem for (2)
to obtain a preliminary degenerate energy boundedness and integrated local energy
decay estimate in physical space. This is stated as Theorem 9.1. To obtain this, we
cut off our solution of (2) in the future so as to allow for frequency localisation in
r ∈ [A1, A2]. This allows us to apply Theorem8.1 and sumover frequencies.We apply
also the propositions of Sects. 5.1–5.2 to the cutoff-solution and sum the estimates.
The cutoff generates an inhomogeneous term which is however only supported in a
compact spacetime region. By revisiting suitable estimates, the cutoff term can then be
estimated exploiting the smallness of a, following [40]. (We note that the fact that these
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cutoffs are here supported in a fixed, finite region of r leads to various simplifications.)
We distill a simpler purely physical-space proof for the axisymmetric case in Sect. 9.6.

The final sectionswill complete the proof of Theorem4.1 fromTheorem9.1, by first
applying red-shift estimates of [39] to obtain non-degenerate control at the horizon
(Sect. 10) and then the r p-weighted energy hierarchy of [38] (Sect. 11). This part
follows closely the analogous estimates in the Schwarzschild case [31].

Some auxilliary computations are relegated to Appendix A and B.

2 The Teukolsky Equation on Kerr Exterior Spacetimes

We recall in this section the Teukolsky equation on Kerr spacetimes.
Webegin in Sect. 2.1with a reviewof theKerrmetric.We then present theTeukolsky

equation on Kerr in Sect. 2.2, focussing on the case s = ± 2. This will allows us to
state a general well-posedness statement in Sect. 2.3. Finally, in Sect. 2.4 we shall
recall the relation of the s = ± 2 Teukolsky equation with the system of gravitational
perturbations around Kerr.

2.1 The Kerr Metric

We review here the Kerr metric and associated structures, following the notation of
[45].

2.1.1 Coordinates and Vector Fields

For each |a| < M , recall that the Kerr metric in Boyer–Lindquist coordinates
(r , t, θ, φ) takes the form

ga,M = −�

ρ2
(dt − a sin2 θdφ)2 + ρ2

�
dr2 + ρ2dθ2

+ sin2 θ

ρ2
(adt − (r2 + a2)dφ)2, (17)

where

r± = M ±
√

M2 − a2, � = (r − r+)(r − r−), ρ2 = r2 + a2 cos2 θ. (18)

We recall from [45] the fixed ambient manifold-with-boundaryR, diffeomorphic to
R

+ ×R×S
2 and the coordinates (r , t∗, θ∗, φ∗) onR known as Kerr star coordinates.

We recall the relations

t(t∗, r) = t∗ − t̄(r) , phi(φ∗, r) = φ∗ − φ̄(r) mod 2π , θ = θ∗

relating Boyer–Lindquist and Kerr star coordinates. We do not need here the explicit
form of t̄(r) and φ̄(r); see [45], Section 2.1.3 but remark that they both vanish for
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r ≥ 9/4M . When expressed in Kerr star coordinates, the metric (17) (defined a priori
only in the interior ofR) extends to a smooth metric onR, i.e. it extends smoothly to
the event horizon H+ defined as the boundary ∂R = {r = r+}.

It is easy to see that the coordinate vector fields T = ∂t∗ and � = ∂φ∗ of the fixed
coordinate system coincide for all a, M with the coordinate vector fields ∂t and ∂φ of
Boyer–Lindquist coordinates, which are Killing for the metric (17). We recall that T
is spacelike in the so-called ergoregion S = {�− a2 sin2 θ < 0}. Setting

ω+
.= a

2Mr+
,

we recall that the Killing field

K = T + ω+�

is null on the horizon H+ and is timelike in {r+ < r < r+ + RK } for some RK =
RK (a0, M) where RK → ∞ as a0 → 0.

An additional important coordinate will be r∗ defined to be a function r∗(r) such
that

dr∗

dr
= r2 + a2

�
(19)

and centred as in [45] so that r∗(3M) = 0. Note that r∗ → −∞ as r → r+, while
r∗ → ∞ as r → ∞. Given a parameter R thought of as an r -value, we will often
denote r∗(R) by R∗.

The vector fields

L = ∂r∗ + T + a

r2 + a2�, L = −∂r∗ + T + a

r2 + a2�, (20)

where ∂r∗ is defined with respect to (r∗, t, θ, φ) coordinates, define principal null
directions. We have the normalisation

g(L, L) = −2
�ρ2

(r2 + a2)2
.

The vector field L extends smoothly toH+ to be parallel to the null generator, while L
extends smoothly toH+ so as to vanish identically. The quantity�−1L has a smooth
nontrivial limit onH+. The vector fields L and L are again T -(and �-)invariant.

2.1.2 Foliations and the Volume Form

For all values τ ∈ R, we recall that the hypersurfaces �τ = {t∗ = τ } are spacelike
(see [45], Section 2.2.5). We will denote the unit future normal of �τ by n�τ . We
recall the notation

R0 = {t∗ ≥ 0}, R(0,τ ) = {0 ≤ t∗ ≤ τ }, H+
0 = R0 ∩ H+,

H+
(0,τ ) = R(0,τ ) ∩ H+.
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Fig. 1 The region R̃(τ1, τ2)

For polynomial decay following the method of [38,87], we will also require hyper-
surfaces �̃τ which connect the event horizon and null infinity. For this we fix some
0 < η < 1 and define the coordinate

t̃∗ = t∗ − ξ
(
r∗)

(
r∗ + 2M

(
2M

r

)η
− R∗

η − 2M

(
2M

Rη

)η
− M

)
(21)

where ξ is a smooth cut-off function equal to zero for r ≤ Rη and equal to 1 for
r ≥ Rη + M . It is straightforward if tedious to show that for Rη sufficiently large (and
a suitably chosen function ξ ) the hypersurfaces �̃τ defined by

�̃τ := {t̃∗ = τ } (22)

are smooth and spacelike everywhere, in fact cηr−η−1 ≤ −g
(∇ t̃∗,∇ t̃∗

) ≤ Cηr−η−1

indicating that the hypersurfaces become asymptotically null near infinity. We take
this Rη as fixed from now on.

Wewill in fact use coordinates
(
t̃∗, r , θ, φ∗) and perform estimates in the spacetime

regions

R̃(τ1, τ2) = {τ1 ≤ t̃∗ ≤ τ2}, R̃0 = {t̃∗ ≥ 0}.

See Fig. 1.
We compute the volume form in the different coordinate systems (recalling that the

r and θ coordinates are common to all coordinate systems, so ρ2 = r2 + a2 cos2 θ is
unambiguously defined)

dV = ρ2dt dr sin θdθdφ = ρ2�
(
r2 + a2

)dt dr∗ sin θdθdφ∗

= ρ2dt∗ dr sin θdθdφ = ρ2dt̃∗ dr sin θdθdφ∗ . (23)

We will often use the notation

dσ = sin θdθdφ.
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Denoting the (timelike) unit normal to the hypersurfaces (22) by n�̃τ we compute
in coordinates

(
r , t̃∗, θ∗, φ∗)

√
g�̃τ g

(
r2 + a2

�
L, n�̃τ

)
= v (r , θ) ρ2 sin θ and

√
g�̃τ g

(
L, n�̃τ

)

= v (r , θ)
1

r1+η
ρ2 sin θ (24)

for a function v with C−1 ≤ v ≤ C . In particular, the volume element on slices of
constant t̃∗ = τ satisfies

dV�̃τ = √
g�̃τ drdθdφ = v (r , θ) r2r− 1+η

2 drdσ

for a (potentially different) function v with C−1 ≤ v ≤ C .
For future reference we note that, again in coordinates

(
r , t̃∗, θ∗, φ∗), we have on

the null hypersurfaces corresponding to the horizon and null infinity respectively the
relations

√
gH+ g

(
r2 + a2

�
L, L

)
= v (r , θ) sin θ and

√
gI+ g

(
L, L

) = v (r , θ) ρ2 sin θ ,

(25)

where the volume forms are understood to be themselves normalised by L and L ,
respectively. The above will be the expressions that arise in the context of the diver-
gence theorem.

Finally, we note the covariant identities

∇a

(
1

ρ2

r2 + a2

�
La
)

= 0 and ∇a

(
1

ρ2

r2 + a2

�
La
)

= 0 , (26)

which are most easily checked in Boyer–Lindquist coordinates.

2.1.3 The Very Slowly Rotating Case |a| < a0 � M

In the present paper, we will restrict to the very slowly rotating case. This will allow
us to exploit certain simplifications which arise from closeness to Schwarzschild.

Recall that the hypersurface r = 3M in Schwarzschild is known as the photon
sphere and corresponds to the set where integrated local energy decay estimates nec-
essarily degenerate. In the case |a| < a0 � M the trapping is localised near r = 3M
while the ergoregion S is localised near r = 2M . See the general discussion in [43].
Let us quantify this below by fixing certain parameters.

We will fix parameters A1 < 3M < A2 sufficiently close to 3M . We note already
that for sufficiently small |a| < a0 � M , then all future trapped null geodesics
will asymptote to an r value contained in r ∈ [A1, A2]. (We shall not use this fact
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directly, but rather, a related property concerning the maximum of a potential function
associated to the separated wave equation. See already Lemma 8.2.1.)

We moreover can choose a0 small enough so that in addition, RK > A1 and so that
the ergoregion satisfies S ⊂ {r∗ < 4A∗

1}.
Fixing a cutoff function χ(r∗)which is equal to 1 for r∗ ≤ 4A∗

1 and 0 for r∗ ≥ 2A∗
1

we define the vector field T + ω+χ�. We note that by our arrangement, this vector
field is now timelike for all r > r+, Killing outside {4A∗

1 < r∗ < 2A∗
1}, null on H+,

and equal to T on {r∗ ≥ A∗
1}.

Finally, let us note that, if A∗
1 is sufficiently small, then restricting to small a0, we

have that t = t∗ for r∗ ≥ 2A∗
1 for all |a| < a0.

We note in particular

t = t∗ = t̃∗ in the region 2A∗
1 ≤ r∗ ≤ 2A∗

2.

2.1.4 Parameters and Conventions

This paper will rely on fixing a number of parameters which will appear in the proof.
We have just discussed the parameters η and

A1 < 3M < A2

which have already been fixed.
We will also introduce fixed parameters

δ1, δ2, δ3, E

which will be connected to adding multiplier constructions on Schwarzschild, as well
as parameters C�, c�, C� delimiting frequency ranges. In particular, eventually, these
can be all thought of as fixed in terms of M alone.

We will introduce an additional smallness parameter ε associated to the cutoffs in
time. (This notation is retained from our [40].) Again, eventually, this will be fixed
depending only on M .

Finally, we will exploit the slowly rotating assumption by employing a0 as a small-
ness parameter, which will only be fixed at the end of the proof.

We introduce the following conventions regarding inequalities. For non-negative
quantities E1 and E2, by

E1 � E2

we mean that there exists a constant C = C(M) > 0, depending only on M , such that

E1 ≤ C(M)E2.

We will sometimes use the notation

E1 � Q + E2
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whereQ is not necessarily a non-negative quantity. In this context, this will mean that
there exist constants c(M), C(M) such that

cE1 ≤ Q + CE2.

Note that two inequalities of the above form can be added when the terms Q are
identical.

Before certain parameters are fixed, say δ1,wewill use the notation�δ1 to denote the
additional dependenceon δ1 of the constantC(M, δ1) appearing in various inequalities.
Only when the parameter is definitively fixed in terms of M , can �δ1 be replaced by
�.

On the other hand, in the context of the restriction to a0 � M , which will appear
ubiquitously, the constant implicit in � may depend on all parameters yet to be fixed.
Thiswill not cause confusion because restriction to smaller a will always be favourable
in every estimate.

2.2 The Teukolsky Equation for SpinWeighted Complex Functions

In this section we present the Teukolsky equation on Kerr.
We first review in Sect. 2.2.1 the notion of spin s-weighted complex functions and

discuss some elementary properties of the spin s-weighted Laplacian in Sect. 2.2.2.
We then recall in Sect. 2.2.3 the classical form of the Teukolsky operator for general
spin. Finally, specialising to s = ± 2 we derive in Sect. 2.2.4 rescaled quantities which
satisfy an equation regular also on the horizon. It is in this form that we will be able
to state well-posedness in the section that follows.

2.2.1 Spin s-Weighted Complex Functions on S2 andR

The Teukolsky equation will concern functions whose (θ, φ) (or equivalently (θ, φ∗))
dependence is that of a spin s-weighted function, for s ∈ 1

2Z. Wewill always represent
such functions as usual functions α(r , t, θ, φ).

Smooth spin s-weighted functions on S2 naturally arise, in a one-to-one fashion,
from complex-valued functions on S3 (viewed as the Hopf bundle) which transform in
a particular way under the group action on the S1 fibres of S3, as will be described now.
(Note that this is indeed natural as S3 can be identified with the bundle of orthonormal
frames on S2, and the definition of the Teukolsky null curvature components indeed
depends on a choice of frame on S2. See Sect. 2.4.)

Viewing S3 as the Hopf bundle we have aU (1) action on the S1 fibres (correspond-
ing to a rotation of the orthonormal frame in the tangent space of S2). Introducing Euler
coordinates5 (θ, φ, ρ) on S3 we denote this action by eiρ . Now any smooth function
F : S3 → C which transforms as F

(
peiρ

) = e−iρs F (p) for p ∈ S3 descends to a
spin-weighted function on S2 (by choosing a frame at each point). More precisely, F

5 Euler coordinates cover S3 everywhere except the north and southpole at θ = 0 and θ = π respectively.
The ranges of the coordinates are 0 < θ < π , 0 ≤ φ < 2π and 0 ≤ ρ < 4π .
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descends to a section of a complex line bundle over S2 denoted traditionally by B(R).
See [11,27].

Let Z1, Z2, Z3 be a basis of right invariant vector fields constituting a global
orthonormal frame on S3. In Euler coordinates we have the representation

Z1 = − sin φ∂θ + cosφ
(
csc θ∂ρ − cot θ∂φ

)
,

Z2 = − cosφ∂θ − sin φ
(
csc θ∂ρ − cot θ∂φ

)
, Z3 = ∂φ . (27)

A complex-valued function F of the Euler coordinates (θ, φ, ρ) is smooth on S3 if for
any k1, k2, k3 ∈ N∪ {0} the functions (Z1)

k1 (Z2)
k2 (Z3)

k3 F are smooth functions of
the Euler coordinates and extend continuously to the poles of the coordinate system
at θ = 0 and θ = π .

Since spin s-weighted functions on S2 arise from smooth functions on S3 as
discussed above, there is a natural notion of the space of smooth spin s-weighted
functions on S2: A complex-valued function f of the coordinates (θ, φ) is called
a smooth spin s-weighted function on S2 if for any k1, k2, k3 ∈ N ∪ {0} the func-
tions (Z̃1)

k1(Z̃2)
k2(Z̃3)

k3 f are smooth functions away from the poles and such
that eisφ(Z̃1)

k1(Z̃2)
k2(Z̃3)

k3 f extends continuously to the north (θ = 0) pole and
e−isφ(Z̃1)

k1(Z̃2)
k2(Z̃3)

k3 f extends continuously to the south (θ = π ) pole of the
coordinate system, where

Z̃1 = − sin φ∂θ + cosφ
(−is csc θ − cot θ∂φ

)
,

Z̃2 = − cosφ∂θ − sin φ
(−is csc θ − cot θ∂φ

)
, Z̃3 = ∂φ . (28)

The space of smooth spin s-weighted functions on S2 is denoted S [s]∞ . Note that
considered as usual functions on S2, elements of S [s]∞ are in general not regular at
θ = 0.

We define the Sobolev space of smooth spin s-weighted functions on S2, denoted
[s] Hm(sin θdθdφ) as the completion of S [s]∞ with respect to the norm.

‖ f ‖2[s] Hm (sin θdθdφ) =
m∑

i=0

∑

k1+k2+k3=i

∫

S2
|(Z̃1)

k1(Z̃2)
k2(Z̃3)

k3 f |2 sin θdθdφ .

Note that the space S [s]∞ is dense in L2(sin θdθdφ).
We now define the analogous notions for functions f of the spacetime coordinates

(t∗, r , θ, φ∗).
We define a smooth complex-valued spin s-weighted function f on R to be a

function f : (−∞,∞)× [2M,∞)× (0, π)× [0, 2π) which is smooth in the sense
that for any k1, k2, k3, k4, k5 ∈ N ∪ {0} the functions

(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 (∂t∗)

k4 (∂r )
k5 f

are smooth functions away from thepoles and such that eisφ((Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 (∂t∗)k4

(∂r )
k5 f extends continuously to the north (θ = 0) pole and e−isφ(Z̃1)

k1(Z̃2)
k2(Z̃3)

k3
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(∂t∗)k4 (∂r )
k5 f extends continuously to the south (θ = π ) pole. In particular, the

restriction of f to fixed values of t∗, r is a smooth spin s-weighted function on S2.
We denote the space of smooth complex-valued spin s-weighted functions on R by
S [s]∞ (R).

We similarly define a smooth complex-valued spin s-weighted function f on a slice
�τ to be a function f : [2M,∞)× (0, π)× [0, 2π) which is smooth in the sense that
for any k1, k2, k3, k4 ∈ N ∪ {0} the functions

(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 (∂r )

k4 f

are smooth functions away from thepoles and such that e±isφ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 (∂r )

k4

f extends continuously to θ = 0 and θ = π respectively. The space of such functions
is denoted S [s]∞ (�τ ). The Sobolev space [s] Hm(�τ ) is defined as the completion of
S [s]∞ (�τ ) with respect to the norm

‖ f ‖2[s] Hm (�τ )
=

m∑

i=0

∑

k1+k2+k3+k4=i

∫

�τ

dV�τ |(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 (∂r )

k4 f |2 .

If U is an open subset of �τ we can define S [s]∞ (U) and [s] Hm(U) in the obvious
way. This allows to define the space [s] Hm

loc (�τ ) as the space of functions on �τ
such that the restriction to any U � �τ (meaning that there is a compact set K with
U ⊂ K ⊂ �τ ) is in [s] Hm (U).

We finally note that we can analogously define these spaces for the slices �̃τ ,
i.e. define the spaces

S [s]∞ (�̃τ ) ,
[s] Hm(�̃τ ) ,

[s] Hm
loc(�̃τ ) .

2.2.2 The Spin s-Weighted Laplacian

Let us note that the operator defined in the introduction,

/̊�[s] = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ
∂2φ − 2si

cos θ

sin2 θ
∂φ + s2 cot2 θ − s , (29)

is a smooth operator onS [s]∞ . Indeed, a computation yields [(Z̃1)
2+(Z̃2)

2+(Z̃3)
2]� =

[− /̊�[s] − s − s2]�. Note also the formula
∑3

i=1 |Z̃i�|2 = |∂θ�|2 + 1
sin2 θ

|is� cos θ+
∂φ�|2 + s2|�|2.

The eigenfunctions of /̊�[s]
are again in S [s]∞ and are known as s-spin weighted

spherical harmonics. We shall discuss these (and their twisted analogues) further in
Sect. 6.2.1.
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An integration by parts yields for � ∈ S [s]∞

∫ π

0

∫ 2π

0
dφ dθ sin θ

(
/̊�[+2]

�
)
�

=
∫ π

0

∫ 2π

0
dφ dθ sin5 θ

[

∂θ

(
�

sin2 θ

)

− i

sin θ
∂φ

(
�

sin2 θ

)]

×
[
∂θ

(
�

sin2 θ

)
+ i

sin θ
∂φ

(
�

sin2 θ

)]
, (30)

where the right hand side is manifestly non-negative.6 Introducing the spinorial gra-
dient

/̊∇[±2]
� = (

∂θ�, ∂φ�± 2 · i cos θ �
)

and defining

| /̊∇[±2]
�|2 := ∣

∣∂θ�
∣
∣2 + 1

sin2 θ

∣
∣∂φ�± 2 · i cos θ�

∣
∣2 , (31)

we also have

∫ π

0

∫ 2π

0
dφ dθ sin θ

[
/̊�[±2]

(0)± 2
]
� ·�

=
∫ π

0

∫ 2π

0
dφ dθ

[
sin θ

∣∣∂θ�
∣∣2 + 1

sin θ

∣∣∂φ�± 2 · i cos θ�
∣∣2
]

=
∫ π

0

∫ 2π

0
dφ dθ sin θ | /̊∇[±2]

�|2 . (32)

We note that for �,� ∈ S [s]∞

∫ π

0

∫ 2π

0
dφ dθ sin θ

[
/̊�[±2]

(0)± 2
]
� ·�

=
∫ π

0

∫ 2π

0
dφ dθ sin θ

[
/̊∇[±2]

� · /̊∇[±2]
�

]

S2
. (33)

Directly from (30) and (32) we deduce the Poincaré inequality

∫ π

0

∫ 2π

0
dφ dθ sin θ

∣∣ /̊∇[±2]
�
∣∣2 ≥ 2

∫ π

0

∫ 2π

0
dφ dθ sin θ |�|2 . (34)

6 In fact, the right hand side vanishes for the first spin-weighted spherical harmonics.
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Combining (32) and (34) we also deduce

∫ π

0

∫ 2π

0
dφ dθ sin θ

∣∣ /̊∇[±2]
�
∣∣2 ≥ 1

8

∫ π

0

∫ 2π

0
dφ dθ sin θ |��|2 . (35)

2.2.3 The Teukolsky Operator for General Spin s

Recall that the operator

T[s]α[s] = �gα
[s] + 2s

ρ2
(r − M)∂rα

[s] + 2s

ρ2

(
a(r − M)

�
+ i

cos θ

sin2 θ

)
∂φα

[s]

+ 2s

ρ2

(
M(r2 − a2)

�
− r − ia cos θ

)
∂tα

[s] + 1

ρ2
(s − s2 cot2 θ)α[s]

(36)

is the traditional representation (see for instance [99]) of the Teukolsky operator with
spin s ∈ 1

2Z. In view of the comments above, this operator is smooth onS [s]∞ (R\H+).
We will say that such an α[s] ∈ S [s]∞ (R \H+) satisfies the Teukolsky equation if the
following holds:

T[s]α[s] = 0. (37)

Theoperator (37) is not smoothonS [s]∞ (R) itself. This is because it has beenderived
with respect to a choice of frame which degenerates at the horizon. See Sect. 2.4. To
obtain a regular equation at the horizon, we must considered rescaled quantities. We
turn to this now.

2.2.4 Rescaled Equations

To understand regularity issues at the horizon we must consider rescaled quantities.
We will restrict here to s = ± 2.

Define

α̃[+2] = �2(r2 + a2)−
3
2 α[+2], α̃[−2] = �−2(r2 + a2)−

3
2 α[−2] . (38)

Define now the modified Teukolsky operator T̃[s] by the relation

�ρ−2T̃[s] = 1

2

(
L L + L L

)+ �
(
r2 + a2

)2

(
/̊�[s] + s − 3

a4 + a2r2 − 2Mr3

(r2 + a2)2
+ 2

)

− �
(
r2 + a2

)2

(
2aT�+ a2 sin2 θT T − 2isa cos θT

)
+ t[s] , (39)
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with /̊�[s]
denoting the spin ± 2 weighted Laplacian on the round sphere defined in

(29) and with the first order term t[s] given by

t[+2] = − 2
w′

w
L − 8aw

r

r2 + a2� and t[−2] = +2
w′

w
L + 8aw

r

r2 + a2� where

w := �
(
r2 + a2

)2 . (40)

One sees that (37) for s = + 2 can be rewritten as

T̃[+2]α̃[+2] = 0. (41)

On the other hand, we observe that T̃[+2] now is a smooth operator on S [s]∞ (R)
and that its second order part is hyperbolic, in fact, it is exactly equal to −�g .

Similarly, we see that (37) for s = −2 can be rewritten as

T̃[−2] (�2α̃[−2]) = 0 , (42)

which in turn can be rewritten as

[
T̃[−2] − 2

ρ2

�

w′

w
L + t[−2]

aux

]
α̃[−2] = 0 , (43)

where

t[−2]
aux = ρ2

�

[

−4

(
r2 + a2

)′

(r2 + a2)
L + 2

�′

�
L − 2

(
�′

�

)′
+ 8

(
r2 + a2

)′

(r2 + a2)

�′

�

]

is a first order operator acting smoothly on S [s]∞ (R). Now we observe that T̃[−2] −
2ρ

2

�
w′
w

L also acts smoothly onS [s]∞ (R) and that its second order part is exactly equal
to −�g . This will allow us to state a well-posedness proposition in the section to
follow.

Remark 2.1 The weights in (38) for α̃[+2] will be useful for the global analysis of the
equation, whereas the weights for α̃[−2] will only be useful for the well-posedness
below. For this reason, we shall define later (see Sect. 6.2.5) the different rescaled
quantities u[±2] = �±1

√
r2 + a2α[±2], and deal mostly with the further rescaled

quantities u[±2] · w. Note that

u[+2] · w = α̃[+2], but u[−2] · w = (r2 + a2)−
3
2 α[−2].

The first quantity is finite (and generically non-zero) on the horizon H+ while the
second quantity is finite (and generically non-zero) on null infinity I+ which makes
them useful in the global considerations below. Note also that both quantities satisfy
the simple equations (41) and (42) respectively.
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2.3 Well-posedness

Standard theory yields that the Teukolsky equation in the form (41), (43) is well-posed
onR0 or R̃0 with initial data (α̃

[s]
0 , α̃

[s]
1 ) defined on�0 in [s] H j

loc(�0)×[s] H j−1
loc (�0),

resp. with �̃0 replacing �0. We state this as a proposition for reference:

Proposition 2.3.1 (Well-posedness) For s = ± 2, let (α̃[s]
0 , α̃

[s]
1 ) ∈ [s] H j

loc(�0) ×
[s] H j−1

loc (�0) be complex valued spin weighted functions with j ≥ 1. Then there
exists a unique complex valued α̃[s] on R0 satisfying (41) (equivalently α[s] satisfy-
ing (37)) with α̃[s] ∈ [s] H j

loc(�τ ), n�τ α̃
[s] ∈ [s] H j−1

loc (�τ ) such that α̃[s]∣∣
�0

= α̃
[s]
0 ,

(n�0 α̃
[s])

∣∣
�0

= α
[s]
1 . In particular, if (α̃[s]

0 , α̃
[s]
1 ) ∈ S [s]∞ (�0) then α̃[s] ∈ S [s]∞ (R0).

The same statement holds with �̃0, �̃τ , R̃0 in place of �0, �τ , R0, respectively.

Proof cf. Proposition 4.5.1 of [40]. ��

2.4 Relation with the System of Gravitational Perturbations

The Teukolsky equation (2) is traditionally derived via the Newman–Penrose formal-
ism [93]. One defines the (complex) null tetrad (�, n,m, m̄) by

l = r2 + a2

�
L , n = r2 + a2

2ρ2
L ,

m = 1√
2(r + ia cos θ)

(
ia sin θ∂t + ∂θ + i

sin θ
∂φ

)
, (44)

which is normalised such that

g (l, n) = − 1 , g (m, m̄) = 1 , g (m,m) = g (m̄, m̄) = 0 .

Note that we can obtain an associated real spacetime null frame (�, n, e1, e2) by
defining e1 = 1√

2
(m + m̄) and e2 = 1√

2i
(m − m̄), which then satisfies in particular

g (e1, e1) = g (e2, e2) = 1 and g (e1, e2) = 0.
The extremal Newman–Penrose curvature scalars are defined as the following com-

ponents of the spacetime Weyl tensor7

�0 = −W (l,m, l,m) , �4 = − W (n,m, n,m) . (45)

Both �0 and �4 vanish for the exact Kerr metric. Remarkably, upon linearising the
Einstein vacuum equations (1) (using the above frame) the linearised components �0
and�4 are gauge invariant (with respect to infinitesimal changes of both the frame and
the coordinates) and moreover satisfy decoupled equations. Indeed, one may check
that α[−2] = (r − ia cos θ)4 �4 and α[+2] = �0 satisfy precisely the Teukolsky
equation (2) for s = −2 and s = 2 respectively.

7 Recall that the Riemann tensor agrees with the Weyl tensor for a Ricci flat metric.
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Instead of defining spin s-weighted complex functions �0, �4 one may (equiva-
lently) define symmetric traceless 2-tensors α and α (living in an appropriate bundle
of horizontal tensors) by

α (eA, eB) = W (L, eA, L, eB) , α (eA, eB) = W
(
L, eA, L, eB

)
.

Using the symmetry and the trace properties of theWeyl tensor we derive the relations

α (e1, e1) = −α (e2, e2) = −1

2

(
2ρ2

r2 + a2

)2 (
�4 + �4

)

and

α (e1, e2) = α (e2, e1) = +1

2
i

(
2ρ2

r2 + a2

)2 (
�4 − �4

)
,

which relate the spin 2-weighted complex function and the tensorial version of the
curvature components. Of course similar formulae are easily derived for α.

We can now connect directly to our previous [31] where we wrote down the
Teukolsky equation for the symmetric traceless tensors α and α in the Schwarzschild
spacetime.

As a final remark we note that in the Schwarzschild case considered in [31] the
null frame used to define the extremal Weyl components arose directly from a double
null foliation of the spacetime. In stark contrast, the algebraically special null frame
(l, n, e1, e2) in Kerr for a �= 0 does not arise from a double null foliation of that
spacetime.

3 Generalised Chandrasekhar Transformations for s = ± 2

In this section, we generalise the physical space reformulations of Chandrasekhar’s
transformations, given in [31], to Kerr.

In accordance with the conventions of our present paper, we will consider complex
scalar spin ± 2 weighted quantities α[±2] in place of the tensorial ones of [31]. We
begin in Sect. 3.1 with the definitions of the quantities P [±2] associated to quantities
α[±2]. If α[±2] satisfy the (inhomogeneous) Teukolsky equation, then we show in
Sect. 3.2 that P [±2] will satisfy an (inhomogeneous) Regge–Wheeler type equation,
coupled to α[±2]. The latter coupling vanishes in the Schwarzschild case. The precise
relation with the tensorial definitions of [31] will be given in Sect. 3.3.

3.1 The Definitions of P [±2], �[±2] andψ[±2]

Given functions α[±2], we define

P [+2] = − (r2 + a2)1/2

2�
Lμ∇μ

(
(r2 + a2)2

�
Lμ∇μ

(
�2

(
r2 + a2

)− 3
2
α[+2]

))
,

(46)
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P [−2] = − (r2 + a2)1/2

2�
Lμ∇μ

(
(r2 + a2)2

�
Lμ∇μ

((
r2 + a2

)− 3
2
α[−2]

))
. (47)

These are our physical-space generalisations to Kerr of Chandrasekhar’s fixed fre-
quency Schwarzschild transformation theory.

Note that if α̃[±2] ∈ S [±2]∞ (U) for U ⊂ R, then P [±2] ∈ S [±2]∞ (U). We will
typically work with the rescaled functions

�[±2] = (r2 + a2)
3
2 P [±2], (48)

which are of course again smooth.
As in [31], it will be again useful to give a name to the intermediate quantitiesψ[±2]

defined by

ψ[+2] = −1

2
�− 3

2

(
r2 + a2

)+2
Lμ∇μ(�

2
(

r2 + a2
)− 3

2
α[+2]) (49)

ψ[−2] = +1

2
�− 3

2 (r2 + a2)2Lμ∇μ

(
α[−2](r2 + a2)−

3
2

)
. (50)

We can rewrite (46)–(47) as

Lμ∇μ

(√
�ψ[+2]) = �(r2 + a2)−2�[+2], (51)

Lμ∇μ(
√
�ψ[−2]) = −�(r2 + a2)−2�[−2]. (52)

Note that for α̃[±2] smooth, it is the quantities
√
�ψ[+2], (

√
�)−1ψ[−2] which are

smooth.

3.2 The Generalised Inhomogeneous Regge–Wheeler-Type Equation with Error

The importance of the quantities �[±2] arises from the following fundamental propo-
sition:

Proposition 3.2.1 If α[±2] satisfy the inhomogeneous equations

T̃[+2] (α̃[+2]) = F [+2] and T̃[−2] (�2α̃[−2]) = �2F [−2] (53)

then the quantities �[±2] satisfy the equation

R[±2]�[±2] = −ρ2

�
J [±2] − ρ2

�
G[±2] (54)

where
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�ρ−2R[s] = 1

2

(
L L + L L

)

+ �
(
r2 + a2

)2

{ (
/̊�[s] + s2 + s

)
− 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2 �

(r2 + a2)2

}

− �
(
r2 + a2

)2

(
2aT�+ a2 sin2 θT T − 2isa cos θT

)
, (55)

J [+2] = �
(
r2 + a2

)2

[
−8r2 + 8a2

r2 + a2 a�− 20a2 r3 − 3Mr2 + ra2 + Ma2

(
r2 + a2

)2

]

×
(√

�ψ[+2])+ a2 �
(
r2 + a2

)2

×
[
−12

r

r2 + a2 a�+ 3

(
r4 − a4 + 10Mr3 − 6Ma2r

(r2 + a2)2

)]

×
(

α[+2]�2
(

r2 + a2
)− 3

2
)

G[+2] = 1

2
L

((
r2 + a2

)2

�
L

(
�

wρ2
F [+2]

))

(56)

and

J [−2]= �
(
r2 + a2

)2

[
8r2 − 8a2

r2 + a2 a�−20a2 r3 − 3Mr2 + ra2 + Ma2

(
r2 + a2

)2

](√
�ψ[−2])

+ a2 �
(
r2 + a2

)2

[
+12

r

r2 + a2 a�+ 3

(
r4 − a4 + 10Mr3 − 6Ma2r

(r2 + a2)2

)]

×
(

α[−2] (r2 + a2
)− 3

2
)
, (57)

G[−2] =1

2
L

((
r2 + a2

)2

�
L

(
�3

wρ2
F [−2]

))

. (58)

Proof Direct calculation. See Appendix. ��
We will call the operator R[s] defined by (55) the generalised Regge–Wheeler

operator. We note that it has smooth coefficients on R0 and its highest order part
is proportional to the wave operator. The equation (54) reduces to the usual Regge–
Wheeler equation in the case a = 0:

Corollary 3.1 If a = 0 and F [±2] = 0 then �[±2] satisfies the Regge–Wheeler equa-
tion

L L�[±2] + �2

r2

(
/̊�[±2] ± 2

)
�[±2] +�2

(
4

r2
− 6M

r3

)
�[±2] = 0, (59)
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where �2 = 1 − 2M
r .

As discussed already in the introduction, we see that (54), although still coupled
to α[±2], retains some of the good structure of (59). The operator (54) has a good
divergence structure admitting estimates via integration by parts, i.e. it does not have
the problematic first order terms of the Teukolsky operator T̃[±2], cf. (39). See already
the divergence identities of Sect. 5.1.1. Moreover, the terms J [+2] can be thought
of as lower order, from the perspective of �[±2], as they only involve up to second
derivatives of α[±2] (via the term �(

√
�ψ[±2])).

3.3 Relation with the Quantities P and P of [31]

As with the tensorial quantities α and α discussed in Sect. 2.4, in [31] the transforma-
tions to the quantities P and P (corresponding to the complex functions P [+2], P [−2]
in this paper) were again given tensorially. In particular, the Regge–Wheeler equation
for the symmetric traceless tensor � = r5P was written tensorially using projected
covariant derivatives as (cf. Corollary 7.1 of [31])

�/∇3
(
�/∇4�

)−�2 /�� +�2V� = 0 with V = 4

r2
− 6M

r3
, (60)

where /∇3 and /∇4 are projected (to the spheres of symmetry) covariant derivatives
in the null directions, /� is the covariant Laplacian associated with the metric on the
spheres of symmetry acting on symmetric traceless tensors and �2 = 1 − 2M

r . Note

that unlike the operator /̊�[s]
considered in this paper, the operator /� was defined as a

negative operator in [31].
Computing the equation satisfied by the components of� in the standard orthonor-

mal frame on the spheres of symmetry one obtains

L L (�11)+�2
(

− /� (�11)+ 4
cos θ

sin2 θ
∂φ�12 + 4 cot2 θ�11

)
+�2V�11 = 0 ,

L L (�12)+�2
(

− /� (�12)− 4
cos θ

sin2 θ
∂φ�11 + 4 cot2 θ�12

)
+�2V�12 = 0 ,

from which one infers that the complex-valued functions�[±2] = �11 ∓ i�12 satisfy
the Regge–Wheeler equation (59) for s = ± 2.8

4 Energy Quantities and Statement of theMain Theorem

We first give certain definitions of weighted energy quantities in Sect. 4.1. This will
allow us to give a precise statement of the main theorem of this paper (Theorem 4.1) in

8 Note that in this paper �[+2] = r3P[+2] for a = 0 so when relating orthonormal components of the
tensor P and the complex function P[2] there is an additional factor of r2. This factor disappears when
replacing the orthonormal frame on the spheres of symmetry with an orthonormal frame on the unit sphere
to express the components of P .
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Fig. 2 Partitioning R̃(τ1, τ2)
and �̃τ

Sect. 4.2. We will finally discuss in Sect. 4.3 how the logic of the proof of Theorem 4.1
is represented by the sections that follow.

4.1 Definitions ofWeighted Energies

We will define in this section a number of weighted energies. In addition to those
appearing in the statement of Theorem 4.1, we will need to consider various auxiliary
quantities.

4.1.1 The Left, Right and Trapped Subregions

We will in particular need to introduce energies localised to various subregions of �̃τ
and R̃(τ1, τ2). In anticipation of this, let us define the following subregions

R̃left(τ1, τ2) = R̃(τ1, τ2) ∩ {r ≤ A1}, R̃right(τ1, τ2) = R̃(τ1, τ2) ∩ {r ≥ A2},
R̃away(τ1, τ2) = R̃left(τ1, τ2) ∪ R̃right(τ1, τ2)

R̃trap(τ1, τ2) = R̃(τ1, τ2) ∩ {A1 ≤ r ≤ A2}.

Note that

R̃trap(τ1, τ2) ∪ R̃away(τ1, τ2) = R̃trap(τ1, τ2) ∪ R̃left(τ1, τ2) ∪ R̃right(τ1, τ2)

= R̃(τ1, τ2).

For �̃τ , it will be more natural to consider

�̃left
τ = �̃τ ∩ {r ≤ A1}, �̃

right
τ = �̃τ ∩ {r ≥ A2}, �̃

away
τ = �̃left

τ ∪ �̃
right
τ ,

See Fig. 2.

4.1.2 Weighted Energies for�[±2]

The energies in this section will in general be applied to�[±2] satisfying the inhomo-
geneous equation (54).
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Let p be a free parameter (which will eventually always take the values 0, η, 1 or
2). We define the following weighted energies on the slices �̃τ

E�̃τ ,p

[
�[±2]] (τ ) =

∫

�̃τ

drdσ

(∣∣L�[±2]|2r p + ∣∣ /̊∇[±2]
�[±2]∣∣2r−2 + ∣∣�[±2]∣∣2r−2

+ r−1−η
∣∣∣L�[±2]

∣∣∣
2
)
,

E�̃τ ,p

[
�[±2]] (τ ) =

∫

�̃τ

drdσ

(∣∣L�[±2]|2r p + ∣∣ /̊∇[±2]
�[±2]∣∣2r−2 + ∣∣�[±2]∣∣2r−2

+ r−1−η
∣∣∣
r2 + a2

�
L�[±2]

∣∣∣
2
)
. (61)

We remark that an overbar indicates that the energy has optimised weights near the
horizon.

We will also consider the following energy through �̃away
τ :

E
away
�̃τ ,p

[
�[±2]] (τ ) =

∫

�̃
away
τ

drdσ

(∣∣L�[±2]|2r p + ∣∣ /̊∇[±2]
�[±2]∣∣2r−2

+∣∣�[±2]∣∣2r−2 + r−1−η
∣∣∣L�[±2]

∣∣∣
2
)
.

On the event horizon H+ we define the energies

EH+
[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ |L�[±2]|2 ,

EH+
[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ

(
|�[±2]|2 + |L�[±2]|2 + | /̊∇[s]

�[±2]|2
)
.

(62)

On null infinity I+ we define the energies

EI+,p
[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ

[
|L�[±2]|2 + r p−2| /̊∇[s]

× �[±2]|2 + r p−2|�−2|2
)
.

In addition to the energy fluxes, we will define the weighted spacetime energies

Ip

[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ

×
⎛

⎝

⎛

⎝
∣
∣L�[±2]|2

r1+δ
p
0 η

+
∣
∣ /̊∇[±2]

�[±2]∣∣2

r3+δ
p
2 η

+
∣
∣�[±2]∣∣2

r3+δ
p
2 η

⎞

⎠ r p +
∣
∣L�[±2]∣∣2

r1+η

⎞

⎠ , (63)
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Ip

[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ

×
⎛

⎜
⎝

⎛

⎝
∣
∣L�[±2]|2

r1+δ
p
0 η

+
∣
∣ /̊∇[±2]

�[±2]∣∣2

r3+δ
p
2 η

+
∣
∣�[±2]∣∣2

r3+δ
p
2 η

⎞

⎠ r p +
∣∣
∣ r2+a2

�
L�[±2]

∣∣
∣
2

r1+η

⎞

⎟
⎠ ,

(64)

where δa
b is the Kronecker delta symbol and also the degenerate spacetime energies

I
deg
p

[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ

×
{⎛

⎝
∣∣L�[±2]|2

r1+δ
p
0 η

+
∣∣ /̊∇[±2]

�[±2]∣∣2

r3+δ
p
2 η

+
∣∣L�[±2]∣∣2

r1+η
r−p

⎞

⎠ r p · χ̃

+
∣∣(L − L)�[±2]∣∣2

r1+η
+ r p

∣∣�[±2]∣∣2

r3+δ
p
2 η

}
,

I
deg
p

[
�[±2]] (τ1, τ2) = I

deg
p

[
�[±2]] (τ1, τ2)

× but replacing L by
r2 + a2

�
L in the round bracket (65)

with χ̃ a radial cut-off function equal to 1 in r∗ ∈ (−∞, A∗
1]∪ [A∗

2,∞) and vanishing
in r∗ ∈ [

A∗
1/4, A∗

2/4
]
. Finally, we shall define

I
away
p

[
�[±2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃
away
τ

drdσ

×
⎡

⎣
∣∣L�[±2]|2

r1+δ
p
0 η

+
∣∣ /̊∇[±2]

�[±2]∣∣2

r3+δ
p
2 η

+
∣∣L�[±2]∣∣2

r1+η
r−p +

∣∣�[±2]∣∣2

r3+δ
p
2 η

⎤

⎦ r p

and

I
trap[�[±2]](τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃
trap
τ

drdσ

{
χ̃

(∣∣L�[±2]|2 + ∣∣ /̊∇[±2]
�[±2]∣∣2 + ∣∣L�[±2]∣∣2

)

∣∣(L − L)�[±2]∣∣2 + ∣∣�[±2]∣∣2
}
. (66)

Note that

I
deg
p

[
�[±2]] (τ1, τ2) � I

away
p

[
�[±2]] (τ1, τ2)+ I

trap[�[±2]](τ1, τ2).
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4.1.3 Weighted Energies forα[+2],ψ[+2]

The quantities in this section will in general be applied to α[+2], ψ[+2] arising from a
solution α̃[+2] of the inhomogeneous equation (53).

We define the following energy densities

ep

[
α[+2]] =

∑

 ∈{id,�}

∣∣∣ 
(

α[+2]�2
(

r2 + a2
)−1

) ∣∣∣
2
r−δ

p
2 ηr p

+
∣∣∣T
(

α[+2]�2
(

r2 + a2
)−1

) ∣∣∣
2
r2−η , (67)

ep

[
ψ[+2]] =

∑

 ∈{id,�}

∣∣
∣ 
(
ψ[+2]√�

) ∣∣
∣
2
r−δ

p
2 ηr p +

∣∣
∣T
(
ψ[+2]√�

) ∣∣
∣
2
r2−η . (68)

With these, we define the following weighted energies on the slices �̃τ :

E�̃τ ,p

[
α[+2]] (τ ) =

∫

�̃τ

drdσ ep

[
α[+2]] ,

E�̃τ ,p

[
ψ[+2]] (τ ) =

∫

�̃τ

drdσ ep

[
ψ[+2]] . (69)

Remark 4.1 We remark already that while these energies contain the T and the �
derivative only, we can obtain also the L and the L derivative if we control in addition
the energy (61) of �[+2]. This is because of the relations (107) and (108) and the
relation L = −L + 2T + 2a

r2+a2
�.

It will be useful to also consider separately

E
left
�̃τ ,p

[
α[+2]] (τ ) =

∫

�̃left
τ

drdσep

[
α[+2]] ,

E
left
�̃τ ,p

[
ψ[+2]] (τ ) =

∫

�̃left
τ

drdσ ep

[
ψ[+2]] , (70)

E
right
�̃τ ,p

[
α[+2]] (τ ) =

∫

�̃
right
τ

drdσ ep

[
α[+2]] ,

E
right
�̃τ ,p

[
ψ[+2]] (τ ) =

∫

�̃
right
τ

drdσ ep

[
ψ[+2]] . (71)

We also use the notation E
away
�̃τ ,p

for the sum of the left and the right energies. On
(timelike) hypersurfaces of constant r = A > r+ we define

Er=A

[
α[+2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ ep

[
α[+2]]

∣
∣∣∣
r=A

,

Er=A

[
ψ[+2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ ep

[
ψ[+2]]

∣
∣∣∣
r=A

. (72)
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In the limit r → r+ we obtain the energies the event horizon H+ which we denote

EH+
[
α[+2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ ep

[
α[+2]]

∣∣∣∣
r=r+

,

EH+
[
ψ[+2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ ep

[
ψ[+2]]

∣∣∣
∣
r=r+

. (73)

We also define the following weighted spacetime energies

Ip

[
α[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ
1

r
ep

[
α[+2]] ,

Ip

[
ψ[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ
1

r
ep

[
ψ[+2]] .

As with the fluxes, it will be useful to also define

I
left
p

[
α[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃left
τ

dr dσ
1

r
ep

[
α[+2]] , (74)

I
left
p

[
ψ[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃left
τ

dr dσ
1

r
ep

[
ψ[+2]] , (75)

I
right
p

[
α[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃
right
τ

dr dσ
1

r
ep

[
α[+2]] , (76)

I
right
p

[
ψ[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃
right
τ

dr dσ
1

r
ep

[
ψ[+2]] . (77)

Finally, we define

I
trap

[
α[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃
trap
τ

dr dσe0
[
α[+2]] , (78)

I
trap

[
ψ[+2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃
trap
τ

dr dσ e0
[
ψ[+2]] . (79)

We note the relations

Ip

[
α[+2]] (τ1, τ2) � I

left
p

[
α[+2]] (τ1, τ2)+ I

trap
[
α[+2]] (τ1, τ2)

+ I
right
p

[
α[+2]] (τ1, τ2) . (80)
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4.1.4 Weighted Energies forα[−2],ψ[−2]

The quantities in this section will in general be applied to α[−2], ψ[−2] arising from a
solution α̃[−2] of the inhomogeneous equation (53).

We define the following weighted energies on the slices �̃τ :9

E�̃τ

[
α[−2]] (τ ) =

∫

�̃τ

drdσ
∑

 ∈{id,T ,�}

∣∣∣ 

(√
r2 + a2α[−2]

�2

) ∣∣∣
2
r−1−η , (81)

E�̃τ

[
ψ[−2]] (τ ) =

∫

�̃τ

drdσ
∑

 ∈{id,T ,�}

∣∣∣ 
(

ψ[−2](r2 + a2)√
�

) ∣∣∣
2
r−1−η . (82)

We also define the energies

E�̃τ

[
α[−2]] (τ ) , E�̃τ

[
ψ[−2]] (τ )

by adding to the set  in the energies without the overbar the vectorfield r2+a2
�

L .
Hence an overbar again indicates that the energy has been improved near the horizon.

Remark 4.2 In analogy with Remark 4.1, note that in view of the relations (116) and
(117) controlling the energies above and in addition the energy (61) allows one to
control also the L derivative of α[−2] and ψ[−2]. Together these allow one to control
the L derivative of α[−2] andψ[−2] (without the�−1-weight near the horizon) in view
of the relation L = −L + 2T + 2a

r2+a2
�.

We define

E
left
�̃τ

[
α[−2]] , E

left
�̃τ

[
ψ[+2]] , E

right
�̃τ

[
α[−2]] , E

right
�̃τ

[
ψ[−2]]] ,

by appropriately restricting the domain in (81)–(82), in analogy with the definitions
(70)–(71).

On (timelike) hypersurfaces of constant r = A > r+ we define

Er=A

[
α[−2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ
∑

 ∈{id,T ,�}

∣∣
∣ 

(√
r2 + a2α[−2]

�2

) ∣∣
∣
2
∣∣
∣∣
r=A

,

Er=A

[
ψ[−2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ
∑

 ∈{id,T ,�}

∣∣∣ 
(

ψ[−2](r2 + a2)√
�

) ∣∣∣
2
∣∣∣
∣
r=A

. (83)

9 Note that in contrast to the [+2]-energies, no p-weights appear. The underlying reason is that the transport
estimates for ψ[−2] and α[−2] will always be applied with the same r -weight. Note also in this context
that the E-energies for α[−2] and ψ[−2] on the slices �̃τ in (81)–(82) carry the same r -weight as the
corresponding spacetime I-energies in (85)–(86). This arises from the fact that the transport for the [−2]-
quantities happens in the L-direction and the relation (24) between L and the unit normal to the slices
�̃τ .
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In the limit r → ∞ we define on null infinity I+

EI+
[
α[−2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ
∑

 ∈{id,T ,�}

∣
∣∣ 

(√
r2 + a2α[−2]

�2

) ∣
∣∣
2
∣
∣∣∣
r→∞

,

EI+
[
ψ[−2]] (τ1, τ2) =

∫ τ2

τ1

dτdσ
∑

 ∈{id,T ,�}

∣∣
∣ 
(

ψ[−2](r2 + a2)√
�

) ∣∣
∣
2
∣∣
∣∣
r→∞

. (84)

We also define the following weighted spacetime energies

I

[
α[−2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ
∑

 ∈{id,T ,�}

∣
∣∣ 

(√
r2 + a2α[−2]

�2

) ∣
∣∣
2
r−1−η ,

(85)

I

[
ψ[−2]] (τ1, τ2) =

∫ τ2

τ1

dτ
∫

�̃τ

drdσ
∑

 ∈{id,T ,�}

∣
∣∣ 
(

ψ[−2](r2 + a2)√
�

) ∣
∣∣
2
r−1−η ,

(86)

and the energies

I

[
α[−2]] (τ1, τ2) , I

[
ψ[−2]] (τ1, τ2)

by adding to the set  appearing in the definitions (85)–(86) the vectorfield r2+a2
�

L .
We define again

I
left

[
α[−2]] , I

left
[
ψ[−2]] , I

right
[
α[−2]] , I

right
[
ψ[−2]] ,

by restricting the domain in (85)–(86), in analogy with (74)–(77). Finally, in analogy
with (78)–(79), we define

I
trap

[
α[−2]] , I

trap
[
ψ[−2]] (87)

and we note the [−2] version of (80).

4.2 Precise Statement of theMain Theorem: Theorem 4.1

We are now ready to give a precise version of the main theorem stated in Sect. 1.2:

Theorem 4.1 Let (α̃[±2]
0 , α̃

[±2]
1 ) ∈ [±2] H j

loc(�̃0)× [±2] H j−1
loc (�̃0) and α̃[±2] be as in

the well-posedness Proposition 2.3.1, and let α[±2], P [±2],�[±2], ψ[±2] be as defined
by (38), (46), (47), (48), (49) and (50). Then the following estimates hold:

1. degenerate energy boundedness and integrated local energy decay as in Theo-
rem 9.1
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2. red-shifted boundedness and integrated local energy decay as in Theorem 10.1
3. the weighted r p hierarchy of estimates as in Propositions 11.2.1 and 11.2.2 (s =

+2)
as well as Propositions 11.3.1 and 11.3.2 (s = −2)

4. polynomial decay of the energy as in Theorem 11.1.

For each statement, the Sobolev exponent j in the initial data norm is assumed large
enough so that the quantities on the right hand sides of the corresponding estimates
above are well defined.

Let us note that we can easily deduce from the above an alternative version where
initial data is posed (and weighted norms given) on �0 instead of �̃0. We suffice here
with the remark that smooth, compactly supported initial data on�0 trivially give rise
to initial data on �̃0 satisfying the assumptions of the above theorem.

As an example of the pointwise estimates which follow immediately from the above
theorem, let us note the following pointwise corollary (recall that 0 < η < 1 was fixed
in Sect. 2.1.2):

Corollary 4.1 Let (α̃[±2]
0 , α̃

[±2]
1 ) be smooth and of compact support. Then the solution

α̃ satisfies

|r 3+η
2 α̃[+2]| ≤ C |t̃∗|−(2−η)/2 , |r4α̃[−2]| ≤ C |t̃∗|−(2−η)/2

where C depends on an appropriate higher Sobolev weighted norm.

The above decay rates can be improved following [87].

Remark 4.3 Recall that the quantities α̃[±2] are regular on the horizon and that near

infinity r
3+η
2 α̃[+2] ∼ r

5+η
2 α[+2] ∼ r

5+η
2 �0 and r4α̃[−2] ∼ r−3α[−2] ∼ r�4, allowing

direct comparison with the null-components of curvature in an orthonormal frame (see
Sect. 2.4).

Remark 4.4 Note that, in view of Remark 4.3, one sees that the decay in r provided
for �0 by Corollary 4.1 is weaker than peeling, consistent with the fact that, just as in
[26], our weighted energies do not in fact impose initially the validity of peeling. This
is important since it has been shown that peeling does not hold for generic physically
interesting data [25].

4.3 The Logic of the Proof

The remainder of the paper concerns the proof of Theorem 4.1.
Sections 5–8 are preliminary: Section 5 will prove an integrated energy estimate for

�[±2], ψ[±2] and α[±2] arising from general solutions to the inhomogeneous s = ± 2
Teukolsky equations (53) outside of the region r ∈ [A1, A2], with additional boundary
terms on r = Ai , as well as certain auxiliary estimates (Sect. 5.3) for �[±2], ψ[±2]
and α[±2] arising from a solution of the homogeneous equation (37). Sects. 6–8 will
concern so-called [A1, A2]-admissible solutions and will provide frequency-localised
estimates in the region [A1, A2], again with boundary terms on r = Ai .
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The proof proper of Theorem 4.1 commences in Sect. 9 where the degenerate
integrated local energy decay and boundedness statements are proven (statement 1.),
using the results of Sects. 5–9, applied to a particular solution α

[±2]
Q of the inhomo-

geneous equation (53) which arises by cutting off a solution α of the homogeneous
equation so that,when restricted to the r -range [A1, A2],α[±2]

Q is compactly supported
in t∗ ∈ [0, τfinal]. The estimate of statement 1. follows by appropriately summing the
estimates of Sects. 5 and 8 applied to αQ. We note already that when summing, the
most dangerous boundary terms on r = Ai have been arranged to precisely cancel,
while the error term arising from the inhomogeneous term on the right hand side of
the equation of αQ can easily be absorbed in view of its support properties and the
auxiliary estimates of Sect. 5.3. Finally, in Sect. 9.6, we will distill from our argument
a simpler, purely physical space proof of statement 1. for the axisymmetric case.

The degenerate boundedness and integrated local energy decay are combined with
redshift estimates in Sect. 10 to obtain statement 2.

Finally, the weighted r p estimates are obtained in Sect. 11, giving statements 3.–4.

5 Conditional Physical Space Estimates

In this section, we will derive certain physical space estimates for�[±2], ψ[±2], α[±2]
defined above, arising from solutions α[±2] of the inhomogeneous version (53) of the
Teukolsky equation.

We first apply in Sect. 5.1 multiplier estimates for solutions �[±2] of the inho-
mogeneous equation (54) outside the region r ∈ [A1, A2]. Here, we use the good
divergence structure of the generalised Regge–Wheeler operator. We then estimate in
Sect. 5.2 the quantities ψ[±2] and α[±2] via transport estimates. Taken together, these
should be viewed as providing a conditional estimate stating that an integrated energy
expression for �[±2], ψ[±2] and α[±2] can be controlled from initial data provided
that boundary terms on r = Ai can be controlled. (To understand the latter boundary
term, this estimate must be combined with that obtained in Sect. 8.)

Finally, we shall need some auxiliary physical space estimates (applied throughout
R) for�[±2], ψ[±2] and α[±2] arising from a solution of the homogeneous Teukolsky
equation (37). These will be given in Sect. 5.3.

Let us note that we may always assume in what follows that any α̃[±2] referred
to is inS [±2]∞ (R̃0).

5.1 Multiplier Estimates for�[±2]

We will apply multiplier estimates for �[±2]. The main result is

Proposition 5.1.1 Let α[±2] be as in Proposition 3.2.1, and ψ[±2],�[±2] be as defined
in (46), (47), (49), (50). Let δ1 < 1, δ2 < 1 and E > 1 be parameters and let f0 be
defined by (100) and y0 be defined by (101). Then for sufficiently small δ1 and δ2 and
sufficiently large E, it follows that for sufficiently small |a| < a0 � M, then for any
0 ≤ τ1 ≤ τ2, we have
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E
away
�̃τ ,η

[
�[±2]] (τ2)+ I

away
η

[
�[±2]] (τ1, τ2)

�δ1,δ2,E E
away
�̃τ ,η

[
�[±2]] (τ1)

+ Haway[�[±2]](τ1, τ2)+ Qr=A2

[
�[±2]] (τ1, τ2)− Qr=A1

[
�[±2]] (τ1, τ2)

+ |a| Ileft[η]
[
ψ[±2]] (τ1, τ2)+ |a| Iright[η]

[
ψ[±2]] (τ1, τ2)

+ |a| Ileft[η]
[
α[±2]] (τ1, τ2)+ |a| Iright[η]

[
α[±2]] (τ1, τ2).

where Qr=Ai [�[±2]](τ1, τ2) is defined by (103) and Haway[�[±2]](τ1, τ2) is defined
by (104). Moreover the subindex [η] on the right hand side is equal to η in case of
s = +2 and it is dropped entirely in case s = −2.

We note already that the boundary terms Qr=A2

[
�[+2]] (τ1, τ2)−Qr=A1

[
�[+2]]

(τ1, τ2) appearing above formally coincide with those of the fixed frequency identity
to be obtained in Sect. 8.2. Thus these termswill cancel when all identities are summed
in Sect. 9.

In what follows, our multiplier constructions will be identical for�[+2] and�[−2].
We will thus denote these simply as �. The spin weight will be explicitly denoted
however for the terms arising from the right hand side of (54).

5.1.1 Multiplier Identities

The proof of Proposition 5.1.1 will rely on various multiplier identities for (54). These
are analogous for standard multiplier estimates proven for solutions of the scalar wave
equation and in particular generalise specific estimates which have been proven for
the Regge–Wheeler equation (60) on Schwarzschild in [31].

The T + ω+χ� identity.
Multiplying (54) by (T + ω+χ�)� (recall χ was fixed in Sect. 2.1.3) and taking

the real part leads to (use the formulae of Appendix B.1 and B.3 and (289))

(
L + L

) {
FT +ω+χ�

L+L

}
+ (

L − L
) {

FT +ω+χ�
L−L

}
+ I T +ω+χ�

≡ Re
((− (T + ω+χ�)�

) (J [s] + G[s])) (88)

where ≡ denotes equality after integration with respect to the measure sin θdθdφ and

FT +ω+χ�
L+L = 1

16

{
| (L + L

)
�|2 + | (L − L

)
�|2

+ 4w| /̊∇[s]
�|2 + 4w

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

]
|�|2

− 4a2w sin2 θ |T�|2 − 8waω+χ |��|2 − 8wa2 sin2 θω+χRe
(
(T�)��

)

+ 4ω+

(

χ − r2+ + a2

r2 + a2

)

Re
(
��

(
L + L

)
�
)− 8swaω+χ cos θ Im

(
���

) }
,
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FT +ω+χ�
L−L = 1

8

(−2Re
((

L − L
)
�T�

)− 2ω+χRe
((

L − L
)
�(��)

))
,

I T +ω+χ� = 1

2
ω+χ ′Re

((
(L − L)�

)
(��)

)
. (89)

The y identity. Multiplying (54) by y
(
L − L

)
� for a smooth radial function y and

taking the real part produces (use the formulae of Appendix B.4)

(
L + L

) {
F y

L+L

}
+ (

L − L
) {

F y
L−L

}
+ I y

≡ Re
((

J [s] + G[s]) (−y
(
L − L

)
�
))

(90)

where ≡ denotes equality after integration with respect to the measure sin θdθdφ and

F y
L+L =1

4
Re
{

y
(
L + L

)
�
(
(L − L)�

)+ 2way��L� − 2way��L�

− 2wa2 sin2 θT�
(
y(L − L)�

)− 4sa cos θwyIm
(
��

′) }
,

F y
L−L =1

4

{
− y

2

∣∣(L + L)�
∣∣2 − y

2

∣∣(L − L)�
∣∣2 + 2wy| /̊∇[s]

�|2

+ 2wy

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

]
|�|2

+ 4wayRe
(
��T�

)+ 2wya2 sin2 θ |T�|2 + 4sa cos θwyIm
(
�T�

) }
,

I y = y′

4

[∣∣(L + L)�
∣∣2 + ∣∣(L − L)�

∣∣2
]

−
(
wy

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

])′
|�|2 − (wy)′ | /̊∇[s]

�|2

+ 2

(
a2

r2 + a2wy

)′
|��|2 + 4ra2

(r2 + a2)2

�

r2 + a2wy|��|2

− a [L (wy)] Re
(
(��)(L�)

)+ a
[
L (wy)

]
Re

(
(��)(L�)

)

− (wy)′a2 sin2 θ |T�|2

− 1

2
y

ra
(
r2 + a2

)2
�

r2 + a2 Re
(
��

(
L + L

)
�
)−2sa cos θ(wy)′Im

(
�T�

)
.

(91)

The h identity. Multiplying (54) by h� for a smooth radial function h and taking real
parts leads to (use the formulae of Appendix B.2)

(
L + L

) {
Fh

L+L

}
+ (

L − L
) {

Fh
L−L

}
+ I h ≡ Re

(
−
(
J [s] + G[s]) h�

)
(92)
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where ≡ denotes equality after integration with respect to the measure sin θdθdφ and

Fh
L+L = 1

4
Re
{ (

L + L
)
�h� − 2wa2 sin2 θT�h�

}

Fh
L−L = 1

4
Re
{

− (
L − L

)
�h� + h′|�|2

}

I h = h

4

[
|(L − L)�|2 − |(L + L)�|2 + 4w| /̊∇[s]

�|2
]

+
[
wh

(
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

)
− h′′

2

]
|�|2

+ 2wahRe
(
(T�)(��)

)+ wa2 sin2 θh|T�|2 − 2sa cos θhwIm
(
T��

)
.

(93)

The f identity. Adding the y-identity with y = f and the h-identity with h = f ′ for
f a smooth radial function yields the identity (recall (289))

(
L + L

) {
F f

L+L

}
+(L − L

) {
F f

L−L

}
+ I f ≡ Re

(
−
(
J [s]+G[s]) ( f ′�+2 f�

′))

(94)

where ≡ denotes equality after integration with respect to the measure sin θdθdφ and

F f
L+L = 1

4
Re
{

f
(
L + L

)
�
(
(L − L)�

)+ 2wa f��L� − 2wa f��L�

− 2wa2 sin2 θT�
(

f (L − L)�
)

+ (
L + L

)
� f ′� − 2wa2 sin2 θT� f ′� − 4sa cos θw f Im

(
��

′) }
,

F f
L−L = 1

4

{
− f

2

∣∣(L + L)�
∣∣2 − f

2

∣∣(L − L)�
∣∣2 + 2w f | /̊∇[s]

�|2

+ 2w f

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

]
|�|2

+ 4wa f Re
(
��T�

)+ 2w f a2 sin2 θ |T�|2

− f ′Re
((

L − L
)
��

)+ f ′′|�|2 + 4sa cos θw f Im
(
�T�

) }
,

I f = f ′

4

[
+2

∣
∣(L − L)�

∣
∣2
]

− w′ f | /̊∇[s]
�|2

+
[

− f

(
w

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

])′
− f ′′′

2

]

|�|2

+ 2

(
a2

r2 + a2w f

)′
|��|2 + 4ra2

(r2 + a2)2

�

r2 + a2w f |��|2

− a [L (w f )] Re
(
(��)(L�)

)

+ a
[
L (w f )

]
Re

(
(��)(L�)

)− ( fw)′a2 sin2 θ |T�|2
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− 1

2
f

ra
(
r2 + a2

)2
�

r2 + a2 Re
(
��

(
L + L

)
�
)− 2sa cos θ fw′Im

(
�T�

)

+ 2wa f ′Re
(
(T�)(��)

)+ wa2 sin2 θ f ′|T�|2. (95)

The r p-weighted identity. We multiply (54) by r pβ4ξL� with β4 = 1+ 4M
r and ξ a

smooth radial cut-off satisfying ξ = 0 for r ≤ R and ξ = 1 for r ≥ R + M with R
is chosen directly below (99) depending only on M . After taking the real parts of the
resulting identity we obtain (use the formulae of Appendix B.6)

L
{

Fr p

L

}+ L
{

Fr p

L

}+ I r p ≡ Re
(
−
(
J [s] + G[s]) r pβ4ξL�

)
(96)

where ≡ denotes equality after integration with respect to the measure sin θdθdφ and

Fr p

L = 1

2
ξr pβ4|L�|2 + 1

2
Re

(
aξwr pβ4��L�

)+ 1

2
wa2 sin2 θr pβ4ξRe

(
T�L�

)
,

(97)

Fr p

L = 1

2
wξr pβ4| /̊∇[s]

�|2 + 1

2

(
wr pβ4ξ

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

])
|�|2

+ a2wr p

r2 + a2 ξβ4|��|2

− 1

2
Re

(
aξwr pβ4��L�

)− 1

2
wa2 sin2 θξr pβ4|T�|2

+ 1

2
wa2 sin2 θr pβ4ξRe

(
T�L�

)
, (98)

I r p = +1

2

(
ξ
(

pr p−1 + O (
r p−2))+ ξ ′r pβ4

) |L�|2

+ 1

2

(
ξ

[
(2 − p)

r3−p
+ (3 − p)2M

r4−p
+ O

(
r p−5

)]
+ ξ ′w

r−p

)
| /̊∇[s]

�|2

− 1

2

(
wr pβ4ξ

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

])′
|�|2

− 2raξr pβ4w

r2 + a2 Re
(
��L�

)−
(

a2

r2 + a2 ξwr pβ4

)′
|��|2

+ 1

2
Re

((
aξwr pβ4

)′
��

(
L + L

)
�
)

+ 1

2
Re

(
aξwr pβ4��

[
L, L

]
�
)+ 1

2

(
ξ
(
wr pβ4

)′ + ξ ′wr pβ4

)
a2 sin2 θ |T�|2

− 2sa cos θwr pβ4ξ Im
(
T�L�

)
. (99)

It is easy to see that we can choose R in the cut-off function such that the coefficients

of |L�|2, | /̊∇[s]
�|2 and |�|2 in (99) are all non-negative in r ≥ R + M for p ∈ [0, 2]

and we henceforth make that choice.

Remark 5.1 (Conversion into divergence identities) To convert the identities derived
in this section into proper spacetime divergence identities (from which the boundary
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contributions, etc., are most easily assessed) we recall the identities (26). Since the
left hand side of any multiplier identity above has the schematic form

L
{

FL
}+ L

{
FL
}+ I + E = RH S

with
∫ E sin θdθdφ = 0, we can use (26) to convert them into the divergence form

∇a

(
La 1

ρ2

r2 + a2

�
FL + La 1

ρ2

r2 + a2

�
FL

)
+ I

1

ρ2

r2 + a2

�
+ E 1

ρ2

r2 + a2

�

= RH S
1

ρ2

r2 + a2

�
.

This is easily integrated using Stokes’ theorem and making use of the formulae (24)
and (25) for the normals to the spacelike hypersurfaces (and the horizon and null
infinity). Therefore it is the above identity which provides the precise sense in which
the F’s in the identities indeed correspond to boundary terms. Note the term involving
E disappears after integration with respect to the spacetime volume form (23).

5.1.2 Proof of Proposition 5.1.1

We define (cf. [31])

f0 =
(
1 − 3M

r

)(
1 + M

r

)
, (100)

and

y0 = δ1((1 − χ) f0(r)+ χ f 30 (r))− δ21 χ̃r−η (101)

where χ̃ is a cutoff function such that χ̃ = 0 for r ≤ 9M and χ̃ = 1 for r ≥ 10M .
We note the following Schwarzschild proposition

Proposition 5.1.2 [31] In the Schwarzschild case a = 0, then

∫

S2

(
r−2|(L − L)�[±2]|2 + (1 − 3M/r)2r−3| /̊∇[±2]

�[±2]|2 + r−3|�[±2]|2
)

dσ

�
∫

S2
I f0dσ.

As a consequence, for δ1 and δ2 sufficiently small and arbitrary E we have

∫

S2

(
(r−2 + δ21r−1−η)|(L − L)�[±2]|2 + (1 − 3M/r)2δ21r−1−η|(L + L̄)�[±2]|2

+ δ2ξrη−1|L�[±2]|2 + (1 − 3M/r)2r−3+η| /̊∇[±2]
�[±2]|2 + δ2rη−3|�[±2]|2)dσ

�
∫

S2
(I f0 + I y0 + E I T +ω+χ� + δ2 I rη )dσ.
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Note that in view of Remark 5.1, upon application of the divergence theorem, the
left hand side leads to a term which controls the integrand of Idegη .

Returning to the Kerr case, we add

1. the f -identity (94) applied with f = f0,
2. the y-identity (90) applied with y = y0,
3. E times the T + ω+χ� identity (88)
4. δ2 times the rη identity (96)

integrated in the region

R̃away(τ1, τ2) = R̃(τ1, τ2) \ {A1 ≤ r ≤ A2}

with respect to the spacetime volume form, and apply Remark 5.1. We always will
assume E > 1 and δ1 < 1, δ2 < 1.

We have:

1. Given any E > 1, and sufficiently small δ1, δ2, then for |a| < a0 � M sufficiently
small, the resulting bulk term is nonnegative and in fact satisfies the coercitivity
estimate

∫

R̃away(τ1,τ2)

(
I f + I y + E I T +ω+χ� + δ2 I rη

) 1

ρ2

r2 + a2

�
dV ol

�δ1,δ2 I
away
η

[
�[±2]] (τ1, τ2). (102)

This follows from (a) Proposition 5.1.2, (b) smooth dependence on a to infer
coercivity away from the horizon and away from infinity, (c) the fact that for all
a, the term I rη manifestly controls the integrand of Iawayη for large r , (d) the fact
that by direct inspection, for sufficiently small |a| < a0 � M , the term I f + I y

controls the integrand of Iawayη near the horizon.
2. For sufficiently large E > 1, then for all δ1 < 1, δ2 < 1 the total flux terms on

H+ and I+ are nonnegative. This follows from Remark 5.1 and direct inspection
of the boundary terms F thus generated, together with the relations concerning
the volume form given in Sect. 2.1.2. (To avoid appealing to the fact that the flux
to I+ is well defined, we may argue as follows: The identity can be applied in a
region bounded by a finite ingoing null boundary, making the region of integration
compact. The flux term on this boundary is manifestly nonnegative by the choice
of the multipliers. One then takes this null boundary to the limit.)

3. Again, by Remark 5.1, inspection and the relations of Sect. 2.1.2, it follows that
for sufficiently large E > 1, then for all δ1 < 1, δ2 < 1, the arising flux term on
t̃∗ = τ2 controls the energy E

away
�̃τ ,η

[
�[±2]] (τ2) with a uniform constant.

4. Similarly, for sufficiently large E > 1, then for all δ1 < 1, δ2 < 1, the initial flux
term on t̃∗ = τ1 is controlled by the energy E

away
�̃τ ,η

[
�[±2]] (τ1), with a constant

depending on E .
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5. The remaining flux terms on r = A1 and r = A2 produce exactly the expression

Qr=A2

[
�[±2]] (τ1, τ2)− Qr=A1

[
�[±2]] (τ1, τ2)

where (recalling (89), (91) and (95))

Qr=Ai (τ1, τ2) =
∫ τ2

τ1

dt
∫ π

0
dθ sin θ

∫ 2π

0

dφ
{
2F f0

L−L + 2F y0
L−L + 2E FT +ω+χ�

L−L

}
. (103)

This again follows from Remark 5.1: In (t, r∗, θ, φ)-coordinates we have that
1√

gr∗r∗ ∂r∗ is the unit normal to constant r∗ hypersurfaces and ρ2 1√
gr∗r∗

�
r2+a2

sin θdθdφdt is the induced volume element. Using that 2∂r∗ = L − L and that
∂r∗ is orthogonal to L + L the result follows. Observe that there is no contribution
from Frη in (103) because that multiplier is supported away from A2.

6. The inhomogeneous term involvingG[±2] on the right hand side of (54) generates
the term

Haway[�[±2]](τ1, τ2) =
∫

R̃away(τ1,τ2)

G[±2] · ( f , y, E, δ1, δ2) dV ol (104)

where (recall again Remark 5.1)

G[±2] · ( f , y, E, δ1, δ2)
.= r2 + a2

ρ2�

{
E · Re

((− (T + ω+χ�)�
)
G[±2])

+ Re
(
−
(

f ′
0� + 2 f0�

′)
G[±2])

+ δ1Re
((

−2 f0�
′)
G[±2])+ δ2 · Re

(
− (

rηβkξL�
)
G[±2]) }.

7. By Cauchy–Schwarz, the term generated by the inhomogeneous term involving
J [±2] on the right hand side of (54) can be bounded (with a constant depending
on E) by the expression

|a| Ileft[η]
[
ψ[±2]] (τ1, τ2)+ |a| Iright[η]

[
ψ[±2]] (τ1, τ2)

+ |a| Ileft[η]
[
α[±2]] (τ1, τ2)+ |a| Iright[η]

[
α[±2]] (τ1, τ2)+ |a|Iawayη

[
�[±2]] (τ1, τ2) ,

with the subindex [η] = η in case of +2, and [η] being dropped entirely in case of
s = − 2. Note that the last term can be absorbed in view of (102), for sufficiently
small |a| < a0 � M .

Thus, for E sufficiently large, and δ1, δ2 sufficiently small, one obtains immediately
the statement of Proposition 5.1.1.

In what follows, we will now consider E as fixed in terms of M , and thus
incorporate the E dependence into the �, etc. We will further constrain δ1 and δ2
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in Sect. 8.2 and thus we will continue to denote explicitly dependence of constants on
δ1, δ2.

5.2 Transport estimates forψ[±2] and α[±2]

For transport estimates, it is natural to consider the spin ± 2 cases separately.

5.2.1 Transport Estimates forψ[+2] and α[+2]

Proposition 5.2.1 Let α[+2] be as in Proposition 3.2.1, and ψ[+2], �[+2] be as
defined in (46), (49). Then we have for any p ∈ {η, 1, 2} the following estimate
in R̃right(τ1, τ2):

E
right
�̃τ ,p

[
α[+2]] (τ2)+ I

right
p

[
α[+2]] (τ1, τ2)+ Er=A2

[
α[+2]] (τ1, τ2)

+ E
right
�̃τ ,p

[
ψ[+2]] (τ2)+ I

right
p

[
ψ[+2]] (τ1, τ2)+ Er=A2

[
ψ[+2]] (τ1, τ2)

� I
away
p

[
�[+2]] (τ1, τ2)+ E

right
�̃τ ,p

[
α[+2]] (τ1)+ E

right
�̃τ ,p

[
ψ[+2]] (τ1) (105)

and the following estimate in R̃left(τ1, τ2):

E
left
�̃τ ,p

[
α[+2]] (τ2)+ I

left
p

[
α[+2]] (τ1, τ2)+ EH+

[
α[+2]] (τ1, τ2)

+ E
left
�̃τ ,p

[
ψ[+2]] (τ2)+ I

left
p

[
ψ[+2]] (τ1, τ2)+ EH+

[
ψ[+2]] (τ1, τ2)

� I
away
p

[
�[+2]] (τ1, τ2)+ E

left
�̃τ ,p

[
α[+2]] (τ1)+ E

left
�̃τ ,p

[
ψ[+2]] (τ1)

+ Er=A1

[
α[+2]] (τ1, τ2)+ Er=A1

[
ψ[+2]] (τ1, τ2) . (106)

Proof We recall from (49) and (51) the relations

−2
�

(r2 + a2)2

√
�ψ[+2] = La∇a

(
�2

(
r2 + a2

)− 3
2
α[+2]

)
, (107)

�

(r2 + a2)2
�[+2] = La∇a

(√
�ψ[+2]) . (108)

From (107) we derive for n ≥ 0

∇a

(
rn 1

ρ2

r2 + a2

�
La
∣∣∣α[+2]�2 (r2 + a2)− 3

2
∣∣∣
2
)

+ n
rn−1

ρ2

∣∣∣α[+2]�2 (r2 + a2)− 3
2
∣∣∣
2

= −2

(
r2 + a2

)2

�ρ2
w

3
2 rn

×
(

ψ[+2] · α[+2]�2
(
r2 + a2

)− 3
2 + ψ[+2] · α[+2]�2 (r2 + a2)− 3

2

)
, (109)
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and hence

∇a

⎛

⎝rn 1

ρ2

r2 + a2

�
La
∣∣∣

α[+2]�2

(
r2 + a2

) 3
2

∣∣∣
2

⎞

⎠+ n

2

rn−1

ρ2

∣∣∣
α[+2]�2

(
r2 + a2

) 3
2

∣∣∣
2

≤ C
1

ρ2

rn+1

(r2 + a2)2
|√�ψ[+2]|2 . (110)

Moreover, the same estimate (110) holds replacing α[+2] by T α[+2] (�α[+2]) on
the left and ψ[+2] by T ψ[+2] (�ψ[+2]) on the right since the relation (107) trivially
commutes with the Killing fields T and� respectively.Wewill refer to those estimates
as the “T -commuted and �-commuted (110)” below.

Similarly from (108),

∇a

(
rn 1

ρ2

r2 + a2

�
La |ψ[+2]√�|2

)
+ n

2

rn−1

ρ2
|ψ[+2]√�|2

≤ Cn
1

ρ2

rn+1

(
r2 + a2

)2 |�[+2]|2 (111)

and the same estimate replacing ψ[+2] by T ψ[+2] (�ψ[+2]) on the left and �[+2] by
T�[+2] (��[+2]) on the right. We again refer to the latter as the “T -commuted and
�-commuted (111)” below.

Let usfirst obtain the estimate in R̃right(τ1, τ2). The case in R̃left(τ1, τ2) is analogous
but easier since weights in r do not play a role. We add

• (111) with n ∈ {η, 1, 2 − η}
• the �-commuted (111) with n ∈ {η, 1, 2 − η}
• the T -commuted (111) with n = 2 − η

integrated over R̃right(τ1, τ2). Combining the above we conclude for p ∈ {η, 1, 2} the
estimate

E
right
�̃τ ,p

[
ψ[+2]] (τ2)+ Er=A2

[
ψ[+2]] (τ1, τ2)+ I

right
p

[
ψ[+2]] (τ1, τ2)

� I
away
p

[
�[+2]] (τ1, τ2)+ E

right
�̃τ ,p

[
ψ[+2]] (τ1) . (112)

Turning to the estimate (110) we add

• (110) with n ∈ {2 + η, 3, 4 − η}
• the �-commuted (110) with n ∈ {2 + η, 3, 4 − η}
• the T -commuted (110) with n = 4 − η

integrated over R̃(τ1, τ2) ∩ {r ≥ A2}. Combining the above we conclude for p ∈
{η, 1, 2} (note that for p = 2 there is an η-loss in the definition of the densities (67),
(68), ensuring that we can indeed set p = 2)

E
right
�̃τ ,p

[
α[+2]] (τ2)+ Er=A2

[
α[+2]] (τ1, τ2)+ I

right
p

[
α[+2]] (τ1, τ2)
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� I
right
p

[
ψ[+2]] (τ1, τ2)+ E

right
�̃τ ,p

[
α[+2]] (τ1) . (113)

Combining (113) and (112) yields the desired estimate to the right of trapping.
As remarked above, the estimate in the “left region” R̃left(τ1, τ2) is easier and left

to the reader. ��

5.2.2 Transport Estimates forψ[−2] andα[−2]

Proposition 5.2.2 Let α[−2] be as in Proposition 3.2.1, and ψ[−2],�[−2] be as defined
in (47), (50). Then we have the following estimate in R̃right(τ1, τ2):

E
right
�̃τ

[
α[−2]] (τ2)+ I

right
[
α[−2]] (τ1, τ2)+ EI+

[
α[−2]] (τ1, τ2)

+ E
right
�̃τ

[
ψ[−2]] (τ2)+ I

right
[
ψ[−2]] (τ1, τ2)+ EI+

[
ψ[−2]] (τ1, τ2)

� I
away
η

[
�[−2]] (τ1, τ2)+ E

right
�̃τ

[
α[−2]] (τ1)+ E

right
�̃τ

[
ψ[−2]] (τ1)

+ Er=A2

[
α[−2]] (τ1, τ2)+ Er=A2

[
ψ[−2]] (τ1, τ2) (114)

and the following estimate in R̃left(τ1, τ2):

E
left
�̃τ

[
α[−2]] (τ2)+ I

left
[
α[−2]] (τ1, τ2)+ Er=A1

[
α[−2]] (τ1, τ2)

+ E
left
�̃τ

[
ψ[−2]] (τ2)+ I

left
[
ψ[−2]] (τ1, τ2)+ Er=A1

[
ψ[−2]] (τ1, τ2)

� I
away
η

[
�[−2]] (τ1, τ2)+ E

left
�̃τ

[
α[−2]] (τ1)+ E

left
�̃τ

[
ψ[−2]] (τ1). (115)

Remark 5.2 As the proof will show, these estimates also hold replacing Iawayη

[
�[−2]]

by I
away
0

[
�[−2]] provided we drop the two terms on null infinity I+ in (114) and

weaken the r -weight in the energies Eright
�̃τ

[
α[−2]] and E

right
�̃τ

[
ψ[−2]] from r−1−η to

r−1−2η; see (81), (82). This way one could avoid the rη multiplier for �[−2] (at the
cost of losing control over the generically non-vanishing fluxes on null infinity).

Proof We recall the relations

2
�

(r2 + a2)2

√
�ψ[−2] = La∇a

(
α[−2] (r2 + a2

)− 3
2
)
, (116)

− �

(r2 + a2)2
�[−2] = La∇a

(√
�ψ[−2]) . (117)

From (116) we derive (recall ρ2 = r2 + a2 cos2 θ ) for any n, η ∈ R

∇a

((
�

r2 + a2

)−n−1+4 (
1 + 1

rη

)
1

ρ2
La
∣∣∣

√
r2 + a2α[−2]

�2

∣∣∣
2
)
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+
[(

1 + 1

rη

)
2Mn

(
r2 − a2

)

(r2 + a2)2
+ η

r1+η
�

r2 + a2

]

× 1

ρ2

(
�

r2 + a2

)−n−1+4 ∣∣
∣

√
r2 + a2α[−2]

�2

∣∣
∣
2

= −2
(

r2 + a2
)
w

3
2

(
�

r2 + a2

)−n−1+2 1

ρ2

(
1 + 1

rη

)

(

ψ[−2] ·
√

r2 + a2α[−2]
�2 + ψ[−2] ·

√
r2 + a2α[−2]

�2

)

,

and hence, choosing n = 3, we have for any η > 0 the estimate

∇a

((
1 + 1

rη

)
1

ρ2
La
∣∣∣

√
r2 + a2α[−2]

�2

∣∣∣
2
)

+ 1

2

[(
1 + 1

rη

)
6M

(
r2 − a2

)

(r2 + a2)2
+ η

r1+η
�

r2 + a2

]
1

ρ2

∣∣∣

√
r2 + a2α[−2]

�2

∣∣∣
2

≤ Cη

1

ρ2

∣
∣∣

(
r2 + a2

)
ψ[−2]

√
�

∣
∣∣
2 r1+η
(
r2 + a2

)2 . (118)

Moreover, the same estimate holds replacing 1 + 1
rη by 1

rη on the left and r1+η by
r1−η on the right (cf. Remark 5.2). Note that the estimate (118) also holds replacing
α[−2] by T α[−2] (�α[−2]) andψ[−2] by T ψ[−2] (�ψ[−2]) in view of the relation (116)
commuting trivially with the Killing field T and �. We will refer to those estimates
as the T - and �-commuted (118) below.

From (117) we derive

∇a

((
1 + 1

rη

)
1

ρ2
La
∣∣∣∣
ψ[−2](r2 + a2)√

�

∣∣∣∣

2
)

+ 1

2

[(
1 + 1

rη

)
2M

(
r2 − a2

)

(r2 + a2)2
+ η

r1+η
�

r2 + a2

]
1

ρ2

∣∣∣∣
ψ[−2](r2 + a2)√

�

∣∣∣∣

2

≤ Cη

1

ρ2

∣∣∣�[−2]
∣∣∣
2 r1+η
(
r2 + a2

)2 . (119)

Moreover, the same estimate holds replacing 1+ 1
rη by

1
rη on the left and r1+η by r1−η

on the right (cf. Remark 5.2). Note that the estimate (119) also holds replacing ψ[−2]
by T ψ[−2] (�ψ[−2]) and �[−2] by T�[−2] (��[−2]) in view of the relation (117)
commuting trivially with the Killing field T and �. We will refer to this estimates as
the T - and �-commuted (119) below.

We are now ready to prove the estimate in R̃left(τ1, τ2).

123



2 Page 54 of 118 M. Dafermos et al.

Integrating (119) and the T -commuted and �-commuted (119) over R̃left(τ1, τ2)

produces

E
left
�̃τ

[
ψ[−2]] (τ2)+ I

left
[
ψ[−2]] (τ1, τ2)+ Er=A1

[
ψ[−2]] (τ1, τ2)

� I
away
η

[
�[−2]] (τ1, τ2)+ E

left
�̃τ

[
ψ[−2]] (τ1) . (120)

Integrating (118) and the T -commuted and�-commuted (118) over R̃left(τ1, τ2) pro-
duces

E
left
�̃τ

[
α[−2]] (τ2)+ I

left
[
α[−2]] (τ1, τ2)+ Er=A1

[
α[−2]] (τ1, τ2)

� I
left

[
ψ[−2]] (τ1, τ2)+ E

left
�̃τ

[
α[−2]] (τ1) . (121)

Combining the last two estimates produces the desired estimate in R̃left(τ1, τ2). The
estimate in R̃right(τ1, τ2) is proven entirely analogously and is again left to the reader.
The only important observation is that the good ψ-spacetime term generated from
(119) is stronger (in terms of r -weight) than what is needed on the left hand side of
(118). ��

5.3 Auxiliary Estimates

We collect a number of auxiliary estimates we shall require.

5.3.1 The Homogeneous T + ω+χ� Estimate

Proposition 5.3.1 Let α[±2] satisfy the homogeneous Teukolsky equation (37) and let

ψ[±2],�[±2] be as defined in (46), (47), (49), (50). Then we have for any 0 ≤ τ1 ≤ τ2

E�̃τ ,0

[
�[±2]] (τ2) � |a|Ideg0

[
�[±2]] (τ1, τ2)+ |a|I[η]

[
ψ[±2]] (τ1, τ2)

+|a|I[η]
[
α[±2]] (τ1, τ2)+ E�̃τ ,0

[
�[±2]] (τ1). (122)

Here the subindex [η] is equal to η in case of s = +2 and it is dropped entirely in case
s = −2.

Proof The inequality (122) follows from integrating the identity (88) associated with
the multiplier T + ω+χ� over the region R̃ (τ1, τ2) using Remark 5.1. The details
are as follows. Note that G[s] = 0 and that for the boundary terms one has

E�̃τ ,0

[
�[±2]] (τ2) � E�̃τ ,0

[
�[±2]] (τ1)

+
∫

R̃(τ1,τ2)

( (
L + L

)
FT +ω+χ�

L+L + (
L − L

)
FT +ω+χ�

L−L

) 1

ρ2

r2 + a2

�
dV ol
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while for the spacetime term clearly

∫

R̃(τ1,τ2)

−I T +ω+χ� 1

ρ2

r2 + a2

�
dV ol � |a|Ideg0

[
�[±2]] (τ1, τ2) . (123)

It remains to estimate the term
∫

R̃(τ1,τ2)

Re
[
− (T + ω+χ�)�[±2]J [±2]] . (124)

In view of the fact that the support of χ is away from the degeneration of Ideg we
can easily control the ω+χ�-part by the right hand side of (122) using the Cauchy–

Schwarz inequality. For the remaining term Re
[
T�[±2]J [±2]

]
we restrict the proof

to the s = +2 case, the s = −2 case being completely analogous. We recall from
Proposition 3.2.1 that

J [+2] = awc1(r)�
(√

�ψ [+2])+ a2wc2(r)
(√

�ψ [+2])

+ a3wc3(r)�
(
�2(r2 + a2)−3/2α[+2])+ a2wc4(r)

(
�2(r2 + a2)−3/2α[+2]) ,

where |c1(r)| � 1, |c2(r)| � r−1, |c3(r)| � r−1 and |c4(r)| � 1. Note that unless
we are in the region near trapping all of these terms feeding into (124) are easily
controlled by the right hand side of (122) using the Cauchy-Schwarz inequality. We
can also assume without loss of generality τ2 > τ1 + 2 in (124) as otherwise we can
again apply Cauchy–Schwarz and estimate the spacetime integral of T�[+2] by the
supremum of the energy through each slice �̃τ and absorb the term on the left using
that a is small.

By the above considerations it suffices to estimate for τ2 > τ1 + 2 the integral

∫

R̃(τ1,τ2)

� · Re
[
−T�[+2]J [+2]] , (125)

where � = �1
(
t̃∗
)
�2 (r∗) is a smooth cutoff such that �1 is equal to 1 in

[τ1 + 1, τ2 − 1] and vanishes for (τ1, τ2)c while �2 is equal to 1 in
[
A∗
1, A∗

2

]
and

vanishes in
(
2A∗

1, 2A∗
2

)c. (Indeed, 1−� is either supported away from trapping or in
a strip of time-length 1, where one can estimate the spacetime integral of T�[+2] by
the supremum of the energy through each slice �̃τ and absorb it on the left.) Note that
now when integrating (125) by parts (in T , L , L) there will be no boundary terms in
view of the cut-off.
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Let c(r) denote a general bounded real-valued function with bounded derivative in
(r+,∞). For the first term of J [+2] inserted in (125) we have the identity (boundary
terms vanish!)

∫

S2
dσ �c(r)Re

[
T�[+2]�

(√
�ψ [+2])] =

∫

S2
dσ(�c(r))′Re

[
�[+2]�

(√
�ψ [+2])]

+
∫

S2
dσ

c(r)

2
� Re

[
(L − L)�[+2]�

(√
�ψ [+2])]

+ 1

2

∫

S2
dσ

(
L

(
�ac(r)

w(r2 + a2)

)) ∣
∣∣�

(√
�ψ [+2])

∣
∣∣
2
, (126)

obtained by exchanging T ,�, using the definition of L and the transformation (51).
For the second term
∫

S2
dσ �c(r)Re

[
T�[+2]√�ψ [+2]] = −

∫

S2
dσ �c(r)Re

[
�[+2]T

√
�ψ [+2]] ,

(127)

for the third

∫

S2
dσ �c(r)Re

[
T�[+2]�

(
�2(r2 + a2)−3/2α[+2])] =

+
∫

S2
dσ

(
−L

(
� c(r)

w

))
(r2 + a2)−1/2Re

[
T
(√

�ψ [+2]
)
�
(
�2(r2 + a2)−1α[+2])]

+
∫

S2
dσ2� c(r)Re

[
T
(√

�ψ [+2]
)
�
(√

�ψ [+2]
)]
, (128)

obtained by using transformations (49) and (51) and integrating by parts, and for the
last

∫

S2
dσ �c(r)Re

[
T�[+2]α[+2]] = −

∫

S2
dσ �c(r)Re

[
�[+2]Tα[+2]]

−
∫

S2
dσ(T�)c(r)Re

[
�[+2]α[+2]] . (129)

All terms on the right of (126)–(129) involve at most the non-degenerate derivative(
�[+2])′, �[+2] itself and (at most) first derivatives of ψ [+2], α[+2] and are hence
easily controlled by Cauchy–Schwarz. We conclude

E�̃τ ,0

[
�[±2]] (τ2) � E�̃τ ,0

[
�[±2]] (τ1)+ |a| sup

τ∈[τ1,τ1+1]∪[τ2−1,τ2]
E�̃τ ,η

[
�[+2]] (τ )

+ |a|Ideg0

[
�[+2]] (τ1, τ2)+ |a|Iη

[
ψ [+2]] (τ1, τ2)+ |a|Iη

[
α[+2]] (τ1, τ2)

for τ2 > τ1 + 2 while, as mentioned already above, for τ2 ≤ τ1 + 2 the same estimate
holds replacing supτ∈[τ1,τ1+1]∪[τ2−1,τ2] by supτ∈[τ1,τ2]. Choosing a0 sufficiently small
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we obtain the desired statement for s = +2 for every τ1 ≤ τ2. As mentioned, for
s = −2, the procedure can be repeated, now using the transformation (52). ��
Remark 5.3 A frequency localised version of this proof can be found in the proof of
Proposition 8.4.1.

5.3.2 Local in Time Estimates

Proposition 5.3.2 Let α[±2] satisfy the homogeneous Teukolsky equation and let ψ[±2],
�[±2] be as defined in (46), (47), (49), (50). Then for any τstep > 0 there exists an
a0 � M such that for |a| < a0 we have for any τ1 > 0

sup
τ1≤τ≤τ1+τstep

E�̃τ ,0

[
�[±2]] (τ )

� E�̃τ ,0

[
�[±2]] (τ1)+ |a|τstepeCτstepE�̃τ ,[η]

[
ψ[±2]] (τ1)

+ |a|τstepeCτstepE�̃τ ,[η]
[
α[±2]] (τ1), (130)

I0

[
�[±2]] (τ1, τ1 + τstep)+ I[η]

[
ψ[±2]] (τ1, τ1 + τstep)+ I[η]

[
α[±2]] (τ1, τ1 + τstep)

� τstepE�̃τ ,0

[
�[±2]] (τ1)+ E�̃τ ,[η]

[
ψ[±2]] (τ1)+ E�̃τ ,[η]

[
α[±2]] (τ1) (131)

where C = C(M) (and the implicit constant in � is independent of both τstep and τ1,
according to our general conventions). Here the subindex [η] is equal to η in case of
s = + 2 and it is dropped entirely in case s = − 2.

Proof We first note that

sup
τ1≤τ≤τ1+τstep

(
E�̃τ ,0

[
�[±2]] (τ )+ E�̃τ ,[η]

[
ψ[±2]] (τ )+ E�̃τ ,[η]

[
α[±2]] (τ )

)

� eCτstep
(
E�̃τ ,0

[
�[±2]] (τ1)+ E�̃τ ,[η]

[
ψ[±2]] (τ1)+ E�̃τ ,[η]

[
α[±2]] (τ1)

)
.

(132)

This follows easily by the estimates of the previous sections.
We now apply (122) with τ2 taken in τ1 ≤ τ2 ≤ τ1 + τstep, noting that the first three

terms on the right hand side can be bounded by |a|τstep times the right hand side of
(132). Restricting a0 so that in particular |a|τstepeCτstep < 1 we obtain (130).

We note that we can repeat the transport estimates of Sect. 5.2, now for the
homogeneous equations, and applied globally in R̃(τ1, τ1 + τstep), obtaining

I[η]
[
ψ[±2]] (τ1, τ1 + τstep)+ I[η]

[
α[±2]] (τ1, τ1 + τstep)

� E�̃τ ,[η]
[
ψ[±2]] (τ1)+ E�̃τ ,[η]

[
α[±2]] (τ1)

+ Iη

[
�[±2]] (τ1, τ1 + τstep).
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Note that the term is Iη and not Idegη .
In view of

Iη

[
�[±2]] (τ1, τ1 + τstep) �

∫ τ1+τstep

τ1

E�̃τ ,0

[
�[±2]] (τ )dτ

� τstep sup
τ1≤τ≤τ1+τstep

E�̃τ ,0

[
�[±2]] (τ )

(note the η on the left but the 0 on the right hand side), we obtain (131) for sufficiently
small a. ��
Remark 5.4 We note that a more careful examination of the Schwarzschild case and
Cauchy stability yields that the inequality (131) can be proven without the τstep factor

on the first term of right hand side, provided I0 is replaced by I
deg
0 . We shall not

however require this here.

6 The Admissible Class and Teukolsky’s Separation

In this section we will implement Teukolsky’s separation [107] of (36) for s = ± 2.
To make sense a priori of the formal separation of [107], one must in particular

work in a class of functions for which one can indeed take the Fourier transform
in time. This requires applying the analysis to functions which satisfy certain time-
integrability properties. A useful such class is the “sufficiently integrable, outgoing”
class defined in [44,45] for the s = 0 case.

In the present paper, it turns out that we shall only require Fourier analysis in the
region r ∈ [A1, A2]. We may thus consider the more elementary setting of what we
shall call the [A1, A2]-admissible classwhere time square integrability is only required
for r ∈ [A1, A2]. (We will in fact assume compact support in t∗ in this r -range.) This
leads to a number of useful simplifications. In particular, we need not refer to the
asymptotic analysis of the ODE’s as r∗ → ±∞, as was done in [44,45], in order to
infer boundary behaviour.

The section is organised as follows: We will define our elementary notion of
[A1, A2]-admissible class in Sect. 6.1.Wewill then implement Teukolsky’s separation
in Sect. 6.2, deriving the radial ODE, valid for r ∈ [A1, A2].

(We note already that, in practice, the results of this section will be applied to
solutions of the inhomogeneous Teukolsky equation which arises from applying a
suitable cutoff to solutions of (37). The restriction of Fourier analysis to the range
r∗ ∈ [A∗

1, A∗
2]will allow us to use a cutoff whose derivatives are supported in a region

of finite r∗ ∈ [2A∗
1, 2A∗

2], leading to additional simplifications with respect to [45].
We will only turn to this in Sect. 9.)

6.1 The [A1, A2]-admissible Class

We define an admissible class of functions for our frequency analysis. This is to be
comparedwith the class of sufficiently integrable functions from [44,45]. Sincewewill
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only apply frequency localisation in a neighbourhood of trapping, we only consider
the behaviour in the fixed r -region [A1, A2] with r+ < A1 < A2 < ∞ defined in
Sect. 2.1.3. (Recall in this region that t = t∗ = t̃∗.) On the other hand, for convenience,
we will assume compact support in t for these r -values, as this is what we shall indeed
obtain after applying cutoffs.

Definition 6.1 Let a0 < M , |a| < a0 and let g = ga,M . We say that a smooth complex
valued spin± 2 weighted function α̃ : R ∩ {A1 ≤ r ≤ A2} → C is [A1, A2]-
admissible if it is compactly supported in t .

Remark 6.1 One could work with the weaker condition that (cf. [45]) for all j ≥ 1,
the following holds

sup
r∈[A1,A2]

∫ ∞

−∞

∫

S2

∑

0≤i1+i2+i3+i4+i5≤ j

∣∣∣(Z̃1)
i1(Z̃2)

i2(Z̃3)
i3T i4(∂r )

i5 α̃
∣∣∣
2

× sin θ dt dθ dφ < ∞, (133)

with the only caveat that in the frequency analysis we would have to restrict to generic
frequency ω for the ODE to be satisfied in the classical sense.

6.2 Teukolsky’s Separation

We will now implement Teukolsky’s formal separation of the operator (36) in the
context of [A1, A2]-admissible spin-s weighted functions α[s] for s = ± 2.

We begin in Sect. 6.2.1 with a review of the basic properties of spin-weighted oblate
spheroidal harmonics and their associated eigenvaluesλ[s]

m�(ν).Wewill then turn imme-

diately in Sect. 6.2.2 to some elementary estimates for the eigenvalues λ[s]
m�(ν) which

will be useful later in the paper. Next, we shall apply these oblate spheroidals together
with the Fourier transform in time in Sect. 6.2.3 to define coefficients α

[s],(aω)
m� (r)

associated to [A1, A2]-admissible α[s]. We then give Proposition 6.2.1 in Sect. 6.2.4,
stating that these coefficients satisfy an ordinary differential equation with respect to
r∗; this is the content of Teukolsky’s remarkable separation of (36).

6.2.1 Spin-Weighted Oblate Spheroidal Harmonics

Let ν ∈ R, s = 0,±2 and consider the self-adjoint operator /̊�[s]
(ν) defined by

/̊�[s]
(ν)� = − 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
−
(
∂2�

∂φ2
+ 2s cos θ i

∂�

∂φ

)
1

sin2 θ

−ν2 cos2 θ�+ 2νs cos θ�+ s2 cot2 θ�− s�

onS [s]∞ , which we recall is a dense subset of L2(sin θ dθ dφ).
This has a complete collection of eigenfunctions

{S[s]
m�(ν, cos θ)e

imφ}m� (134)
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with eigenvalues λ[s]
m� ∈ R, indexed by m ∈ Z, � ≥ max(|m|, |s|). These are known

as the spin-weighted oblate10 spheroidal harmonics. For each fixed m ∈ Z, the S[s]
m�

themselves form a complete collection of eigenfunctions of the following self-adjoint
operator with eigenvalues λ[s]

m� (ν):

/̊�[s]
m (ν) := − 1

sin θ

d

dθ

(
sin θ

d

dθ

)

+
(

−ν2 cos2 θ + m2

sin2 θ
+ 2νs cos θ + 2ms cos θ

sin2 θ
+ s2 cot2 θ − s

)
(135)

/̊�[s]
m (ν) S[s]

m� = λ
[s]
m� (ν) S[s]

m� . (136)

The eigenfuctions themselves satisfy

S[s]
m�(ν, cos θ)e

imφ ∈ S [s]∞

for all ν ∈ R.
We note the following familiar special cases:

1. For s = 0 one obtains the oblate spheroidal harmonics familiar from the angular
part of the separation equation of the scalar wave equation on Kerr [45]. The case
s = 0 and ν = 0 recovers the standard spherical harmonics S[0]

m�(0, cos θ)e
imφ =

Ym� with eigenvalues � (�+ 1).

2. For ν = 0, then /̊�[s]
(0) is the spin-s-weighted Laplacian and one obtains the

spin-weighted spherical harmonics, whose eigenvalues can also be determined
explicitly

λ
[s]
m� (0)+ s = λ

[−s]
m� (0)− s = � (�+ 1)− s2 ≥ 2 (137)

where the last inequality follows from the relation |�| ≥ |s|. For future reference
we note the relation

/̊�[s]
m (ν) = /̊�[s]

m (0)− ν2 cos2 θ + 2νs cos θ . (138)

We finally remark also the general relation

λ
[s]
m� (ν)+ s = λ

[−s]
m� (ν)− s (139)

allowing us to restrict to s = + 2 without loss of generality when obtaining estimates
on the λ[s]

m� (ν).

For various asymptotics concerning the behaviour of λ[s]
m� see [10].

10 The prolate case corresponds to the ξ being purely imaginary.
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6.2.2 Estimates on λ[s]
m� (ν) and �̃

[s]
m� (ν)

To estimate λ[s]
m� (ν) we compute from (136)

λ
[s]
m� (ν)+ s =

∫ π

0

∫ 2π

0
dφ dθ sin θ

×
[
∣∣∂θ�[s]∣∣2 +

(
(m + s cos θ)2

sin2 θ
− ν2 cos2 θ + 2sν cos θ

)

|�[s]|2
]

,

(140)

where �[s] denotes (shorthand instead of the full (134)) a normalised eigenfunction

of the operator /̊�[s]
m (aω) with eigenvalue λ[s]

m� (aω). Using the variational characteri-

sation of the lowest eigenvalue of the operator /̊�[s]
m (0) (which is 2 for m = 0, 1 and

m (m + 1)− 4 for m ≥ 2 by (137) and the relation |m| ≤ �) we conclude for

�̃
[±2]
m� (ν) := λ

[s]
m� (ν)+ s + ν2 + 4|ν| (141)

the bound

�̃
[±2]
m� (ν) ≥ max (2,m(m + 1)− 4) . (142)

Our ode estimates in Sect. 8 will only require (142). This motivates the following

Definition 6.2 A triple (ω,m, �̃) will be said to be admissible if ω ∈ R, m ∈ Z and
�̃ ∈ R satisfies �̃ ≥ max(2,m(m + 1)− 4).

6.2.3 The Coefficientsα
[s],(aω)
m� and the Plancherel Relations

Given parameters a, M and s, we let α[s] be [A1, A2]-admissible according to Defi-
nition 6.1.

We have

α[s](t, r , θ, φ) = 1

2π

∫ ∞

−∞
e−iωt α̂[s](ω, r , θ, φ)dω. (143)

Setting ν = aω, for each ω ∈ R we may decompose

α̂[s](ω, r , θ, φ) =
∑

m�

α
[s],(aω)
m� S[s]

m,�(aω, cos θ)e
imφ. (144)

We obtain then the representation

α[s](t, r , θ, φ) = 1√
2π

∫ ∞

−∞

∑

m�

e−iωtα
[s],(aω)
m� (r)S[s]

m�(aω, cos θ)e
imφdω. (145)
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As in [45], we remark that for each fixed r , (143) and (145) are to be understood as
holding in L2

t L2
S2
, while (144) is to be understood in L2

ωL2
S2
. Note that if α[s] satisfies

Definition 6.1, then so do ∂tα
[s] and ∂φα[s] and we have

∂tα
[s](t, r , θ, φ) = −i

2π

∫ ∞

−∞
ωe−iωt α̂[s](ω, r , θ, φ)dω ,

∂φα
[s](t, r , θ, φ) = i

2π

∫ ∞

−∞
me−iωt α̂[s](ω, r , θ, φ)dω ,

where these relations are to be interpreted in L2
t L2

S2
.

We also recall as in [40,45] the following Plancherel relations

∫ 2π

0

∫ π

0

∫ ∞

−∞

∣
∣∣α[s]

∣
∣∣
2
(t, r , θ, φ) sin θ dφ dθ dt =

∫ ∞

−∞

∑

m�

∣
∣∣α[s],(aω)

m� (r)
∣
∣∣
2

dω ,

∫ 2π

0

∫ π

0

∫ ∞

−∞
1α

[s] · 2ᾱ[s] sin θ dφ dθ dt =
∫ ∞

−∞

∑

m�

1α
[s],(aω)
m� · 2ᾱ[s],(aω)

m� dω ,

∫ 2π

0

∫ π

0

∫ ∞

−∞

∣∣
∣∂rα

[s]
∣∣
∣
2
(t, r , θ, φ) sin θ dφ dθ dt =

∫ ∞

−∞

∑

m�

∣∣∣
∣

d

dr
α

[s],(aω)
m� (r)

∣∣∣
∣

2

dω ,

∫ 2π

0

∫ π

0

∫ ∞

−∞

∣∣
∣∂tα

[s]
∣∣
∣
2
(t, r , θ, φ) sin θ dφ dθ dt =

∫ ∞

−∞

∑

m�

ω2
∣∣
∣α[s],(aω)

m� (r)
∣∣
∣
2

dω ,

as well as

∫ 2π

0

∫ π

0

∫ ∞

−∞

(∣∣∣∣
∂α[s]

∂θ

∣∣∣∣

2

+
∣∣∣∣

(
∂α[s]

∂φ
+ is cos θα[s]

)
sin−1 θ

∣∣∣∣

2
)

× (t, r , θ, φ) sin θ dφ dθ dt

=
∫ ∞

−∞

∑

m�

(
λ

[s]
m� (aω)+ s

) ∣∣∣α[s],(aω)
m� (r)

∣∣∣
2

dω

+
∫ 2π

0

∫ π

0

∫ ∞

−∞

(
a2 cos2 θ |∂tα

[s]|2 + Re(−2ias cos θ∂tα
[s]α[s])

)

× (t, r , θ, φ) sin θ dφ dθ dt . (146)

From the inequalities of Sect. 6.2.2 we conclude

∫ 2π

0

∫ π

0

∫ ∞

−∞
∣
∣ /̊∇[s]

α[s]∣∣2 sin θ dφ dθ dt �
∫ ∞

−∞

∑

m�

�̃
[s]
m� (aω)

∣∣
∣α[s],(aω)

m� (r)
∣∣
∣
2

dω .

(147)

In what follows, we shall often write λ[s],(aω)
m� for λ[s]

m� (aω) and �̃
[s],(aω)
m� for �̃[s]

m� (aω).
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6.2.4 The Radial ODE

We here state a proposition that implements Teukolsky’s formal separation of (36) in
the context of [A1, A2]-admissible spin-weighted functions.

Fix |a| < M and s = 0,± 2. Let α[s] be an [A1, A2]-admissible spin weighted
functions and α

[s],(aω)
m� be as defined in Sect. 6.2.3. Note that (recall (38)) defining

F [+2] = T̃[+2]α̃[+2] , �2F [−2] = T̃[−2] (�2α̃[−2]) (148)

we have that F [s] is also [A1, A2]-admissible and the coefficients F [s],(aω)
m� can be

defined.
Let us first introduce the following shorthand notation

κ =
(

r2 + a2
)
ω − am

and

�
[s],(aω)
m� = λ

[s],(aω)
m� + a2ω2 − 2amω. (149)

We have the following

Proposition 6.2.1 Fix |a| < M and s = 0,±2. Let α[s] be an [A1, A2]-admissible spin
weighted function, F [s] be as defined in (148), with coefficients α

[s],(aω)
m� , (ρ2F)[s],(aω)m�

as defined above. Then α
[s],(aω)
m� is smooth in r ∈ [A1, A2] and satisfies the ordinary

differential equation

1

�s

d

dr

(

�s+1 dα
[s],(aω)
m�

dr

)

+
(
κ2 − 2is (r − M) κ

�
+ 4isωr −�

[s],(aω)
m�

)
α

[s],(aω)
m�

=
(
r2 + a2

)7/2

ρ2�1+s/2 F [s],(aω)
m� . (150)

In view of our definitions, the proof is immediate from the usual formal derivation
of (150). See [68]. The s = 0 case corresponds precisely to Proposition 5.2.1 of [45].

Note the difference between (149) and our �̃[s],(aω)
m� in (141). It is only the latter

quantity which will appear in the estimates of this paper. We have retained (149) to
faciliate comparison with the literature.

6.2.5 The Rescaled Coefficients u

Let us fix parameters |a| < M and s, and consider α[s] as in the statement of Propo-
sition 6.2.1.
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Define the rescaled11 quantities

u[s],(aω)
m� (r) = �s/2

√
r2 + a2 α

[s],(aω)
m� (r) , (151)

H [s],(aω)
m� = �

ρ2w
F [s],(aω)

m� . (152)

Equation (150) then reduces to

d2

(dr∗)2
u[s],(aω)

m� + V [s],(aω)
m�

(
r∗) u = H [s],(aω)

m� (153)

for

V [s],(aω)
m�

(
r∗) = �

(
r2 + a2

)2 Ṽ [s],(aω)
m� + V [s]

0 ,

with

Ṽ [s],(aω)
m� := κ2 − 2is (r − M) κ

�
+ 4isωr −�

[s]
m�,

V [s]
0 := �−s/2+1

(
r2 + a2

) 3
2

d

dr

(
�s+1 d

dr

(
�−s/2

√
r2 + a2

))
.

For s = 0, this reduces to the form of the separated wave equation used in [45].

7 The Frequency-Localised Transformations

In this section, we will define frequency localised versions of the quantities P [±2],
�[±2], ψ[±2] of Sect. 3 and the Regge–Wheeler type equation (54).

We begin in Sect. 7.1 with the definitions of the frequency localised version of the
null frame L , L . We then derive in Sect. 7.2 the frequency localised expression for
�[±2] followed in Sect. 7.3 with the frequency localised form of (54).

In what follows in this section, we will always assume α[±2] is as in Proposi-
tion 6.2.1 with corresponding u[±2],(aω)

m� .

7.1 The Separated Null Frame

Note that (following the conventions in [45]) we have the following formal analogues:

− iω ∼ ∂t ,

im ∼ ∂φ.

11 We note that this renormalisation is slightly different from [68].
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We define the separated frame operators (corresponding to the principal null direc-
tions (20)) by

L = d

dr∗ − iω + iam

r2 + a2 , (154)

−L = d

dr∗ + iω − iam

r2 + a2 . (155)

We have retained the notation of (20) without fear of confusion.
Also note that (138) implies the following formal analogue:

/̊�[s]
m (aω) ∼ /̊�[s]

m (0)+ a2 cos2 θ∂2t − 2isa cos θ∂t .

7.2 The Frequency Localised Coefficients P [±2],(aω)
m� ,�

[±2],(aω)
m� andψ [±2],(aω)

m�

We may now understand the relations between the quantities of Sect. 3.1 at the fre-
quency localised level.

Proposition 7.2.1 Let α[±2] be as in Proposition 6.2.1 and consider P [+2],�[+2] and
ψ[+2] defined by (46), (48) and (49), respectively, and consider P [−2], �[−2] and
ψ[−2] defined by (47), (48) and (50), respectively.

Let u[±2],(aω)
m� be the arising coefficient of α[±2]. Then P [±2], �[±2] and ψ[±2]

are [A1, A2]-admissible spin weighted functions and their coefficients P [±2],(aω)
m� ,

�
[±2],(aω)
m� and ψ [±2],(aω)

m� are related by

(
r2 + a2

)√
w · ψ [+2],(aω)

m� = −1

2

1

w
L
(

u[+2],(aω)
m� · w

)
, (156)

�
[+2],(aω)
m� =

(
r2 + a2

)3/2
P [+2],(aω)

m� = 1

w
L
((

r2 + a2
)√

w · ψ [+2],(aω)
m�

)

= −1

2

1

w
L

(
1

w
L
(

u[+2],(aω)
m� · w

))
, (157)

(
r2 + a2

)√
w · ψ [−2],(aω)

m� = 1

2

1

w
L
(

u[−2],(aω)
m� · w

)
, (158)

�
[−2],(aω)
m� =

(
r2 + a2

)3/2
P [−2],(aω)

m� = − 1

w
L
((

r2 + a2
)√

w · ψ [−2],(aω)
m�

)

= −1

2

1

w
L

(
1

w
L
(

u[−2],(aω)
m� · w

))
. (159)

7.3 The Frequency Localised Regge–Wheeler Equation (54) for�[±2],(aω)
m�

A straightforward computation now leads to
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Proposition 7.3.1 Under the assumptions of Proposition 7.2.1, the �[±2],(aω)
m� satisfy

the equation

(
�

[s],(aω)
m�

)′′ +
(
ω2 − V [s],(aω)

m�

)
�

[s],(aω)
m� = J [s],(aω)

m� + G
[s],(aω)
m� , (160)

where the potential V [s],(aω)
m� is real and defined by

V [s],(aω)
m� =

�
(
λ

[s]
m� + a2ω2 + s2 + s

)
+ 4Mramω − a2m2

(
r2 + a2

)2

− �

(r2 + a2)2

6Mr(r2 − a2)

(r2 + a2)2
− 7a2 �2

(r2 + a2)4

= V [s]
0 + V1 + V2 . (161)

and the inhomogeneous terms by

J [s],(aω)
m� = �

(
r2 + a2

)2

[

s
−4r2 + 4a2

r2 + a2 aim − 20a2 r3 − 3Mr2 + ra2 + Ma2

(
r2 + a2

)2

]

×
(√

�ψ
[s],(aω)
m�

)

+ a2 �
(
r2 + a2

)2

[
−6s

r

r2 + a2 aim + 3

(
r4 − a4 + 10Mr3 − 6Ma2r

(r2 + a2)2

)]

×
(

u[s],(aω)
m�

�
(
r2 + a2

)2

)

,

G
[+2],(aω)
m� = 1

2
L

((
r2 + a2

)2

�
L

(
�

wρ2
F [+2],(aω)

m�

))

,

G
[−2],(aω)
m� = 1

2
L

((
r2 + a2

)2

�
L

(
�3

wρ2
F [−2],(aω)

m�

))

. (162)

Proof See Appendix A. ��
Remark 7.1 Note that J [s] vanishes for a = 0. The second line of J [s] contains only
linear terms in m (i.e. corresponding to only first derivatives in physical space). The
first line contains in this sense “first” and “zero” derivatives of ψ [s] and hence at most
(certain) “second” derivatives of u[s].

Remark 7.2 We may rewrite the potential

V [±2]
0 = �

(
�̃[±2] − 4|aω| + 4

)+ 4Mramω − a2m2

(
r2 + a2

)2 . (163)
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Here we see the dependence in the spin is entirely contained in the definition of �̃[±2].

Remark 7.3 Let us note finally that if, for a fixed frequency triple (ω,m, �̃), u is
simply assumed to be a smooth solution of the ODE (153) where λ[s]

m�(aω) is replaced
by the quantity defined by �̃− s − (aω)2 − 4|aω| in view of (141), and P , �, ψ are
defined by relations (156), (157), (158), (159), then the identities of Proposition 7.3.1
again hold.

8 Frequency-Localised Estimates in r ∈ [A1, A2]
The present section deals entirely with the system of relations satisfied by

u(aω)m� , ψ
(aω)
m� , �

(aω)
m�

at fixed frequency in the region r ∈ [A1, A2], for given inhomogeneous terms. The
main result will be Theorem 8.1, stated in Sect. 8.1, which can be thought of as a
fixed frequency version of an integrated local energy estimate for all quantities near
trapping, with boundary terms Q(Ai )which will eventually cancel the boundary terms
appearing on the right hand side of Proposition 5.1.1 of Sect. 5.

We shall prove multiplier estimates for (160) in Sect. 8.2 and transport estimates for
(156)–(159) in Sect. 8.3. Together with an integration by parts argument, the transport
estimates will allow us to bound in Sect. 8.4 the inhomogeneous terms on the right
hand side of (160) arising from the coupling of the Regge–Wheeler equation for�(aω)

m�

with u(aω)m� and ψ(aω)
m� , thus will allow to complete the proof of Theorem 8.1

Just like with the analogous Theorem 8.1 of [45], the results of this section can
be understood as results about ODE’s, independently of the particular framework of
Sect. 6. We have thus tried to give as self-contained a statement as possible.

8.1 Statement of Theorem 8.1: TheMain Fixed Frequency Estimates

In the present section we consider the coupled system of ODEs satisfied by u, ψ and
� and state a fixed frequency analogue of local integrated energy decay, in the region
r ∈ [A1, A2] near trapping.

8.1.1 Frequency Localised Norms

Before formulating the theorem, we define certain energy norms.
In view ofRemark 7.3, the natural setting of the theorem refers only to an admissible

frequency triple (ω,m, �̃) (cf. Definition 6.2) and associated solutions u[±2] of (153)
on [A1, A2] and ψ [±2], �[±2] defined by (156)–(159), where λ[s]

m�(aω) is replaced
by the quantity defined by �̃ − s − (aω)2 − 4|aω| in view of (141). Recall that all
derived ordinary differential identities follow, in particular (54), as does the estimate
(142) of Sect. 6.2.2. In practice, of course, we will always apply this for u[±2] equal
to u[±2],(aω)

m� and �̃ equal to �̃[s],(aω)
m� .
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Given the above, let us define the quantities

‖d�[±2]‖2 =
∫ A∗

2

A∗
1

[∣
∣∣(�[±2])′

∣
∣∣
2 +

((
1 − r−1rtrap

)2 (
ω2 + �̃

)+ 1
) ∣∣∣(�[±2])

∣
∣∣
2
]

dr∗,

‖dψ [±2]‖2 =
∫ A∗

2

A∗
1

(ω2 + m2 + 1)|ψ [±2]|2dr∗,

‖du[±2]‖2 =
∫ A∗

2

A∗
1

(ω2 + m2 + 1)|u[±2]|2dr∗,

as well as the boundary energies for i = 1, 2:

‖dψ [±2]‖2(Ai ) = (ω2 + m2 + 1)|ψ [±2](Ai )|2,
‖du[±2]‖2(Ai ) = (ω2 + m2 + 1)|u[±2](Ai )|2.

In the above, rtrap is a parameter depending on M , a and the frequency triple (ω,m, �̃)
to be determined later. For “trapped” frequencies, we will have r∗

trap ∈ [A∗
1/4, A∗

2/4],
but it will be important that in various high frequency but untrapped frequency ranges,
we can take rtrap = 0.

Note that since this is a region of fixed finite r , bounded away from infinity and the
horizon, no r -weights or �-factors need appear in the above norms.

Finally, it will be convenient if we introduce the alternate notation

A− := A1, A+ := A2

which will be useful when referring to boundary terms in contexts where the choice
of term depends on the spin.

8.1.2 Statement of the Theorem

Theorem 8.1 Given 0 ≤ a0 � M sufficiently small, then the following is true.
Let 0 ≤ a ≤ a0 and let (ω,m, �̃) be an admissible frequency triple. Let E > 1 be

the parameter fixed after Proposition 5.1.1. Given a parameter δ1 < 1, let f0, y0 be
defined by (100) and (100) as in the proof of Proposition 5.1.1.

Then one can choose sufficiently small δ1 < 1 depending only on M, and functions
f , y and an r-value rtrap, depending on the parameters a, M and the frequency triple
(ω,m, �̃) but satisfying the uniform bounds

rtrap = 0 or r∗
trap ∈ [A∗

1/4, A∗
2/4] (164)

| f | + ∣∣ f ′∣∣+ |y| � 1, (165)

f = f0(r), y = y0(r) for r∗ ∈ [A∗
1/2, A∗

2/2]c, (166)
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such that, for all smooth solutions u[±2] of (153) on [A1, A2] and associated ψ [±2]
and �[±2], then

‖d�[±2]‖2 � H[±2] + Q(A2)− Q(A1)+ |a|
2∑

i=1

(‖dψ [±2]‖2(Ai )+ ‖du[±2]‖2(Ai )),

(167)

‖dψ [±2]‖2(A∓)+ ‖du[±2]‖2(A∓)+ ‖dψ [±2]‖2 + ‖du[±2]‖2
� H[±2] + Q(A2)− Q(A1)+ ‖dψ [±2]‖2(A±)+ ‖du[±2]‖2(A±), (168)

where

H[±2] =
∫ A∗

2

A∗
1

G[±2] · ( f , y, E) · (�[±2], �[±2]′) dr∗,

G[±2] · ( f , y, E) · (�[±2], �[±2]′) .= −2 f Re
(
�[±2]′G[±2]

)
− f ′Re

(
�[±2]G[±2]

)

− 2yRe
(
�[±2]′G[±2]

)

+ EωIm
(
G[±2]�[±2]

)
, (169)

and Q is given by (172).

8.2 Multiplier Estimates for�[±2]

We begin in this section with frequency localised bounds for�[±2]. Frequency locali-
sation is necessary to capture trapping, in the style of our previous [40]. Themultipliers
will be frequency independent at r = A1 and r = A2 and will in fact match exactly
those applied in Sect. 5.1. This is ensured by (166). As a result, in the setting of Sect. 9,
the boundary termsQ(Ai )whichwill appear below, after summation over frequencies,
will exactly cancel the terms Q(Ai ) appearing in Proposition 5.1.1.

Recall the quantity ‖d�[±2]‖2 defined in Sect. 8.1.1. The main result of the section
is the following:

Proposition 8.2.1 With the assumptions of Theorem 8.1, we have

‖d�[±2]‖2 � H[±2] + K[±2] + Q(A2)− Q(A1) (170)

where K[±2] is defined by

K[±2] =
∫ A∗

2

A∗
1

J [±2] · ( f , y, E) · (�[±2], �[±2]′) dr∗,
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where

J [±2] · ( f , y, E) · (�[±2], �[±2]′) .= −2 f Re
(
�[±2]′J [±2]

)

− f ′Re
(
�[±2]J [±2]

)
− 2yRe

(
�[±2]′J [±2]

)

+ EωIm
(
J [±2]�[±2]

)
(171)

and Q is given by (172).

The estimate above differs from the estimate for ‖d�[±2]‖2 given by (167) as it is
still coupled with u[±2] andψ [±2] in view of the presence of the termK[±2].Wewill be
able to replaceK[±2] withH[±2] and the additional boundary term |a|‖dψ [±2]‖2(A±)+
|a|‖du[±2]‖2(A±) appearing in (167) in Sect. 8.4.

Proof The estimate (170) will be proven by using multiplier identities. The relevant
frequency-localised current templates, corresponding precisely to the physical space
multiplier identities used in Sect. 5.1, will be defined in Sect. 8.2.1 below. For a specific
combination of these currents, the bulk term will control the integrand of the left hand
side of (170) whereas the boundary terms (after summation over frequencies) will
correspond precisely to the boundary terms of Proposition 5.1.1. This coercivity is
stated as Proposition 8.2.2 in Sect. 8.2.2. The precise choice of the functions f and y
will be frequency dependent and is carried out separately for the frequency ranges G1
and G2 in Sects. 8.2.3 and 8.2.4 respectively.

In the rest of this subsection, we will always write � in the place of �[±2], as
the choice of the multipliers will not depend on the spin. We will write V in place of
V [±2], and �̃ for �̃[±2], remembering that the dependence of V [±2] on the spin in
the context of the separation is completely contained in the different definition of
�̃[±2]; see formula (163). We will only refer explicitly to s = ± 2 when discussing
the inhomogeneous terms on the right hand side of (160).

8.2.1 The Frequency-Localised Multiplier Current Templates

Let us define the frequency localised multiplier currents which correspond to the
physical space multipliers of Sect. 5.1:

Q f [�] = f
(
|� ′|2 + (ω2 − V)|�|2

)
+ f ′Re

(
� ′�̄

)− 1

2
f ′′|�|2,

Qy[�] = y
(
|� ′|2 + (ω2 − V)|�|2

)
,

QT [�] = −ωIm(� ′�̄).

If � satisfies

� ′′ + V� = H
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for an admissible frequency triple (ω,m, �̃), then, since V is real, we have

(Q f [�])′ = 2 f ′|� ′|2 − f V ′|�|2 − 1

2
f ′′′|�|2 + Re(2 f H̄� ′ + f ′ H̄�),

(Qy[�])′ = y′(|� ′|2 + (ω2 − V)|�|2)− yV ′|�|2 + 2yRe(H̄� ′),
(QT [�])′ = −ωIm(H�̄).

Let us remark already that if α is an [A1, A2]-admissible solution of the inhomo-
geneous Teukolsky equation (53), such that the restriction of α to r ∈ [A1, A2] is
supported in t = t∗ = t̃∗ ∈ (τ1, τ2), then the identity corresponding to applying

∫
dω

∑

m�

to

Q f (A1)+
∫ A∗

2

A∗
1

(Q f )′(r∗)dr∗ = Q f (A2),

resp. with Qy , QT , yields precisely the identities of Sect. 5.1.1 applied in the region
R̃trap(τ1, τ2). (Note that by our choices from Sect. 2.1.3, we have T = T + ω+χ�
in this region, and note moreover that the boundary terms on t̃∗ = τi vanish by the
restriction on the support.)

8.2.2 The Total CurrentQ and Its Coercivity Properties

For all frequencies, we will apply the identity corresponding to a current of the form

Q = Q f + Qy + EQT , (172)

for appropriate choices of functions f , y. The coercivity statement is given by the
following:

Proposition 8.2.2 Let E and f0 be as fixed in the proof of Proposition 5.1.1. Then one
can choose δ1 < 1 sufficiently small, depending only on M, such that the following is
true:

There exist functions f and y and a parameter rtrap depending on the parameters
a, M and the frequency triple (ω,m, �̃), satisfying (164), (165) and (166) and such
that Q defined by (172) satisfies

∣∣� ′∣∣2 +
((

1 − rtrapr−1
)2 (

ω2 + �̃
)

+ 1

)
|�|2

� Q′ − J [±2] · ( f , y, E) · (�,� ′)− G[±2] · ( f , y, E) · (�,� ′). (173)

Proof See Sects. 8.2.3 and 8.2.4 . ��
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Let us note that integrating the equation

Q(A1)+
∫ A∗

2

A∗
1

Q′(r∗)dr∗ = Q(A2)

we infer from (173) the inequality (170).

8.2.3 The G1 Range

We define the range

G1 = {�̃ ≥ c�ω
2} ∪ {�̃+ ω2 + m2 ≤ C�} (174)

for some 0 < c� < 1 and C� > 1 which can be chosen finally to depend only on
M . The frequency range G1 includes thus “angular-dominated frequencies” �̃ � ω2,
“trapped frequencies” �̃ ∼ ω2 and “low frequencies” �̃+ω2 + m2 � 1. We have the
following:

Proposition 8.2.3 For sufficiently small |a| < a0 � M, then for all frequency triples
in G1, there exists a function f and a parameter rmax with the following properties for
r∗ ∈ [A∗

1, A∗
2]:

1. f = f0 for r∗ ∈ [A∗
1/2, A∗

2/2]c and | f | � 1, | f ′| � 1 in [A∗
1, A∗

2],
2. |rmax − 3M | ≤ c(a, M) with c(a, M) → 0 as a → 0, in particular a0 can be

chosen so that r∗
trap ∈ [A∗

1/4, A∗
2/4]; for m = 0, rmax is independent of ω and �̃,

3. f ′ � 1,
4. − f V ′ − 1

2 f ′′ �
(
�̃(1 − rmaxr−1)2 + 1

)
.

Proof Let V [±2]
Schw denote the potential V of (161) in the a = 0 Schwarzschild case.

Writing this potential as in (161) as

VSchw = (VSchw)0 + (VSchw)1,

we see easily that (VSchw)0 has a unique maximum at r = 3M , while

f ′
0 � r(r − 2M)r−4, − f0V ′

Schw − 1

2
f ′′′
0

� cr(r − 2M)

(
(r − 3M)2

r2
�(�+ 1)+ 1

)
r−5,

so in particular, in the region r∗ ∈ [A∗
1, A∗

2], we have

f ′
0 � 1, − f0V ′

Schw − 1

2
f ′′′
0 � (1 − 3M/r)2�(�+ 1)+ 1.

We begin with a lemma concerning the behaviour of the potential V in the G1
frequency range.
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Lemma 8.2.1 Let 0 < c� < 1 and C� > 1 be arbitrary. For sufficiently small |a| <
a0 � M, then for all frequency triples in the range G1, the potential V0 of (161) has
a unique maximum rmax satisfying property 2. and

(r − rmax)
−1V ′

0 � �̃ (175)

in [A1, A2]. If m = 0, then rmax is manifestly independent of ω and �̃.

Proof This is an easy computation in view of (163). For the regionG1\{�̃+ω2+m2 ≤
C�}, one uses the bound

�̃− 4|aω| ≥ 1

2
�̃+ 1

4
c�ω

2 ≥ 1

4
�̃+ 1

4
c�ω

2 + 1

16
m2 in G1 \ {�̃+ ω2 + m2 ≤ C�}

and the smallness of a. For the region {�̃+ω2+m2 ≤ C�} it suffices to use the general
bound �̃ ≥ 1 and the smallness of a. Notice that according to our conventions, the
constant in the � indeed only depends on M , since smallness of a can be used to
absorb the c� and C� dependence. ��

Let χ(r∗) be a cutoff function such that χ = 1 in [A∗
1/4, A∗

2/4] and χ = 0 in
[A∗

1/2, A∗
2/2]c. We define now

f =
(
1 − 3M + χ(r∗)(rmax − 3M)

r

)(
1 + M

r

)
. (176)

This function obviously satisfies property 1. and is easily seen to satisfy property 3.
It remains to show property 4. By (175) and the definition of f we have

− f V ′
0 � �̃(1 − rmaxr−1)2 .

On the other hand, for |a| � a0 < M sufficiently small, we have that | f ′′′
0 − f ′′′| ≤

c(a), and thus

− f V ′
0 − 1

2
f ′′′ � (�̃(1 − rmaxr−1)2 + 1).

Finally, we note that V = V0 + V1 + V2, and we have |V1 − (VSchw)1| ≤ c(a),
|V2| ≤ c(a) with c(a) → 0.

We have

− f V ′ − 1

2
f ′′′ = − f V ′

0 − 1

2
f ′′′ − f (VSchw)

′
1 + f (V ′

1 − (VSchw)
′
1)− f V ′

2

It follows readily that property 4. indeed holds for frequencies in G1. ��
Now, given a parameter δ1 < 1, we define the function

y1 = δ1((1 − χ) f + χ f 3)). (177)
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Note that this function satisfies (166). We compute

y′
1 = δ1((1 − χ) f ′ + 3χ f 2 f ′ − χ ′ f + χ ′ f 3) � δ1(r − rmax)

2 (178)

where we are using also that | f | ≤ 1 implies that | f 3| ≤ | f |.
Note on the other hand that for sufficiently small |a| < a0 � M , we have

|V| � �̃+ 1 , |V ′| � �̃+ 1

in r∗ ∈ [A∗
1, A∗

2] for all frequencies in G1, in view of the general bound

1

4
m2 + 1 ≤ �̃ (179)

and the bound

ω2 ≤ c−1
� �̃+ C�,

which holds in G1. Thus

y′
1V − y1V ′ � δ1(�̃(1 − rmaxr−1)2 + 1).

It follows that we may choose δ1 sufficiently small so as for

− f V ′ − 1

2
f ′′′ − y′

1V + y1V ′ + y′
1ω

2 � (�̃+ δ1ω
2)(1 − rmaxr−1)2 + 1. (180)

Henceforth, δ1 will be fixed. In particular, according to our conventions, we may
replace the δ1 factor by 1 on the right hand side of (180).

In view of (180) and (178), examining the identities of Sect. 8.2.1, we have obtained
the degenerate coercivity of (Q f + Qy1)′.

We would like to improve this coercivity in the “angular-dominated” subrange of
G1. Let us now introduce a new parameter C� � 1 and consider the range

G1 ∩ {�̃ ≥ C�ω
2}. (181)

Noting that we have

V � �̃+ 1

in G1, it follows that for C� sufficiently large, we have

V − ω2 � V � �̃ � �̃+ ω2
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in (181). Henceforth, C� will be fixed. We may now define a new small parameter
δ3 > 0 and define a function

y2 = δ3(rmax − r∗)χ,

where χ is the cutoff from above. We have that for frequency triples in (181),

y′
2(ω

2 − V) � δ3, −y2V ′ � δ3(�̃(1 − rmaxr−1)2 + 1)

in [A∗
1/4, A∗

2/4], while

y′
2V − y2V ′ � δ3(�̃(1 − rmaxr−1)2 + 1), |y′

2| � δ3

in [A∗
1, A∗

2]. In particular, we may choose δ3 sufficiently small, with the smallness
requirement depending only on M , so that, defining

y = y1 + y2, (182)

we have

2 f ′ + y′ � 1, − f V ′ − 1

2
f ′′′ − y′V + yV ′

+ω2y′ � (�̃+ ω2)(δ3 + (1 − rmaxr−1)2)+ 1 (183)

in (181). Henceforth, δ3 will be fixed.
We are ready now for our final definitions. In the range (181), we define y by (182).

Since δ3 is now fixed we may now write

(δ3 + (1 − rmaxr−1)2) � 1.

We thus can set rtrap = 0.
For the remaining frequencies in G1, i.e. for frequencies in G1 ∩ {�̃ < C�ω

2}, we
define simply y = y1 and rtrap = rmax.

Finally, we consider the current

EQT

for E the parameter fixed in Sect. 5.1.
Thus, applying the identity corresponding to (172) in view of (178), (180) and

(183), we obtain that Proposition 8.2.2 holds for all frequencies in G1.

8.2.4 The G2 Range

We define this frequency range to be the complement of G1, i.e.

G2 = {ω2 > c−1
� �̃} ∩ {�̃+ ω2 + m2 > C�}. (184)
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These are the “time-dominated” large frequencies.
Wemay choose c� sufficiently small, andC� sufficiently large, so that for sufficiently

small |a| < a0 � M , we have

ω2 − V ≥ 1

2
ω2, |V ′| ≤ 1

2
ω2 in G2 (185)

Henceforth, c� and C� will be fixed by the above restriction. We note that it is
certainly the case that C� ≥ c�.

Consider the function f0 of the previous section. We define simply f = f0 for
frequencies in G2.

Given the parameter δ1 fixed in Sect. 8.2.3, we define now y = δ1 f . It follows from
(185) that in the range G2 we have

(2 f ′ + y′) � 1, −( f V ′ + yV ′)− 1

2
f ′′′ + y′(ω2 − V) � ω2 � (ω2 + �̃2 + 1).

We may define thus the parameter rtrap = 0 for the frequency range G2.
Finally, we may again add

EQT

for E the parameter fixed in Sect. 5.1.
Thus again applying the identity to (172) with the above definitions we obtain that

Proposition 8.2.2 holds for all frequencies in G2.
SinceG1∪G2 contains all admissible frequencies, the results of this section together

with Section 8.2.3 imply that Proposition 8.2.2, and thus (170), indeed holds.
The proof of Proposition 8.2.1 is now complete. ��
Let us recall that in the course of the above proof, we have fixed the param-

eter δ1. This allows us to fix also δ2 of Proposition 5.1.1. Since E has been fixed
previously, it follows that all dependences on parameters can be removed from
the � in the statement of Proposition 5.1.1.

8.3 Transport Estimates forψ [±2] and u[±2]

In this section we will prove frequency-localised versions for the transport estimates
of [31] to obtain estimates for u[+2] and ψ [+2] from �[+2] as well as for u[−2] and
ψ [−2] from �[−2], localised in r ∈ [A1, A2].

The main result of the section is:

Proposition 8.3.1 With the assumptions of Theorem 8.1, we have the following esti-
mates:

‖dψ [±2]‖2(A∓)+ ‖du[±2]‖2(A∓)+ ‖dψ [±2]‖2 + ‖du[±2]‖2
� ‖d�[±2]‖2 + ‖dψ [±2]‖2(A±)+ ‖du[±2]‖2(A∓). (186)
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Proof We consider first the case +2 of (186).
Adding the identity arising from multiplying (157) by r

√
�ψ [+2] and its complex

conjugate by r
√
�ψ [+2] leads after integration and applying Cauchy–Schwarz on the

right hand side to the estimate

r |√�ψ [+2]|2 (A∗
1

)+
∫ A∗

2

A∗
1

dr∗|√�ψ [+2]|2 �
∫ A∗

2

A∗
1

dr∗|�[+2]|2 + r |√�ψ [+2]|2 (A∗
2

)
.

(187)

Similarly, adding the identity arising from multiplying (156) by ru[+2]w and its com-
plex conjugate by ru[+2]w leads after integration and applying Cauchy–Schwarz on
the right hand side to the estimate

r |u[+2]w|2 (A∗
1

)+
∫ A∗

2

A∗
1

dr∗ |u[+2]w|2 �
∫ A∗

2

A∗
1

dr∗|ψ [+2]|2 + r |u[+2]w|2 (A∗
2

)
.

(188)

Combining (187) and (188) yields (186) without the m2 and ω2 terms in the norms on
the left.

To obtain the estimate with the m2 and ω2 terms we define the frequency ranges

F� =
{
ω2 ≥ 1

4
C−1
� m2

}
, F � =

{
ω2 <

1

4
C−1
� m2

}

where C� is the constant of Sect. 8.2.3. In view of the general bound (179) which holds
for all admissible frequencies, it follows that in the frequency range F �, we have

C�ω
2 <

1

4
m2 ≤ �̃

and thus F � is contained in the frequency range (181). It follows that rtrap = 0 for F �,
i.e. these frequencies are not “trapped”.

Suppose first that (ω,m) lie in the frequency range F �. Since rtrap = 0, we have

∫ A∗
2

A∗
1

[
|(�[±2])′|2 + (�̃2 + m2 + ω2 + 1)|�[±2]|2

]
dr∗ � ‖d�[±2]‖2. (189)

Multiplying thus (157) and (156) by m and ω and repeating the argument leading to
(187) and (188) immediately leads to (186).

Suppose on the other hand that (ω,m) lie in the frequency range F�. Here we do
not have the m2 and ω2 in (189) and thus we proceed as follows. Commuting (157)
by d

dr∗ leads to the identity

(
d

dr∗ − iω + iam

r2 + a2

)(√
�ψ [+2])′ = −w

(
�[+2])′ − w′�[+2]

+ 2r
iam

r2 + a2w · √
�ψ [+2] . (190)
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Multiplying this by r
(√

�ψ [+2]
)′

and adding the complex conjugate multiplied by

r
(√

�ψ [+2]
)′
we find, upon integration and using Cauchy–Schwarz on the right hand

side, the estimate

r
∣∣∣
(√

�ψ [+2])′ ∣∣∣
2 (

A∗
1

)+
∫ A∗

2

A∗
1

dr∗
∣∣∣
(√

�ψ [+2])′ ∣∣∣
2

� r
∣∣∣
(√

�ψ [+2])′ ∣∣∣
2 (

A∗
2

)+ ‖d�[±2]‖2

+
∫ A∗

2

A∗
1

dr∗a2m2|√�ψ [+2]|2 . (191)

Using the pointwise relation (157) and the definition of the norm ‖d�[±2]‖ (as well
as the simple fact that for i = 1, 2 |�±2|2 (A∗

i

)
� ‖d�[±2]‖2), the estimate (191)

is also valid replacing on the left hand side
∣∣∣
(√

�ψ [+2]
)′ ∣∣∣

2
by

∣∣∣L
(√

�ψ [+2]
) ∣∣∣

2 =
|w�[+2]|2. Using the relation (155) we therefore deduce

(
ω − am

r2 + a2

)2 ∣
∣∣
√
�ψ [+2]

∣
∣∣
2 (

A∗
1

)+
∫ A∗

2

A∗
1

dr∗
(
ω − am

r2 + a2

)2 ∣
∣∣
√
�ψ [+2]

∣
∣∣
2

� ‖d�[±2]‖2 +
∫ A∗

2

A∗
1

dr∗a2m2|√�ψ [+2]|2 +
(
ω − am

r2 + a2

)2 ∣∣∣
√
�ψ [+2]

∣∣∣
2 (

A∗
2

)
.

(192)

In the range F�, restricting to sufficiently small |a| < a0 � M , we have that

ω2 �
(
ω − am

r2 + a2

)2

� ω2.

It follows that in the inequality (192), we can replace the factor in round bracket on the
left hand side simply by ω2 and absorb the second term on the right by the left hand
side. This establishes (186) for theψ [+2]-norm on the left. We can nowmultiply (188)
by m2 and ω2 and use the estimate just obtained for ψ [+2] to establish the estimate
(186) also for the u[+2]w-term. The proof of (186) is now complete.

To prove (186) for s = −2 one follows the identical argument but choosing the
multiplier 1

r instead of r . ��

8.4 Controlling the Inhomogeneous TermK[±2] in Proposition 8.2.1

Proposition 8.4.1 The term

K[±2] =
∫ A∗

2

A∗
1

J [±2] · ( f , y, E) · (�[±2], �[±2]′) dr∗
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appearing in Proposition 8.2.1 satisfies

∣
∣K[±2]∣∣ � |a|‖d�[±2]‖2 + |a|‖dψ [±2]‖2 + |a|‖du[±2]‖2

+ |a|
2∑

i=1

(‖dψ [±2]‖2(Ai )+ ‖du[±2]‖2(Ai )). (193)

Proof Since f , f ′ and y are all uniformly bounded we have by Cauchy–Schwarz:

∫ A∗
2

A∗
1

∣
∣ f Re

(
�[±2]′J [±2]

) ∣
∣+ ∣

∣ f ′Re
(
�[±2]J [±2]

) ∣
∣+ ∣

∣yRe
(
�[±2]′J [±2]

) ∣
∣

� |a|‖d�[±2]‖2 + |a|‖dψ [±2]‖2 + |a|‖du[±2]‖2 . (194)

For the last remaining term,
∫ A∗

2
A∗
1
ωIm

(
J [±2]�[±2]

)
, we observe that we only need

to estimate

∣
∣∣
∫ A∗

2

A∗
1

c (r) Im
(

imψ [±2]ω�[±2]
) ∣∣∣ and

∣
∣∣
∫ A∗

2

A∗
1

c (r) Im
(

imu[±2]ω�[±2]
) ∣∣∣ ,

(195)

where c (r) denotes a generic bounded real-valued function with uniformly bounded
derivative in

[
A∗
1, A∗

2

]
(whose explicit form may change in the estimates below). This

is because the other terms appearing in J [±2] are again easily controlled via Cauchy–
Schwarz and satisfy the estimate (194). We show how to estimate these terms for
s = + 2, the case s = − 2 being completely analogous.

For the first term of (195) we have

∫ A∗
2

A∗
1

c (r) Im
(

imψ [+2]ω�[+2]
)

=
∫ A∗

2

A∗
1

c (r)

× Im

(
m�[+2]

(
−Lψ [+2] −

(
ψ [+2])′ + iam

r2 + a2ψ
[+2]

))

=
∫ A∗

2

A∗
1

c (r) Im
(

m�[+2]ψ [+2])+ c (r) Im
(
�[+2]mψ [+2])

∣∣∣
A∗
2

A∗
1

+
∫ A∗

2

A∗
1

c (r) Im
(
�[+2]′mψ [+2])

+
∫ A∗

2

A∗
1

Im
((

−c (r)mψ [+2]′ + c (r)mψ [+2]
)

iamψ [+2]) (196)

where we have used the (frequency localised) relation between �[+2] and ψ [+2]
twice. Now the first three terms on the right hand side are again easily controlled
using Cauchy–Schwarz (as well as the simple fact that for i = 1, 2 |�[±2]|2 (A∗

i

)
�

‖d�[±2]‖2). For the term in the last line we integrate the first summand by parts while
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the second is already manifestly controlled by ‖dψ [±2]‖2. This leads immediately to
(193).

For the second term of (195), write

∫ A∗
2

A∗
1

c (r) Im
(

imu[+2]ω�[+2]
)

=
∫ A∗

2

A∗
1

Re
(

mu[+2]ω
(
c (r) Lψ [+2] + c (r) ψ [+2])) .

(197)

The second term on the right is already manifestly controlled by ‖dψ [±2]‖2 and for
the first we integrate by parts

−
∫ A∗

2

A∗
1

Re
(

mu[+2]ω
(
c (r) Lψ [+2])) = Re

(
mu[+2]ωc (r) ψ [+2])

∣∣∣
A∗
2

A∗
1

+
∫ A∗

2

A∗
1

c (r)mω|ψ [+2]|2 + c (r)Re
(

mωu[+2]ψ [+2]) (198)

from which the estimate (193) is easily obtained. ��
Putting together Propositions 8.2.1, 8.3.1 and 8.4.1 , we obtain Theorem 8.1.

9 Back to Physical Space: Energy Boundedness and Integrated Local
Energy Decay

Wenow turn in this section in ernest to the study of theCauchy problem for (37) for s =
± 2. Themain result of this sectionwill be a uniform (degenerate) energy boundedness
and integrated energy decay statement. This will be stated as Theorem 9.1 of Sect. 9.1.
This corresponds to statement 1. of the main result of the paper, Theorem 4.1.

The remainder of the section will then be devoted to the proof of Theorem 9.1. We
first define in Sect. 9.2 a cutoff version α

[±2]
Q of our solution α[±2] of (37) such that

α
[±2]
Q satisfies an inhomogeneous equation (53), whose inhomogeneous term F [±2

Q is
localised in time to be supported only “near” t̃∗ = 0 and “near” t̃∗ = τfinal and in
space to be supported only in r∗ = [2A∗

1, 2A∗
2]. The cutoff is such that restricted to

r ∈ [A1, A2],α[±2]
Q is compactly supported in t̃∗ ∈ [0, τfinal]. This allowsus inSect. 9.3

to then apply the results of Sect. 8 to such α
[±2]
Q , summing the resulting estimate over

frequencies. In Sect. 9.4 we shall combine this estimate with the conditional estimates
of Sect. 5, using also the auxiliary estimates of Sect. 5.3 to obtain a global integrated
energy decay statement, with an error term, however, on the right side arising from
the cutoff. Finally, we shall bound this latter error terms associated to the cutoff in
Sect. 9.5, again using the auxiliary estimates of Sect. 5.3, allowing us to infer the
statement of Theorem 9.1.

As remarked in Sect. 1.2.5, in the axisymmetric case, one can directly distill from
the calculations of this paper an alternative, simpler proof of Theorem 9.1 expressed
entirely in physical space. We do this in Sect. 9.6.
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9.1 Statement of Degenerate Boundedness and Integrated Energy Decay

Theorem 9.1 Let α[±2], �[±2] and ψ[±2] be as in Theorem 4.1.
Then, for s = +2 , we have the following estimates

• the basic degenerate Morawetz estimate

I
deg
η

[
�[+2]] (0, τfinal)+ Iη

[
ψ[+2]] (0, τfinal)+ Iη

[
α[+2]] (0, τfinal)

� E�̃τ ,η

[
�[+2]] (0)+ E�̃τ ,η

[
ψ[+2]] (0)+ E�̃τ ,η

[
α[+2]] (0) (199)

• the η-weighted energy boundedness estimate

EH+
[
�[+2]] (0, τfinal)+ E�̃τ ,η

[
�[+2]] (τfinal)

� E�̃τ ,η

[
�[+2]] (0)+ E�̃τ ,η

[
ψ[+2]] (0)+ E�̃τ ,η

[
α[+2]] (0) . (200)

Similarly, for s = −2 , we have

• the basic degenerate Morawetz estimate

I
deg
η

[
�[−2]] (0, τfinal)+ I

[
ψ[−2]] (0, τfinal)+ I

[
α[−2]] (0, τfinal)

� E�̃τ ,η

[
�[−2]] (0)+ E�̃τ

[
ψ[−2]] (0)+ E�̃τ

[
α[−2]] (0) (201)

• the η-weighted energy boundedness estimate

EH+
[
�[−2]] (0, τfinal)+ E�̃τ ,η

[
�[−2]] (τfinal)

� E�̃τ ,η

[
�[−2]] (0)+ E�̃τ

[
ψ[−2]] (0)+ E�̃τ

[
α[−2]] (0) . (202)

Remark 9.1 In the case s = −2 one can prove these estimates using only the
E�̃τ ,0

[
�[−2]]-energy. However, that energy is insufficient to eventually control the

energy flux of r−3α[−2] through null infinity, which is why we kept the estimate as
symmetric with the s = +2-case as possible. See also Remark 5.2.

In the proof of the theorem, we may assume for convenience that the data
(α̃

[±2]
0 , α̃

[±2]
1 ) are smooth. It follows that all associated appropriately rescaled quan-

tities �[±2], etc., are smooth inR0. To ease notation we define the data quantities

D
[+2] (0) = E�̃τ ,η

[
�[+2]] (0)+ E�̃τ ,η

[
ψ[+2]] (0)+ E�̃τ ,η

[
α[+2]] (0) ,

D
[−2] (0) = E�̃τ ,η

[
�[+2]] (0)+ E�̃τ

[
ψ[+2]] (0)+ E�̃τ

[
α[+2]] (0) . (203)
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9.2 The Past and Future Cutoffs

Let ε > 0 be a parameter to be determined. Fix τfinal > 0. One easily sees that one
can choose a smooth function � : R × R → [0, 1] with the properties:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� = 0 if (r∗, t̃∗) ∈ [A∗
1, A∗

2] × {(−∞, 0] ∪ [τfinal,∞)}
� = 1 if (r∗, t̃∗) ∈ {(−∞, 2A∗

1] ∪ [2A∗
2,∞)} × R ∪ [2A∗

1, 2A∗
2] × [ε−1, τfinal − ε−1]

∂r∗� = 0 if (r∗, t̃∗) ∈ [A∗
1, A∗

2] × (−∞,∞)

|∂k1
t̃∗ �| � ε if (r∗, t̃∗) ∈ [A∗

1, A∗
2] × {[0, ε−1] ∪ [τfinal − ε−1, τfinal]}

|∂k1
t̃∗ ∂

k2
r̃∗�| � 1 for all (r∗, t̃∗) ∈ R × R

(204)

for all k1, k2 ≥ 0.
Define now

α̃
[±2]
Q (t̃∗, r , θ, φ) = �(t̃∗, r)α̃[±2](t̃∗, r , θ, φ) . (205)

We note that α̃[±2]
Q ∈ S [s]∞ (R) and satisfies (53) with inhomogeneity given by

�

ρ2
F̃ [±2]
Q = (L�)(Lα̃[±2]))+ (L�)(Lα̃[±2])+ (L L�)α̃[±2] − 2

w′

w
(L�)α̃[±2]

− �

(r2 + a2)2

(
2a(T�)(�α̃[±2])+ a2 sin2 θ

(
(T T�)α̃[±2] + 2(T�)(T α̃[±2])

)

+2isa cos θ(T�)α̃[±2]) . (206)

We define now α
[±2]
Q to be given by (38), P [±2]

Q to be given by (46)–(47), �[±2]
Q to be

given by (48) and ψ
[±2]
Q to be given by (49)–(50), where all quantities now have Q.

We note that F̃ [±2]
Q restricted to 0 ≤ t̃∗ ≤ τfinal is supported in the support of ∇�

(see the shaded regions of Fig. 3):

({0 ≤ t̃∗ ≤ ε−1} ∪ {τfinal − ε−1 ≤ t̃∗ ≤ τfinal}
)⋂{2A∗

1 ≤ r∗ ≤ 2A∗
2} (207)

while

α̃
[±2]
Q = 0

in {A1 ≤ r ≤ A2} ∩ ({t̃∗ ≤ 0} ∪ {t̃∗ ≥ τfinal}.
Let us already note the following proposition

Proposition 9.2.1 Let�[±2]
Q be as above and letG±2 be the inhomogeneous term asso-

ciated to the generalised Regge–Wheeler equation (54) arising from F̃ [±2]
Q according

to (56) and (58). Then we have the estimates
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Fig. 3 Support of ∇� restricted
to 0 ≤ t̃∗ ≤ τfinal

∫

R̃trap(0,τfinal)
|G[±2]|2dV ol � ε2

(
I
trap[α[±2]](0, ε−1)+ I

trap[ψ[±2]](0, ε−1)
)

+ ε2
(
I
trap[α[±2]](τfinal − ε−1, τfinal)+ I

trap[ψ[±2]](τfinal − ε−1, τfinal)
)

+ ε sup
0≤τ≤τfinal

E�̃τ ,0[�[±2]], (208)

∫

R̃away(0,τfinal)
|G[±2]|2dV ol � I[η][α[±2]](0, ε−1)+ I[η][ψ[±2]](0, ε−1)

+ I[η][α[±2]](τfinal − ε−1, τfinal)+ I[η][ψ[±2]](τfinal − ε−1, τfinal)

+ ε−1 sup
0≤τ≤τfinal

E�̃τ ,0[�[±2]]. (209)

Here the subindex [η] is equal to η in case of s = +2 and it is dropped entirely in case
s = −2.

Remark 9.2 As the proof shows and is already clear from the support of the cut-offs,
only the spacetime integrals in the overlap region are needed on the right hand side of
(209).

Proof We first prove (208). Note that the support of G is manifestly contained in
the support (207) of F̃ [±2]

Q . Moreover, one easily sees that one obtains sum of terms
containing

L�[±2], L�[±2], �[±2], T�[±2],��[±2], Lψ[±2], Lψ[±2], T ψ[±2],�ψ[±2],ψ[±2],
Lα[±2], Lα[±2], T α[±2],�α[±2],α[±2]

with r and horizon weights which are uniformly bounded in view of the support. From
the conditions (204) defining �, it follows that

|Lk1 Lk2T k3�| � ε for r ∈ [A1, A2] (210)
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for any k1 + k2 + k3 ≥ 1, where we have used also that t = t∗ = t̃∗ in this region by
our choices in Sect. 2.1.3. It follows that all terms in the expression forG pick up an ε
factor. The inequality (208) now follows from Cauchy–Schwarz, the definition of the
norms and Remarks 4.1 and 4.2 , where in addition we have appealed to the coarea
formula and size of t̃∗-support for the term involving �[±2].

The proof is the same for (209), except that the nontrivial r dependence of� given
by (204) means that ε on the right hand side of (210) must now be replaced by 1
outside of r ∈ [A1, A2], and thus the ε2 factor of (208) is no longer present in the
right hand side of the final estimate. ��

We will in fact not use the bound (209) directly, but similar bounds for physical
space terms that arise from multiplying G� and G∂r�.

9.3 The Summed Relation

In view of the support of α̃
[±2]
Q and the smoothness of (206), it follows that α

[±2]
Q

manifestly satisfies the [A1, A2]-admissibility condition of Definition 6.1. In a slight
abuse of notation, we will denote the coefficients of α

[±2]
Q , �[±2]

Q , etc., without the Q
subscript.12

We define thus the coefficients u[±2],(aω)
m� and we apply Theorem 8.1 with the

admissible frequency triple (ω,m, �̃[±2],(aω)
m� ). We now integrate over ω and sum

over frequencies:

∫ ∞

−∞
dω

∑

m�

.

From summing the relations (167)–(169), we hence obtain in view of the Plancherel
relations of Sect. 6.2.3 (applied to α

[±2]
Q , ψ[±2]

Q and �[±2]
Q ):

Proposition 9.3.1 Let the assumptions of Theorem 9.1 hold. Define the cut-off quanti-
ties α

[±2]
Q , ψ[±2]

Q and�[±2]
Q as in (205), (38) and (46)–(50). Then we have the estimates

I
trap[�[±2]

Q ](0, τfinal) � Htrap[�[±2]
Q ] + Qr=A2 [�[±2]

Q ](0, τfinal)− Qr=A1 [�[±2]
Q ](0, τfinal)

+ |a|
2∑

i=1

(
Er=Ai [ψ[±2]

Q ](0, τfinal)+ Er=Ai [α[±2]
Q ](0, τfinal)

)
, (211)

I
trap[ψ[±2]

Q ](0, τfinal)+ I
trap[α[±2]

Q ](0, τfinal)+ EA∓[ψ[±2]
Q ] + Er=A∓[α[±2]

Q ]
� Htrap[�[±2]

Q ] + Qr=A2 [�[±2]
Q ](0, τfinal)− Qr=A1 [�[±2]

Q ](0, τfinal)
+ Er=A±[ψ[±2]

Q ](0, τfinal)+ Er=A±[α[±2]
Q ](0, τfinal), (212)

12 This will not be a source of confusion because we will never apply frequency analysis directly to α[±2].
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where

Htrap[�[±2]
Q ] =

∫ ∞

−∞
dω

∑

m�

∫ A∗
2

A∗
1

dr∗ G(aω)
m�

·( f (aω)m� , y(aω)m� , E) · (�[±2],(aω)
m� , (� ′)[±2],(aω)

m� ).

9.4 Global Physical Space Estimates

Let us first combine the above estimates with the conditional physical space estimates
proven in Sect. 5.

Proposition 9.4.1 Let the assumptions of Theorem 9.1 hold. Define the cut-off quanti-
ties α

[±2]
Q , ψ[±2]

Q and�[±2]
Q as in (205), (38) and (46)–(50). Then we have the estimates

E
away
�̃τ ,η

[�[±2]
Q ](τfinal)+ I

deg
η [�[±2]

Q ](0, τfinal)+ I[η][ψ[±2]
Q ](0, τfinal)

+ I[η][α[±2]
Q ](0, τfinal) � H[�[±2]

Q ] + D
[±2] (0) , (213)

2∑

i=1

Er=Ai [ψ[±2]
Q ](0, τfinal)+ Er=Ai [α[±2]

Q ](0, τfinal) � H[�[±2]
Q ] + D

[±2] (0) ,

(214)

where

H[�[±2]
Q ] = Htrap[�[±2]

Q ] + Haway[�[±2]
Q ] .

In the above, the subindex [η] is equal to η in case of s = + 2 and it is dropped entirely
in case s = − 2.

Proof We add the estimates of Proposition 9.3.1 with those of Sect. 5 as follows.
Let us consider first the +2 case. We first add the first estimate (105) of Proposi-

tion 5.2.1 (applied to α
[±2]
Q and ψ

[±2]
Q with τ1 = 0, τ2 = τfinal and with p = η) to a

suitable constant times the estimate (212) of Proposition 9.3.1. The constant ensures
that the termsEr=A2 on the left hand side of (105) is sufficient to absorb the analogous
term on the right hand side of (212). Finally, we now add to the previous combination
a suitable constant times the second estimate (106) of Proposition 5.2.1, again so that
the boundary terms on Er=A1 are now absorbed. We obtain thus

I[η][ψ[±2]
Q ](0, τfinal)+ I[η][α[±2]

Q ](0, τfinal) � I
deg
[η]

[
�

[±2]
Q

]
+ D

[±2] (0) (215)

2∑

i=1

Er=Ai [ψ[±2]
Q ](0, τfinal)+ Er=Ai [α[±2]

Q ](0, τfinal)

� I
deg
[η]

[
�

[±2]
Q

]
+ D

[±2] (0) (216)
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in the case of +2. For the −2 case, we choose the relative constants in the reverse
order, starting with the second estimate (115) of Proposition 5.2.2. We obtain again
(215) in the −2 case, as well as the estimate (216) for the boundary terms.

We now similarly add Proposition 5.1.1 (applied to �[±2]
Q with τ1 = 0, τ2 = τfinal)

to (211), noting that the Q boundary terms exactly cancel. This gives thus

E
away
�̃τ ,η

[�[±2]
Q ](τfinal)+ I

deg
η [�[±2]

Q ](0, τfinal) � H[�[±2]
Q ]

+|a|I[η][ψ[+2]
Q ](0, τfinal)+ |a|I[η][α[+2]

Q ](0, τfinal)+ D
[±2] (0) . (217)

We fix now a sufficiently small parameter e depending only on M . It follows that,
restricting to a0 � e, we may sum e× (215) with (217) to absorb both the first term
on the right hand side of (215) and the middle two terms on the right hand side of
(217). The desired (213) follows.

The estimate (214) again follows from (216) and (213). ��
In the rest of this subsection, we proceed to remove the Q from the quantities on

the left hand side of (213).
Putting together the local-in-time Proposition 5.3.2 and the (T + χω+�)-energy

estimate Proposition 5.3.1 we obtain first the following:

Proposition 9.4.2 With the notation of Proposition 9.4.1, we have the additional esti-
mates

I
deg
η [�[±2]](0, τfinal − ε−1)+ I[η][ψ[±2]](0, τfinal − ε−1)+ I[η][α[±2]](0, τfinal − ε−1)

� H[�[±2]
Q ] + ε−1

D
[±2] (0) , (218)

2∑

i=1

Er=Ai [ψ[±2]](0, τfinal − ε−1)+ Er=Ai [α[±2]](0, τfinal − ε−1)

� H[�[±2]
Q ] + ε−1

D
[±2] (0) , (219)

sup
0≤t∗≤τfinal−ε−1

E�̃τ ,0

[
�[±2]] (t∗) � |a|H[�[±2]

Q ] + ε−1
D

[±2] (0) , (220)

sup
0≤t∗≤τfinal−ε−1

E�̃τ ,[η]
[
ψ[±2]] (t∗)+ E�̃τ ,[η]

[
α[±2]] (t∗) � H[�[±2]

Q ] + ε−1
D

[±2] (0) .

(221)

Here the subindex [η] is equal to η in case of s = +2 and it is dropped entirely in case
s = −2.

Proof For estimate (218) one applies Proposition 5.3.2 (applied with τ1 = 0 and with
τstep = ε−1) and Proposition 9.4.1 and the fact that the cutoff� = 1 identically in the
region t̃∗ ∈ [ε−1, τfinal − ε−1] and in the region {r∗ ≥ 2A∗

2} ∪ {r∗ ≤ 2A∗
1}. Estimate

(219) follows similarly from (214).
Estimate (220) now follows from (218) and Proposition 5.3.1 applied with τ1 = 0

and 0 ≤ τ2 ≤ τfinal − ε−1.

123



Boundedness and Decay for the Teukolsky Equation on Kerr... Page 87 of 118 2

Finally, to obtain (221), we argue as follows. Revisiting the transport estimates of
Sect. 5.2, we can estimate the left hand side from initial data, Idegη [�[±2]](0, τfinal −
ε−1), the left hand side of (219) and the left hand side of (220). ��

Using once again the auxiliary estimates of Sect. 5.3, we can now improve this to:

Proposition 9.4.3

I
deg
η [�[±2]](0, τfinal)+ I[η][ψ[±2]](0, τfinal)+ I[η][α[±2]](0, τfinal)
� H[�[±2]

Q ] + ε−2
D

[±2] (0) , (222)

sup
0≤t∗≤τfinal

E�̃τ ,0[�[±2]](t∗) � |a|H[�[±2]
Q ] + ε−2

D
[±2] (0) . (223)

Proof Appealing to Proposition 5.3.2 with τ1 = τfinal −ε−1 and with τstep = ε−1, and
using (221), we obtain

I
deg
η [�[±2]](0, τfinal)+ I[η][ψ[±2]](0, τfinal)+ I[η][α[±2]](0, τfinal)

� H[�[±2]
Q ] + ε−1

D
[±2] (0)+ ε−1

E�̃τ ,0[�[±2]](τfinal − ε−1) (224)

Finally, we apply (220) to absorb the last term on the right hand side, obtaining thus
(222). Repeating now the proof of (220) we obtain (223). ��

9.5 Controlling the TermH[�[±2]
Q ] and Finishing the Proof of Theorem 9.1

Finally, we control the error term H[�[±2]
Q ] arising from the cutoff.

Proposition 9.5.1

∣∣
∣H[�[±2]

Q ]
∣∣
∣ � sup

{0≤τ≤ε−1}∪{τfinal−ε−1≤τ≤τfinal}
ε−2

E�̃τ ,0[�[±2]](τ )

+ εI[η][ψ[±2]](τfinal − ε−1, τfinal)+ εI[η][ψ[±2]](0, ε−1)

+ εI[η][α[±2]](τfinal − ε−1, τfinal)+ εI[η][α[±2]](0, ε−1)

+ εItrap[�[±2]](0, τfinal)+ ε−2
D

[±2](0). (225)

Proof Recalling

H[�[±2]
Q ] = Htrap[�[±2]

Q ] + Haway[�[±2]
Q ]

let us further partition Htrap[�[±2]
Q ] as Htrap[�[±2]

Q ] = H1 + H2 where we define

H1[�[±2]
Q ] =

∫ ∞

−∞
dω

∑

m�

∫ A∗
2

A∗
1

EωIm
(
G[±2]�[±2]

)
dr∗, (226)
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H2[�[±2]
Q ] =

∫ ∞

−∞
dω

∑

m�

∫ A∗
2

A∗
1

(
−2 f Re

(
�[±2]′G[±2]

)

− f ′Re
(
�[±2]G[±2]

)
− 2yRe

(
�[±2]′G[±2]

))
dr∗. (227)

We will show the above estimate for H1, H2 and Haway[�[±2]
Q ].

Let us first deal with the term Haway[�[±2]
Q ]. This is supported in

(
{0 ≤ t̃∗ ≤ ε−1} ∪ {τfinal − ε−1 ≤ t̃∗ ≤ τfinal}

)
∩ {2A∗

1 ≤ r∗ ≤ 2A∗
2} (228)

and consists of quadratic terms one of which always contains a �[±2]-term. Thus, by
Cauchy–Schwarz this can easily be bounded by the first three lines of the right hand
side of (225), where an ε−1 factor is introduced on the � term, compensated by an
ε on the other terms. (The extra ε factor in ε−2 arises from estimating a spacetime
integral by the supremum. Cf. the proof of (209).)

ForH1, by the exact Plancherel formulae of Sect. 6.2.3, the integral (226) transforms
into a physical space integral supported in

(
{0 ≤ t̃∗ ≤ ε−1} ∪ {τfinal − ε−1 ≤ t̃∗ ≤ τfinal}

)
∩ {A∗

1 ≤ r∗ ≤ A∗
2} (229)

which similarly to before, is obviously estimable from the first three lines of the right
hand side of (225). (In fact, one could replace the factor ε−2 with 1, since, just as in
the proof of (208), t̃∗ derivatives of the cutoff � always generate extra ε factors; we
will use this idea below for estimating the remaining term.)

For H2, we first apply Cauchy–Schwarz, introducing a ε−1,

∣∣
∣H[±2]

2

∣∣
∣ �

∫ ∞

−∞

∑

m�

∫ A∗
2

A∗
1

dr∗ε−1‖G(aω)
m� ‖2 + ε‖(�[±2],(aω)

m� , (� ′)[±2],(aω)
m� )‖2,

where we have used (165) to bound the f , f ′ and y factors uniformly over frequencies.
We now apply Plancherel. We note that by Proposition 9.2.1, the first term on the right
hand side is bounded by ε−1× the right hand side of (208) while the second term is
manifestly bounded by

εItrap[�[±2]](0, τfinal).

We obtain (225) for H2, finishing the proof. ��
Proposition 9.5.2 For sufficiently small a0 � ε � 1, we have

∣∣∣H[±2]
∣∣∣ � ε−3

D
[±2](0) (230)

Proof Apply Proposition 5.3.1 of Sect. 5.3 to the estimate of Proposition 9.5.1 and
combine with Proposition 9.4.3. ��
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Now let ε be fixed by the requirement of the above proposition. From (230) and
Proposition 9.4.3 all statements of Theorem 9.1 now follow.

9.6 Note on the Axisymmetric Case: A Pure Physical-Space Proof

We note that in the axisymmetric case ∂φα[±2] = 0, the physical space multiplier and
transport estimates of Sect. 5 can be applied directly globally in the region R̃(τ1, τ2),
i.e. without the restriction to R̃away(τ1, τ2). This leads already to a much shorter proof
of Theorem 9.1 which can be expressed entirely with physical space methods. We
explain how this physical-space proof can be distilled directly from the more general
calculations of Sect. 8 done at fixed frequency.

Given |a| < a0 � M sufficiently small, let rtrap be the unique value given by
Lemma 8.2.1 and define f by (176) and y by δ1((1 − χ) f + χ f 3 − δ1χ̃(r)r−η)
where χ is the cutoff appearing in (177) and χ̃ is the cutoff appearing in (101). The
calculation of Sect. 8.2.3 now shows that the coercivity property of the physical space
current I f + I y holds globally in R̃trap(τ1, τ2) and thus (102) holds when integrated
globally in R̃(τ1, τ2), i.e. without restriction to the “away” region and with I

away

replaced by I
deg
η . One also produces an estimate for the future boundary term:

Eη

[
�±2

]
(τ2) (231)

in view of property 3. of the proof of Proposition 5.1.1.
We apply this estimate then in the region R̃(0, τ2) directly to �[±2] arising from a

solution α[±2] of the homogeneous Teukolsky equation (37).
We must estimate the error term arising from the coupling J [±2]. For this we turn

first to global transport estimates.
Note that in the axisymmetric case, the simple estimate applied in Sect. 8.3 for

frequencies in the range F� applies now for all frequencies (since F � = ∅ if m = 0)
and corresponds to commuting the transport equations by ∂r∗ and integrating by parts.
This physical space procedure, say in the [+2] case, allows one to obtain the estimate

Er=A1

[
α[+2]] (0, τ2)+ Er=A1

[
ψ[+2]] (0, τ2)+ E

trap
[
α[+2]] (τ2)+ E

trap
[
α[+2]] (τ2)

+ I
trap

[
α[+2]] (0, τ2)+ I

trap
[
ψ[+2]] (0, τ2) � I

trap
[
�[+2]] (0, τ2)+ D

[+2](0).
(232)

Note that Itrap(0, τ2) is degenerate and thus controlled by I
deg
η (0, τ2). Summing (232)

with the estimates obtained from (105) and (106), as in the proof of Proposition 9.4.1,
allows one to estimate finally

Eη

[
α[+2]] (τ2)+ Eη

[
α[+2]] (τ2)+ I[η]

[
α[±2]] (τ1, τ2)

+I[η]
[
ψ[±2]] (τ1, τ2) � I

deg
η

[
�[±2]] (τ1, τ2)+ D

[±2](0). (233)
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With this we estimate the new contribution to J ±2] coming from the region
Rtrap(τ1, τ2). The only difficult term is the one arising from the T multiplier. In the
fixed frequency estimate of Sect. 8.4, this corresponded to passing an ω from ψ to
� before applying Cauchy–Schwarz. In physical space, this corresponds simply to
integration by parts in t . By this physical space estimate, we obtain that the resulting
term is bounded by

|a|Itrap[�](0, τ2)+ |a|Itrap[α](0, τ2)+ |a|Itrap[ψ](0, τ2)
+ |a|Etrap

�̃τ

[
�[±2]] (τ2)+ |a|Etrap

�̃τ

[
α[±2]] (τ2)+ |a|Etrap

�̃τ

[
ψ[±2]] (τ2)+ |a|D[±2](0),

(234)

where the future boundary terms arise from this integration by parts. (Note that all
other terms in J [±2] are estimated by the first line of (234) alone.) Combining with
the original statement of Proposition 9.4.1, this yields

E�̃τ ,η

[
�[±2]]+ I

deg
η

[
�[±2]] (τ1, τ2) � D

[±2](0)+ (234). (235)

In view of (233), for sufficiently small |a| < a0 � M , one can absorb the terms
(234) on the right hand side of (235) into the left hand side. The remaining statements
of Theorem 9.1 follow immediately.

10 The Redshift Effect and Its AssociatedMorawetz Estimate

In this section we will obtain statement 2. of Theorem 4.1 concerning the boundedness
and integrated local energy decay of the so-called red-shifted energy. The required
statement is contained in Theorem 10.1 below.

10.1 Statement of Red-Shifted Boundedness and Integrated Decay

Theorem 10.1 Let α[±2], �[±2] and ψ[±2] be as in Theorem 4.1. Then the following
holds for any τ2 > τ1 ≥ 0.

For s = +2

• the basic degenerate Morawetz estimate

I
deg
η

[
�[+2]] (τ1, τ2)+ Iη

[
ψ[+2]] (τ1, τ2)+ Iη

[
α[+2]] (τ1, τ2)

� E�̃τ ,η

[
�[+2]] (τ1)+ E�̃τ ,η

[
ψ[+2]] (τ1)+ E�̃τ ,η

[
α[+2]] (τ1) , (236)

• the basic non-degenerate Morawetz estimate
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Iη

[
�[+2]] (τ1, τ2) � E�̃τ ,η

[
�[+2]] (τ1)+ E�̃τ ,η

[
ψ[+2]] (τ1)

+ E�̃τ ,η

[
α[+2]] (τ1)

+ E�̃τ ,η

[
T�[+2]] (τ1)+ E�̃τ ,η

[
T ψ[+2]] (τ1)+ E�̃τ ,η

[
T α[+2]] (τ1) ,

(237)

• the η-weighted energy boundedness estimate

EH+
[
�[+2]] (τ1, τ2)+ E�̃τ ,η

[
�[+2]] (τ2)

� E�̃τ ,η

[
�[+2]] (τ1)+ E�̃τ ,η

[
ψ[+2]] (τ1)+ E�̃τ ,η

[
α[+2]] (τ1) . (238)

For s = −2

• the basic degenerate Morawetz estimate

I
deg
η

[
�[−2]] (τ1, τ2)+ I

[
ψ[−2]] (τ1, τ2)+ I

[
α[−2]] (τ1, τ2)

� E�̃τ ,η

[
�[−2]] (τ1)+ E�̃τ

[
ψ[−2]] (τ1)+ E�̃τ

[
α[−2]] (τ1) , (239)

• the basic non-degenerate Morawetz estimate

Iη

[
�[−2]] (τ1, τ2) � E�̃τ ,η

[
�[−2]] (τ1)+ E�̃τ

[
ψ[−2]] (τ1)+ E�̃τ

[
α[−2]] (τ1)

+ E�̃τ ,η

[
T�[−2]] (τ1)+ E�̃τ

[
T ψ[−2]] (τ1)+ E�̃τ

[
T α[−2]] (τ1) , . (240)

• the η-weighted energy boundedness estimate

EH+
[
�[−2]] (τ1, τ2)+ E�̃τ ,η

[
�[−2]] (τ2)

� E�̃τ ,η

[
�[−2]] (τ1)+ E�̃τ

[
ψ[−2]] (τ1)+ E�̃τ

[
α[−2]] (τ1) . (241)

10.2 Proof of Theorem 10.1

Weonly prove the s = + 2 case. The s = − 2 case is completely analogous and slightly
easier because the term J [−2] has stronger degeneration near the event horizon. Note
that in Sect. 9 we have already proven the estimates (236) and (238) provided we
drop all overbars from the energies that appear. The estimate (237), which does not
degenerate in a neighbourhood of r = 3M but loses a derivative, is a simple corollary
of (236) and (238) again provided we drop all overbars from the energies. Hence the
only task left is to improve the L derivative in the energies that appear. This is achieved
using the redshift multiplier of [39,43]:
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The redshift identity. Recall the notational conventions of Sect. 5.1.1. Multiplying
(54) by Y = 1

w
ξL� (with ξ a smooth radial cut-off function equal to 1 for r ∈[

r+, r+ + 1
4 M

]
and equal to zero for r ≥ r+ + 1

2 M) and taking the real parts yields
(use the formulae of Appendix B.5)

L
{

FY
L

}+ L
{

FY
L

}+ I Y ≡ Re

(
−
(
J [s] + G[s]) 1

w
ξL�

)
(242)

where

FY
L = 1

2

1

w
ξ |L�|2 + 1

2
aξRe

(
��L�

)+ 1

2
ξa2 sin2 θRe

(
T�L�

)
, (243)

FY
L = 1

2
ξ | /̊∇[s]

�|2 + 1

2

(
ξ

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

])
|�|2

+ a2

r2 + a2 ξ |��|2 − 1

2
aξRe

(
��L�

)− 1

2
ξa2 sin2 θ |T�|2

+ 1

2
ξa2 sin2 θRe

(
T�L�

)
, (244)

I Y = −1

2

(
ξ

w

)′
|L�|2 + 1

2
ξ ′| /̊∇�|2

+ 1

2

(
ξ

[
s2 − 6Mr

r2 + a2

r2 − a2

r2 + a2 − 7a2�

(r2 + a2)2

])′
|�|2

+ 2raξ

r2 + a2 Re
(
��L�

)−
[

L

(
a2

r2 + a2 ξ

)]
|��|2

− 1

2
aξ ′Re

(
��

(
L + L

)
�
)− 1

2
aξRe

(
��

[
L, L

]
�
)

− 1

2
ξ ′a2 sin2 θ |T�|2 − 2sa cos θξ Im

(
T�L�

)
. (245)

We apply the identity (242) to the equation satisfied by�[+2]. In particular,G[s] = 0
because α[+2] satisfies the homogeneous Teukolsky equation. Upon integration over
R̃ (τ1, τ2) (recallingRemark 5.1)we obtain (236) and (238) aftermaking the following
observations:

• The first term in FY
L and the first term in FY

L are manifestly non-negative and
produce precisely the desired improvement in the L derivative and the missing
angular derivative in the horizon term respectively. All other terms appearing as
boundary terms can now be controlled using Cauchy–Schwarz and (35) by the
energies without the overbar (sometimes borrowing an ε from the just obtained
good L-derivative term and the good angular term respectively is required).

• Examining (245), the term 1
2ξ

w′
w2 |L�|2 is manifestly positive and produces pre-

cisely the desired improvement of the |L�|2 in the spacetime energy without the
overbar. All other terms can be controlled by the spacetime energy without the
overbar, sometimes borrowing an ε from the improved |L�|2 term.
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• The error term

∫

M(τ1,τ2)

∣
∣∣J [+2] 1

w
ξL�

∣
∣∣
1

ρ2

r2 + a2

�

is controlled usingCauchy’s inequalitywith ε and the energies I0
[
ψ[+2]] (τ1, τ2)+

I0
[
α[+2]] (τ1, τ2).

Finally, the estimate (237) follows from its un-overbarred version by adding the
just established (236).

11 The r p-Weighted Hierarchy and theMain Decay Result

To complete the proof of Theorem 4.1, it remains to obtain statements 3. and 4. con-
cerning the r p-weighted hierarchy and polynomial decay. The required statement is
contained in Theorem 11.1 below.

11.1 Statement of the Decay Theorem

Theorem 11.1 Let α[±2], �[±2] and ψ[±2] be as in Theorem 4.1. Then the following
holds for any τ > τ0 = 0.

For s = +2 we have

E�̃τ ,η

[
�[+2]] (τ )+ E�̃τ ,η

[
ψ[+2]] (τ )+ E�̃τ ,η

[
α[+2]] (τ )

�
D2,2

[
�[+2],ψ[+2],α[+2]] (τ0)

τ 2−η
(246)

for the initial data energy

D2,2

[
�[+2],ψ[+2],α[+2]] (τ0) =

1∑

k=0

(
E�̃τ ,2

[
T k�[+2]] (τ0)

+E�̃τ ,2

[
T kψ[+2]] (τ0)+ E�̃τ ,2

[
T kα[+2]] (τ0)

)

+ E�̃τ ,η

[
T 2�[+2]] (τ0)+ E�̃τ ,η

[
T 2ψ[+2]] (τ0)+ E�̃τ ,η

[
T 2α[+2]] (τ0) .

For s = −2 we have

E�̃τ ,η

[
�[−2]] (τ )+ E�̃τ

[
ψ[−2]] (τ )+ E�̃τ

[
α[−2]] (τ )

�
D2,2

[
�[−2],ψ[−2],α[−2]] (τ0)

τ 2−η
(247)
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and

E�̃τ ,η

[
�[−2]] (τ )+ E�̃τ

[
ψ[−2]] (τ )+ E�̃τ

[
α[−2]] (τ )

�
D2,2

[
�[−2],ψ[−2],α[−2]] (τ0)

τ 2−η
(248)

for the initial data energy

D2,2

[
�[−2],ψ[−2],α[−2]] (τ0) =

1∑

k=0

(
E�̃τ ,2

[
T k�[−2]] (τ0)

+E�̃τ

[
T kψ[−2]] (τ0)+ E�̃τ

[
T kα[−2]] (τ0)

)

+ E�̃τ ,η

[
T 2�[−2]] (τ0)+ E�̃τ

[
T 2ψ[−2]] (τ0)+ E�̃τ

[
T 2α[−2]] (τ0) ,

and with D2,2
[
�[−2],ψ[−2],α[−2]] (τ0) defined by putting an overbar on all energies

appearing in D2,2
[
�[−2],ψ[−2],α[−2]] (τ0).

11.2 Proof of Theorem 11.1 for s = +2

The s = +2 case of Theorem 11.1 will be proven in Sect. 11.2.3 by combining basic
estimates from the r p hierarchy associated with the inhomogeneous wave equation
satisfied by�[+2] (derived in Sect. 11.2.1) and basic transport estimates forψ[+2] and
α[+2] (derived in Sect. 11.2.2).

11.2.1 TheWeighted r p Hierarchy for�[+2] in Physical Space

Proposition 11.2.1 Under the assumptions of Theorem 11.1 we have for any τ2 >
τ1 ≥ 0 and for p = 2, p = 1 and p = η the estimate

E�̃τ ,p

[
�[+2]] (τ2)+ I

deg
p

[
�[+2]] (τ1, τ2)+ EI+,p

[
�[+2]] (τ1, τ2)

� E�̃τ ,p

[
�[+2]] (τ1)+ E�̃τ ,η

[
ψ[+2]] (τ1)+ E�̃τ ,η

[
α[+2]] (τ1)

and the non-degenerate estimate

E�̃τ ,p

[
�[+2]] (τ2)+ Ip

[
�[+2]] (τ1, τ2)+ EI+,p

[
�[+2]] (τ1, τ2)

� E�̃τ ,p

[
�[+2]] (τ1)+ E�̃τ ,η

[
ψ[+2]] (τ1)+ E�̃τ ,η

[
α[+2]] (τ1)

+ E�̃τ ,η

[
T�[+2]] (τ1)+ E�̃τ ,η

[
T ψ[+2]] (τ1)+ E�̃τ ,η

[
T α[+2]] (τ1) .

Proof Given α[+2] we apply the multiplier identity (96) to �[+2]. To the identity that
is being produced after integration over R̃(τ1, τ2), we can add a large constant B

123



Boundedness and Decay for the Teukolsky Equation on Kerr... Page 95 of 118 2

(depending only on M) times the basic estimate (236) such that the following holds:
For the boundary term we have for all p ∈ [η, 2]

∫

R̃(τ1,τ2)

(
L
{

Fr p

L

}+ L
{

Fr p

L

}) 1

ρ2

r2 + a2

�
dV ol + B · E�̃τ ,η

[
�[+2]] (τ2)

� b · E�̃τ ,p
[
�[+2]] (τ2)− B · E�̃τ ,p

[
�[+2]] (τ1)+ b EI+,p

[
�[+2]] (τ1, τ2) .

(249)

For the spacetime term we have

∫

R̃(τ1,τ2)

(
I r p

) 1

ρ2

r2 + a2

�
dV ol + B · Ideg

η

[
�[+2]] (τ1, τ2)

≥ b · Idegp

[
�[+2]] (τ1, τ2) (250)

for p ∈ [η, 2) and for p = 2

∑

p=2−η,p=2

∫

R̃(τ1,τ2)

(
I r p

) 1

ρ2

r2 + a2

�
dV ol + B · Ideg

η

[
�[+2]] (τ1, τ2)

≥ b · Ideg2

[
�[+2]] (τ1, τ2) , (251)

the latter case being special because for p = 2we lose control of the angular derivatives
in (99). For the error term (which in view of ξ being supported for large r is supported
for large r ) we have, for any λ > 0,

∫

R̃(τ1,τ2)

∣∣∣J [+2]||ξ ||β4||r p L�[+2]|r
2 + a2

�ρ2
dV ol

�
∫

R̃(τ1,τ2)

dV ol
r2 + a2

�ρ2

(
λr p−1|L�[+2]|2 + r p+1

λ

∣∣∣J [+2]|2
)

� λI
deg
p

[
�[+2]] (τ1, τ2)+ a2

λ

(
Iη

[
ψ[+2]] (τ1, τ2)+ Iη

[
α[+2]] (τ1, τ2)

)
.

Note that there is no G[+2] error term as F [+2] = 0 and hence G[+2] = 0. Com-
bining the above estimates yields the first estimate of the Proposition after using the
basic estimate (236) yields and choosing λ sufficiently small (depending only on M).
The second estimate follows immediately by combining the first one with the non-
degenerate (237). ��

11.2.2 Physical Space Weighted Transport forψ[+2] and P [+2]

We now turn to deriving weighted Morawetz and boundedness estimates for ψ[+2]
and α[+2] from the transport equations they satisfy. Combining (105) with the basic
estimate (236) we immediately obtain
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Proposition 11.2.2 Under the assumptions of Theorem 11.1 we have for any τ2 >
τ1 ≥ 0 and for p ∈ {η, 1, 2} the estimate

E�̃τ ,p

[
α[+2]] (τ2)+ Ip

[
α[+2]] (τ1, τ2) � Ip

[
ψ[+2]] (τ1, τ2)+ E�̃τ ,p

[
α[+2]] (τ1)

(252)

and the estimate

E�̃τ ,p

[
ψ[+2]] (τ2)+ Ip

[
ψ[+2]] (τ1, τ2) � I

deg
p

[
�[+2]] (τ1, τ2)

+ E�̃τ ,p

[
ψ[+2]] (τ1)+ E�̃τ ,η

[
�[+2]] (τ1)+ E�̃τ ,η

[
α[+2]] (τ1) (253)

11.2.3 Completing the Proof of Theorem 11.1

Combining the estimate of Proposition 11.2.1 with that of Proposition 11.2.2 we
deduce for p ∈ {η, 1, 2} (first for K = 0 and then by trivial commutation with the
Killing field T for any K ∈ N) the estimate

K∑

k=0

(
E�̃τ ,p

[
T kα[+2]] (τ2)+ E�̃τ ,p

[
T kψ[+2]] (τ2)+ E�̃τ ,p

[
T k�[+2]] (τ2)

)

+
K∑

k=0

(
Ip

[
T kα[+2]] (τ1, τ2)+ Ip

[
T kψ[+2]] (τ1, τ2)+ I

deg
p

[
T k�[+2]] (τ1, τ2)

)

�
K∑

k=0

(
E�̃τ ,p

[
T kα[+2]] (τ1)+ E�̃τ ,p

[
T kψ[+2]] (τ1)+ E�̃τ ,p

[
T k�[+2]] (τ1)

)

(254)

and also

K∑

k=0

(
E�̃τ ,p

[
T kα[+2]] (τ2)+ E�̃τ ,p

[
T kψ[+2]] (τ2)+ E�̃τ ,p

[
T k�[+2]] (τ2)

)

+
K∑

k=0

(
Ip

[
T kα[+2]] (τ1, τ2)+ Ip

[
T kψ[+2]] (τ1, τ2)+ Ip

[
T k�[+2]] (τ1, τ2)

)

�
K∑

k=0

(
E�̃τ ,p

[
T kα[+2]] (τ1)+ E�̃τ ,p

[
T kψ[+2]] (τ1)+ E�̃τ ,p

[
T k�[+2]] (τ1)

)

+ E�̃τ ,η

[
T K+1α[+2]] (τ1)+E�̃τ ,η

[
T K+1ψ[+2]] (τ1)+E�̃τ ,η

[
T K+1�[+2]] (τ1) .

(255)

Let us denote the right hand side of the second estimate on the initial data slice �̃0
(i.e. for τ1 = τ0) by DK+1,p

[
�[+2],ψ[+2],α[+2]] (τ0).
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Applying (255) for K = 1 and p = 2 implies (after using a standard argument
involving dyadic sequences) along a dyadic sequence τn ∼ 2nτ0 the estimate

1∑

k=0

(
E�̃τ ,1

[
T kα[+2]] (τn)+ E�̃τ ,1

[
T kψ[+2]] (τn)+ E�̃τ ,1

[
T k�[+2]] (τn)

)

�
D2,2

[
�[+2],ψ[+2],α[+2]] (τ0)

τn
.

Using the above and applying (254) for p = 1, K = 1 between the time τ1 = τn and
any τ2 ∈ (τn, τn+1

]
yields the previous estimate for any τ , not only the members of the

dyadic sequence. Turning back to (255) now with K = 0 we use the previous estimate
and a similar dyadic argument to produce along a dyadic sequence the estimate

E�̃τ ,η

[
α[+2]] (τn)+ E�̃τ ,η

[
ψ[+2]] (τn)+ E�̃τ ,η

[
�[+2]] (τn)

�
D2,2

[
�[+2],ψ[+2],α[+2]] (τ0)

τ
2−η
n

.

Using the above and applying (254) with p = η and K = 0 now yields the estimate
(246) of Theorem 11.1.

11.3 Proof of Theorem 11.1 for s = −2

The s = − 2 case of Theorem 11.1 will be proven in Sect. 11.3.3 by combining basic
estimates from the r p hierarchy associated with the inhomogeneous wave equation
satisfied by�[−2] (derived in Sect. 11.3.1) and basic transport estimates forψ[−2] and
α[−2] (derived in Sect. 11.3.2).

11.3.1 TheWeighted r p Hierarchy for�[−2] in Physical Space

Proposition 11.3.1 Under the assumptions of Theorem 11.1 we have for any τ2 >
τ1 ≥ 0 and for p = 2, p = 1 and p = η the estimate

E�̃τ ,p

[
�[−2]] (τ2)+ I

deg
p

[
�[−2]] (τ1, τ2)+ EI+,p

[
�[−2]] (τ1, τ2)

� E�̃τ ,p

[
�[−2]] (τ1)+ E�̃τ

[
ψ[−2]] (τ1)+ E�̃τ

[
α[−2]] (τ1)

+ |a|
(
EI+

[
ψ[−2]] (τ1, τ2)+ EI+

[
α[−2]] (τ1, τ2)

)
(256)

and the non-degenerate estimate

E�̃τ ,p

[
�[−2]] (τ2)+ Ip

[
�[−2]] (τ1, τ2)+ EI+,p

[
�[−2]] (τ1, τ2)

� E�̃τ ,p

[
�[−2]] (τ1)+ E�̃τ

[
ψ[−2]] (τ1)+ E�̃τ

[
α[−2]] (τ1)
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+ E�̃τ ,η

[
T�[−2]] (τ1)+ E�̃τ

[
T ψ[−2]] (τ1)+ E�̃τ

[
T α[−2]] (τ1)

+ a
(
EI+

[
ψ[−2]] (τ1, τ2)+ EI+

[
α[−2]] (τ1, τ2)

)
. (257)

Proof The proof is exactly as in Proposition 11.2.1 except that we need to inspect
carefully the error termJ [−2]. (This is of course because theRegge–Wheeler operators
are almost identical for s = ± 2.) Checking the r -weights in the application of the
Cauchy–Schwarz inequality, the analogous computation

∫

R̃(τ1,τ2)

∣∣∣J [−2]||ξ ||β4||r p L�[−2]|r
2 + a2

�ρ2
dV ol

�
∫

R̃(τ1,τ2)

dV ol
r2 + a2

�ρ2

(
λr p−1|L�[−2]|2 + r p+1

λ

∣∣∣J [−2]|2
)

� λI
deg
p

[
�[−2]] (τ1, τ2)+ a2

λ

(
I

[
ψ[−2]] (τ1, τ2)+ I

[
α[−2]] (τ1, τ2)

)

is seen to be valid only for p ∈ [η, 2 − η]. For p = 2 we need to integrate by
parts. Note that the two worst (the others being controlled by the above estimate for
λ depending only on M) contributions from the error J [−2]β4ξr p L� can be written
(omitting taking real parts for the moment)

ar−2�
(√

�ψ [−2]) r2L�[−2] = L
(

a�
(√

�ψ [−2])�[−2]
)

+ a�
(

r2 + a2
)−2 (

��[−2])�[−2] , (258)

and

a2r−2
(

r2 + a2
)−3/2

α[−2] r2L�[−2] = L

(
a2
(

r2 + a2
)−3/2

α[−2]�[−2]
)

− a2�
(
r2 + a2

)2

(√
�ψ [−2])�[−2] ,

where we have used the relations (52) and (51). Now upon taking real parts and
integration, the second term in each line can be controlled by the basic Cauchy–
Schwarz inequality, the integration by parts having gained a power in r . The first term
in each line is a boundary term and controlled by the terms appearing on the right hand
side of the estimate (256), where for the boundary term on null infinity we borrow
from the term EI+,p

[
�[−2]] (τ1, τ2) appearing on the left hand side. ��

11.3.2 Physical Space Weighted Transport forψ[−2] and�[−2]

Proposition 11.3.2 Under the assumptions of Theorem 11.1 we have for any τ2 >
τ1 ≥ 0 the estimate
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E�̃τ

[
α[−2]] (τ2)+ I

[
α[−2]] (τ1, τ2)+ EI+

[
α[−2]] (τ1, τ2)

� I

[
ψ[−2]] (τ1, τ2)+ E�̃τ

[
α[−2]] (τ1) (259)

and the estimate

E�̃τ

[
ψ[−2]] (τ2)+ I

[
ψ[−2]] (τ1, τ2)+ EI+

[
ψ[−2]] (τ1, τ2)

� I
deg
η

[
�[−2]] (τ1, τ2)+ E�̃τ

[
ψ[−2]] (τ1)

+ E�̃τ ,η

[
�[−2]] (τ1)+ E�̃τ

[
α[−2]] (τ1) . (260)

The same estimates hold with an overbar on all terms.

Proof Multiply (119) by a cut-off function ξ which is equal to 1 for r ≥ 9M and
equal to zero for r ≤ 8M . Bringing ξ inside the first bracket produces an error-term
supported in [8M, 9M], which (upon integration) is for any n controlled by the basic
estimate (239). Upon integration of the resulting identity we deduce (260) for  being
the identity in the energies appearing. Nowwe observe that the same estimate holds for
the T and� commuted equations (note that (117) commutes trivially with the Killing
fields T and � so the estimate (111) trivially holds for the commuted variables).

The estimate (259) is proven completely analogously except that here no cut-off is
required in view of the non-degenerate norm ofψ[−2] appearing on the right hand side:
One first applies (118) and the same estimate for the T and � commuted variables.

To obtain the estimates with an overbar one first commutes (117) and (116) with L
and notes that the analogue of (119) and (118) can now be applied with the error from
the commutator

[
L, L

] ∼ a
r3
� being controlled by the previous step. Secondly, one

commutes (117) and (116) with the vectorfield r2+a2
�

L which extends regularly to the
horizon and observes that the additional commutator term leads to a good sign (near
the horizon) in the estimates (119) and (118). ��
11.3.3 Completing the Proof of Theorem 11.1 for s = −2

Combining the estimate of Proposition 11.3.1 with that of Proposition 11.3.2 we
deduce for p ∈ {η, 1, 2} (first for K = 0 and then by trivial commutation with the
Killing field T for any K ∈ N) the estimate

K∑

k=0

(
E�̃τ

[
T kα[−2]] (τ2)+ E�̃τ

[
T kψ[−2]] (τ2)+ E�̃τ ,p

[
T k�[−2]] (τ2)

)

+
K∑

k=0

(
I

[
T kα[−2]] (τ1, τ2)+ I

[
T kψ[−2]] (τ1, τ2)+ I

deg
p

[
T k�[−2]] (τ1, τ2)

)

�
K∑

k=0

(
E�̃τ

[
T kα[−2]] (τ1)+ E�̃τ

[
T kψ[−2]] (τ1)+ E�̃τ ,p

[
T k�[−2]] (τ1)

)

(261)
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and also

K∑

k=0

(
E�̃τ

[
T kα[−2]] (τ2)+ E�̃τ

[
T kψ[−2]] (τ2)+ E�̃τ ,p

[
T k�[−2]] (τ2)

)

+
K∑

k=0

(
I

[
T kα[−2]] (τ1, τ2)+ I

[
T kψ[−2]] (τ1, τ2)+ Ip

[
T k�[−2]] (τ1, τ2)

)

�
K∑

k=0

(
E�̃τ

[
T kα[−2]] (τ1)+ E�̃τ

[
T kψ[−2]] (τ1)+ E�̃τ ,p

[
T k�[−2]] (τ1)

)

+ E�̃τ

[
T K+1α[−2]] (τ1)+E�̃τ

[
T K+1ψ[−2]] (τ1)+E�̃τ ,η

[
T K+1�[−2]] (τ1) .

(262)

Let us denote the right hand side of the second estimate on the initial data slice �̃0
(i.e. for τ1 = τ0) by DK+1,p

[
�[−2],ψ[−2],α[−2]] (τ0).

Applying the estimate (262) for K = 1 and p = 2 implies (after using a standard
argument involving dyadic sequences) along a dyadic sequence τn ∼ 2nτ0 the estimate

1∑

k=0

(
E�̃τ

[
T kα[−2]] (τn)+ E�̃τ

[
T kψ[−2]] (τn)+ E�̃τ ,1

[
T k�[−2]] (τn)

)

�
D2,2

[
�[−2],ψ[−2],α[−2]] (τ0)

τn
.

Using the above and applying (261) for p = 1, K = 1 between the time τ1 = τn and
any τ2 ∈ (τn, τn+1

]
yields the previous estimate for any τ , not only the members of the

dyadic sequence. Turning back to (262) now with K = 0 we use the previous estimate
and a similar dyadic argument to produce along a dyadic sequence the estimate

E�̃τ

[
α[−2]] (τn)+ E�̃τ

[
ψ[−2]] (τn)+ E�̃τ ,η

[
�[−2]] (τn)

�
D2,2

[
�[−2],ψ[−2],α[−2]] (τ0)

τ
2−η
n

.

Using the above and applying (261) with p = η and K = 0 now yields (247) of
Theorem 11.1. To obtain the second estimate, one simply repeats the above proof using
that the estimate of Proposition 11.3.2 also holds for the energies with an overbar.
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A Derivation of the Equation for�[s]

A.1 The Teukolsky Equation

Recall from (13) the definitionw = �

(r2+a2)
2 . Using (39) the inhomogeneous Teukol-

sky equations (53) can be written in physical space as

− L Lα̃[+2] = −2
w′

w
Lα̃[+2]

+ w
(
�̊[+2] + (+2)− 2aT�− a2 sin2 θT T + 2i(+2)a cos θT

)
α̃[+2]

− 3w(+2)
r

r2 + a2 a�α̃[+2] +
(

−3w
a4 + a2r2 − 2Mr3

(r2 + a2)2
+ 2w

)
α̃[+2] − �

ρ2
F [+2]

(263)

and

− L L
(
�2α̃[−2]) = +2

w′

w
L
(
�2α̃[−2])

+ w
(
�̊[+2] + (−2)− 2aT�− a2 sin2 θT T + 2i(−2)a cos θT

) (
�2α̃[−2])

− 3w (−2)
r

r2 + a2 a�
(
�2α̃[−2])

+
(

−3w
a4 + a2r2 − 2Mr3

(r2 + a2)2
+ 2w

)(
�2α̃[−2])− �

ρ2
F [−2]

respectively. Introducing the physical space operators

Q[±2] = ∓6
r

r2 + a2 a�− 3
a4 + a2r2 − 2Mr3

(r2 + a2)2
+ 2 (264)

L[±2] = �̊[+2] + (±2)− 2aT�− a2 sin2 θT T + 2i(±2)a cos θT (265)

as well as recalling the definitions

Lα̃[+2] = −2w
√
�ψ[+2] , L

(√
�ψ[+2]) = w�[+2] , (266)

L
(
�2α̃[−2]) = 2w

√
�ψ[−2] , L

(√
�ψ[−2]) = −w�[−2] , (267)
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we can write (263) as

2L
(√

�ψ[+2])− 2
√
�ψ[+2]w′

w
= L[+2]α̃[+2] + Q[+2]α̃[+2] − �

wρ2
F [+2] ,

(268)

− 2L
(√

�ψ[−2])− 2
√
�ψ[−2]w′

w
= L[−2] (�2α̃[−2])

+ Q[−2] (�2α̃[−2])− �3

wρ2
F [−2] . (269)

For the separated form of the Teukolsky equation, using the relation

w′′

w
− 2

(
w′)2

w2 − V [+2]
0 − 2w = w′′

w
− 2

(
w′)2

w2 − V [−2]
0 + 2w

= −3w
a4 + a2r2 − 2Mr3

(r2 + a2)2
+ 2w ,

it is easy to see that we can write (153) for spin s = +2 and s = −2 as13

2L
(√

�ψ [+2])− 2
√
�ψ [+2]w′

w
=
(
�

[+2],(aω)
m� + 2

) (
u[+2]w

)

+ Q[+2] (u[+2]w
)

− �

wρ2
F [+2],(aω)

m� , (270)

− 2L
(√

�ψ [−2])− 2
√
�ψ [−2]w′

w
=
(
�

[−2],(aω)
m� − 2

) (
u[−2]w

)

+ Q[−2] (u[−2]w
)

− �3

wρ2
F [−2],(aω)

m� , (271)

where

Q[±2] = ∓6
r

r2 + a2 iam − 3
a4 + a2r2 − 2Mr3

(r2 + a2)2
+ 2 .

We observe that Q[±2] is the separated analogue of the physical space operatorsQ[±2]
defined in (264). Similarly, the separated analogue of the operator L[±2] is easily seen
to be the operator /̊�

[±2]
m (aω)±2+a2ω2−2amωwhich has eigenvalues�[±2],(aw)

m� ±2,
see (135), (136) and (149). Note the symmetry between the physical space formulation
(268), (269) and the separated form (270), (271).

13 As mentioned in Sect. 7.1 we denote the separated frame operators (155) and (154) also by L and L

respectively.We have also dropped the subscriptsm� and the superscript aω from u[±2],(aω)
m� andψ [±2],(aω)

m�
to ease the notation.
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A.2 Derivation of the�[s] Equation in Physical Space

We derive the equation for s = +2 in physical space. Observing the commutation
relation

[
L, L

] = 4ra

r2 + a2w ·�,

we obtain after applying L to the Teukolsky equation (268) recalling (266) and that
L[+2] commutes with L:

2L
(
w�[+2])+ 8ra

r2 + a2w ·�
(√

�ψ[+2])− 2w′�[+2] + 2
(√

�ψ[+2])
(
w′

w

)′

= −2wL[+2] (√�ψ[+2])− 2wQ[+2] (√�ψ[+2])

+
[

L,Q[+2]] (α̃[+2])− L

(
�

wρ2
F [+2]

)
, (272)

which we immediately simplify to

L
(
�[+2])+ 4ra

r2 + a2 ·�
(√

�ψ[+2])+
(√

�ψ[+2]) 1

w

(
w′

w

)′

= −L[+2] (√�ψ[+2])− Q[+2] (√�ψ[+2])+ 1

2w

[
L,Q[+2]] α̃[+2]

− 1

2w
L

(
�

wρ2
F [+2]

)
. (273)

We now apply another L derivative, which produces

L L
(
�[+2])+ w

8ra

r2 + a2 ·��[+2] + wQ[+2]�[+2] +
(
w′

w

)′
�[+2] + wL[+2]�[+2]

=
(

4a

(
r

r2 + a2

)′
�+

(
1

w

(
w′

w

)′)′
− 2

[
L,Q[+2]]

)(√
�ψ[+2])

+
[

L,
1

2w

[
L,Q[+2]]

]
α̃[+2] − 1

2
L

(
1

w
L

(
�

wρ2
F [+2]

))
. (274)

Using elementary algebra we simplify the terms in the first line of (274) to

L L
(
�[+2])+ w

2ra

r2 + a2 ·��[+2] + w

(
L[+2] + 4 − 6M

r

r2 − a2

r2 + a2 − 7a2w

)
�[+2] ,

(275)
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which can be written more succinctly as

1

2

(
L L + L L

) (
�[+2])+ w

(
L[+2] + 4 − 6M

r

r2 − a2

r2 + a2 − 7a2w

)
�[+2] . (276)

The terms in the second line of (274) simplify to

w

[

−8a · −r2 + a2

r2 + a2 �+ 20a2 r3 − 3Mr2 + ra2 + Ma2

(
r2 + a2

)2

]√
�ψ[+2] . (277)

Finally, for the double commutator term in the third line of (274) we obtain

[
+12a3w

r

r2 + a2�− 3a2w
r4 − a4 + 10Mr3 − 6Ma2r

(r2 + a2)2

]
α̃[+2] . (278)

Combining the previous equations we have therefore established the formula of Propo-
sition 3.2.1 for s = +2. The formula for s = −2 is proven entirely analogously
exchanging the roles of L and L . For completeness, we nevertheless explicitly derive
the (equivalent) separated form of the equation for s = −2 in the next section.

A.3 Derivation of the�[s] Equation in Separated Form

Asmentioned at the end of the previous section andmainly to illustrate the equivalence
between deriving equations in the physical space and the separated picture, we now
derive the equation for�[−2] in separated form from (271).Recall that L and L are now
given by the separated frame operators (155) and (154). Observing the commutation
relation

[
L, L

] = 4ra

r2 + a2w · im ,

we obtain after applying L to the separated Teukolsky equation (271) recalling the
separated relations (158) and (158)

+ 2L
(
w�[−2])+ 8ra

r2 + a2w · im
(√

�ψ [−2])+ 2w′�[−2] − 2
(√

�ψ [−2])
(
w′

w

)′

= 2w
(
�

[−2],(aω)
m� − 2

) (√
�ψ [−2])+ 2wQ[−2] (√�ψ [−2])

+
(
∂r∗ Q[−2]) (u[−2]w

)
− L

(
�3

wρ2
F [−2],(aω)

m�

)
,

which we immediately simplify to

L
(
�[−2])+ 4ra

r2 + a2 · im
(√

�ψ [−2])−
(√

�ψ [−2]) 1

w

(
w′

w

)′
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=
(
�

[−2],(aω)
m� − 2

) (√
�ψ [−2])+ Q[−2] (√�ψ [−2])

+ 1

2w

(
Q[−2])′ (

u[−2]w
)

− 1

2w
L

(
�3

wρ2
F [−2],(aω)

m�

)
.

We now apply another L derivative, which produces

L L
(
�[−2])− w

4ra

r2 + a2 · im�[−2] + wQ[−2]�[−2]

+
(
w′

w

)′
�[−2] + w

(
�

[−2],(aω)
m� − 2

)
�[−2]

=
[

−4aim

(
r

r2 + a2

)′
+
(
1

w

(
w′

w

)′)′
+ 2

(
Q[+2])′

](√
�ψ [−2])

+
[(

1

2w

(
Q[+2])′)′] (

u[−2]w
)

− 1

2
L

(
1

w
L

(
�3

wρ2
F [−2],(aω)

m�

))
. (279)

Using elementary algebra we simplify the terms in the first line of (279) to

L L
(
�[−2])+ w

2ra

r2 + a2 · im�[−2]

+ w

(
�

[−2],(aω)
m� + 2 − 6M

r

r2 − a2

r2 + a2 − 7a2w

)
�[−2] , (280)

which can be written more succinctly as

1

2

(
L L + L L

) (
�[−2])+ w

(
�

[−2],(aω)
m� + 2 − 6M

r

r2 − a2

r2 + a2 − 7a2w

)
�[−2] .

(281)

The terms in the second line simplify to

w

[

+8aim · −r2 + a2

r2 + a2 + 20a2 r3 − 3Mr2 + ra2 + Ma2

(
r2 + a2

)2

]√
�ψ [−2] . (282)

Finally, for the third line of (274) excluding the inhomogeneous term we obtain

[
−12a3w

r

r2 + a2 im − 3a2w
r4 − a4 + 10Mr3 − 6Ma2r

(r2 + a2)2

] (
u[−2]w

)
. (283)

In summary, we have established the following formula for s = −2:

− 1

2

(
L L + L L

)
�[s] − �

(
r2 + a2

)2

(
λ

[s]
m� − 2amω + a2ω2 + s2 + s

)
�[s]
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+ �
(
r2 + a2

)2
6Mr

r2 + a2

r2 − a2

r2 + a2�
[s] + 7a2 �2

(r2 + a2)4
�[s] = �

ρ2
J [s] + G[s] ,

(284)

where the right hand is side given by

J [s] = ρ2

(
r2 + a2

)2

[

−4s
r2 − a2

r2 + a2 aim − 20a2 r3 − 3Mr2 + ra2 + Ma2

(
r2 + a2

)2

]
(√

�ψ [s])

+ a2 ρ2

(
r2 + a2

)2

[
−6s

r

r2 + a2 aim + 3

(
r4 − a4 + 10Mr3 − 6Ma2r

(r2 + a2)2

)](
u[s]w

)
,

(285)

G[+2] = 1

2
L

(
1

w
L

(
�

wρ2
F [+2]

))
, G[−2] = 1

2
L

(
1

w
L

(
�3

wρ2
F [−2]

))
. (286)

We have therefore proven Proposition 7.3.1 for s = −2. The s = +2 case is proven
entirely analogously or can be easily deduced directly from the physical space formula
of Proposition 3.2.1.

Finally, note that we can write (284) also as

(
�[s])′′ +

(
ω2 − V [+2])�[s] = �

ρ2
J [s] + G[s]

for the potential

V [s] =
�
(
λ

[s]
m� + a2ω2 + s2 + s

)
+ 4Mramω − a2m2

(
r2 + a2

)2

− �

(r2 + a2)2

6Mr(r2 − a2)

(r2 + a2)2
− 7a2 �2

(r2 + a2)4

= V [s]
0 + V [s]

1 + V [s]
2 . (287)

B Auxilliary Calculations for Physical SpaceMultipliers

We first recall the relations

L + L = 2T + 2
a

r2 + a2� , L − L = 2∂r∗ .

Wewill consider the identities generated by the following four multipliers (the smooth
radial cut-offs χ , ξ and the smooth radial functions f , h, y are chosen appropriately
in the body of the paper)

1. The T -energy: T�
2. The Lagragian multiplier: h�
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3. The �-multiplier: ω+χ�� (χ a radial cut-off)
4. The y-multiplier: f

(
L − L

)
�

5. The redshift multiplier: 1
w
ξL� (ξ a radial cut-off near the horizon)

6. The r p weighed multiplier: r pβkξL� with βk = 1 + k M
r (ξ a radial cut-off near

infinity)

each acting on the second order terms in the equation (54), namely (recall w =
�

(r2+a2)
2 )

I. 1
2

(
L L + L L

)
�

II. w /̊�[s]
m (0)� = 1

2w
(
ðð + ðð

)
�

III. w2aT��
IV. wa2 sin2 θT T�

The point is that the 0th order terms in (54) are easy to handle while for the (only)
first order term in (54), 2iswa cos θT�, we observe that for X any real vectorfield
commuting with T we have

2iswa cos θT�X� = T
(
2iswa cos θ�X�

)− X
(
2iswa cos θ�T�

)

+ X (2iswa cos θ)�T�

+ 2iswa cos θX�T� , (288)

and hence

Re
(
2iswa cos θT�X�

) = T
(
iswa cos θ�X�

)− X
(
iswa cos θ�T�

)

+ X (iswa cos θ)�T�

= −T
(
swa cos θ Im�X�

)+ X
(
swa cos θ Im�T�

)− X (swa cos θ) Im�T�.
(289)

In particular for X = T the right hand side is zero while for X = ω+χ� only the first
two terms survive (and only the first after integration in φ).

B.1 The T -multiplier: T�

B.1.1 Part I: 12
(
L L + L L

)
�

1

2
Re

(
L L + L L

)
� T� = 1

4
Re

(
L + L

) (
L + L

)
�T� − 1

4
Re

(
L − L

) (
L − L

)
�T�

= 1

4
Re

(
L + L

) { (
L + L

)
�T�

}
− 1

8
T
{
| (L + L

)
�|2

}

− 1

4
Re

(
L − L

) { (
L − L

)
�T�

}
+ 1

8
T
{
| (L − L

)
�|2

}
(290)
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which we write as

1

2
Re

(
L L + L L

)
�T� = 1

16

(
L + L

)

×
{
| (L + L

)
�|2 + | (L − L

)
�|2 − 4a

r2 + a2 Re��
(
L + L

)
�
}

+ 1

8
�
{ a

r2 + a2

(
| (L + L

)
�|2 − | (L − L

)
�|2

) }

− 1

4

(
L − L

)
Re
{ (

L − L
)
�T�

}
(291)

B.1.2 Part II:w
(
/̊�[s]

m (0)+ s
)
� (After Integration Over

∫
sin θdθdφ, See (33))

wRe
(
/̊�[s]

m (0)+ s
)
�T� = +1

2
T
{
w| /̊∇[s]

�|2
}

(292)

B.1.3 Part III:w2aT��

w2a Re T��T� = �
{

aw|T�|2
}

(293)

B.1.4 Part IV:wa2 sin2 θT T�

wa2 sin2 θRe T T�T� = 1

2
T
{
wa2 sin2 θ |T�|2

}
(294)

B.2 The Lagrangian Term: h�

B.2.1 Part I: 12
(
L L + L L

)
�

1

2

(
L L + L L

)
Re�h� = 1

4

(
L + L

) (
L + L

)
Re�h� − 1

4

(
L − L

) (
L − L

)
Re�h�

= 1

4

(
L + L

)
Re
{ (

L + L
)
�h�

}
− 1

4

(
L − L

)
Re
{ (

L − L
)
�h�

}

+ 1

4
h
[
|(L − L)�|2 − |(L + L)�|2

]
+ 1

4
h′ (L − L

) |�|2

= 1

4

(
L + L

)
Re
{ (

L + L
)
�h�

}
− 1

4

(
L − L

) { (
L − L

)
Re�h� − h′|�|2

}

+ 1

4
h
[
|(L − L)�|2 − |(L + L)�|2

]
− 1

2
h′′|�|2 (295)
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B.2.2 Part II:w
(
/̊�[s]

m (0)+ s
)
� (After Integration Over

∫
sin θdθdφ)

w
(
/̊�[s]

m (0)+ s
)
�h� = +hw| /̊∇[s]

�|2 (296)

B.2.3 Part III:w2aT��

w2a Re(T��h�) = �Re
(
w2aT�h�

)− w2ah Re{(T�)(��)} (297)

B.2.4 Part IV:wa2 sin2 θT T�

wa2 sin2 θRe{T T�h�} = T Re
(
wa2 sin2 θT�h�

)
− wa2 sin2 θh|T�|2 (298)

B.3 The�multipier:ω+χ��

B.3.1 Part I: 12
(
L L + L L

)
�

1

2

(
L L + L L

)
Re{�ω+χ��} = 1

4

(
L + L

) (
L + L

)
Re{�ω+χ��}

− 1

4

(
L − L

) (
L − L

)
Re{�ω+χ��}

= 1

4

(
L + L

)
Re
{ (

L + L
)
�ω+χ��

}
− 1

8
�
{
ω+χ

∣∣(L + L
)
�
∣∣2
}

− 1

4

(
L − L

)
Re
{ (

L − L
)
�ω+χ��

}
+ 1

8
�
{
ω+χ

∣∣(L − L
)
�
∣∣2
}

+ 1

2
ω+χ ′Re

(
(L − L)�

)
(��) (299)

B.3.2 Part II:w
(
/̊�[s]

m (0)+ s
)
� (After Integration Over

∫
sin θdθdφ)

wRe
(
/̊�[s]

m (0)+ s
)
�ω+χ�� = +1

2
�
(
ω+χ | /̊∇s

�|2
)

(300)

B.3.3 Part III:w2aT��

w2aRe{T��ω+χ��} = T
{
waω+χ |��|2

}
(301)
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B.3.4 Part IV:wa2 sin2 θT T�

wa2 sin2 θRe{T T�ω+χ��} = TRe
{
wa2 sin2 θω+χ(T�)��

}

− 1

2
�
{
wa2 sin2 θω+χ |T�|2

}
(302)

B.4 The y-Multiplier: y(L − L)�

B.4.1 Part I: 12
(
L L + L L

)
�

1

2
Re{(L L + L L

)
�
(
y(L − L)�

)} = 1

4
Re{(L + L

) (
L + L

)
�
(
y(L − L)�

)}

− 1

4
Re{(L − L

) (
L − L

)
�
(
y(L − L)�

)}

= 1

4
Re

(
L + L

) {
y
(
L + L

)
�
(
(L − L)�

) }− 1

8

(
L − L

) {
y
∣∣(L − L)�

∣∣2
}

− 1

8

(
L − L

) {
y
∣∣(L + L)�

∣∣2
}

+ 1

4
y Re{[L − L, L + L

]
�
(
L + L

)
�}

+ 1

4
y′ [∣∣(L + L)�

∣∣2 + ∣∣(L − L)�
∣∣2
]

(303)

Using the commutator identity

[
L − L, L + L

] = 2
[
L, L

] = 4∂r∗
(

a

r2 + a2

)
� = − 8ra

(
r2 + a2

)2
�

r2 + a2�

we conclude

1

2

(
L L + L L

)
�
(
y(L − L)�

) = 1

4
Re

(
L + L

) {
y
(
L + L

)
�
(
(L − L)�

) }

− 1

8

(
L − L

) {
y
∣∣(L + L)�

∣∣2 + y
∣∣(L − L)�

∣∣2
}

+ 1

4
y′ [∣∣(L + L)�

∣∣2 + ∣∣(L − L)�
∣∣2
]

− 2y
ra

(
r2 + a2

)2
�

r2 + a2 Re{��
(
L + L

)
�}

B.4.2 Part II:w
(
/̊�[s]

m (0)+ s
)
� (After Integration Over

∫
sin θdθdφ)

Re
∫

sin θdθdφ w
(
/̊�[s]

m (0)+ s
)
�
(
y(L − L)�

)
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= +1

2

(
L − L

) { ∫
sin θdθdφ wy| /̊∇[s]

�|2
}

− 1

2

[(
L − L

)
(wy)

] ∫
sin θdθdφ | /̊∇[s]

�|2 (304)

B.4.3 Part III:w2aT��

w2a Re{T�� (
y(L − L)�

)} = way Re{
(

L + L − 2
a

r2 + a2�

)
��

(
(L − L)�

)}

= −�Re
{ 2a2

r2 + a2wy(��)
(
(L − L)�

) }+ (L − L)
{ a2

r2 + a2wy|��|2
}

−
[
(L − L)

(
a2

r2 + a2wy

)]
|��|2 + 1

2
�
{
way|L�|2

}
− 1

2
�
{
way|L�|2

}

− L Re
{
way��L�

}
+ LRe

{
way��L�

}
− 4ra2

(r2 + a2)2

�

r2 + a2wy|��|2

+ a [L (wy)] Re{(��)(L�)} − a
[
L (wy)

]
Re{(��)(L�)} (305)

B.4.4 Part IV:wa2 sin2 θT T�

wa2 sin2 θRe{T T�
(
y(L − L)�

)} = T Re
{
wa2 sin2 θT�

(
y(L − L)�

) }

− 1

2

(
L − L

) {
wa2 sin2 θ y|T�|2

}

+ (wy)′ a2 sin2 θ |T�|2 (306)

B.5 The Redshift Multiplier: 1
w
ξL�

B.5.1 Part I: 12
(
L L + L L

)
�

1

2
Re

(
L L + L L

)
�

(
1

w
ξL�

)
= L L�

(
1

w
ξL�

)
− 1

2
Re

([
L, L

]
�

(
1

w
ξL�

))

= 1

2
L

(
1

w
ξ |L�|2

)
− 1

2

(
ξ

w

)′
|L�|2 + 2raξ

r2 + a2 Re
(
��L�

)
. (307)

B.5.2 Part II:w
(
/̊�[s]

m (0)+ s
)
� (After Integration Over

∫
sin θdθdφ)

Re

(
w
(
/̊�[s]

m (0)+ s
)
�

(
1

w
ξL�

))
= +1

2
L
{
ξ | /̊∇�|2

}
+ 1

2
ξ ′| /̊∇�|2 (308)
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B.5.3 Part III:w2aT��

w2aT��

(
1

w
ξL�

)
= aξ

(
L + L − 2

a

r2 + a2�

)
��L�

= −�
{ 2a2

r2 + a2 ξ(��)L�
}

+ L
{ a2

r2 + a2 ξ |��|2
}

−
[

L

(
a2

r2 + a2 ξ

)]
|��|2 + 1

2
�
{

aξ |L�|2
}

+ aξL��L� . (309)

In view of

aξL��L� = L
(
aξ��L�

)− aξ ′��L� − aξ��
[
L, L

]
� − aξ��L L�

= L
(
aξ��L�

)− aξ ′��L� − aξ��
[
L, L

]
� − L

(
aξ��L�

)

− aξ ′��L� + aξ�L�L� (310)

and hence

2Re
(
aξL��L�

) = L
(
aξRe

(
��L�

))− aξ ′Re
(
��

(
L + L

)
�
)

− aξRe
(
��

[
L, L

]
�
)

− L
(
aξRe

(
��L�

))+�
(
aξRe

(
L�L�

))

we conclude from (309)

Re

(
w2aT��

(
1

w
ξL�

))

= �
{

− 2a2

r2 + a2 ξRe
(
��L�

)+ 1

2
aξRe

(
L�L�

)+ 1

2
aξ |L�|2

}

+ L
{ a2

r2 + a2 ξ |��|2 − 1

2
aξRe

(
��L�

) }+ L

(
1

2
aξRe

(
��L�

))

−
[

L

(
a2

r2 + a2 ξ

)]
|��|2 − 1

2
aξ ′Re

(
��

(
L + L

)
�
)− 1

2
aξRe

(
��

[
L, L

]
�
)
.

(311)

B.5.4 Part IV:wa2 sin2 θT T�

Re

(
wa2 sin2 θT T�

(
1

w
ξL�

))
= T

{
ξa2 sin2 θRe

(
T�L�

) }

− 1

2
L
{
ξa2 sin2 θ |T�|2

}

− 1

2
ξ ′a2 sin2 θ |T�|2 . (312)
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B.6 The r p Multiplier: r pβkξL� with βk = 1 + k M
r

B.6.1 Part I: 12
(
L L + L L

)
�

Re

(
1

2

(
L L + L L

)
�
(
r pβkξL�

)) = Re
(
L L�

(
r pβkξL�

))

+ Re

(
1

2

[
L, L

]
�
(
r pβkξL�

))

= 1

2
L
(
ξr pβk |L�|2

)
+ 1

2

(
ξ
(

pr p−1 + O
(

r p−2
))

+ ξ ′r pβk

)
|L�|2

− 2raξr pβkw

r2 + a2 Re
(
��L�

)
(313)

B.6.2 Part II:w
(
/̊�[s]

m (0)+ s
)
� (After Integration Over

∫
sin θdθdφ)

Re
(
w
(
/̊�[s]

m (0)+ s
)
�
(
r pξL�

)) = +1

2
L
{
wξr pβk | /̊∇�|2

}

+ 1

2

(
ξ

[
(2 − p)

r3−p
+ (3 − p) (k − 2) M

r4−p
+ O

(
r p−5

)]
+ ξ ′w

r−p

)
| /̊∇�|2 (314)

B.6.3 Part III:w2aT��

Re
(
w2aT��

(
r pβkξL�

)) = Re

(
aξwr pβk

(
L + L − 2

a

r2 + a2�

)
��L�

)

= −�
{
Re

(
2a2

r2 + a2 ξwr pβk(��)L�

)}
+ L

{ a2

r2 + a2 ξwr pβk |��|2
}

−
(

a2

r2 + a2 ξwr pβk

)′
|��|2 + 1

2
�
{

aξwr pβk |L�|2
}

+ Re
(
aξwr pβk L��L�

)
.

(315)

In view of

aξwr pβk L��L� = L
(
aξwr pβk��L�

)+ (
aξwr pβk

)′
��L�

+ aξwr pβk��
[
L, L

]
� − aξwr pβk��L L�

= L
(
aξwr pβk��L�

)+ (
aξwr pβk

)′
��L� + aξwr pβk��

[
L, L

]
�

− L
(
aξwr pβk��L�

)+ (
aξwr pβk

)′
��L�

+�
(
aξwr pβk L�L�

)− aξwr pβk L�L��
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we conclude from (315)

Re
(
w2aT��

(
r pβkξL�

)) = �
{

− Re

(
2a2wr p

r2 + a2 ξβk(��)L�

)
+ 1

2
aξwr pβk |L�|2

+ 1

2
Re

(
aξwr pβk L�L�

) }

+ L
{ a2wr p

r2 + a2 ξβk |��|2 − 1

2
Re

(
aξwr pβk��L�

) }

+ L
{1
2
Re

(
aξwr pβk��L�

) }

−
(

a2

r2 + a2 ξwr pβk

)′
|��|2 + 1

2
Re

((
aξwr pβk

)′
��

(
L + L

)
�
)

+ 1

2
Re

(
aξwr pβk��

[
L, L

]
�
)
.

B.6.4 Part IV:wa2 sin2 θT T�

Re
(
wa2 sin2 θT T�

(
r pβkξL�

)) = T
{
wa2 sin2 θr pβkξRe

(
T�L�

) }

− 1

2
L
{
wa2 sin2 θξr pβk |T�|2

}

+ 1

2

(
ξ
(
wr pβk

)′ + ξ ′wr pβk

)
a2 sin2 θ |T�|2 . (316)
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